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Since the precise value of band-gap narrowing is difficult to determine, many values have been re-
ported in the literature. Optical methods have been considered to yield the most accurate values.
Here we present the results of capacitance measurements on abrupt GaAs diodes carried out at
various temperatures. The value of band-gap narrowing is derived with use of a new formalism.
The agreement between the values of band-gap narrowing obtained by this method and by optical
methods is good, demonstrating the validity of the applied theory. In contrast with other electrical
measurements, this method does not require the knowledge of material parameters such as mobility,
lifetime, and diffusion constants, which are difficult to estimate.

I. INTRODUCTION

In GaAs, little experimental effort has been devoted to
study band-gap narrowing (BGN), due to heavy doping,
by electrical methods. Mainly optical methods such as
photoluminescence (PL),! cathodoluminescence,? and op-
tical diode measurements® have been used. In silicon , on
the contrary, electrical methods* that interpret the pn
product have been applied, but more recently these have
been criticized.>”7 The fundamental arguments against
these methods are the obvious shortcoming of the
Boltzmann np-product formula which is employed in sit-
uations where Fermi-Dirac statistics should be applied
and the empirical derivation of an effective band gap
from electrical current-voltage measurements whose rela-
tionship to the real shrinkage of the band gap is far from
being clear today. Besides the lack of theoretical rigor, a
relatively large number of parameters such as mobility,
lifetime, and diffusion constant, which are difficult to
measure, must be determined. As pointed out by Del
Alamo,’ about 1 order of magnitude of disagreement in
the determination of parameters such as lifetime and mo-
bility is found among the various authors and this has
caused a confusing situation in the reported BGN data.
Moreover, Del Alamo shows that at least two indepen-
dent measurements (a dc and an ac) are needed to extract
BGN information from current measurements.

Here we present data of BGN in GaAs using an electri-
cal method.® The method was first proposed by Van
Overstraeten et al.’ and is based on a capacitance mea-
surement of an abrupt symmetrically doped diode. This
capacitance method is superior to current-voltage mea-
surements methods mentioned above and in Ref. 10; since
no additional measurements are necessary, the measure-
ment technique is relatively simple and no material pa-
rameters (as mobility, lifetime, and diffusion constants)
are involved.

Lowney!! used a similar technique for linearly graded
Si junctions with heavily doped and compensated p and n
sides. He interpreted the effective BGN as the difference
between the theoretical intercept voltage of Chawla and
Gummel'? and the observed intercept voltage. As an ex-
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planation for the discrepancy between his results and pre-
vious published ones, he proposed a screening effect of
the ions in the space-charge region. However, since there
exists no analytical formula for the intercept voltage for
linearly graded junctions, there are no simple reasons to
conclude that any difference between the measured and
the Chawla-Gummel intercept voltage equals BGN. On
the other hand, for an abrupt junction with constant
symmetrical doping levels, an analytically accurate for-
mula for the intercept voltage is presented in Sec. II.

In the third section, we discuss the choice of the
density-of-states (DOS) functions. The experimental
values of the intercept voltage of abrupt GaAs diodes are
reported in Sec. IV. The last section compares the exper-
imental results obtained by the present method with opti-
cal results.

II. THEORY

If the inverse capacitance squared (C ~2) of an abrupt
n-p junction is plotted versus applied voltage (V) across
the junction, the data points are theoretically expected to
lie on a straight line under low injection conditions.
Hence, in that regime, the C ~ (V) function is unambigu-
ously determined by two independent quantities, most
often the slope and the intercept voltage (V,,,). The slope
of the straight line is related to the effective doping con-

centration (N .¢) of the diode,
2N /Np
Neﬂ' NA +ND (2.1)
while the intercept voltage is a function of the band gap
and the doping concentration of both n- and p-type re-
gions.

Since this capacitance method basically reflects the be-
havior of the majority carriers, the extracted value of the
band-gap shrinkage consists of the two contributions due
to the majority carriers, the lowering of the conduction
band in the n-type region AE! and the upward shift of
the valence band in the p-type region AEfZ. Theoretical
calculations® show that the self-energies around the Fer-
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mi level for the valence and conduction band are almost
equal, or

AE! P AE! P . 2.2)
Hence,
E, +E,
AE!'+AEP=A — 5 =AE; ,, , (2.3)
where E,, (Eg,) denotes the band gap of the n-type (p-

type) material and A expresses the narrowing. The
theory3 and the good agreement with optical measure-
ments justifies the concept of the average band gap E, ,
(further expressed in meV).

