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Abstract. We consider a graph, where the nodes have a pre-described degree distribution F, and where

nodes are randomly connected in accordance to their degree. Based on a recent result (R. van der Hofstad,

G. Hooghiemstra and P. Van Mieghem, BRandom graphs with finite variance degrees,^ Random Structures and

Algorithms, vol. 17(5) pp. 76Y105, 2005), we improve the approximation of the mean distance between two

randomly chosen nodes given by M. E. J. Newman, S. H. Strogatz, and D. J. Watts, BRandom graphs with

arbitrary degree distribution and their application,^ Physical Review. E vol. 64, 026118, pp. 1Y17, 2001. Our

new expression for the mean distance involves the expectation of the logarithm of the limit of a super-critical

branching process. We compare simulations of the mean distance with the results of Newman et al. and with our

new approach.
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1. Introduction

In the first subsection of this introduction, we introduce the graph model, discuss its

relevance, and present our main results. In Section 1.2, we review related work, whereas

in Section 1.3 we explain the organization of this paper.

1.1. Definition and Statement of Results

In several disciplines it was observed that graph models for real-world phenomena often

possess a specific degree distribution. In electrical engineering and computer science,

Faloutsos et al. (1999) have shown that the degree distribution of the Internet graph

follows a power law. Since their paper, a large amount of additional measurements to

infer properties of the graph of the Internet have been published [see e.g., Tangmunarunkit

et al. (2002), Pastor-Satorras et al. (2001)]. In physics, Newman et al. (2001) have studied

real-world networks described by various degree distributions. Two recent review papers

on graphs and networks that include a discussion on scale free graphs are Albert and

Barabási (2002) and Newman (2003). A general observed characteristic is that most of
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these Freal-world_ degree distributions often differ considerably from the Poisson

distribution that asymptotically (for a large number of nodes N) describes the degree

distribution of the random graph Gp(N) (Bollobás, 2001). Barabasi (2002) showed that

preferential attachment of nodes gives rise to a class of graphs called Fscaled free

networks._ Scale free graphs have a power law degree distribution which contrasts with the

degree distribution of the classical random graph Gp(N).

The interest in the understanding of real-world graphs has led to the introduction of a

number of different graph models, which we review in Section 1.2 below.

We consider a model which was introduced in a series of papers (Newman et al., 2001;

Reittu and Norros, 2004 and van der Hofstad et al., 2005). For a given probability mass

function fj, j = 1, . . . , and an integer N we define an i.i.d., sequence D1, D2, . . . , DN with

(common) distribution

P D ¼ j½ � ¼ fj; j ¼ 1; 2; . . . : ð1Þ

The construction of the involved graph model starts with N nodes, where node j has Dj

(random!) edges (initially called stubs). These stubs are connected by matching them

randomly. Each matched pair of stubs form together one edge or link. If the total number

of stubs D1 + D2 + . . . + DN in the random matching construction is odd an additional

stub is added to the Nth node, so that DN is increased by one. This single stub will make

will make no difference in what follows. We refer to van der Hofstad et al. (2005),

Introduction for more details.

Let F(x) be the cumulative distribution function of the discrete distribution fj, i.e.,

F(x) = ~ j = 1
)x2 fj, where ) x 2 is the largest integer smaller than or equal to x. As in (van der

Hofstad et al., 2005) we will assume that for some � > 3 and some positive c,

1� FðxÞ � cx�� þ 1; x > 0: ð2Þ

This graph model that includes heavy tail degrees with finite variance is a variant of the

configuration model, which, given a degree sequence, is the random graph with that

given degree sequence. For a graph, the degree sequence of that graph is the vector, of

which the kth coordinate equals the frequency of nodes with degree k. In our model, the

degree sequence is very close to the distribution of the nodal degree D of which

D1, . . . ,DN are i.i.d. copies. We further define

� ¼ E½D�; � ¼ E½DðD� 1Þ�
E½D� : ð3Þ

The importance of the parameter � will be clarified below.

The distance or path length between two nodes is defined as the minimal number of

distinct edges that forms a path connecting the two nodes. If the two nodes are not

connected by a path, we put this distance equal to +V. The mean of this distance is a

characterizing property of a graph. Moreover, the computational complexity of a routing

algorithm is nicely related to the distance distribution in a graph and in particular to the

mean distance. For � > 3, the graph distance (or hopcount) HN between node 1 and node

2 in the graph, conditionally on the event that these two nodes are connected, was shown
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heuristically in Newman et al. (2001), (54) and Albert and Barabási (2002), Section V.C,

(63) and (64) to satisfy approximately

E½HN j HN <1� � logðN=�Þ
log �

þ 1: ð4Þ

Concerning the asymptotic distribution of HN, we used the following Theorem from

van der Hofstad et al. (2005).

