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A Qualitative Comparison of Power Law Generators
Javier Martin Hernandez, Tom Kleiberg, Huijuan Wang and Piet Van Mieghem

Abstract— Several topology generator algorithms have been
proposed to match the heavy-tailed behavior of the real Internet
AS-level Topology. Although evaluation studies have been pre-
sented for each topology generator, each of these studies assumes
a different framework. Therefore, it is difficult to compare the
differences between the topology generator algorithms. The ob-
jective of this paper is to fill this gap by comparing representative
families of topology generators. The resultant graphs are assessed
based on metrics such as the degree distribution and the spectrum
of the adjacency matrix.

I. INTRODUCTION

One of the first widely used Internet topology generators
was developed by Waxman [31]. The Waxman algorithm is a
variant of the Erdös-Rényi random graph [18] based on the
Euclidean distance. Later research claimed that the real In-
ternet topology does not obey a random-structure, but instead
possesses some kind of hierarchy, for instance a differentia-
tion between transit and stub nodes. As a consequence, the
structural generators as Transit-Stub [32], Tiers [33], and GT-
ITM1 appeared. These structural generators were considered
valid until the appearance of a seminal paper by Faloutsos
et al. [28] in 1999. In that paper, the nodal degree of the
Internet AS-level topology was shown to closely obey a power
law. The graphs generated by the structural generators do not
exhibit this power law behavior, turning them into deficient
Internet topology models [22]. The work by Faloutsos et al.
[28] fueled the development of a new family of generators,
such as the Barabási-Albert (BA [3]) and Power Law Random
Graph (PLRG [1]). Here, we focus on a comparison between
this last generation of power law algorithms.

The Internet topology at the granularity of Autonomous
Systems (AS) is a heavy-tailed scale-free small-world network
[21] [25] [28]. However, the question of how closely the
Internet topology follows power laws remains open to debate
[24] [26].

Power-Laws and scale-freeness are two important concepts
to clarify. A random variable X > 0 is said to possess a power
law if the probability density function (pdf ) obeys

fX (x) = cx−β (x > 0, β > 1) (1)

where c is a normalization constant, and β is the power law
exponent. The corresponding power law density function is
scale-free because it satisfies

fX(ax) = g(a)fX(x) (2)

An increase by a factor a in the scale or units by which one
measures x does not change the overall density fX(x), except
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for a multiplicative scaling factor. Scale-free can be interpreted
as a synonym for power law, but most actual usages of "scale-
free" appear to have a richer notion. Sometimes additional
features are considered such as underlying self-similarity or
fractal geometry. In the remainder of this paper, we will use the
notions of scaling and power law distribution interchangeably
and only insist that the right tail of the distribution satisfies
property (1).

A large number of algorithms have appeared trying to
emulate the Internet AS-level graph. All the algorithms have
an evocative approach to the problem [27] in common: the
algorithms can reproduce a metric of interest, but do not
capture the underlying causal mechanisms. Usually a well-
understood network metric (in most cases the nodal degree
distribution) is chosen and an algorithm that matches the
metric is developed. This approach presents several problems.
First, it is hard to choose the single metric. Second, a method
that matches the chosen metric, often does not fit other metrics
of interest.

In heavy-tail distributions such as the Lognormal, Weibull
and Pareto, the (right) tail decreases subexponentially. Thus,
the deviation from the mean can vary by orders of magnitude,
turning the mean into an uninformative and not representative
measure. The higher moments E[Xk] of the distribution
function (1) only exist if β > k [19].

This paper is organized as follows. In Section II, we present
the power law algorithms: PLRG, Havel-Hakimi (in short
Havel), Takao, Barabási-Albert, Barabási-Albert rewired (BA-
r) and Generalized Linear Preference (GLP). In Section III,
we introduce the metrics used to compare the output graphs:
degree distribution, average hopcount, clustering coefficient,
assortativity and spectrum of the adjacency matrix. Further in
Section IV, we present the qualitative analysis of the different
algorithms under study. Finally, we conclude in Section V.

II. TOPOLOGY GENERATORS

We can classify the topology generators into two families:
the curve fitting family and the preferential attachment family.
The curve fitting family generators use an explicit scale-
free degree distribution D = {d1, d2, ..., dN} (the curve).
Given D, the algorithms interconnect the set of N nodes
such that the resultant graph G(N,L) with N nodes and L
links has degree distribution D. Generators of this family
are PLRG, Havel-Hakimi and Takao. The preferential at-
tachment family combines the ideas of network growth and
preferential attachment. The graph starts with a small fully
connected graph, and divides its growth into timesteps. Every
timestep adds one node and m edges. For the added edges, the
probability to attach to an existing node is proportional to the
degree of the latter. Generators of this family we consider are
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Barabási-Albert, Barabási-Albert rewire and GLP. Finally, we
also consider hybrid generators as inet3 that use both curve
fitting and preferential attachment.

