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Abstract—Many large-scale distributed network applications
could benefit from an efficient mechanism to estimate distance
in the Internet. Landmark schemes provide such estimates based
on distances in a hyperspace in which the hosts are embedded.
In this paper, we evaluate the aging effect of landmark-based
coordinates using empirical data. That is, to what extent are past
measurements a good predictor to estimate the current distance.
Our experiments show that based on the data up to 7 days old,
the predicted hyperspace-distance function using "triangulation
heuristics" correlate relative highly (more than 85%) with the
measured distance.

I. INTRODUCTION

An efficient mechanism to estimate distance in the Internet
could be beneficial for many large-scale distributed network
applications such as nearby server selection and peer-to-peer
computing. Landmark schemes provide such estimates based
on distances in a hyperspace in which the hosts are embedded
[1][4]. In these techniques each of the N nodes measures its
distance to a small set of M well-known landmark servers.
By conceiving the results as the components of a vector,
each node is embedded in a M -dimensional hyperspace. It is
assumed that the distance between two network nodes can be
estimated by computing the (e.g. Euclidean) distance between
their respective coordinate vectors in the hyperspace.
In this paper, we investigate the aging of landmark-based

coordinates. Because hosts are not going to continuously
update their coordinates, it is interesting to investigate the
quality of prediction based on coordinates which have been
determined earlier, and to know how often peers should update
their coordinates. This knowledge might enhance our ability
to manage the network distance estimation.
In this study, "distance" is defined in terms of the network

delay experienced in a packet exchange. The network delay
directly influences the user experience in many applications.
There can be an indirect influence as well because the TCP
throughput is roughly inversely proportional to the round-trip
time. Our empirical evaluation is based on data from the RIPE
NCC TTM project [10]. This data-set contains measurements
of the delay between a set of about 80 test-boxes.
The remainder of this paper proceeds as follows. After a

discussion of related work in Section 2, Section 3 describes
the problem. Section 4 reports on the experimental results.
Finally, Section 5 summarizes our conclusions.

II. RELATED WORK

Several landmark-based methods have been proposed to
estimate the distance between hosts on the Internet. However,
none of them investigated the aging effect of landmark-based
coordinates.
GeoPing was originally intended to infer geographical loca-

tions of nodes from delay measurements to a set of landmarks
[1], but later it was also used to infer the delay itself [2]. In the
latter form it coincides with the method studied by us, except
that it only uses the Euclidean hyperspace distance. A main
conclusion of our work [9] is that for predicting the delay, the
Euclidean distance function is not the optimal choice. A minor
difference is that GeoPing uses the median delay, whereas we
use the minimum delay.
Global Network Positioning (GNP) [7] is a different esti-

mation scheme which is also based on landmarks. In this ap-
proach not only the peers but also the landmarks are embedded
in the hyperspace, based on the measured inter-landmark dis-
tances. The assignment of coordinates to landmarks and other
nodes is cast in the form of a minimization problem where
the objective function quantifies the errors in the distance
estimates. This minimization should be solved online, which
imposes a computational load on nodes and landmarks. The
authors provide an extensive comparison between GNP, the
"triangulation heuristics" D+, D∞, and DA that we consider
in this paper, and IDMaps (see below). They concluded that
D+ is the best triangulation heuristic for the delay. This is
confirmed by our analysis [9]. Lighthouse [5] and SCoLE [6]
improve on GNP in the sense that the role of the landmarks
is progressively decentralized.
IDMaps [3] is an infrastructure for estimating distances.

Their "tracers" are servers similar to our landmarks, except
that they actively measure their distances towards other tracers
and towards domains on the Internet.
Various overlay networks use distance estimates to construct

efficient topologies. S. Ratnasamy et al. [8] describe the use
of a landmark scheme in a distributed hash-table named CAN.
In our previous work [9], we have evaluated a simple

landmark scheme using empirical data for both delay and
hopcount. We investigated various choices for the hyperspace
distance function. We found that the delay is easier to predict
than the hopcount.