Generally, the classical formula,!> which we call the
Boltzmann intercept voltage formula (2.4), is used to
determine the band gap of an abrupt symmetrically

doped [Np =N 4, =N and, from (2.1), N =N] diode,
kT N N
Vint —Eg av+ — |In FE +In NU 2|, (24)

where N, (N,) is the effective DOS in the conduction
(valence) band. However, for low temperatures or heavi-
ly doped semiconductors, the Boltzmann statistics are
not valid anymore and must be replaced by the Fermi-
Dirac statistics. This suggests a modification of (2.4),
which we call the Fermi intercept voltage formula (2.5),

V. =E, .+ T[Fl_/’z(N/Nc)+F1’/‘2(N/Nv)—2],

int g av

(2.5)

where Fi/\(x) is the inverse of the Fermi-Dirac integral
of the order one-half. However, expression (2.5) is logi-
cally inconsistent, and as shown in Appendix A the
correct formula (2.6) should be used:

w=E, +——[F1/2 (N/N.)+FiAN/N,)—Z(N)]

(2.6)
and Z (N), plotted in Fig. 1, equals
Z(N)=%[NCF3/2((F1_/‘2(N/NC))
+N,F, o(FTL(N/N,))] @.7
with
) N L S — 2.8)

[(j+1) 70 1+exp(é—y)

A parabolic DOS has been assumed. A generalization
of (2.6) to more appropriate DOS functions, however, is
possible and is given in Appendix A by formula (A4).
For the evaluation of (A4), we have chosen two well-
known DOS functions: (a) the free-electron DOS, where
band tailing is disregarded

gparabolic(g) ‘/ﬂ_ ‘/g- (29)

and in which case the expression (A4) rewritten in the

T T
Parabolic
=--- Kane

20+

Z(N)

]015 1016 ]017 ]018 19
3
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FIG. 1. The function Z(N) [(AS5)] calculated for a parabolic
DOS, (2.9), and for the Kane DOS, (2.10).

more familiar Fermi-Dirac integral notation, yields (2.6);
(b) the Kane function,'* taking band tailing into account,

_ 2
=M *® ‘__i ‘/—
8kane(§) =~ fo exp = tdt, (2.10)
where
=0
Y= kT (2.11)

and o is the mean square of the potential caused by the
random distribution of impurities, which is assumed to be
Gaussian,

(2.12)

and « denotes the inverse linear screening length in the
Thomas-Fermi approximation. As the doping concentra-
tion of the diodes studied lies in the intermediate region,
the simple high-density limit screening formula was con-
sidered to be inadequate. The general definition in the
Thomas-Fermi approach,

K——ﬂ—f i,u_dg,

(2.13a)

where f is the Fermi-Dirac distribution function and pu
denotes the Fermi level, or in our p-transform formalism
(see Appendix B)

2 dg N
t=d_y —2 R 2.13b
K ekT c(v)p d§ » B¢ (v) Nc(v) ] @. )
was calculated self-consistently. For the permittivity in
GaAs, we have taken €=13.1¢,, The quantity

AV=V,—E,,, for the intercept formulas (2.4), (2.5),
(2.6), and (A4) invoking (2.10) is drawn in Fig. 2. For
low-doping concentrations all studied formula converge,
as expected, but divergence occurs when the doping con-
centration increases. As observed in this plot, an in-
teresting feature of AV for sufficiently high doping con-
centrations, yields
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FIG. 2. The quantity AV =V, —E, vs doping concentration
N to the power % calculated for the Boltzmann intercept voltage
(2.4), the Fermi intercept voltage (2.5), our intercept voltage for
a parabolic DOS (2.6), and for the Kane DOS at room tempera-
ture.