A. Degree distribution generation
The performance of the PLRG, Havel-Hakimi and Takao

algorithms depends highly on the provided input degree se-
quence D = {d1, d2, ..., dN}. Each nodal degree dj is a
random variable with power law distribution (1). All the
degrees are assumed to be independent, thus ignoring the basic
law [19] of the degree

P
dj = 2L that eventually correlates

all nodal degrees. Since the process followed to generate
degree sequences is identical for PLRG, Havel and Takao,
their probability density functions present the same behavior
(while others parameters may differ).

B. PLRG
PLRG stands for Power Law Random Graph [1]. The

algorithm first assigns the calculated degree sequence D to
the N nodes in the graph. It then randomly matches degrees
among all the nodes. The produced graphs may not be con-
nected and may contain self loops and duplicated links. In
our simulations, we delete self-loops, merge duplicated links,
and extract the giant component. The connected components
theory [14][16][20] states that for values of β between 2 <
β < β0 (β0 = 3.478 as derived in [1]) the random graph
has a.s. a giant component, and the size of the second largest
component is O(logN). For 1 < β < 2 the second largest
component is a.s. of size O(1).

We use the notation from Cormen et al. [7] to display the
algorithm.

PLRG(D)
1 vector V ← 0
2 for j ← 1 to length[D]
3 do append D[j] copies of j to V
4 randomize the position of elements in V
5 for j ← 1 to length[V]/2
6 do connect V[j] to V[N-j+1]

Our topologies have a size of around 3000 nodes, meaning
that the second largest component size is ≤ 3 . Empirical
results [10] show that 20% of the total number of nodes do
not belong to the giant component.

C. Havel-Hakimi
Similar to PLRG, Havel-Hakimi requires as input a given

degree sequence. An important feature of Havel is that its
behavior is deterministic: given a degree sequence D =
{d1, d2, ..., dN}, the resultant graph G is always the same.
The original Havel algorithm was designed to check whether
a degree sequence is graphical2 or not. By reversing the
original Havel algorithm, we have a deterministic and efficient
algorithm to generate a connected graph. Havel algorithm is
based on the following theorem.

2A degree sequence D is called graphical if is possible to draw at least one
graph with degree sequence D.

Theorem 1: (Havel-Hakimi theorem) Let D =
{d1, d2, ..., dN} be a sequence of non-negative integers
with d1 ≥ d2 ≥ ... ≥ dN . Let D0 be a sequence
{d01, d02, ..., d0N} obtained from D by setting d01 = 0,
d0i = di− 1 (i = 2, .., d1+1), and d0j = dj(j = d1+2, ..., n).
Then D is graphical if D0 is graphical.

In words, D is graphical if the following sequence is
graphical: replace d1 by 0 and substract 1 from the next
d1 degrees:{d2, d3, ..., dd1+1}. The recursion ends when the
sequence consists of all zeros, or when the sequence has
only one non-zero element. The sequence is then classified
as graphical and non-graphical, respectively. The meta code
implementation is

HAVEL_HAKIMI_THEOREM(D)
1 if NON_ZERO_ELEMENTS[D] = 1
2 then sequence is not graphical
3 terminate
4 else
5 i ← FIRST_NON_ZERO(D)
6 for j ← 1 to D[i]
7 do D[i] ← 0
8 D[i+j] ← D[i+j] - 1
9 sort D from D[i+1] to length[D]

When a non-graphical sequence is detected the degree
sequence is ignored (terminate), and a new one is requested.
The Havel algorithm meta code is as follows.

HAVEL_HAKIMI(D)
1 matrix M ← 0
2 while D different from 0
3 do append D as row to M
4 HAVEL_HAKIMI_THEOREM(D)
5 for j ← rows[M] to 2
6 do k ← FIRST_NON_ZERO(M[j])
7 for i ← length[D] to k
8 do if M[j-1][i] > M[j][i]
9 then interconnect k-1 to i

The function FIRST_NON_ZERO(D) returns the position
of the first element different from zero in D.

The algorithm checks whether D is graphical or not in the
fourth first lines, saving the generated degree sequences in the
matrix M . In the last four lines the connectivity information
is obtained, through comparing adjacent rows of M .