III. PROBLEM DESCRIPTION AND DEFINITIONS

In this paper, we study the hyperspace distance1 to estimate
the network distance. Let d(A,B) be the network distance
between node A and B. Note that our "network distance" is
not a mathematical distance function. In particular the triangle
inequalities may not hold.
TheM landmark servers are denoted as L1, ..., LM . To each

node Xi we assign a coordinate vector

xi ≡ (xi1,xi2, ...,xiM )
where xik = d(Xi, Lk) is the measured distance between the
node i and the landmark k. The hyperspace distance between
the coordinate vectors xi and xj is written as D(xi,xj),
to distinguish it from the network distance d. We consider
the correlation D(xi,xj) with d(Xi,Xj) as the measure
of quality of the prediction scheme. We study the same
functionals as in our previous work [9]:

Dq(xi,xj) =

Ã
MX
k=1

(xik − xjk)q
!1/q

, q > 0

D+(xi,xj) = min
k=1,...,M

(xik + xjk)

DA(xi,xj) = (D+ +D∞)/2

DG(xi,xj) =
p
D+D∞

Their linear correlation coefficients of the predicted hyper-
space distance with actual network distance d are defined by

r(D, d) =
cov(D,d)p

var(D) · var(d)

When using the hyperspace distance D(t) with the data
obtained at time t to estimate the network distance d(t+∆t)
at time t+∆t (∆t is called a time lag), the linear correlation
coefficients of the predicted hyperspace distance D(t) with the
network distance d(t+∆t) are defined by

ρ(t,∆t) = r(D(t), d(t+∆t))

IV. EXPERIMENT RESULTS
Our data are provided by RIPE NCC TTM project. The

TTM infrastructure consists of approximately 80 measurement
boxes scattered over Europe (and a few in the US and Asia).
Between each pair of measurement boxes, IP packets of a
fixed length (100 bytes), called probe-packets, are continu-
ously transmitted with interarrival times of about 30 seconds,
resulting in a total of about 2880 probe-packets per day.
The sending measurement box generates an accurate time-
stamp synchronized via GPS in each probe-packet, while the
receiving measurement box reads the GPS-time of the probe-
packet on arrival. The end-to-end delay is defined as the
difference between these two time-stamps and has an accuracy

1A relatively new approach to represent a network distance matrix is to
map the network nodes into a k-dimensional (e.g. Euclidean) hyperspace. In
some papers (like [11]), the term "embedding" is also used to denote this
hyperspace mapping.

of about 10 µs. We have analyzed the data collected by TTM
from February 8, 2004 to February 14, 2004, and the data
collected on May 15, 2003 and on January 31, 2004. We
only considered the minimal delays available in all the days,
resulting in 73 active boxes, where 62 hosts are located in
Europe, 7 in the US, 2 in Japan, and 1 each in Australia and
New Zealand.
For each sender-destination pair we computed the minimum

end-to-end delay over 24 hours (that is approximately 2880
probe-packets), in order to know the congestion-free delay.
The RIPE TTM differs from other infrastructures like PingER
and AMP in that it measures one-way delays rather than RTTs.
In this paper, however, we do not care about asymmetry, and
we always consider the symmetrized network distance, defined
as the sum of the network distances in both directions. For
the delay, the result can be considered as a round-trip time.
We omitted pairs for which the delay in one of the directions
is missing, leaving in total 4521 pairs. These measurements
provide us with the network distance matrix d(A,B).
In the experiment during more than a week period, 10 of all

the test-boxes are assigned the status of landmark. We choose
them randomly except that 6 are located in the EU, 1 is located
in the Asia and 3 are located in the US. The remaining test-
boxes are referred to as “peers”. We repeated the experiments
with M = 5 and M = 15 landmarks respectively. In the
following part A, we investigate the quality of a landmark
scheme over one week, while in the part B, we study the time
dependence of coordinates.