THEOREM 1.1 Assume that � > 3 and that the expected value � defined in Aiello (2002)

satisfies � > 1. For n Q 1 define an ¼ blog� nc � log� n 2 ð�1; 0�. Then there exist

random variables R̂Ra; a 2 ð�1; 0�
� �

such that for each � > 0, as N Y V,

P HN � blog� Nc > k½ �

¼ P R̂RaN
> k

� �
þ Oððlog NÞ��Þ; k 2 Z:

ð5Þ

Furthermore, ifWð1ÞandWð2Þare two independent copies of the limit random variable

W introduced below, then for fixed a 2 (j1, 0], and k 2 Z,

P R̂Ra > k
� �

¼ E e��ð�� 1Þ�1� aþ kWð1ÞWð2Þ
h i

: ð6Þ

The random variableW is the almost sure limit of the normalized (delayed) branching

process

Wn ¼ Zn=��
n� 1; ð7Þ

where Z0 ¼ 1, having offspring distribution in the first generation given by (1), whereas

in the second and in all further generations the offspring distribution is given by

gj ¼
ð jþ 1Þfjþ 1

�
; j ¼ 0; 1; . . . : ð8Þ

The mean value of the probability mass function {gj} is denoted by � = ~ jgj and satisfies

Aiello (2002). The involvement of {gj} becomes transparent if one realizes that the stubs

are matched according to size. Since the number of stubs at each node follows

distribution { fj}, sampling in accordance with size means sampling proportional to jfj.

The approximating branching process fZngthat describes the expansion (the number of

nodes on distance n from a given node) uses one stub for attachment and, hence, the

offspring of this branching process has size j with probability proportional to ( j + 1) fj+1,

see also Newman et al. (2001), Section II.a, Reference (9).

Theorem 1.1 suggests that the asymptotic mean distance satisfies

E½HN j HN <1� ¼ blog� Nc þ E½ ^

RaN
j ^

RaN
<1� þ oð1Þ; ð9Þ

and that the asymptotic variance satisfies

Var ½HN j HN <1� ¼ Var R̂RaN
j R̂RaN

<1
� �

þ oð1Þ; ð10Þ
as N Y V.
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Note that the random variables {Ra, a 2 (j1, 0]}, defined in van der Hofstad et al.

(2005), (1.8), as

P½Ra > k� ¼ E e��ð�� 1Þ�1� aþ kWð1ÞWð2Þ j Wð1ÞWð2Þ > 0
h i

; ð11Þ

are connected to the (possibly defective) random variables fR̂Ra; a 2 ð�1; 0�g defined in

(6), through

Ra ¼ R̂Ra j R̂Ra <1; ð12Þ

because fR̂Ra <1g ¼ fWð1ÞWð2Þ > 0g.
We will not prove (9) or (10) rigorously, but we give the following motivation.

Observe that (9) (as the result (10)), can only hold for two nodes that are connected,

as is indicated by the conditioning on the event {HN < V}. However, the error term in

(5), does not hold for the event {HN < V}. Instead, in statements involving the event

{HN < V} the error term, in van der Hofstad et al. (2005), was replaced by a o(1) term, as

N Y V. Even if we demand that PðD � 2Þ ¼ 1, in which case Wð1ÞWð2Þ > 0, with

probability 1 and hence the distribution of HN has for N Y V no mass at +V, the error

term in (5) does not suffice to obtain (9). However, when PðD � 2Þ ¼ 1 and defining

HN
* = min{HN, �N}, where �N ¼ C log� N, for some multiplication factor C > 1, we

obtain for N Y V,

E½HN
*� ¼

X�N

n¼ 1

nP½HN ¼ n�

¼
X�N�blog� Nc

n¼�blog� Nc
ðblog� Nc þ kÞP½HN � blog� Nc ¼ k�

¼ blog� Nc
X�N�blog� Nc

n¼�blog� Nc
P½RaN

¼ k� þ
X�N�blog� Nc

n¼�blog� Nc
k P½RaN

¼ k� þ Oððlog NÞ��Þð Þ

¼ blog� Nc þ E½RaN
� þ Oððlog NÞ1��Þ;

as can be obtained from (5) and (11). The choice of HN
* is motivated by the centering

constant blog� Ncof HN, and it is expected that HN will not exceed a large multiple of

log� N . We can not prove (9) rigorously, with the tools of van der Hofstad et al. (2005),

instead we are satisfied by the simulations in Section 5, which convincingly show that

the approximation following from (9) is superior compared to the crude approxima-

tion (4).
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Combining (9) and the intermediate result (14), formulated and proved in Theorem 2.1

below, yields the main result of this paper,

E½HN j HN <1� � log N

log �
þ 1

2
�ð � þ log �� logð� � 1Þ

log �
Þ

�2
E½logW j W > 0�

log �
; ð13Þ

where � denotes Euler’s constant (Abramowitz and Stegun, 1968, [6.1.3]).

1.2. Related Work

There is a wealth of related work which we will now summarize. The model investigated

here was also studied in Reittu and Norros, 2004, with 1� FðxÞ ¼ x�� þ 1LðxÞ; where � 2
(2,3) and L denotes a slowly varying function. It was shown in Reittu and Norros

(2004) that the average distance is bounded from above by 2 log log N

jlogð��2Þj ð1þ oð1ÞÞ. The

asymptotics of the distances and the connected component sizes for � < 3 is also treated

in three publications (van der Hofstad et al., 2004a; van der Hofstad et al., 2004b; van

der Hofstad et al., 2004c).

There is substantial work on random graphs that are, although different from ours, still

similar in spirit. In Aiello et al. (2001), random graphs were considered with a degree

sequence that is precisely equal to a power law, meaning that the number of nodes with

degree k is precisely proportional to k�� . Aiello et al. (2001) show that the largest

connected component is of the order of the size of the graph when � < �0 = 3.47875. . . ,
where �0 is the solution of z(� j 2) j 2z(� j 1) = 0, and where z is the Riemann Zeta

function. When � > �0, the largest connected component is of smaller order than the size

of the graph and more precise bounds are given for the largest connected component.