D. Takao
The Takao algorithm was introduced by Takao Asano in

[23]. Similarly to PLRG and Havel, the Takao algorithm
requires an explicit degree sequence as input. Takao is a
deterministic algorithm, such that, for degree sequence D it
will always produce the same output graph.

The main feature of the Takao and Havel algorithms
is their speed, in the order of O(

PN
i=1 di/2) provided a

graphical D. The Takao algorithm first checks whether the
given degree sequence is graphical by applying Theorem 2.
Similarly to Havel, the connectivity information is obtained
from the processed matrix M 0, but the connectivity processes
are completely different. Takao theorem is defined as follows
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Theorem 2: (Takao theorem) Given a degree sequence D =
{d1, d2, ...dN} of positive integers where n > d1 ≥ d2 ≥ ... ≥
dn > 0. Let h = dn, x = min{j|dj = dh}, y = max{j|j ≤
n−1, dj = dh}. Describe C = {c1, c2, ...dN−1} as a sequence
of positive integers where c1 ≥ c2 ≥ ... ≥ cn−1, andv

ci =

½
di − 1, if 1 ≤ i ≤ x− 1 or y − h+ x ≤ i ≤ y
di, if x ≤ i ≤ y or y + 1 ≤ i ≤ n− 1
D is graphical if C is graphical

In words, at each step we are removing from D the node
with the lowest degree h, and substracting dh units from the
set of highest degrees.

E. Barabási-Albert
The two main concepts behind BA algorithm are the pref-

erential attachment and Yule’s process. The combination of a
growth process with preferential attachment has been proved
theoretically [5] and empirically [3] to lead to scale invariant
distributions.

The algorithm starts creating a small fully connected core
with m0 nodes. Then, BA incrementally constructs a topology
by continuously adding nodes. At each time step one node
is added with m links. After t time steps, the model leads
to a random network with m0 + t nodes and mt links. The
probability that a new node will be connected to the node i is
given by

Pr[X = i] =
di(t)P
∀j dj(t)

(3)

The linear preferential attachment via (3) represents the
rich-get-richer idea. The probability of a new node attaching
to a node with high degree is high, while the probability of
a new node attaching to a node with low degree is low. The
BA algorithm is as follows.

BARABASI_ALBERT(N,m0,m)
1 CREATE_CORE(m0)
2 while topology has < N nodes
3 do for m times
4 do create a new node x
5 y ← P_ATTACH()
6 connect x to y

where the function P_ATTACH() returns a random node
selected through Eq. (3). The probability that a node i has
di edges, follows a power law with tail exponent β = 3.
BA predicts correctly the emergence of power laws. However,
for many real systems such as the Internet, β is somewhere
between 2 and 3. The static β = 3 provided by BA algorithm
is therefore not satisfactory.

The rewiring variant Barabási-Albert rewire (BA-r) [4]
separates the growing process into three main events: addition
of node, addition of m links, or rewire of m links. Each of
these operations is randomly chosen with fixed probabilities p
and q, where p+ q < 1. BA-r algorithm is defined as follows.

BARABASI_ALBERT_REWIRE(N,m0,m,p,q)
1 CREATE_CORE(m0)
2 while topology has < N nodes

3 do if p
4 then for m times
5 do x ← P_ATTACH()
6 y ← P_ATTACH()
7 add a new edge from x to y
8 if q
9 then for m times
10 do select a random edge e
11 select a random end of e
12 new_y ← P_ATTACH()
13 rewire the selected end to new_y
14 else
15 create a new source node: x
16 y ← P_ATTACH()
17 add a new edge from x to y

F. GLP
The Generalized Linear Preference (GLP) is a variant of the

BA model. GLP adds more flexibility than BA in specifying
how nodes connect to other nodes [10]. It has been reported
[24] that in the real Internet, new ASs have a much stronger
preference to connect to high degree ASs than predicted by
the linear preferential model . To achieve a stronger preference
for high degre nodes, the probability that a new node will be
connected to the node i is adapted as

Pr[X = i] =
di − θP
∀j(dj − θ)

(4)

where θ ∈ (−∞, 1) is a tunable parameter. When θ is
smaller, less preference is given to high degree nodes. The
GLP algorithm is a mix between BA and BA-r. GLP decides
at each time step between two operations with probability p:
addition of a node, or addition of m links. The algorithm is
defined as follows.

