Theory of the junction capacitance of an abrupt diode
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A new theory for the junction capacitance of mathematically abrupt diodes is presented. In
contrast with previous theories, Fermi~Dirac statistics are applied, and instead of using a
parabolic density of states, a more appropriate function can be taken into account as this is
required for heavily doped material. The main approximation is that of constant quasi-Fermi
levels. Besides the study of symmetrical junctions, the behavior of asymmetrical abrupt
junctions is both analyzed and explained. Anomalies resulting from the calculations are shown

to be due to the mathematical discontinuity.

I. INTRODUCTION

Many reports about capacitances of diodes have
been published. Mainly linearly graded junctions were stud-
ied. As very abrupt junctions were only theoretically attrac-
tive, but practically impossible to fabricate, less effort was
devoted to them. However, all the published work on the
capacitance of an abrupt junction shows the inability to han-
dle highly asymmetrical junctions. The dissimilarity be-
tween processed junctions, which were supposed to be
abrupt, and their mathematical description was never put
forward as the main reason for the observed discrepancy
between experiment and theory.

Here we present a new theory and explain the behavior
of highly asymmetrical mathematically abrupt junctions.
This work was initiated while studying band-gap narrowing
from the capacitance intercept voltage of an abrupt junction.
A very accurate intercept voltage formula was required as
this turns out to be a crucial point in determining band-gap
narrowing from capacitance data. Results of the band-gap
shrinkage in GaAs using an intercept voltage formula de-
rived from the proposed theory are presented in Ref. 13.

In Sec. 11, we develop a general capacitance formula for
both continuous and discontinuous doping profiles. More-
over, we present a new p transformation that generalizes the
Fermi Dirac integrals to an arbitrary density of states in
order to describe a heavily doped material properly. An out-
line of the calculation is given in Sec. III and Sec. IV evalu-
ates the new formula numerically. These numerical results
are explained by examining the behavior of a simplified ana-
lytical capacitance formula which is derived from the gen-
eral procedure.

1-12

Il. DERIVATION OF A GENERAL JUNCTION
CAPACITANCE FORMULA

A. Continuous doping profile
The charge density p(x) in a diode is given by
plx) =gl p(x) —n(x) +N(x)] (N

with p(x) — n(x) the number of positive free charges and
N(x) the net doping concentration of ionized impurities. We
concentrate on a one-dimensional pr diode with the origin of
the coordinate axis x at the metallurgical junction and we
call the border points in the n-type region and p-type region
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x = — L and x = K respectively. If the doping profile is
continuous, the net doping concentration at the metallurgi-
cal junction N(0) equals zero. The number of electrons n(x)
and the number of holes p(x) are related to the electric po-
tential #/(x) and to the quasi-Fermi levels ¢, (x) and ¢, (x)
through the Fermi Dirac statistics. In general, one can write
(see the Appendix)

nchp[gc’(gn_Ec)/kT], (2)
p':NVp[gu!(Ev—gp)/ley (3)
with g, (E) and g, (E) the density of states in the conduction
and valence band; N, and N, the effective density of states

in the conduction and in the valence band, respectively; £,
and §, the quasi-Fermi energy levels for electrons and holes;

= g(é)
> = m—_d ’
plg&) ] J « 1 +exp(§—yp) d

and E_ and E, the nondistorted band edges (see the Appen-
dix).

The energy quantities can be converted into potential
quantities, using the relations

E. = —q[Y-E],

E, = —q[¢Y+E],

E =E/)9q, (4)
with E, the half-band gap expressed in volts and

Cn = —q%n

$p = — 49, - (5)
It can be shown'? that the charge density p(x) is continuous
only if the band gap and the doping profile are continuous

functions of the distance x. The net amount of charge Q(x)
between the n-type border and a point x in the diode reads

Q(x) :fx Lp(t) dt (6)
and due to the overall neutrality, we find

Q(K)=0. (N
Invoking the Poisson equation

42,:/,2 _ P %)

dx* €

where the dielectric permittivity € is assumed constant over
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the diode structure, and with the definition of the electric
field E(x) as

E(x) = — B&) (9)

dx
we can rewrite (6)

f p()dt =¢€E(x) —eE(—-L). (10)
L

Both the electric field E(x) and its gradient at x = — L and
x = K are zero because the structure is assumed to be long
compared to the depletion regions. This assumption causes
the electric field E(x) to be proportional to Q(x):