When � 2 (1, 2), the graph is with high probability connected. The proofs of these facts

use couplings with branching processes and strengthen previous results due to Molloy

and Reed (1995, 1998). For this same model, Dorogovtsev et al. (2002, 2003) investigate

the leading asymptotics and the fluctuations around the mean of the distance between

arbitrary nodes in the graph from a theoretical physics point of view, using mainly

generating functions.

A second related model can be found in Chung and Lu (2002a) and Chung and Lu

(2002b), where edges between nodes i and j are present with probability equal to wiwj/

~lwl for some Fexpected degree vector_ w = (w1, . . . ,wN). Chung and Lu (2002a) show

that when wi is proportional to i�
1

��1 the mean distance between pairs of nodes is

log� Nð1þ oð1ÞÞ when � > 3, and 2 log log N

jlogð��2Þj ð1þ oð1ÞÞ when � 2 (2, 3). The difference

between this model and ours is that the nodes are not exchangeable in Chung and Lu

(2002a), but the observed phenomena are similar. This result can be understood heu-
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ristically as follows. Firstly, the actual degree vector in Chung and Lu (2002a) should be

close to the expected degree vector. Secondly, for the expected degree vector, we can

compute that the number of nodes for which the degree is at least k equals

jfi : wi � kgj ¼ jfi : ci�
1

��1 � kgj / k��þ1:

Thus, one expects that the number of nodes with degree at least k decreases as k��þ1,

similarly as in our model. Chung and Lu (2002b) study the sizes of the connected

components in the above model. The advantage of their model is that the edges are

independently present, which makes the resulting graph closer to a classical random

graph.

All the models described above are static, i.e., the size of the graph is fixed, and we

have not modelled the growth of the graph. There is a large body of work investigating

dynamical models for complex networks, often in the context of the World-Wide Web.

In various forms, preferential attachment has been shown to lead to power law degree

sequences. Therefore, such models intend to explain the occurrence of power law degree

sequences in random graphs. See Aiello (2002), Albert and Barabási (1999, 2002),

Bollobás et al. (2003), Bollobás and Riordan (2003a,b,c), Bollobás et al. (2001), Cooper

and Frieze (2003), Kumar (2000) and the references therein. In the preferential attach-

ment model, nodes and/or edges are added sequentially. The edges are attached to nodes

with a probability proportionally to the degree of the receiving node, thus favoring nodes

with large degrees. For these growth models, it is shown that the number of nodes with

degree k decays according to a power law. In some papers this is done heuristically,

using simulations, in some others models a rigorous mathematical proof has been given.

See also Bollobás and Riordan (2003b) for a survey.

It can be expected that our model is a snapshot of the above models, i.e., a realization

of the graph growth processes at the time instant that the graph has a certain prescribed

size. Thus, rather than to describe the growth of the model, we investigate the properties

of the model at a given time instant. This is suggested in Albert and Barabási (2002),

Section VII.D, and it would be very interesting indeed to investigate this further

mathematically, i.e., to investigate the relation between the configuration and the

preferential attachment models.

The reason why we study the random graphs at a given time instant is that we are

interested in the topology of the Internet. In Tangmunarunkit et al. (2002), and inspired

by the observed power law degree sequence in Faloutsos et al. (1999), the configuration

model with i.i.d. degrees is proposed as a model for the AS-graph in Internet, and it is

argued on a qualitative basis that this simple model serves as a better model for the

Internet topology than currently used topology generators.

In Newman (2003), Table II, many more examples are given of real networks that

have power law degree sequences. Interestingly, there are also many examples where

power laws are not observed, and often the degree law falls off faster than a power law.

These observed degrees can be described by a degree distribution as in (1) with 1 j F(x)

smaller than any power, and the results in this paper thus apply. Such examples are

described in more detail in Albert and Barabási (2002), Section II. Examples where the
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tails of the degree distribution are lighter than power laws are power and neural networks

(Albert and Barabási, 2002, Section II.K), where the tails are observed to be exponential,

and protein folding (Albert and Barabási, 2002, Section II.L), where the tails are

observed to be Gaussian. In other examples, a degree distribution is found that for small

values is a power law, but has an exponential cut off. An example of such a degree

distribution is

fk ¼ Ck��e�k=�;

for some � > 0 and � 2 R:. The size of k indicates up to what degree the power law still

holds, and where the exponential cut off starts to set in. For this example, our results

apply since the exponential tail ensures that (2) holds for any � > 3 by picking c > 0 large

enough.

1.3. Organization of the Paper

The paper is organized as follows. In Section 2 we compute E½Ra� within very tight

bounds. Section 3 discusses the computation of E½log W j W > 0�. Apart from a

numerical way to obtain an approximation to E½log W j W > 0�, we discuss upper and

lower bounds for this quantity. In Section 4 we discuss the two types of random graphs

for which we compare the mean hopcount. Section 5 compares the value of (13) with

simulations of the mean hopcount in the mentioned random graphs. The important

conclusion drawn in Section 6 from the material presented in Sections 4 and 5 is that the

expression (13) for the mean hopcount between two arbitrary nodes in the configuration

model is surprisingly accurate, even for a relatively small number of nodes N around

N = 500. Mathematical and numerical details on the computation of E½log W j W > 0�
are deferred to Appendices A, B and C.