GLP(N,m0,m,theta)
1 CREATE_CORE(m0)
2 nodes ← m0
3 while topology has < N nodes
5 do if p
6 then for(m times)
7 do src ← P_ATTACH_GLP(theta)
8 dst ← P_ATTACH_GLP(theta)
9 ADD_EDGE(src,dst)
10 else
11 create a new source node: x
12 y ← P_ATTACH_GLP(theta)
13 add a new edge from x to y

The function P_ATTACH_GLP() returns a random node
selected via (4).

GLP is shown to yield graphs with power law degree distri-
butions. In addition, Bu et al. [10] demonstrate how to choose
parameters so as to produce a desired power law exponent.
The implementation of BA, BA-r and GLP algorithms have
been retrieved from the BRITE project3.

3http://www.cs.bu.edu/brite/
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G. Inet3
Inet3 [11] is based on empirical data extracted from the

Oregon Route-Views project4. Thus the algorithm is based on
the BGP Autonomous System (AS) topology.

Inet3 follows the next sequential steps to generate the final
topology: first compute the number of months t that would
take the 1997’s Internet to reach N nodes (exponential growth
of the number of nodes is assumed). Second, compute the
new frequency (and rank) distributions using the calculated t.
The degree distribution is calculated through the pdf fX(x) =
eat+bx−S where a and b are known constants (extracted from
Oregon Route-Views). For the 2% higher degree nodes, apply
instead the ccdf formula FX(x) = ect+dx−R. Third, assign
degree 1 to the m% of nodes. Fourth, form a spanning tree
with nodes of degree higher than 1, creating G. Fifth, attach
nodes with degree 1 to G using linear preferential attachment
(3). Finally match the remaining nodes with G using linear
preferential attachment.

Inet3 depends on the empirical constants a, b, c, d, S, R
and m. The values for the constants have been extracted from
November 1997’s Internet snapshot5.

III. TOPOLOGICAL CHARACTERISTICS

In this Section, we introduce the metrics used to analyze
and compare the different topology generators.

A. Degree Distribution
Applying logarithms to the both sides of equation (1) we

obtain the equation of a line:

log(y) = log c− β log x (5)

The simplest way to obtain β is performing a linear regres-
sion of fX(x) when plotted in a log-log scale. To illustrate Eq.
(5), we plot in Figure 1 the degree distribution of PLRG in
log-log scale. The data set has been obtained from simulations.

The frequency distribution plot systematically underesti-
mates β [27]. Even worse, the plotted pdfs have a tendency
to suggest falsely that a scaling behavior exists. Figure 2,
and Figures 1a-1d on [27] demonstrate how an exponential
distribution can be wrongly interpreted as scale-free.

Figure 2 illustrates simulation results for BA-r. The fre-
quency degree data (pdf) appears linear on log-log scale, which
leads us to think a priori that the degree distribution behaves
like a power law. But if we plot the same data as a ccdf, we
can clearly observe how the power law relation fails for high
degrees. In conclusion, the rank degree plots are more reliable
than the frequency degree plots. Hereforth, we only use rank
degree plots.

B. Hopcount
The hopcount or path length between two nodes is a

characterizing property of a graph. It is defined as the minimal
number of distinct links that forms a path connecting the two

4http://www.routeviews.org
5So far, the last version of Inet generator is Inet-3.0.
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Fig. 1. pdf of the PLRG degree distribution. N = 3050 nodes. The right-
hand of the distribution is noisy because of sampling errors. This can be
solved increasing the number of simulations.
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nodes. The mean hopcount is the mean of the shortest path
lengths connecting each node n ∈ N to all other nodes in G.

Ordinarily, a topology is assumed to be either completely
regular or completely random. But many biological, tech-
nological and social networks lie somewhere between these
two extremes. Systems can be highly clustered, like regular
lattices, yet have small average hopcount [30], like random
graphs. These are called small-world networks, by analogy
with the small-world phenomenon [13]. The average hopcount
distribution is an important tool to distinguish between small
world and large diameter graphs, like lattices [19].

C. Assortativity
The assortativity coefficient R(G) is introduced by Newman

in [15], is

R(G) =

P
(i,j)∈L didj −

¡P
i∈N

1
2d
2
i

¢2
/LP

i∈N
1
3d
3
i −

¡P
i∈N

1
2d
2
i

¢2
/L

(6)

Assortative mixing (R > 0) is defined as “a preference
for high-degree nodes to attach to other high-degree nodes”
and disassortative mixing (R < 0) as the converse, where
“high-degree nodes attach to low-degree ones”. Assortative
and disassortative mixing patterns indicate a generic tendency
to connect to similar or dissimilar peers respectively.

