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a b s t r a c t

Besides the epidemic threshold, the recently proposed viral conductance w by Kooij et al. [11] may be
regarded as an additional characterizer of the viral robustness of a network, that measures the overall
ease in which viruses can spread in a particular network. Motivated to explain observed features of
the viral conductance w in simulations [29], we have analysed this metric in depth using the N-inter-
twined SIS epidemic model, that upper bounds the real infection probability in any network and, hence,
provides safe-side bounds on which network protection can be based. Our study here derives a few exact
results for w, a number of different lower and upper bounds for w with variable accuracy. We also extend
the theory of the N-intertwined SIS epidemic model, by deducing formal series expansions of the steady-
state fraction of infected nodes for any graph and any effective infection rate, that result in a series for the
viral conductance w. Though approximate, we illustrate here that the N-intertwined SIS epidemic model
is so far the only SIS model on networks that is analytically tractable, and valuable to provide first order
estimates of the epidemic impact in networks. Finally, inspired by the analogy between virus spread and
synchronization of coupled oscillators in a network, we propose the synchronizability as the analogue of
the viral conductance.

! 2012 Elsevier B.V. All rights reserved.

1. Introduction

We investigate the influence of the network topology on the
spread of viruses, digital as well as biological ones, whose dynam-
ics is modeled by a susceptible-infected-susceptible (SIS) type of
process [2]. Digital viruses (of all kind, and generally called mal-
ware) are living in cyberspace and use mainly the Internet as the
transport media, while biological viruses contaminate other living
beings on earth and use ‘‘contacts’’ among their victims as their
propagation networks. The increasing threats from cybercrime
and the expected outbreak of new lethal, biological viruses justify
studies on virus spread in graphs. In particular, network operators
are interested to know (a) how vulnerable their network is for epi-
demics and (b) how to protect or modify their infrastructure, most
often, at minimal cost (see e.g. [10]). In contrast to the negative
connotation of a threat, information spread (news, rumors, etc.)
in the new types of on-line social networks like Facebook, Twitter,
Digg [20], etc. resembles epidemic diffusion. While this analogy
still needs to be verified and evaluated via extensive measure-
ments, epidemic theory is expected to be fruitful in assessing the
spreading speed and depth (i.e. how many users are reached) of
news in social networks.

A network is represented by an undirected graph G N; Lð Þ with N
nodes and L links. The network topology is described by a

symmetric adjacency matrix A, in which the element aij ¼ aji ¼ 1
if there is a link between nodes i and j, otherwise aij ¼ 0. In the se-
quel, we confine ourselves and make the following simplifying
assumptions. The state of a node i is specified by a Bernoulli ran-
dom variable Xi 2 f0;1g: Xi ¼ 0 for a healthy node and Xi ¼ 1 for
an infected node. A node i at time t can be in one of the two states:
infected, with probability v iðtÞ ¼ Pr½XiðtÞ ¼ 1% or healthy, with prob-
ability 1& v iðtÞ. We assume that the curing process per node i is a
Poisson process with rate d, and that the infection rate per link is a
Poisson process with rate b. All involved Poisson processes are
independent. The effective infection rate is defined as s ¼ b

d. This
is the general description of the simplest type of a SIS virus spread
model in a network and the challenge is to determine the virus
infection probability v iðtÞ for each node i in the graph G. This SIS
model can be expressed exactly in terms of a continuous-time
Markov model with 2N states as shown in [27]. Unfortunately,
the exponentially increasing state space with N prevents the deter-
mination of the set of v iðtÞf g16i6N in realistic networks, which has
triggered a spur of research to find good approximate solutions. For
an overview of SIS heuristics and numerous extensions, we refer to
[3,14,29].