2. The First and Second Moment of Ra

In this section we give tight bounds for the first moment E½Ra� and present a parallel

result for Var[Ra]. Since we actually include an expression for the generating function

’Ra
ðzÞ ¼ E½zRa �, extensions to higher moments can also be obtained. For the statement of

the theorem we introduce the non-negative function

Tð�Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
log �
p

X1

k¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k sinh 2k�2

log�

q ; � > 1:

The graph of this function is given in Figure 1. The function T(�) is increasing and for

1 < � e 5, its maximum value T(5) is smaller than 0.0035.
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THEOREM 2.1 For � > 1,

E½Ra� �
1

2
� a� � þ log �� logð� � 1Þ

log �

� �
� 2

E½log W j W > 0�
log �

� 	











� Tð�Þ; ð14Þ
where W is the limit of the delayed branching process introduced in (7), the parameters

m and � are defined in (3) and where � denotes Euler’s constant (Abramowitz and

Stegun, 1968, 6.1.3).

Proof: Denote by ’Ra
the generating function of the random variable Ra, introduced in

(12). Then

’Ra
zð Þ ¼

X1

k¼�1
zkP RA ¼ k½ � ¼ z� 1ð Þ

X1

k¼�1
zkP RA > k½ �:

Let a 2 (j1, 0] be fixed. Denote by X a random variable having the same distribution as

the random variable

�ð� � 1Þ�1�aWð1ÞWð2Þ j Wð1ÞWð2Þ > 0;

then from (11), using Fubini’s theorem (Loève, 1960),

Figure 1. The function T (�).

’Ra
zð Þ ¼ z� 1ð ÞE

X1

k¼�1
zk expf�� kXg

" #

:
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Introducing G(x, z) = G1(x, z) + G2(x, z), where

G1ðx; zÞ ¼
X1

k¼ 0

zke�x� k

;

G2ðx; zÞ ¼
X1

k¼ 1

z�ke�x��k ¼
X1

j¼0

ð�xÞ j

j!

1

z� j � 1
;

yields

’Ra
zð Þ ¼ z� 1ð Þ E½GðX ; zÞ� ¼ z� 1ð Þ fE½G1ðX ; zÞ þ G2ðX ; zÞ�g: ð15Þ

Let us first consider G1(x, z). For s = Re(s) > 0 and k Q 0, we have [Abramowitz and

Stegun, 1968, 6.1.1],

�ðsÞ
� ks
¼
Z 1

0

t s� 1 e��
k t dt;

and

�ðsÞ
X1

k¼ 0

zk

� ks
¼
Z 1

0

t s� 1
X1

k¼ 0

zke��
k t dt;

or, assuming ªz/� sª < 1,

�ðsÞ� s

� s � z
¼
Z 1

0

t s� 1G1ðt; zÞ dt:

By the inverse Mellin transform, an alternative expression of G1(x, z) is, with c > 0,

G1ðx; zÞ ¼
1

2�i

Z cþ i1

c� i1

�ðsÞ
� s � z

�

x

� �s

ds:

The integrand

gðsÞ ¼ �ðsÞ
� s � z

�

x

� �s

;

is analytic in the entire complex plane (s 2 C), except for the points s = jk (k Q 0),

where we encounter simple poles of G(s) and the points s ¼ log zþ 2k�i
log � ðk 2 ZÞ, which

are the simple poles of 1
� s�z

. Consider the contour CR, consisting of that part of the

circleªs j cª = R with real part smaller than or equal to c, and the vertical line segment

[c j ib, c + ib], connecting the points of intersection of the line Re(s) = c and the circle.

Then, with GR = {s: ªs j cª = R, Re(s) e c}

Z

CR

gðsÞ ds ¼
Z cþ ib

c� ib

gðsÞ dsþ
Z

�R

gðsÞds:
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Since

Z

�R

gðsÞds











 ¼ iR

Z 3�
2

�
2

gðR ei	Þei	d	














� R

Z 3�
2

�
2

gðR ei	Þ


 

d	;

and, since from Abramowitz and Stegun (1968) [(6.1.17), (6.1.26)], we have

lim
R!1

R gðR ei	Þ


 

 ¼ 0;

uniformly for 	 2 �
2
; 3�

2

� �
, this results in

lim
R!1

Z

CR

gðsÞ ds ¼
Z cþ i1

c� i1
gðsÞ ds:

Hence, by Cauchy’s residue theorem,

Z cþ i1

c� i1
gðsÞ ds ¼ 2�i

X

k

Ress¼sk
fgðsÞg

where the sum is over all simple poles in the left half plane Re(s) e 0, so that

G1ðx; zÞ ¼
X1

k¼ 0

1

k!

ð�xÞk

1� z�k
þ 1

zlog �

X1

k¼�1
�

log zþ 2k�i

log �

� �
�

x

� �log zþ 2k�i
log �

¼ �G2ðx; zÞ þ
z�log� x

log �

X1

k¼�1
�

log zþ 2k�i

log �

� �
e�2k�i log � x:

This implies the following representation for G(x, z),

Gðx; zÞ ¼ z�log� x

log �

X1

k¼�1
�

log zþ 2k�i

log �

� �
e�2k�i log � x:

Hence, from (15),

’Ra
ðzÞ ¼ ðz� 1Þ

log �
E

X1

k¼�1
�

log zþ 2k�i

log �

� �
e�ðlog zþ 2k�iÞlog� X

" #

;

which shows the relation between the random variables Ra and log� X.