If we plot the average degree of the neighbors of a given
node i versus the node degree di we obtain a graphical
representation of the assortativity coefficient. The slope of the
linear fit is directly related to R(G) (see Section IV-C for
examples).

D. Clustering Coefficient
The clustering coefficient cG(i) characterizes the density of

connections in the environment of a node i. The clustering
coefficient is defined as the ratio of the number of links y
connecting the di neighbors of i over the maximum possible
1
2di(di − 1),

cG(i) =
2y

di(di − 1)
provided that di ≥ 2 (7)

The clustering coefficient for the whole graph CG is defined
as the average of the clustering coefficient for all the nodes in
the graph.
CG expresses local robustness in the graph and thus has

practical implications: the higher the local clustering of a
node, the more interconnected are its neighbors. In addition,
the small world graph shows high clustering coefficients in
comparison to random networks, which represents an elevated
cliquishness [30].

E. Spectrum
The adjacency matrix A of a graph G with N nodes is an

N ×N matrix with elements aij = 1 only if (i, j) is a link of
G, otherwise aij = 0. We assume bidirectional links, if there
is a link from i to j (aij = 1) then there is a link from j to
i (aji = 1) for any j 6= i. Moreover, we exclude self-loops
(ajj = 0) or multiple links between two nodes i and j. The

spectrum of G is the set of eigenvalues of its adjacency matrix
A.

The spectrum is an important global characteristic of a
topology. It yields tight bounds for a wide range of graph
characteristics, such as distance-related parameters, expansion
properties, and values related to separator problems estimating
graph resilience under node/link removal. Most networks with
high values for the largest eigenvalues have a small diameter,
expand faster, and are more robust, which makes these sets of
eigenvalues important.

Faloutsos et al. [28] showed that the higher eigenvalues of
the Internet AS-level correspondent adjacency matrix follow
an empirical power law, such that:

fλ(x) ' x−δ (8)

Separately, Dogorostev et al. [8] showed that the tail para-
meter β of the degree distribution, and the tail parameter δ for
the highest eigenvalues are directly related through

fλ(x) ' x1−2β (9)

Eq. (8) and (9) provide a relation between the tail exponent
of the degree distribution, and that of the spectrum.

IV. COMPARING GENERATORS BY SIMULATION

A. Methodology
All generated networks consist of N = 3050 nodes. The

main reason for this number is that inet3 requires at least
3037 nodes, which is the number of nodes in 1997 Internet
AS topology.

To generate the degree sequences, we choose β = 2.18 as
tail exponent. This value of β is in agreement with results for
the Internet AS-level topology [10] and [12]. The tail exponent
β appears to be constant over time [11].

B. Degree Distribution
Figure 3 plots the pdf and ccdf in log-log scale of all the

degree distributions obtained through simulation. The linear
slope in the ccdf plot indicates the obtained distributions
follow indeed a power law.

The linear regression has been calculated for both the pdf
and ccdf data sets. Additionally, we calculate the Pearson’s
r linear correlation coefficient and the coefficient of variation
(Cv = σ2/μ). The first estimates the goodness of the linear
fits, the second quantifies the grade of variability. All these
analytic results are summarized in Table I.

Figure 4 shows the difference between the β extracted from
the pdf, and the β extracted from the ccdf. This error decreases
if we consider the degrees with small probability as noise, thus
ignoring them (i.e. degrees with fX(x) < 10

−4). To avoid this
estimation error, the nodes with fX(x) < 1% have not been
taken in account in the linear fit process of β for the pdf.

Table II assesses the effect of removing low probability
degrees from the pdf. If we consider low-probability degrees
as noise and we remove them, the β approximates to the tail
exponent obtained through the ccdf.
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Fig. 3. ccdf graphics for all the 7 algorithms. It can be observed that the
behaviour of all the algorithms (except BA-rewire) closely follows a power-
law.

pdf β ccdf β r CV

PLRG 2.07 2.47 0.99 35.3
Havel 2.22 2.05 0.97 21.9
Takao 2.10 2.27 0.99 38.1
inet3 2.27 2.21 0.99 31.3
BA 2.58 2.96 0.99 31.0
BA-r 1.76 2.40 0.89 13.8
GLP 2.12 2.34 0.99 25.5