E(x):ij p(D) dt = - 0(x) . (11)
€ J L €

For p(x) being continuous, the electric field achieves its
maximum at X, which satisfies p(.X;,) = 0. Since the electric
field in an arbitrary diode structure has only one maximum,
the charge density p(x) changes sign only once inside
( — L,X), and, consequently

p(x)>0, forx<X,,

plx) <0, forx>JX,. (12

The junction capacitance Cis defined as the absolute value of
the change with the applied voltage ¥, of the total positive
(or negative) charge. Hence, combining Eqs. (7), (11), and

(12),
([ o) = | ([ )
Ch'qu (f )= |gp| ), P e
v,

This is the general definition for the junction capacitance of a
homojunction if the doping profiie is continuous at all points
x of the structure. As this is in reshity always the case, (13) is
thus always applicable.

B. Discontinuous doping profiie

Let us concentrate on the nonrealistic doping profile of
an abrupt junction that is discontinuous at x = 0. In general,
using Heavyside’s step function 8(x) defined by

0, x<0,
6(x) =4} x=0,
1, x>0,
we have

N(x) =N,(x)0( —x) + N, (x)8(x), (14)

with N, (x) and N, (x) differentiable functions of x. Since
N,(x) and N, (x) are continuous in their defined region,
arguments from Sec. IT A let us conclude that the charge
density function p(x) is still a continuous function with a
single discontinuity at the metallurgical junction (x = 0)
where the doping profile N(x) is discontinuous.

In the following, we study the special case where both
N, (x)and N, (x) are constant functions. Only under these
restrictions can an analytical calculation be performed. We
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list some properties of an abrupt junction with constant dop-

ing profiles.
(1) In low injection [i.e., N, >p(x) and N, >n(x)]
the charge density p(x) has no zero between x = — L and

x =K and sign [p( —x)] = —sign[p(x)].

(2) In low injection the derivative of the charge density
p(x) with respect to x does not change sign except at the
metallurgical junction (x = 0).

Finally, the junction capacitance formula for abrupt homo-
junctions results in

dE(0)

15
dv, ()

=€

Although the properties above are easy to accept, their
proofs can be found in Ref. 14. (For plots of the charge
density of an abrupt junction we refer to Fig. 5 and Ref. 15.)

{l. A CAPACITANCE FORMULA FOR AN ABRUPT
JUNCTION

A. General procedure

Applied to solid-state physics, the Poisson equation is a
nonlinear differential equation that can only be solved ana-
lytically under simplifying conditions. The most difficult
quantities appearing in the Poisson equation are the guasi-
Fermi potentials ¢, and ¢, because their values can only be
obtained by simultaneously solving both the current equa-
tions and the Poisson equation.

The simplifying conditions listed below will be dis-
cussed briefly.

(1) The band gap E, is assumed only to be a function of
the semiconductor and of the doping concentration.

(2) The quasi-Fermi potentials ¢, and ¢, are taken con-
stant over the diode structure, which enables analytical inte-
gration of the Poisson equation.

For constant doping profiles in both the n- and p-type
regions, the first assumption implies constant band gaps, E

&n
and E_,, respectively. A consequence of this is the high de-

gree of linearity of the function C ~ *(¥) in the voltage region
corresponding to low injection. For, if we perform the deri-
vation of the capacitance procedure below formally (which
means that we assume the band gap to be a certain function
of applied voltage, electrostatic potential, and position with-
out knowing the precise dependence), we find the slope of
the function C ~*(¥) dependent on dE,/dV, and dE, /dx,
both functions of the applied voltage. Consequently, in rea-
lity, the slope is not constant. If this band-gap dependence on
applied voltage were actually pronounced, we would find
deviations from a straight line in the experimental results. As
the experimental C-V data for GaAs symmetrical abrupt di-
odes'? remain very linear with voltage, the first approxima-
tion is well justified.