(AV)parabone =0 (N'7?) and  (AV)g,,.=O(N'?) (2.14)
while
(AV ) ortzmann = O (IN(N)) , (2.15)
(AV)permi = O (N?3) (2.16)

where O denotes the well-known Bachmann-Landau
(“big O”) asymptotic notation.
The band-gap narrowing AE, is calculated as

AE(T=E,T)—E T, (2.17)

g 8 av(

where E, is the band gap of the intrinsic semiconductor
which is assumed to obey the Varshni equation'®

aT?
)= — .
E,(T)=E,(0) T+ (2.18)
and for GaAs we have used Eg(0)=1.519 eV,

a=5.405X10"*eV/K, and 8=204 K. The temperature

dependence of N, (,, reads
3/2
2mmok x T3
Nc\u)_ h? mc(u)T)

=4.82930X10"%(m}*,,7)*"? cm 3 (2.19)
(T is expressed in K), where we have taken m}=0.572,
and m*=0.067, as advised by Bennett'® in order to ac-
count for the nonparabolicity of the GaAs energy bands,
although this nonparabolicity correction does not have a
significant effect. Indeed, we have performed the calcula-
tions both with these values and the standard parabolic
effective masses, m=0.473 and m*=0.067. For
Bennett’s values we found, with respect to the standard
values, an increasing downward shift in BGN with in-
creasing temperature which never exceeds 5 meV. This
number lies within the measurement precision.

III. THE DENSITY OF STATES
OF HEAVILY DOPED MATERIAL

Although various DOS functions have been proposed,
none of them covers all energies properly. Nevertheless,
there are several reasons which justify the use of the pro-
posed functions (2.9) and (2.10).

The choice of the free-electron DOS is evident since it
is the most widely used DOS function. In order to take
band tailing into account, the Kane function is preferred,
because it is the simplest function describing band tailing.
Although, the Kane function grossly overestimates the
number of deep-tail states at very low energies, this is
rather unimportant for this capacitance method, since
mainly the majority carriers at both sides of the junction
determine the net amount of charges. The deep-tail
states contain a negligible amount of particles with
respect to the intermediate and high-energy states. We
infer therefore, that, in our approach, the precise expres-
sion of the exponent in the DOS function for deep tails
will have almost no influence on the Fermi level or the to-
tal number of particles.!” This is in contrast with electri-
cal current measurements,® where the equilibrium np
product is the central quantity to be related to BGN. In
this np product, both the majority and minority carriers
of the heavily doped region are equally important and for
the latter a DOS function, describing deep-tail states
properly, should be used as essentially these deep tails are
populated.

If deep-tail states are not to be considered here, it is ob-
vious to choose the Kane function. Although this distri-
bution is semiclassical, it is shown!® that it can be ob-
tained by at least three different methods: the semiclassi-
cal method of Bonch-Bruevich, Kane, and Keldysh, the
diagram technique of Efros, and the optimum fluctuation
method. Moreover, Sa-yakanit and Glyde!® have com-
pared their Feynman path-integral method with the
Halperin and Lax minimum counting method®® and the
Kane function for all energies E, and conclude (see Figs.
6-9 in Ref. 19) that their DOS should be used until it
crosses the Kane function and that thereafter for higher
energies, the Kane function should be used. This means
that the Kane function is the optimal available function
for intermediate and high energies. The last reason for
choosing (2.9) and (2.10) is that the free-particle DOS
overestimates the Fermi level E given a fixed number of
particles, while the Kane function, as it overestimates tail
states, forms a lower bound of E.. Hence, the obtained
values of BGN impose an upper bound (parabolic DOS),
and a lower bound (Kane function) for the real BGN.

In the parabolic DOS approximation, both tailing or
stretching of the energy states® are neglected. In this re-
gard AE, also equals the Fermi-level shift.

IV. EXPERIMENTAL RESULTS

In order to verify the intercept formula (A4) experi-
mentally, diodes in GaAs were grown with a convention-
al molecular-beam-epitaxial (MBE) process yielding the
utmost achievable abruptness. The ratio of the doping
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concentrations N, /N 4 was kept as close as possible to 1,
as theoretically required,® and six symmetrically doped
diodes with N =2.4%10", 6.6x10", 8.3x10",
1.2Xx10'8, 1.8x10'® and 2.95X10'® cm™3 were pro-
cessed each having the same contact area of
500X 500 um?. As explained in Ref. 1, higher n (Si) or p
(Be) doping is not possible.