Our continuous-time mean-field approximation of the exact SIS
model for the spreading of a virus in a network, called the N-inter-
twined model [27], was earlier considered by Ganesh et al. [9] and
by Wang et al. [28] in discrete-time, whose paper was later
improved in [6]. A remarkable property of the SIS model is the
appearance of a phase-transition [4] when the effective infection

0140-3664/$ - see front matter ! 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.comcom.2012.04.015

⇑ Tel.: +31 152782397.
E-mail address: P.F.A.VanMieghem@tudelft.nl

Computer Communications 35 (2012) 1494–1506

Contents lists available at SciVerse ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

http://dx.doi.org/10.1016/j.comcom.2012.04.015
mailto:P.F.A.VanMieghem@tudelft.nl
http://dx.doi.org/10.1016/j.comcom.2012.04.015
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom


rate s approaches the epidemic threshold s'c . Below the epidemic
threshold s'c , the network is virus-free in the meta-stable state,1

while above s'c , there is always a fraction of nodes that remains in-
fected. The determination of the precise epidemic threshold s'c in
any network is a long-standing open, difficult problem and a major
contribution of the mean-field N-intertwined model is the lower
bound sc ¼ 1

k1
6 s'c , where k1 is the largest eigenvalue of the

adjacency matrix A, also called the spectral radius. Here, we will
complement the analysis of the N-intertwined SIS model inspired
by a new metric, the viral conductance w, introduced in [11,29]
and reviewed in Section 3. The viral conductance w, precisely de-
fined in (17), measures the integrated effect over all possible viral
infection strengths on the network’s infectious vulnerability. This
paper is part of a larger study on network robustness [25], in which
a framework is proposed to assess the level of robustness of a given
network, based on network metrics. As argued in Section 3, the
vulnerability of a network against epidemics should be measured
by a set of metrics including the epidemic threshold sc ¼ 1

k1
and

the viral conductance w, rather than only by the epidemic thresh-
old, because w complements sc naturally. Other possible viral
metrics can be taken into account as well, since any proposal of a
metric can be motivated or debated. However, as pointed out in
[25], a relevant and desirable set of network metrics should be
small and consisting of as independent2 as possible metrics.

Finally, we point here to another dynamic process on a network,
that bears resemblance to virus spread. The synchronization of
coupled oscillators in a network features a surprisingly similar
phase transition: the onset of oscillator coupling occurs [17] at a
critical coupling strength gc ¼

g0
k1

and the behavior of the phase
transition around gc is mathematically similar [24] to that of the
epidemic threshold sc. Synchronization [19] plays a role in sensor
networks, human body (hart beat, brain, epilepsy), light emission
of fire-flies, etc. In Section 3, we propose the analogue of the viral
conductance, namely the synchronizability of a network, that mea-
sures the ease in which coupled oscillators in a certain network
synchronize for all possible coupling strengths. The inspiring anal-
ogy between virus spread and synchronization in networks may
open new avenues: we speculate that results here obtained for
the viral conductance may translate to the setting of coupled oscil-
lators in a network.

The outline of the paper is as follows. First, we review the N-
intertwined SIS virus spread model in Section 2 and derive series
expansion around the epidemic threshold sc and around s! 1
in Section 4 that will be used to express the viral conductance w
as a series in Section 5. Section 6 gives analytic bounds for w, while
Section 7 explains theoretically an observation from simulations in
[29]: the steady-state fraction y1 of infected nodes in the steady-
state around s ’ N

L is about y1 ’ 1
2, where N is the number of nodes

and L is the number of links in the network. Proofs are placed in the
Appendix. Apart from the overview in Section 2, the presented ana-
lytic results in the subsequent sections are new and add to the
general theory of the N-intertwined model in [27].