It is convenient to treat the term with index k = 0 separately,

’Ra
zð Þ ¼ E z�log� X ðz� 1Þ

log �
�

log z

log �

� �� 	
þ ðz� 1Þ

log �

X

k 6¼ 0

�
log zþ 2k�i

log �

� �

� E e�ðlog zþ 2k�iÞlog� X
h i

:
ð16Þ
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We start by investigating the term associated with the first term in (16),

z�log� X ðz� 1Þ
log �

�
log z

log �

� �
¼ ð1� e�log zÞ

log z
�

log z

log �
þ 1

� �
e 1� log� Xð Þlog z

¼ ðe
1� log� Xð Þlog z � e�log� X log zÞ

log z
�

log z

log �
þ 1

� �
:

Expanding in a series yields

z�log� X ðz� 1Þ
log �

�
log z

log �

� �
¼
X1

k¼ 0

1� log� Xð Þkþ 1� �log� Xð Þkþ 1

ðk þ 1Þ! logkz

�
X1

m¼ 0

�ðmÞð1Þ
m!logm�

logmz:

From this we find explicitly

d

dz

z�log� X ðz� 1Þ
log �

�
log z

log �

� �




z¼ 1

¼ 1

2
� �

log �
� log X

log �
;

where as before � = 0.5772 . . . denotes Euler’s constant. Including the second term yields

E Ra½ � ¼
1

2
� �

log �
� E log X

log �

� 	
þ 2E

X1

k¼ 1

cos 2k�
log � log �

X

 �
þ arg � 2k�i

log �

� �� �

ffiffiffiffiffiffiffiffiffiffiffi
log �
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2k sinh 2k�2

log �

q

2

64

3

75:

For x > 0, the rapidly converging series

2
ffiffiffiffiffiffiffiffiffiffiffi
log �
p

X1

k¼ 1

cos 2k�
log � log �

x

 �
þ arg � 2k�i

log �

� �h i








ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k sinh 2k�2

log �

q � 2
ffiffiffiffiffiffiffiffiffiffiffi
log �
p

X1

k¼ 1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2k sinh 2k�2

log �

q ¼ Tð�Þ;

increases with �. From the above inequality we obtain

1

2
� �

log �
� E log X

log �

� 	
� Tð�Þ � E Ra½ � �

1

2
� �

log �
� E log X

log �

� 	
þ Tð�Þ:

Since X ¼ �ð� � 1Þ�1�aWð1ÞWð2Þ j Wð1ÞWð2Þ>0, andWðiÞ for i ¼ 1; 2 are independent,

we end up with the statement of the theorem. Í
Differentiating (16) twice with respect to z, and omitting the tedious calculation which

runs parallel to the case above, we obtain

Var Rað Þ �
1

12
þ �2

6 log2�
þ 2Var log�W j W > 0½ �:
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3. Computation of EEEEEEEEEEEEE ½½½log W jjjjjjjj W >> 0���

3.1. Numerical Approach

Formula (13) requires the expected value E½logW j W > 0�. Unfortunately, little is

known about the distribution of the limit random variable W. The functional equation

that determines the generating function of W seems difficult to solve in general. For the

classical super-critical Galton-Watson branching process (our delayed branching process

is a simple extension of this model) the distribution of W is only explicitly known for

geometrically distributed offspring [see Grimmett and Stirzacker (1982), p. 92]. In this

case W possesses an atom at 0 and conditionally on the event fW > 0g, the distribution

ofW is exponential. Appendix C solves the functional equation numerically for Poisson

distributed offspring.

Here we use the Fast Fourier Transform (FFT) to approximate the distribution of Wn

and from that distribution the value of E½logWn j Wn > 0�. This approximation is based

on the fact that the generating function of the size of generation n in a branching process

is the functional iterate of the generating function of the offspring distribution. We show

in Appendix A that indeed E½logWn j Wn > 0� converges to E½log W j W > 0�. How-

ever, conclusions about the involved error in this approximation are beyond the scope of

this paper. We therefore extrapolate our results numerically.

Since in a super-critical Galton-Watson process the size of generation n grows

exponentially with n, the memory in current computers confines the accuracy of the

computation of E½log W j W > 0�, especially if the mean of the offspring distribution

is substantially greater than 1. We expect that this drawback will be less pronounced

in future implementations of the FFT. The exact expression of E½log W j W > 0� for

geometric offspring is used, in Appendix B, as a benchmark to evaluate the accuracy of

the FFT.

3.2. Bounds

In a simple Galton-Watson branching process the extinction probability �0 is the smallest

non-negative solution of the equation:

s ¼ p0 þ p1sþ p2s2 þ . . . ; ð17Þ

where {pk} denotes the offspring distribution (see Grimmett and Stirzacker, 1982). Given

{pk} this solution can easily be obtained numerically. In case of a delayed branching

process with offspring { fk} in the first generation and offspring distribution {gk} given in

(8) for all further generations, we find conditionally on Z1 ¼ j that:

PðW ¼ 0 j Z1 ¼ jÞ ¼ lim
n!1

PðZn ¼ 0 j Z1¼ jÞ ¼ � j
0 ;
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where �0 is the smallest non-negative solution of (17), with the {pk} replaced by {gk}.