The capacitance C was extracted from a measurement
of the admittance Y,

Y=G +jwC , (4.1)

where j=V —1. Since the theory® assumes a zero
current through the diode, only voltage regions where the
conductance G was less than 1 uS were considered. An
increasing leakage current for the more highly doped
diodes reduces the voltage region and we measured with
steps of 0.1 V through the voltage intervals [—4 V, 0.5
V], [—3 V, 05 V], [-3 V,05 V], [—-2V,05YV]
[—1.5V,0.8 V],and [—1V, 0.8 V], respectively, corre-
sponding to increasing doping concentrations N. Special
precautions were taken to outrule external influences on
the capacitance measurements. For four of the six
diodes, the capacitances were measured at temperatures
varying from 77 to 300 K (with a temperature precision
of £1 K). The intercept voltage (V) and effective dop-
ing concentration (N.) were deduced from voltage
subregions where the correlation coefficient of the
straight line fitted through the C (V) function was
higher than 0.999 99.

In Fig. 3 the majority carrier concentration normalized
to the corresponding value at 77 K is drawn on a very
sensitive scale. As the absolute accuracy of a concentra-
tion is not better than 5%, one may conclude that, in the
studied temperature range, the carrier concentration is a
very slowly increasing function of temperature and that
no carrier freeze-out effect occurs, since its dependence
on temperature is exponential.

The influence of an interface charge .S reduces the in-
tercept voltage by

__gS?
ST 4eN -
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4.2)

0 N@7K)=222x 107 .
° N(77K) =762 x 10'7
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FIG. 3. The majority carrier concentration normalized to the
corresponding concentration at 77 K.
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FIG. 4. BGN calculated with (A4) and (2.9) for all measure-
ments at 295 K satisfying the requirements described in the text.
SD refers to the standard deviation.

For GaAs pn diodes, grown with MBE, the interface
charge S is less than 10'! cm 2. For the lowest doping
concentration N =2X 107 cm ™3, this results in a V less
than 1.7 mV. Hence, the interface charges do not con-
tribute significantly at all to BGN and consequently, have
been neglected.

In order to estimate the accuracy of the method, each
measurement at 295 K, satisfying the requirements above
and calculated with (A4) using a parabolic DOS (2.9), is
shown in Fig. 4. Perfect symmetry is only realizable
within 10% (as verified by secondary-ion mass spectros-
copy measurements). However, as the area of the device
is squared in the calculation of the doping calculation,
the inaccuracy on its measurement (due to underetching)
outweighs the assumption of perfect symmetry.

V. DISCUSSION

Before discussing the results in detail, a formal con-
sistency of the presented method is given. The mean
values of the measured voltage intercepts at 295 K versus
the mean values of the effective doping concentrations to
the power 1 are plotted in Fig. 5. We find the higher
doping concentrations lying on a straight line. From the
theoretical calculations of Berggren and Sernelius,?! it

follows that, for high-doping concentrations,

AE,(N)=0(N'"?), (5.1)

where O denotes the Landau symbol.

Although their calculations were performed for Si and
Ge, it is generally agreed and confirmed by experiments
(see below) that the same dependence holds for GaAs.
Since

Eg av(]\,')=l,:glnlr|nsm_Alfg(]V)
we find that

—E, (N)=0(N'73). (5.2)
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FIG. 5. The mean values of the measured intercept values at
295 K vs the mean values of the effective doping concentration
to the power % Error bars of =5 meV are not shown. The
coefficient a[0] is the constant while a[1] equals the slope in
the equation of the fitted straight line.

For the doping concentrations considered in Fig. S, a
comparison of (2.14)—(2.16) with (5.2) confirms the su-
periority of our method (A4).

A. The temperature dependence of AE,

From the measured set {V;,(T), Ng(T)}, the band
gap narrowing AE, was calculated with the Boltzmann
(2.4) and Fermi (2.5) voltage intercept formula, referred
to as AE ggjmanns AE Fermi» Tespectively, and with the new
formula (A4) for the parabolic DOS (2.9) and for the
Kane DOS (2.10), referred to as AE , apolics AEKaner T€-
spectively. The results are drawn in Figs. 6-9.

For the lowest doped diode N =2X10'" cm ~* (Fig. 9),
all BGN values decrease with temperature. For this dop-
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FIG. 6. BGN vs temperature for effective doping concentra-
tion N=2.95X10" cm ™. Also AEp umann and AEpem (not
drawn in Figs. 7-9 for clarity) are shown. Notice the slow in-
crease with temperature and the too low values of AE g ;zmann
while AEg,, exaggerates BGN.