The study of Sah'® shows that the assumption of con-
stant quasi-Fermi levels is a good approximation for the vol-
tage range we are interested in. This is confirmed by Nuyts
and Van Overstraeten.® Moreover, it can be demonstrated'?
that the approximation of constant quasi-Fermi levels is best
suited for symmetrical junctions.
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Since ¢,(K) — ¢,( — L) =V, we can choose the fol-
lowing potential reference:

¢p =V,/2,
o, = -V, /2. (16)

The Poisson equation deals with potentials and not with en-
ergies; therefore, we transform all quantities in the proper
form, employing (16), (4), and (5) to obtain

E,~& _q(—¢~E,+V./2) _

— V’

kT kT et

— —FE V. /2
on —E _aW ,,+a/)=u+V,

kT kT

with
u=qy/kT,
V,/2 —E

y a2 E) (17)

kT
Here we introduce the normalized potential # and a new
formalism for the expression of the free carriers (2) and (3)
as explained in the Appendix. After normalization, the Pois-
son equation (8) for an abrupt junction reads

2 2
du = [Nep(&. Vo +0) — Nup

dx?

X (g, Vp —u)~N,], forx<0,
AL =‘L{NCP(8,VA +u) ~Nyp
dx* kT ‘

(g, V, —u)—N,}, forx>0, (18)

where ¥, =q(V,/2 — E,;)/kT for A referring to the do-
nor side (D) or acceptor side {4). The boundary conditions
expressed in the normalized potential u become

du(—L) _ du(K)

=0,
dx dx
d*u( - L) d*u(K)
= =0. 19
dx? dx? (1

Involving (18) and (19), implicit equations for the normal-
ized potential at the border points u, and u, are obtained,
Nep(goVp+u)—Nyp(g,Vp—u)—Np=0,
Nep(gVy+ux) —Nyp(g,.Vy—ux)+N,=0.
(20)

In low injection, the minority carriers far enough from the
metallurgical junction are negligible with respect to the
number of majority carriers,
n(K)=Ncp(g.,V,+ug)=0
and
p(—Ly=N,p(g,Vy, —u,)=0. 2n
Including (21) and putting ( g,,») =R, (»), (20) can

where R ~'( y) denotes the inverse of the transformed func-
tion with respect to y as explained in the Appendix.

One obtains the electric field by integrating (18). Con-
centrating on the first equation (an analogous computation
can be performed for the second) and using the boundary
conditions (19) and the property (A10), we have

o) =2 wer( [ )
“2) = N, ) dV, -
(dx) T VeP\y_ &D Vo tuj—Nep

3 5
XU g.(1) dt,VD+uL)+NVP(J- 8. ()

£
X dnVy ——u) —Nypq 8. () dt,

Before continuing, we simplify our notation:
£
P(f g.(0) dt,y)=/g(y) (24)

then (23) becomes

2 2 2
(E’l) Z:/g—T[NC/C(VD +u) ~ N F (Vy, +u)

dx
+N Fv(Vp—u) =N, F . (Vp—uy)

—ND(u—uL)]- (25)
The continuity of the electric field at the junction requires
lim 948y B 0) (26)
¢~0  dx £-0 dx

such that a useful coupling equation (27), which determines
the potential u, for every applied voltage ¥, is obtained:

NC[/C(VD +u0)—/fc(VD+uL) ”‘/C(VA +uo)
+/C(VA +ul()] +NV[/u(VD —u,)

~F o (Vp—up)
—/U(VA —u0)+/v(VA —‘uk)]
~(Ng+Npu,

+ (Npuy + Nyug)=0. (27)
We are now in the position to use the capacitance formula for
an abrupt junction (15). We concentrate on the n-type re-
gion (x <0) and normalize (15) to obtain

c=£ d ( du(O))

2 dV\ dx

and notice thatd /dV, =d /dV, =d /dV.

The calculation is rather cumbersome, but systematic

derivation with respect to ¥ of the square root of (25) evalu-
ated for u = u, gives

be solved explicitly: c g€ G
= e T, 28
u, = — Vy + R (Np/N¢), 8kT du*(0)/dx (28)
uy =V, —R;(N/N,), (22j where
*
WO VT o0+ N, FVp =) = N1, (29)
x .
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with f(x)12Z% = f(b) — f(a) and G is the derivative of the —V, 1+ u,
expression under the square root sign with respect to ¥ or R () '77 ¥, +u
G={NR (V, +v) +N,R,(Vp —0)}HiZh and
+ NRc(VL‘+u)“N RU 77 V +u
[ ) ’ V /l((‘)(”l)‘ 0
du., —V, +u,
X (Vp —mg) — ] (30)