TABLE I
LINEAR FIT OF THE BETAS FOR THE PDF AND THE CCDF GRAPHICS. WE

ONLY SHOW THE CORRELATION COEFFICIENT FOR THE CCDF FIT. THE

CORRELATION COEFFICIENT FOR THE PDF IS GREATER THAN 0.97 IN ALL

THE CASES.
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Fig. 4. This Figure illustrates how the pdf underestimates β. We know that
BA produce graphs with β = 3. The dotted line plots the β estimated through
the pdf (◦), β = 2.58. The dashed line plots that for the ccdf (×) β = 2.96.

fX(x) fX(x) > 10−4 fX(x) > 10−3

β 1.12 1.71 2.22

TABLE II
HAVEL MEASURED TAIL EXPONENTS. THE FIRST COLUMN SHOWS THE

TAIL EXPONENT CALCULATED FOR THE FULL SET OF DATA. THE SECOND

AND THIRD COLUMNS SHOW THE TAIL EXPONENT CALCULATED

IGNORING THE DEGREES WITH PROBABILITY LESS THAN 1E-4 AND 1E-3
RESPECTIVELY.

R(G)
PLRG -0.13
Havel -0.38
Takao -0.23
inet3 -0.18
BA -0.01
BA-r -0.01
GLP -0.11

TABLE III
AVERAGE ASSORTATIVITY COEFFICIENT R(G) OF THE CONSIDERED

ALGORITHMS.

BA-rewire6 generator has remarkable small CV . Figures 2
and 3 illustrate that BA-r follows a power law distribution
up to di ≈ 100. However, the degree distribution becomes
exponential for higher degrees, which explains the relatively
small coefficient of variation. This critical exponential behav-
ior cannot be easily observed from the pdf graphics, but it is
clearly exposed in the ccdf as an abrupt bend (Figure 3).

As mentioned in Section II-B, the PLRG algorithm gen-
erates topologies with isolated nodes, duplicated links and
self-loops. After these irregularities have been solved (delete
isolated nodes, merge duplicated links, delete self-loops) the
remaining topology has an obvious deficiency in the degree
distribution, as several low degree nodes are removed from
the graph. Consequently the tail exponent β is affected.

C. Assortativity
Figure 5 plots the average degree of the neighbors of a

node with degree d for BA and PLRG. The top of Figure 5
illustrates the average degree of the neighbors for BA. The
degree of the neighbors is fairly constant, which means that
there is a weak correlation between the degrees of a node and
that of its neighbors. As observed in Table III, the assortativity
of inet3, PLRG, Havel, and Takao is clearly negative, which
paints to disassortative behavior. This effect is represented as
a negative slope in the down side Figure 5, meaning that
low degree nodes tend to connect to high degree nodes, and
conversely, high degree nodes tend to interconnect with lower
degree nodes.

The assortativity coefficient for the Internet AS level graph
is found to be R(Internet) = −0.189 [15], showing a
signigficant disassortative behavior.

As an expansion of BA, GLP improves the assortativity
results: GLP introduces a significant disassortative behavior.

6The family of Barabási-Albert generators does not have nodes with degree
1, since during the generation process each new node starts with initial degree
m = m0 = 2.
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Fig. 5. Average degree of the neighbours (y-axis) given a degree d (x-axis).

Empirical data shows that 20% of the PLRG nodes do not
belong to the Giant Component, and thus they are erased. As
these erased nodes represent a significant fraction of nodes
with low degree, substracting them from the graph implies that
the higher degree nodes are losing low degree connectivity.
This produces an increase on the average degree of neighbors
for the high degree nodes.

Intuitively we might infer that that the assortativity of Havel
is be positive, as the algorithm uses the lemma "Higher
degree connect to higher degree". But the empirical results
(R(G)HAVEL = −0.38) contradict this interpretation. The
essential reason for this apparent conflict is that R(G) is
normalized against a set of graphs containing self-loops and
isolated nodes. So Havel could be thought of as disassortative
when compared with all graphs [27].

D. Hopcount
Figure 6 shows the histogram of the hopcount distribution

for all the proposed generators. The average hopcount of all
the generators lies under 5 hops: the networks have tendency
to present a small world graph. Takao is a notable exception, it
internconnects long chains of nodes making inappropiate use
of the input degree sequence. Table IV presents the simulation
results.

Theory [20] [6] states, for large N , that the average hop-
count of power law graphs is

E[HN ] = 2
log logN

|log(β − 2)| (1 + o(1))

yielding for N = 3050 and β = 2.18 that E[HN ] ≈ 2.42.
The hopcount of the algorithms belonging to the same fam-

ily of generators present remarkable differences. For instance,
BA with mean value of 4.5 lies far from BA-r with mean of
2.4. These difference between generators of the same family
implies that the hopcount distribution can be easily altered
with simple algorithm modifications.