A. The quality of a landmark scheme over one week
This part investigates the quality of a landmark scheme over

a week. We consider the measurement data that spans a week
from Monday (February 8, 2004) to Sunday (February 14,
2004). During each day of the experiment, for each pair of
peers, the current network distance d(A,B) was calculated
and was compared to the distance predicted by the landmark
scheme (using 5, 10 and 15 landmarks): that is the hyperspace
distance D(xA,xB) for six different hyperspace norms: D1,
D2, D∞, D+, DA, and DG. Figure 1 plots the correlation
coefficients ρ(t, 0) for the estimated (i.e. hyperspace) distance
versus the measured distance at the same day, for the six
hyperspace distance functions. On the vertical axis gives the
linear correlation coefficient ρ(t, 0), on the horizontal axis is
the day.
Note that due to the dynamic property of the Internet

distance, ρ(t, 0) for six hyperspace distance functions are not
always the same during a week. The results in Figure 1 show
that during a week, the best results for the delay estimation
are always obtained using DG and D+, and they seem to
possess a relatively stable correlation over time. The difference
between the results obtained using DG and D+ is only within
2%. Moreover, the DG and D+ hyperspace distances give the
highest correlations, in particular higher than for the Euclidean
distance D2. These analysis confirm the conclusion in [9],
which is based on data measured 9 months earlier (May 15,
2003).
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Fig. 1. The correlation coefficients for the estimated (i.e. hyperspace) distance
versus the measured distance, for six hyperspace distance functions.

B. Estimate the distance using the past data
Hosts are not going to continuously update their coordinates.

In this part, we investigate the quality of prediction based on
coordinates determined earlier. The central question addressed
in this part is: how often should peers update their coordinates?
More precisely, with a time lag between embedding and eval-
uation, how does the hyperspace distance function correlate
with the actual distances between hosts?
To answer above questions, we took the measured distance

on February 14, 2004 as measured distance d(A,B). We
predicted the distances based on data measured on earlier
time (for six hyperspace distance functions). For each peer,
the correlation coefficients ρ(t,∆t) for the estimated (i.e.
hyperspace) distance versus d(A,B) was computed. Due to
space limitation, Figure 2 (see the last page) only shows an
example of scatterplots for the measured distance versus the
estimated (i.e. hyperspace) distance based on the data mea-
sured in 1 day earlier (∆t = 1). Each data point corresponds
to a pair of peers. On the horizontal axis is their actual network
distance d(A,B)measured on February 14, on the vertical axis
their distance predicted by the landmark scheme, that is their
hyperspace distance D(xA,xB), using the previous delay data
measured on February 13. The solid lines shown are the least-
squares fitted line, and the diagonal D = d. The inset also
shows the linear correlation coefficient ρ(t,∆t).
Note that Internet distance can change due to routing policy,

routing updates or changes of the topology. Figure 3 presents
the scatterplots of the distance measured on February 14 and
some earlier measured distances. The results show that most
end-to-end distances are stable in our database. In a number of
cases, higher capacity links were chosen due to routing updates
between source-destination pairs, which leads to shorter end-
to-end delays. Some outliers in Figure 3 show this change.
For example, the routings that from a host located in Sofia,
Bulgaria to other test-boxes have been completely changed
since February 2004, and the one-way delay has been reduced
by a factor of 10 times smaller.
For a better visualization, Figure 4 shows the correlation

coefficient ρ(t,∆t) as a function of the time lag ∆t. This
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Fig. 3. Scatterplots current distance (measured on Feb. 14, 2004) versus
previous measured distance in the database. The plotted line is the diagonal

experiment involves M = 10 landmarks. The plot shows
that based on the data measured up to a week earlier, the
predicted hyperspace-distance function using DG and D+

correlate strongly (more than 0.85) with the measured distance,
and in particular, exceeds that of the Euclidean distance D2.
The ρ(t,∆t) is much lower (about 0.2) for the prediction
based on data measured 14 days or more days earlier. We
also observed similar results for M = 5 and M = 15.