The normalized potential at the junction u, reads
The unly unknown quantity is the derivative of the normal-
. . ; . . i NV, =NV 1 N
ized potential #(x) at the junction with respect to the nor u, = 4 o' ) NyR (22
malized applied voltage V. By differentiating the coupling N,+ N, Ny, +N N,
equation (27) with respect to ¥, one obtains

I

N N,
v () er e ()
=V, + u, ARy Ne
@QZL(N(RC(’I]) .17 1 K NV NC
dVv H N = VD + Uy N
n= I/A—ul\' +Nva R;l(}{;‘_)]] (32)
TNR v
m="Yo L The square of the normalized electric field at x = 0 rewrites
n="Vp+u, as
+ NcR ()
¢ =V, +u du(0) \2 242
TR ( ’;(x)) =GET(NC/C(VDHQ)+NV/.,(VD—u.,)
NyR, (1) T’:V"hu") (31)
+ Nyt (7 n=V,—u, NN, (N,
+———{ -V, =V, +R,
and Nl) + N4 N,
N Ne N
n= Vo + +R_:(_£)__f__[R 1(__0_)]
H::(A/A +;’VD) N R (U)l *VA +u0 C NC ND /1 C NC
N, N
] n="VF, -1 — ——L/'L.[R ,,‘(——-f—)”). (33)
+ NyR,.(77) n=V, __“;}- N, N,
A similar formula for C, based on the p-type region, can be Let us define u as
derived analogously. (N, A Ne .
ug=R, ' |—|+R'|—)—— 7.
N, Nc N,
B. Low injection simplification LA N, /N,
In order to be able to evaluaiz the capacitance of an X|R¢ v 'ﬁ“/ o[ RV N ; (34)
abrupt junction, we now assume iow injection conditions ¢ 4 v
(22) and neglect the very small guantities then the capacitance of an abrupt junction reads
)
q;:‘ o 2/(ND +NO[N, NCR (Vp + o) + NoNyR, (Vp — ) — No, d 35)

Note that since the hand gaps at both sides of the metallurgical junction are not equal in general, a small discontinuity in free
carriers occurs at the junction. Substituting the expressions for the free carriers (in the n-type region) at the junction, i.e.,

np(0) =N-R.(Vy +uy),
Pp(0) =N, R (V) +u,),

and multiplying both numerator and denominator by (N, + N,)/N,N ,, we finally obtain the simplified capacitance formu-
la, which will be used to explain the numerical results of Sec. IV:

C =

(36)

\,“‘(N,,JrN )/ NN, [NC/ (Vy +u0)+N/ (VD—uo)]+(~V -V, +u,,)
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In comparison, the expression of the capacitance obtained
by the depletion layer approximation (DLA) [in the nor-
malized voltage (17)] is given by

o JNoN, /N, ¥ N,) J@e/2kT

V=Vo—Vi+R:"(Np/Nc) +R,T(N,J/Ny)
(37)

IV. EVALUATION OF THE GENERAL CAPACITANCE
FORMULA '

The general capacitance procedure, derived in Sec.
III A, has been programmed for abrupt junctions in GaAs
assuming a parabolic density of states and compared to the
Sedan3'” results, which we regard as exact, and to DLA
(37).

Since the C ~2 vs ¥, is expected to be a straight line,

C*V,)=aV, +b, (38)

the behavior of the slope a, the coefficient b, and the correla-
tion coefficient r of the C ~2(¥,) function has been studied
for nearly all interesting combinations of &, and N, in the
voltage region [ —3V,0V]. The correlation coefficient r is
a measure for the linearity of the C ~2(¥,) function. Using
the auto-grid and diode lengths of ten space charge layers,
the Sedan3 results coincide with DLA.

Typical results for ¥, = 10'° cm > and varying N, are
shown in Figs. 1-3. Two doping ratio N,,/N, regions can be
distinguished.

(1) In the doping ratio region where N, /N , lies rough-
ly between 1 and 0.1, all methods converge.

(2) In the doping ratio N,/N, range smaller than 0.1,
deviations from Sedan3 (and DLA) occur.

We first will discuss symmetrical junctions. In Sec.
IV B, asymmetrical junctions are analyzed while their
anomalous behavior is explained in Sec. IV C.