Hence the extinction probability of the delayed branching process Zk equals:

� ¼ PðW ¼ 0Þ ¼
X1

j¼ 1

ð�0Þ jfj; ð18Þ

where as before �0 is the smallest non-negative solution of (17), with the {pk} replaced

by {gk}, and {fk} is the discrete distribution defined in (1).

Since EW j W > 0½ � ¼ EW½ �=ð1� �Þ; Jensen’s inequality for concave functions pro-

vides us with an upperbound,

E logW j W > 0½ � � log EW j W > 0½ �ð Þ ¼ log EW½ �ð Þ � log 1� �ð Þ:

Using EW½ � ¼ 1, the Jensen’s inequality becomes

E logW j W > 0½ � � �log 1� �ð Þ: ð19Þ

From (19), we obtain a lower bound for the mean distance (or hopcount)

E½HN j HN <1� � log�N þ
1

2
� � þ log �� logð� � 1Þ

log �

� �
þ 2 log 1� �ð Þ

log �
:

ð20Þ
An obvious lower bound for E½ logW j W > 0�, derived in Appendix B, is

E½logW j W > 0� � �
Z 1

0

Pð0<W < yÞ
1� �

dy

y
:

Since the distribution ofW is unknown, this lower bound is not very useful. It would be

of interest to have an attainable lower bound for E½logW j W > 0�; in turn this would

imply an upper bound for the mean distance.

In case � = 0, conditioning on W > 0, boils down to conditioning on the sure event

and the Jensen inequality gives:

E log W j W > 0½ � � logðE½W�Þ ¼ 0:

Since in this case the sequence flogWn j Wn > 0g ¼ flogWng is a supermartingale, be-

causeWn is a martingale and the function x [ log x is concave, we conclude that for � = 0,

the sequence E logWn j Wn > 0½ � is monotone decreasing. This result is of interest to

compute E½logW j W > 0� via the Fourier method, for the distribution (21) considered

below.

4. Examples of Two Types of Degree Graphs

We performed the numerical calculation of E½log W j W > 0� for the delayed branching

process with a power law offspring (specified by (21) below) and for the binomial

offspring distribution.
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First consider the distribution function

FðkÞ ¼ PðD � kÞ ¼ 1� 1

k

� �� � 1

; k ¼ 1; 2; 3; . . . ; ð21Þ

with � > 3. Observe that F(1) = 0 and consequently that PðD � 2Þ ¼ 1. This implies that

the delayed branching process has extinction probability � = 0. Introducing Riemann’s

zeta function z(s) = ~ j = 1
V jjs, s > 1, we find

� ¼ E½D� ¼ 1þ 
ð� � 1Þ and � ¼ 2
ð� � 2Þ
1þ 
ð� � 1Þ : ð22Þ

In Table 1 we take � = 4.5 and find

� ¼ 2:1267 . . . � ¼ 1:2615 . . . : ð22Þ

We only display the results in the last 4 generations, where the difference between

numerical and theoretical mean is less than 0.1, which is our rule of thumb as explained

in Appendix B. Using a numerical extrapolation we will adopt the value E½logW j
W > 0� � �0:6, as the correct value for � = 4.5 and will compute in the next section our

estimate of E½HN j HN <1�. Similarly, for � = 5.5, we have that

� ¼ 2:0547 . . . � ¼ 1:0967 . . . ;

and the numerical results for the last 4 generations are given in Table 2. Extrapolating we

adopt the value E½logW j W > 0� � �0:45.

Table 1. Results for � = 4.5.

n m�nj 1 FFT(approx) E½logWnjWn > 0�

13 34.5570 34.5433 j0.5334

14 43.5952 43.5697 j0.5522

15 54.9972 54.9498 j0.5686

16 69.3813 69.2935 j0.5828

Table 2. Results for � = 5.5.

n m�n j 1 FFT(approx) E½logWnjWn > 0�

43 99.3130 99.3086 j0.4263

44 108.9199 108.9138 j0.4283

45 119.4562 119.4475 j0.4301

46 131.0117 130.9993 j0.4319
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Next, we consider the binomial probabilities fj ¼ N�1
j

� �
p jð1� pÞN�1�j

, with mean

� = (N j 1)p, for which

gj ¼
ð jþ 1Þ fjþ 1

Np
¼ N � 2

j

� �
p jð1� pÞN�2�j;

so that {gj} has a binomial distribution with parameters N j 2 and p. Hence � = (N j 2)p.

It is well known that for N Y V and pN Y 0, such that NpN Y �, the binomial

distribution with parameters N and pN is excellently approximated by the Poisson

distribution with mean �. Therefore we used the Poisson distribution with mean � as

offspring distribution in all generations of the branching process. Exact series for the

probability density and generating function for the limit random variable W of a

branching process with Poisson offspring distribution are presented in Van Mieghem,

2005. The last 4 relevant generations for the Poisson distribution with mean � = 1.5, are

given in Table 3.