Havel and BA-rewire show a very narrow distribution that
centers around two hops. Havel’s algorithm (Section II-C)
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Fig. 6. Hopcount histogram for all the algorithms considered.

theory μ σ2 max
PLRG 5.51 3.8 0.83 9
Havel 1.39 2.4 0.54 4
Takao 3.18 7.3 5.19 243
inet3 2.66 3.6 0.72 7
BA 102 4.5 0.77 7
BA-r 4.54 2.9 0.36 5
GLP 3.86 3.6 0.72 7

TABLE IV
THEORETICAL MEAN, EMPYRICAL MEAN, VARIANCE, AND MAXIMUM

VALUE OF THE HOPCOUNT FOR THE STUDIED GENERATORS. TAKAO

MAXIMUM HOPCOUNT CLEARLY STANDS OUT OF THE REST. BA
THEORETICAL VALUE IS NOT CORRECTLY APPROXIMATED, AS THE

FORMULA IS ONLY VALID IN THE RANGE 2 < β < 3.

systematically interconnects high-degree nodes with high-
degree nodes, creating a highly interconnected core, through
which almost all nodes can be reached within 3 hops.

E. Clustering Coefficient
Figure 7 shows the histogram of the clustering coefficient

for the evaluated generators, with the Takao clustering coeffi-
cient on top, and a vertical compound of all the histograms at
the bottom.

BA, BA-r, GLP and inet3 present low variance in compar-
ison to the rest of the algorithms. Havel and Takao posses
higher variance and irregular distributions (bottom of Figure
7). Table V shows a summary of the results obtained.

The clustering coefficient of Barabási-Albert is very low
(μBA = 0.012), which implies that BA is organized as a
tree. The clustering coefficient for inet3 (μinet3 = 0.1255)
appears deterministic, with zero variance. This dissimilarity
is a consequence of the construction process (Section II-G),
where systematically the same parameters are used.

Both Havel and Takao present graphs with high CG, while
their average hopcount strongly differs. This difference arises
because Takao algorithm interconnects long tails of nodes
with low degree. These tails dramatically increase the average
hopcount, but still presenting a central clustered core.
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μ σ2

PLRG 0.139 0.070
Havel 0.698 0.190
Takao 0.687 0.150
inet3 0.126 0
BA 0.012 0.002
BA-r 0.123 0.005
GLP 0.127 0.018

TABLE V
MEAN AND STANDARD DEVIATION FOR THE CLUSTERING COEFFICIENT.
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0.2

0.0

C
G

BA1 TakaoHavelBA-r GLP inet3 PLRG

Fig. 7. Histograms of clustering coefficients. In the top we can see the spread
histogram of Takao. In the bottom we plot a vertical compilation of all the
clustering coefficients. From left to right: BA, BA-r, GLP, inet3, PLRG, Havel
and Takao.

As the average Takao hopcount is too large, this algorithm
does not present the small world graph properties. As remarked
in [27] a power law degree sequence is not warranty for a small
world graph. BA presents a very small clustering coefficient,
neither representing a small world. PLRG, BA-r, GLP and
Havel follow the small world property, as they combine
low average hopcount with high clustering coefficients when
compared [19] to the random graph CGp(N) ≈ 10−3.

F. Spectrum
As pointed by Faloutsos et al. [28], there exists an eigen

exponent δ, such that the spectral density decays as a power
law (8) for large eigenvalues. However, the linear regression
is not trivial, as it depends highly on what we consider a large
eigenvalue. This problem is illustrated in Figure 9.

There is a rich literature on the eigenvalues of graphs and
their relation with topological properties. The eigenvalues of
random graphs tend to the semicircle law [8] [19], whereas
for scale-free networks the spectrum resembles a bell shape
representing a tree-like graph [9]. Moreover, the shape of
the spectrum at lower eigenvalues is directly related to the
randomness used by the algorithms to generate the topologies.
Stochastic topology generating algorithms create graphs that
present bulk-shape forms for small eigenvalues [9]. This
behavior can be observed for BA (top of Figure 8), BA-
rewire,GLP and PLRG. On the other hand, the deterministic
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Fig. 8. Top: BA spectrum. The bell shape of the lower eigenvalues reveal a
stochastic topology generator. Bottom: Havel spectrum. The spectrum of the
deterministic algorithms present very sharp shapes, grouping the 87% of the
total density in 3 eigenvalues.

algorithms Havel (bottom of Figure 8) and Takao concentrate
their densities in the zero-eigenvalue λ0. The Inet3 spectrum is
qualitatively between the deterministic and random behavior.