A. Symmetrical junctions (N, =N, =N)

The results for symmetrical junctions are in excellent
agreement with the Sedan3 results as observed from Figs. 1-
3. The perfect agreement with Sedan3 is explained by exam-
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. . ] |
6 ‘e !
0% ‘. ‘, 1
. * f '
. | !
= e ]
_;u 10!5 . ! 4
L R |
= - a [
g 10" Tel: " 1
& . : |
| ’ !
3 ' "
1 - formula - 3
W077F 7 Sedand and DLA )
................ | ...
1 !
L i il 1 al £
1078 1074 107 10°¢ 107! 10°

Doping ratio Np/N 4

v T T T T vy
i
|0|9 . . Ay ; Ay :l Ay
o | | |
i S o
o . |
w10y, . ; ]
F=) . . 1
g 10" T :
g F . . { !
2 . | :
5 10! I ;
ST T A , 1
14 e, J
10 . - ! H
E ® our formula : [] : 1
13t ° Sedanl and DLA { '.'l
101 - e i .
] : L)
L . ) L | )
1073 10% 1073 1072 1o} 10

Doping ratio Np/N o

FIG. 2. The capacitance intercept b of C ~*(¥,)(38) in function of the
doping ratio N, /N .

ining (36) and (32). The absolute value of the normalized
potential at the metallurgical junction u, (32) achieves its
minimum for symmetrical junctions and equals approxi-
mately zero. This implies that in (36), the transformation
terms [i.e., # termsand n,(0) and p,, (0) ], which refer to
free carrier effects, are negligible and consequently that the
DLA is excellent. Hence, both numerator and denominator
simplify and (36) almost equals (37) except from u. This
will cause a different intercept voltage which is discussed in
Ref. 13.

In contrast to the DLA, our calculations (Fig. 4) do not
exhibit the unphysical pole in the forward bias region. Due
to the assumed boundary conditions (19), the influence of
the diffusion capacitance is excluded. As a consequence of
the growing importance of the Fermi—Dirac statistic for high
doping concentrations, the maximum of the normalized ca-
pacitance decreases for increasing doping concentration,
while the width of the bell shape increases.

B. Asymmetrical junctions

As long as the doping ratio N, /N, is roughly between
0.1 and 1, the agreement of our theory with Sedan3 and with
the DLA is good. This region is marked as zone 4, in Figs. 1-
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FIG. 3. The correlation coefficient r of C ~2(¥,)(38) in function of the
doping ratio N,/N,,.

FIG. 1. The slope a of C~3(¥,)(38) in function of the doping ratio
Ny/N,.
4207 4207
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FIG. 4. The normalized capacitances m C versus applied voltage V, for
symmetrical abrupt diodes (curves a to &) with doping concentration vary-
ing from V = 10" to 10' cm ™ *. The normalization factor m, - 10'/yN .

3. Increasing the asymmetry in doping concentration forces
u, (32) to deviate from zero and to tend to the potential of
the more highly doped neutral region (i.e., ug—uy for
N, <N,). However, not until the doping ratio ¥,/N,
reaches about 0.1 does the first term in (32) dominate the
other to some extent and thus u, remains small. The influ-
ence of the free carriers [i.e., the transformation terms in
(36) ] is still very small.

For doping ratios N, /N, between 10~ 'and 10~ (indi-
cated as zone 4, in Figs. 1-3), the relationship (38) is not
linear anymore, as observed in Fig. 3. This is explained by
considering (32). The first term in (32) may be approximat-

]

ed by ¥, while the free carrier terms now increase slowly.
For small values of the applied voltage V,, the normalized
voltage ¥, is small compared to the free carrier terms and u,
becomes significantly negative. Hence, free carrier effects
dominate and our C ~2( V) bends upwards with respect to
the classical (Sedan3 and DLA) linear behavior. For larger
values of the applied voltage, V, starts to dominate again
and forces the capacitance to return to the classical regime.
Notwithstanding the nonlinearity of our C "%(V,), a
straight line has been fitted and, from Figs. 1 and 2, we notice
that in this zone A4, the set of slopes ¢ and the set of b coeffi-
cients of our formula start following another straight line.