Temperaturc (K)

FIG. 7. BGN vs temperature for N =1.8 X 10" cm 3.

ing concentration, no experimental temperature-
dependent BGN results were found in the literature for
GaAs. Lanyon and Tuft?? have proposed a temperature-
dependent AE, formula of the form

2
AE,= A-1—«, (5.3)
41re
where k is the inverse screening length (2.13) and
Ay 1=0.75. Although Mahan®® has rejected this theory
for several reasons, this term (with A,.,=1) also ap-
pears in the Inkson model.’* Moreover, Landsbergh
et al.?® find a good agreement between (5.3) with
A Landsvergh = 1 and experimental results of various au-
thors in Si. Relying on these arguments and merely guid-
ed by the simplicity of the expression (5.3), it gave us a
suggestion to fit our results with
q>
AEg:Am(K"‘]'Kp) 5 (54)
where &, () is the inverse Thomas-Fermi screening length
in n-type (p-type) material. The results are shown in Fig.
9 for both a parabolic and Kane DOS in (2.13). For this
doping concentration, an inverse square-root dependence
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FIG. 8. BGN vs temperature for N =8.3X 10" cm™°.
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FIG. 9. BGN vs temperature for N =2.4X 10" cm 3.

of BGN on temperature is found. Abram et al. have
given a temperature-dependent BGN formula [(3.21) in
Ref. (26)] using both the Thomas-Fermi approach and
the Boltzmann statistics, which includes besides screen-
ing effects (5.3), also an exchange contribution. The
latter, however, follows a rather complicated temperature
dependence, which is obviously not seen. For nondegen-
erate materials, this confirms the BGN theory?® which
states that screening is the dominant process.

For the higher doping concentrations N =1.8X10'8
cm ™ ? and 2.9X10'® cm ™3 (Figs. 6 and 7), the change of
AE ,rapolic and AE,,. with temperature, within the mea-
surement precision, is zero. This is in perfect agreement
with the PL measurements of Olego and Cardona.?’” For
the intermediate doping concentration, AE, (Fig. 8)
clearly lies between the two regimes described above.

In spite of the good temperature fitting of the
AE jurapolic and AEy,,. values with (5.4), there are several
reasons why (5.4) can be criticized. First of all, we note
the main objection of Mahan?® that (5.3) only describes
one BGN phenomena and neglects, besides anisotropy
and intervalley scattering, exchange effects. Secondly, we
used the Thomas-Fermi approach for simplicity. This
high-density limit theory overestimates, the BGN as
shown by Abram et al.?® Further, AE,, calculated with
(5.3) turns out to be always greater than AE,, because k,
is always greater than «,. However, just the opposite is
found in both experiment! and theory.>?® For the doping
concentrations studied, we infer that (2.13) only gives an
order of magnitude and that a more accurate screening
model together with the exchange contribution should be
used. Although the results of Berggren and Sernelius?®!
can be extended to a temperature-dependent Green’s
function formalism, the numerical evaluation lies beyond
the scope of this paper.

B. The doping concentration dependence of AE,

The set of AE, values at 295 K versus doping concen-
tration together with fits of (5.4) for both the Kane and
parabolic DOS is shown in Fig. 10, while in Fig. 11

AE ,apoiic and AEy,,. versus N 173 are plotted.

>
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FIG. 10. BGN at 295 K vs effective doping concentration.
The data are fitted with (5.4) for both a parabolic DOS and the
Kane DOS.

The AE ,poic and AEy,, obey the ; power law?!

very well (Fig. 11), or

AE . abotic =B parabotic (Ve 2,
with

Bpa,abouc =3.76X107° meV cm , (5.5)
and

AEx gne =Bgane(Neg)'”?
with

Bane=2.64X107° meV cm . (5.6)

The values of the coefficient B in (5.5) and (5.6) are in
good agreement with optical measurements. Casey and
Stern?® extracted only for p-type material a coefficient
B,=1.6X107°. Borghs et al." have extracted both the
Fermi-level shift AE; and the band-gap narrowing AE,
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FIG. 11. BGN calculated with (A4) using (2.9) and (2.10) at
295 K vs effective doping concentration to the power % The
coefficient a[0] is the constant, while a[1] equals the slope in

the equation of the fitted straight line.
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for both p-type and n-type material. Since their values
for the Fermi level are calculated in the assumption of a
parabolic band, their values are higher than in the case of
a tailed distribution, as explained in Sec. III. Due to
lifetime-broadening effects,”® which trouble the low-
energy PL spectrum and which cause a certain restriction
for optical models, the extrapolated values of AE, are
less accurate. However, if one takes their AE values for
the AEg and if one uses also a parabolic DOS, one notices
a very nice agreement between B, o5, (5.5), and the
average of their B,=4.6X10"° and B,=2.6X107".
This justifies the assumption (2.3).