The complete results are summarized in Table I, where the
first, second and third number in each cell is the linear corre-
lation coefficient ρ(t,∆t) for M = 5, 10 and 15 landmarks,
respectively. Table I conforms the observation that based on
the data measured within a week, the predicted hyperspace-
distance function using DG and D+ correlate strongly with
the measured distance.
To measure how well a predicted distance (based on data

measured on earlier time) matches the corresponding measured
distance, we use two metric relative errors that are defined as:
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Fig. 4. The correlation coefficient for the measured distance versus the
estimated hyperspace distance based on data measured on eariler time for
D2, DG and D+. The landmarks is 10.

e(DG, d) = |DG−d(A,B)
min(DG,d)

| and e(D+, d) = |D+−d(A,B)
min(D+,d)

|.
Figure 5 shows the cumulative distribution function (CDF)

of the ratios of e(DG, d) and e(D+, d) for M = 10 for all
measurement in our data sets. The closer this ratio to 0, the
better the estimation. We observed that based on the data
within a week earlier, between 94% and 98% of estimates
using D+ fall within a factor of 1 of the real distances; while
90% and 94% for DG. However, based on the data measured
9 months earlier, only about 80% of estimates using D+

(or DG) fall within a factor of 1 of the real distances. A
prediction mechanism can potentially be extremely inaccurate
with respect to the relative error metrics, but the prediction
scheme using DG and D+ based on the past data (e.g. within
a week) can be relatively accurate to the measured distance.
We also observed similar results for M = 5 and M = 15.

V. CONCLUSIONS

In this paper, we studied how often should peers update
their coordinates. More precisely, we investigated the quality
of landmark schemes over one week using empirical delay
data. Our experiments show that the best results for the delay
estimation are obtained using DG and D+, and they seem to
possess a relatively stable correlation over time. Moreover, the
DG andD+ hyperspace distances give the highest correlations,
and exceed that of the Euclidean distance D2. We also
investigated the quality of prediction based on coordinates
which have been determined earlier. Our experimental results
suggest that based on data up to 7 days old, the predicted
hyperspace-distance function using DG and D+ correlate
relative highly with the measured distance. Moreover, those
predicted hyperspace distance can be relative accurate with
respect to the measured distance.
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Fig. 5. Cumulative distribution function (CDF) of the ratios of e(DG, d)
and e(D+, d) for 10 landmarks in our experiment
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Fig. 2. Scatterplots for the estimated (i.e. hyperspace) distance (using data from 1 day eariler) versus the measured distance, for six hyperspace distance
functions. The number of landmarks is 10. The plotted lines are the diagonal D = d, and a least-squares fit

4 days earlier 3 days earlier 2 days earlier 1 day earlier
D1 0.79, 0.85, 0.84 0.81, 0.87, 0.86 0.87, 0.91, 0.9 0.9, 0.89, 0.89
D2 0.81, 0.85, 0.84 0.82, 0.86, 0.85 0.88, 0.9, 0.89 0.9, 0.9, 0.9
D∞ 0.81, 0.75, 0.74 0.82, 0.84, 0.82 0.86, 0.87, 0.86 0.88, 0.87, 0.87
D+ 0.94, 0.94, 0.93 0.93, 0.93, 0.91 0.97, 0.94, 0.95 0.97, 0.94, 0.93
DA 0.9, 0.87, 0.86 0.89, 0.87, 0.85 0.94, 0.9, 0.89 0.95, 0.93, 0.93
DG 0.92, 0.91, 0.91 0.92, 0.91, 0.9 0.96, 0.95, 0.94 0.97, 0.95, 0.95

9 months earlier 14 days earlier 6 days earlier 5 days earlier
D1 0.34, 0.38, 0.4 0.41, 0.48, 0.40 0.73, 0.79, 0.78 0.75. 0.82, 0.81
D2 0.38, 0.41, 0.43 0.46, 0.52, 0.44 0.74, 0.79, 0.78 0.77, 0.82, 0.81
D∞ 0.48, 0.47, 0.49 0.56, 0.56, 0.51 0.76, 0.82, 0.8 0.79, 0.83, 0.82
D+ 0.69, 0.68, 0.68 0.74, 0.74, 0.66 0.87, 0.87, 0.86 0.93, 0.93, 0.91
DA 0.58, 0.57, 0.59 0.65, 0.66, 0.6 0.84, 0.82, 0.82 0.88, 0.86, 0.85
DG 0.58, 0.58, 0.59 0.66, 0.66, 0.6 0.85, 0.85, 0.85 0.9, 0.9, 0.89

TABLE I
CORRELATION COEFFICIENTS FOR THE ESTIMATED DELAY DATA.