If the asymmetry in doping concentration is very high,
i.e., N, >N, (shown as zone 4, in Figs. 1-3), then

N N, N
st ) o ()
=V, V(NV e (R

Defining u(N,) as

N N, N
N)= —R,' —-“—> ——?"{R ‘(-i)] 40
u(N,) ¥ (NV + N4 A v NV (40)

(39

it is easily verified that ¥(/N,) is a continuous decreasing
function of &,, which tends to u, — V, (22) if N, ap-
proaches infinity. Consequently, in the numerator of (36),
1, {(0) =0, while
p0) 1

~— R, [u(N)] <1
N, el
and (41) is almost independent of applied voltage. The de-
nominator D of (36) tends to

(41)

P Y S G +Rr'(ﬂ)+"/l{"ﬁ(&)]
! N, N,) N, N,

and, as a consequence, the intercept voltage can be approxi-
mated as

(43)

This explains the behavior of the slope @ and the coefficient &
in Figs. 1 and 2, since V,, = — b /a. As the last term under
the square root in (42) is very large, the denominator D
changes very slowly with voltage in [ — 3 V,0V]. Since the

(42)

[

numerator is almost constant, the C ~*(¥,) function is
again a straight line (Fig. 3). Hence, for increasing doping
ratios the numerator of (36) decreases, while the denomina-
tor increases such that the capacitance decreases stronger
than the DLA capacitance (37). Considering (33) and
(36), the observed discrepancy for high doping asymmetries
can mainly be reduced to the discrepancy in electric field
which increases rapidly due to the increasing spill over of
free carriers. The electric field E(0) at the metallurgical
junction reads

e j 1%
EW) :ﬂ‘qf"@:\/——z}\r NV/ v [R v 1(_]\%)] +Nu( - VA - Vl) +Uuy) .

g dx

In (44), the last term under the square root sign is negligible
compared to the first which illustrates the almost indepen-
dence on applied voltage. Combining this with numerical
values for GaAs (44) simplifies to
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For an asymmetrical junction (N, = 10" ¢cm * and N,
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n 0-_---\, V IIL /
N,

FIG. 5. Schematic picture of the charge density p(x) (not scaled and with
g = 1) in the neighborhood of the junction at x = 0, for the case of a math-
ematically abrupt junction (dashed line) and a realistic abrupt junction
(full line). The doping profiles N, (x <0) and N, (x> 0) for a mathemat-
ically abrupt junction, and N, (x <) and ¥, (x> 6) for a realistic abrupt
junction are also shown. The interval [7,6] indicates a transition region.
Note that the realistic charge density must have a neutral point X,

= 10" cm ~?) in GaAs one volt reverse biased, E(0) equals
1.665 % 10° V/cm while the maximum electric field calculat-
ed in the DLA, Ep, , (0), is 7.135 X 10% V/cm. Our capaci-
tance values are, in this case, about 23 [the ratio between
E(0) and Ep; 5 (0)] times less than those obtained by the
DLA.

C. Explanation of the anomalies in asymmetrical
junctions

For large asymmetries in doping, the discrepancy be-
tween the DLA (and Sedan3) and our description is ex-
plained as follows. The assumption of constant quasi-Fermi
levels leads only to a minor effect because the calculations
performed by Kennedy' were done in equilibrium (both
quasi-Fermi levels equal the constant Fermi level ) and show
the same discrepancy. Consequently, we might argue that all
approximations made were excellent and that our capaci-
tance calculation should give excellent results. Notwith-
standing this fact, from capacitance measurements of an
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FIG. 6. The electric field of a particular diode (¥, = 10", N, = 10" and
Vippiea = — 1 V) simulated in Sedan3 with decreasing (from curve a to )
grid spacings. The curves are horizontally shifted for clarity; the peak posi-
tion of their electric field corresponds with the metallurgical junction
(x =0).