The comparison between the theoretical results of Ben-
nett and Lowney® is difficult to accomplish since their
Figs. 12 and 13 do not give the values of the p type for
our relatively low-doping concentrations.

VI. CONCLUSION

A new analytical intercept voltage formula is employed
to interpret the BGN from capacitance data of a symme-
trical abrupt diode. The average BGN of GaAs is ob-
tained for a doping range from 2X10'7 to 3X10'® cm 3
for various temperatures and compared to values ob-
tained by optical measurements. A good agreement is
found and the quality of the proposed formula is demon-
strated.

The experimental accuracy of £5 meV, the not sub-
stantial difference between results obtained by (2.9) and
(2.10), and the fact that both used DOS functions form
limits between which the real AE, lies, suggest that in
calculations (e.g., device simulators) a parabolic DOS
may be employed to reduce computational efforts.
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APPENDIX A: THE INTERCEPT VOLTAGE
FORMULA OF AN ABRUPT JUNCTION

In our study of the capacitance of an abrupt diode,? an
analytical formula for the low injection regime is both de-
rived and discussed. In order to account for an arbitrary
DOS function, a new transformation is created which is
briefly resumed in Appendix B.

For symmetrical junctions (N, =N ,=N), the capaci-
tance formula inverse squared as a function of the applied
voltage V, reads

c2=_4

_V+&+_E£ kT
geN 2

g

(A1)
where

N,
up=R,;"N/N,)+R]N/N, )—WCYC(RC"‘(N/NC))

N, .
— TR N/N,) . (A2)
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The slope is given by
dc™* _ 4

dv geN
This is in complete agreement with the classical formu-
la.'* Formula (A3) offers an accurate method to extract
the doping concentration N from capacitance measure-
ments.

The voltage intercept V,,, is defined as the asymptotic
voltage for which C~%(¥)=0. This quantity has no
physical meaning (as there exists no such voltage in reali-
ty) and can only be obtained by extrapolation of capaci-
tance values from the low injection region. Using the
C (V) relation (A1) and the notation of (2.3), the volt-
age intercept V;,, is

(A3)

V,“,=Egav+l€qI[R[‘(N/Nc )+R, Y N/N,)—Z(N)]
(A4)
while

v

N

N,
Z(N)rTV—jC(R;‘(N/NC))+ J,(R;7UN/N,)) .

(AS)

This voltage intercept (A4) can be expressed as an in-
tegral,

kT

Vim:Egaer—q— %,‘fON[RC_I(g/NCHR;I(é/NU)]dg

(A6)

The capacitance C was simulated with SEDAN33! for
Np=N, =N and E; ,Goas=E; ,caas—E,=1.424 V (300
K). The voltage range was [—15 V,0 V] in steps of 0.1 V.
The results were reformed into a C % V) graph. By
linear regression, ¥, was obtained. In contrast with the
formulas (2.4) and (2.5), a perfect matching of these
values with our analytical formula (A4) [with
g.=g,=(2/V'm)V £], was found.

APPENDIX B: THE p TRANSFORMATION

In this appendix, symbols used in our p transformation
formalism are given. The properties of the p transforma-
tion are listed in our theoretical paper.

The p transformation of a function f (&) is defined as

S ML oY

and we call
R.(y)=p(g.(&)y), (B2)

where g.(£) is related to the DOS in the conduction band
pc by
s o)=L p kre), (B3)

where §=(E —E_)/kT and E_ is the unperturbed or
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mean (equivalent to E; in Refs. 19 and 20) band edge.
The inverse function R ~!(z) is defined as

Vz,yER: z=R(y)=y =R Uz). (B4)

5959

Finally, we denote

J.(y)=p [f_gmgc(r)dr,y] . (BS)
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