Eq. (8) and (9), indicate that real Internet AS-level graphs
present power law features in spectrum. The generators under
study correctly emulate this scaling behavior: the spectrum de-
cays as a power law for large eigenvalues. Figure 9 illustrates
an example of this fitting process with GLP.

Table VI shows the relation between the tail exponent of
the spectrum δ and the tail exponent of the degree distribution
β stated in Section III-E. The difference is expressed with
|∆| = δ − 2β + 1.

In the experiments made by Dorogovstev et al. [8], the
slope of the spectrum for BA model is δBA ≈ 5, while in
our experiments we obtain δBA ≈ 4.8. The main difference
between [8] and ours is the size of the networks.

Dorogovstev et al. [8] used N = 2 · 104 nodes, whereas we
use only N = 3050 nodes. We have performed simulations for
BA with increasing N . Figure 10 shows the evolution in the
spectrum as we increase N from 200 to 3050. As depicted in
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Fig. 9. Right side of the spectrum of GLP on log-log scale. The linear fit
is expressed with the flat line. Only eigenvalues greater than 10 have been
considered.

β δ |∆|
PLRG 2.47 3.95 0.01
Havel 2.05 1.88 1.22
Takao 2.27 3.55 0.01
inet3 2.20 2.39 1.01
BA 2.95 4.78 0.12
BA-r 2.40 1.69 2.11
GLP 2.34 3.54 0.14

TABLE VI
COMPARISON BETWEEN THE TAIL EXPONENTS OF THE SPECTRUM (δ) AND

THAT OF THE DEGREE DISTRIBUTION (β). DOGOROSTEV ET AL. FOUND

THAT THE EMPYRICAL RELATION δ = 2β − 1 HOLDS FOR THE REAL

INTERNET AS GRAPH.

Figure 10, the large eigenvalues tend to a straight line as N
increases. The value where δ tends to can not be empirically
obtained because of network size limitations, but we may
expect δBA N→∞ ≈ 5 as shown in [8]. This demonstrates that
the topologies we are using need a higher N to obtain more
precise results, but we still can extract qualitative conclusions.

Table VI shows that BA-r, inet3 and Havel do not behave
like scale-free graphs, as the measured δ do not match Eq. (9).
The slope of the higher eigenvalues of Takao fits relation (9).

V. CONCLUSIONS

The metrics analyzed here are a grasp of the full range of
characteristics that can be computed, but they seem sufficient
to differentiate between all the algorithms. On the other hand,
one single metric is still not enough to classify an algorithm.

We may summatize as follows:
• inet3, is not reliable. Trying to mimic the power law

distribution (using constant parameters), inet3 provides
undesirable secondary effects, for instance, the static
clustering coefficient.

• Barabási-Albert, is a good example on how linear
preferential attachment is a simple and intuitive process
yielding power laws. But the lack of input parameters
makes it useless to generate real-Internet topologies.

10-6

10-5

10-4

10-3

10-2

10-1

f λ(
x)

9
1

2 3 4 5 6 7 8 9
10Eigenvalues x

+N

+N

+N

Fig. 10. The different lines represent the positive eigenvalues for N= 200,
400, 800, 1600 and 3050 respectively. The spectrum tends to a straight line
with slope -5.

• Barabási-Albert rewire, the simulations provide a defect
in the tail of the degree distribution as it decays clearly
exponentially. This invalidates the model.

• GLP was designed to improve Barabási-Albert by soft-
ening the hopcount distribution, introducing weak disas-
sortative behavior and closer tail exponent in the degree
distribution. However, the input parameters still depend
highly on real Internet AS-level data.

• PLRG starts with the disadvantage that we can not
explicitly decide the number of nodes in the topology
due to the randomness of interconnections. However,
PLRG has demonstrated to be one of the most stable
algorithms: none of its features deviates considerably
from the (estimated) real Internet AS results.

• Havel, its design purpose is not the interconnection of
power law degree distributions, but to deterministically
interconnect a given degree sequence. Although the re-
sults are consistent, the high clustering coefficients and
the non-fitting spectrum indicate that the Havel topologies
remain still far from reality.

• Takao, again its purpose is not the interconnection of
power law degree distributions but only interconnect
a given degree sequence. This algorithm fails on the
extremely high hopcount (hence in the diameter of the
network).
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