asymmetrical abrupt junction in GaAs (N, =2Xx10'
em™? and N, =2x10"® cm™?), grown with MBE, the
C ~*(V¥,) function is astraight line with an intercept voltage
of 1.2 V, while the presented theory predicts a value of al-
most 6.5 V, due to the nonlinear C ~3(¥, ) relationship in
[-3V,05V]for N,/N, =0.01.
For large asymmetries in doping concentration, the
charge density p(x) schematically shown in the neighbor-
hood of the metallurgical junction in Fig. 5 in dashed line,
keeps increasing faster towards the junction at x =0 and
causes a sharply peaked electric field at this point. The ex-
periments do not show evidence for such an electric field
although Sedan3 simulations for a doping profile tending to
a mathematically abrupt junction confirm the existence of a
peaked electric field (Fig. 6). Decreasing the grid spacing
causes the increase of the peak value of the electric field. In
spite of the numerical values which exceeds E(0) (45) due
to numerical differentiation with extreme small gridwidths,
the importance of the discontinuity in doping profile is dem-
onstrated. This discontinuity in highly asymmetrical diodes
is responsible for a voltage insensitive spill-over of free carri-
ers, causing an almost constant capacitance with respect to
applied voltage, which is experimentally not observed. This
implies that mathematically abrupt junctions do not exist
and that a kind of transition region (shown as the interval
[1,0] in Fig. §) must occur in which the dependence of the
doping concentration on the distance x is not well defined. In
conclusion, perfect physical reasoning on a mathematically
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abrupt structure must bring us, irrevocably, to nonreality
and hence the consequences drawn in Ref. 18 are highly
doubtful.

V. CONCLUSION

A formalism to derive the capacitance of an abrupt junc-
tion has been presented and evaluated. For symmetrical
junctions, excellent agreement with numerical results of a
device simulator is achieved. A growing discrepancy be-
tween our theory and the numerical results occurs for in-
creasing asymmetries. This phenomenon is explained as the
consequence of the assumption of perfect abruptness.

APPENDIX: THE ENERGY DENSITY OF STATES

The study of band-gap narrowing mainly describes the
behavior of two quantities, the width of the forbidden energy
gap E, and the energy density of states g, in the valence and
g. in the conduction band. In this Appendix we briefly dis-
cuss the relation between the carrier concentration and the
energy density of states employing a new transformation for-
malism.

The number of electrons is given by

J“ ''''' g (E—FE)
"= E 1 + exp[(E—{,)/kT ]

o

(A1)

We substitute

&= (E~E)/KT,
where E_ means the unperturbed band edge similar to £, in
Refs. 19 and 20. We extend the upperlimit E_ ., to infinity

while the underlimit E_,, is elongated to minus infinity.
Since the density of states can have tails, then

* (kTE)
"= kTJ - 8 (KT8
£ l+exp[§W(§rﬁEr)/kT]
The number of electrons calculated assuming a parabolic
density of states reads

n=NcF [, —E /T,

where

dé . (A2)

(A3)

2 (< JE dt
1 4 exp(§ ~p)
and the effective density of states N,
o =82 F{(m*kT)?/h>.
Analogous to (A3}, (A2) can be written as
n=Ncp[8(£).({, —E.)/KT],
where
g(&) = (kT /N¢) g (kTE)
and where the p transformation is defined as

(A4)

(AS5)

g(&) dt .

(Ab6)
= 1 +exp(§—y)

P[g(§),y]=fj

Hence, if the density of states is paraboiic, i.e., g(E) = VE
for E>0 and g(E) =0 for E <0, (A3} written in the for-
malism of (A6), yields
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FIG. 7. Group representation of the function classes P and M.

n=Ncp[2/7VE 6(6),(§, —EN/KT].  (AT)

An analogous derivation for the holes can be performed.

As in other integral transformations (e.g., the Laplace
transformation) we propose the following notation. We de-
fine P as the class of density functions g(&) for which the
integral (A6) converges and M as the class of functions
R(y) that are related to the number of carriers according to
g(&) (see Fig. 7).

Here, p is a transformation from P to M, such that

Vg(§)eP,AR(y)eM:p(g(£), ¥yl = R(y),

while p ~' is the inverse transformation from M to P, such
that

VR( y)eM,3g(&)eP:p ' [R(y).£] =g(&) .
We frequently use the inverse function R ~!(z), defined as
VR(y)eM\Vz, peR:z==R(y) &y =R ~'(2).

Notice that R ~'(z) does not necessarily belong to M.
Finally, we list some properties'* of the g transforma-
tion:
(1) The p transformation is linear:

plafi&) +Bg(E), vyl =a p[ AE),y) + B ple&) y].
(A8)

(2) p[gg(ﬁ y] =d%{p[g(§),y]}. (A9)

d¢ '
This equation even holds if g(0) = 0 and g(£) = 0 for
£<0.

v ¢
(3)J pg(£), ¥l dy=p(f g(7) dr,y)

3
— p(J g(7r) dr, a) .
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