We approximate:

E½logW j W > 0� � 0:09:

For the binomial distribution, the degree distribution { fj} coincides with the degree

distribution of the random graph Gp(N); both distributions are binomial with parameters

N j 1 and p. In contrast to the random graph Gp(N), the degree graph can have self-loops

by construction. However, the hopcount in both graphs (the degree graph with binomial

degrees with parameters N j 1 and p, and the random graph Gp(N)) are asymptotically

equal in distribution as follows from the coupling construction in van der Hofstad et al.

(2005). This implies that our results for the mean graph distance (hopcount) also hold for

the random graph Gp(N).

Table 4. Comparison for � = 4.5.

N Simulation E½HN HN <1�(4) E½HN jHN <1�(13)

500 (20.10, 21.34) 24.5 20.9

1000 (23.05, 24.22) 27.5 23.9

5000 (30.78, 32.01) 34.4 30.8

10,000 (33.51, 34.70) 37.4 33.8

Table 3. Results for the Poisson with � = 1.5.

n � n FFT(approx) E½logWnjWn > 0�

11 86.4976 86.4976 0.1048

12 129.7463 129.7463 0.1016

13 194.6195 194.6194 0.0992

14 291.9293 291.8817 0.0973
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5. Comparison of Different Formulas for EEE½½½HN jjjjjjj HN <<<<<<<111111����

5.1. Power Law Distributions

For several values of N we compare a large sample confidence interval of the simulated

mean hopcount based on 1000 repetitions with the results (4) and (13).

For the power-law distribution (21) with � = 4.5, � = 2.1267, � = 1.2615 and

E½logW j W > 0� � �0:6, we present the results in Table 4.

For � = 5.5, � = 2.0547, � = 1.0967 and E½logW j W > 0� � �0:45, we present our

findings in Table 5.

In all cases the value (13) for E½HN j HN <1� is contained in the confidence interval

obtained from the simulations, whereas the expression (4) overestimates the actual mean.

These values demonstrate the accuracy of (13) for E½HN j HN <1� in degree graphs

with a finite variance degree distribution.

5.2. The Binomial (Poisson) Distribution

For the degree graph with a binomial distribution with parameters N j 1 and p, with

Np = 1.5 for which E½log W j W > 0� � 0:09, we refer to Table 6.

Figure 2 shows the meane hopcount as a function of �. The simulated values for the

random graph with N = 500 and average degree equal to � = (N j 1)p have error bars

specified by one standard deviation. We observe that, although the number of nodes

N = 500 is reasonably small, Formula (13) gives a nearly perfect match with the

simulations. The lower bound (20) is relatively close to the simulated mean hopcount

Table 6. Comparison for binomial with Np = 1.5.

N Simulation E½HN HN <1�(4) E½HN jHN <1�(13)

500 (10.35, 11.34) 15.3 11.2

1000 (12.25, 13.49) 17.0 12.9

5000 (16.10, 17.34) 21.0 16.9

10,000 (18.25, 19.51) 22.7 18.6

Table 5. Comparison for � = 5.5.

N Simulation E½HN HN <1�(4) E½HN jHN <1�(13)

500 (36.55, 39.19) 60.52 38.21

1000 (43.42, 45.96) 68.03 45.72

5000 (61.70, 64.32) 85.47 63.16

10,000 (68.98, 71.64) 92.98 70.66
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for larger values of the average degree and is superior to Newman’s formula. As already

demonstrated above in the tables, the Figure 2 also illustrates that for small values of �,

Newman’s formula (4) is inadequate.

6. Conclusions

We conclude that (13) for E½HN j HN <1� gives a genuine improvement over

Newman’s formula (4). Inspection of both approximations shows that (4) overestimates

the correct value of the mean E½HN j HN <1�. The error in (4) is increasingly large

when the Malthusian parameter � is close to 1 because the factor log(N/�) is divided by

log �, which approaches zero as � Y 1. Apparently addition of the term

� 1

2
� � � logð� � 1Þ

log �

� �
� 2

E½logW j W > 0�
log �

;

corrects the overshoot.

We have shown how the difficult quantity E½logW j W > 0� can be computed and

have presented in (20) a lower bound for E½HN j HN <1�. Even for moderate values of

the number of nodes N, Formula (13) for E½HN j HN <1� seems surprisingly accurate.

For the binomial degree distribution the distance in the degree graph is asymptotically

equal to the distance in the random graph Gp(N). For this case we developed a method

to compute numerically the expected value E½W j W > 0� for all values of � > 1 and

demonstrated that Formula (13) is capable of computing the mean hopcount in the

random graph even for values N as low as 500, with remarkable precision.

Figure 2. The mean hopcount for the degree graph with binomial degree distribution.
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Appendix A: On EEEEEEEE½½½½½½½½½½½½½½½½½½½½logWWWWWWWW jjj WWWWWWWWWWW >>>> 0��������½

Consider a supercritical Galton-Watson process with Z0 ¼ 1,

Znþ1 ¼ �1 þ �2 þ . . .þ �Zn
; n ¼ 0; 1; . . . ;

where x1, x2,. . . is an i.i.d. sequence with mean 1 < E½�� ¼ � <1 and generating

function

f ðsÞ ¼
X1

k¼ 0

skP � ¼ k½ �:

The martingale sequence is given by Wn ¼ Zn=�
n; n ¼ 1; 2; . . . and Wn !W, almost

surely. The expectation E½W� ¼1 if and only if (Jagers, 1975),

X1

k¼ 1

ðk log kÞP½� ¼ k� <1:

Denote by IA(I) the indicator function of the set A. Concerning the existence of

E logW j W > 0½ �, we have

E½Ið0;1ÞðWÞlogW� ¼ E I ð0;1ÞðWÞ
Z W

1

dy

y

� 	

¼ E �
Z 1

0

Ið0;yÞðWÞ
dy

y

� 	
þ E

Z 1

1

I ðy;1ÞðWÞ
dy

y

� 	

¼ �
Z 1

0

P½0 <W < y� dy

y
þ
Z 1

1

P½W > y� dy

y
;

by Fubini’s theorem (1960) Loève. Both integrals on the right-hand side are finite. The

second because E½W� ¼ 1, the first one because Theorem 1 in Dubuc (1971), implies that

Pð0 <W < yÞ � Cy�; 0 < y < 1, for some positive � and some positive C, if we

assume that f 0(�0) m 0, with �0 the extinction probability. Similarly we have

E½Ið0;1ÞðWnÞlogWn� ¼ �
Z 1

0

P½0 <Wn < y� dy

y
þ
Z 1

1

P > ½Wn > y� dy

y
:
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From estimates of the difference

P½Wn > y� � P½W > y�; y > 0;

(Asmussen, 1978, and the references therein) and the form of the density of W j W > 0

(Dubuc, 1971, Theorem 1), one can conclude that E½logWn j Wn > 0� converges to

E½logW j W > 0�.

Appendix B: Accuracy Test

We tested the speed of convergence of E½logWn j Wn > 0� to E½logW j W > 0�, using

the FFT, for geometrically distributed offspring:

P½� ¼ k� ¼ pð1� pÞk ; k � 0; � ¼ E½�� ¼ 1� p

p
:

In this case W j W > 0 has an exponential density on (0, V) and

E½log W j W > 0� ¼ �� � logð1� ��1Þ;
where � = 0.5772. . . is Euler’s constant (see Grimmett and Stirzacker, 1982, p. 92).

Moreover, the extinction probability �0 = �j1. We checked our numerical calculations

for the case � = 1.25. As remarked in the introduction the maximum number of

generations that can accurately be computed is limited since the support Zn grows

exponentially with n. The results with the FFT remain reliable only if the theoretical

value of �n ¼ E½Zn� does not deviate too much from its numerical value using the FFT.

As a rule of thumb we use that �n (second column of Table 7) does not differ more than

0.1 from its numerical value (third column of Table 7).

Table 7. Results for the geometric distribution with � = 1.25.

n � n � n (num.) E½logWnjWn > 0�

12 14.5519 14.5519 1.0087

13 18.1899 18.1899 1.0147

14 22.7374 22.7374 1.0192

15 28.4217 28.4217 1.0226

16 35.5271 35.5271 1.0251

17 44.4089 44.4089 1.0270

18 55.5112 55.5109 1.0285

19 69.3839 69.3836 1.0295

20 86.7362 86.6768 1.0301

21 108.4202 108.0140 1.0296

22 135.5253 133.6421 1.0256

23 169.4066 162.9979 1.0135

24 211.7582 194.4921 0.9869

25 264.6978 226.1251 0.9399

26 330.8722 255.9882 0.8690
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An accurate estimate for E½logW j W > 0� is the value 1.03 given in generation

n = 20. We see that starting with generation n = 21 the numerical values of E½logW j
W > 0� are decreasing, whereas up to and including generation n = 20, the values are

increasing. The decreasing values are most likely caused by the deviation between the

numerically computed distribution and its theoretical counterpart (see the differences in

the second and third column).

If we use extrapolation on the values E½logWn j Wn > 0� for the generations n = 12,

13, . . . , 20, we obtain E½logW j W > 0� ¼ 1:032. The theoretical value is E½logW j
W > 0� ¼ �� þ logð5Þ ¼ 1:0322 . . ..

Appendix C: The Limit Random Variable WWWWWWW

The limit random variable W has an atom at 0 and possesses a density on (0, V). Its

moment generating function ’W tð Þ ¼ E e�tW� �
obeys the functional equation

’W �tð Þ ¼ f ’W tð Þð Þ; ð23Þ
where f sð Þ ¼ E s�

� �
is the generating function of the offspring distribution. If f (s) pos-

sesses a Taylor expansion around s = 1, all Taylor coefficient of ’W tð Þ can be computed

Van Mieghem, 2004. Using log x ¼
R1

0
t�1ðe�t � e�txÞdt, we obtain that

E logW j W > 0½ � ¼ 1

1� �0

Z 1

0

1� �0ð Þe�t � ’WðtÞ þ �0

t
dt; ð24Þ

where �0 is the extinction probability, e.g., the smallest non-negative solution of s = f (s).

In Figure 3 we have computed E½logW j W > 0� in case of a Poisson offspring

distribution ( f sð Þ ¼ e� s�1ð Þ), for various values �. For 1:1 � � � 1:9 we have used the

Fast Fourier Transform, whereas for � � 2 relation (24) has been used. The power series

Figure 3. The value of E logWjW > 0½ � as a function of � for Poisson(�) offspring.
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of ’W tð Þ has been transformed by Euler’s transformation into a numerically well-

converging series that allows the computation of the integral in (24).

The values obtained here are plugged into (13) for the numerical values of E½HN j
HN >1� in Figure 2.
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