2. The N-intertwined SIS model in brief

In contrast to all published SIS-type of models, the N-inter-
twined model, proposed and investigated in depth in [27] and
reviewed in [23], only makes 1 (mean-field) approximation in
the exact SIS model and is applicable to all graphs. In [15,5], we
show that the mean-field approximation upper bounds the exact
Pr½XiðtÞ ¼ 1% (which is useful to guarantee epidemic safety bounds
in real networks) and that it implies that the random variables Xj

and Xi are implicitly assumed to be independent. Since this basic
assumption is increasingly good for large N, we expect that the
deductions from the N-intertwined model in sufficiently dense
networks (i.e. with average degree increasing with N) are asymp-
totically (for N ! 1) nearly exact. The homogenous N-intertwined
model, where the infection and curing rate is the same for each link
and node in the network, has been extended to a heterogeneous
setting in [26], where each node i has its own infection rate bi

and curing rate di. Furthermore, the method and analysis of the
N-intertwined model has been transferred to the SIR model in
[30], while in [7], the N-intertwined model is extented to an SAIS
infection, where the Alert (A) state is introduced next to the S
Xi ¼ 0ð Þ and I Xi ¼ 1ð Þ state. A very general extension of the
N-intertwined model is proposed in [18], while second order
mean-field improvements are studied in [5]. The N-intertwined
model is shown in [12] to be generally superior to another widely
used mean-field model, the heterogeneous mean-field model of
Pastor-Satorras and Vespignani [16].

2.1. Governing equations

We briefly summarize the key aspects of the N-intertwined
model. The governing differential equation in the N-intertwined
model for a node i is

dv iðtÞ
dt

¼ bð1& v iðtÞÞ
XN

j¼1

aijv jðtÞ & dv iðtÞ ð1Þ

In words, the time-derivative of the infection probability of a node i
consists of two competing processes: (1) while healthy with proba-
bility ð1& v iðtÞÞ, all infected neighbors, with an average number ofPN

j¼1aijv jðtÞ, try to infect the node i with rate b and (2) while
infected with probability v iðtÞ, the node i is cured at rate d. Defining
the vector VðtÞ ¼ v1ðtÞ v2ðtÞ ( ( ( vNðtÞ½ %T , the matrix represen-
tation based on (1) becomes

dVðtÞ
dt

¼ bA& dIð ÞVðtÞ & bdiag v iðtÞð ÞAVðtÞ ð2Þ

where diag v iðtÞð Þ is the diagonal matrix with elements
v1ðtÞ;v2ðtÞ; . . . ;vNðtÞ.

In the sequel, we focus on the steady-state where v i1 ¼ limt!1

v iðtÞ and limt!1
dv iðtÞ
dt ¼ 0. From (1), we obtain

v i1 ¼
b
PN

j¼1aijv j1

b
PN

j¼1aijv j1 þ d
¼ 1& 1

1þ s
PN

j¼1aijv j1
ð3Þ

Beside the trivial solution v i1 ¼ 0, (3) illustrates that there is an-
other positive solution reflecting the meta-stable state in which
we are interested here. For regular graphs, where each node has de-
gree d, symmetry in the steady-state implies that v i1 ¼ v1 for all
nodes i and it follows from (3) with the definition of the degree
di ¼

PN
j¼1aij that

v1; regular ¼ y1; regularðsÞ ¼ 1& 1
sd ð4Þ

where y1 ¼ 1
N

PN
i¼1v i1 is the fraction of the average number of in-

fected nodes in the steady-state.
We now provide a couple of new analytic relations that will be

used in Section 7. Summing (1) over all i is equivalent to right mul-

1 Since the exact SIS Markov process has an absorbing state, namely the overall
healthy state, the steady-state equals this overall healthy state in which the virus has
disappeared from the network. Unfortunately, already for reasonably small networks
(N P 100), the time to reach this absorbing state is huge on average (see [8, p. 99]) so
that the exact steady-state is hardly ever reached in real networks, while the meta-
stable state reflects the observed viral behavior fairly well.The steady-state in the N-
intertwined virus spread model refers to the meta-stable state, which is reached
exponentially rapidly and which reflects real epidemics more closely.

2 Since topological metrics (such as the hopcount, clustering coefficient, degree,
betweenness, centrality, etc.) are derived from the adjacency matrix A of the network,
most of them are correlated [13].
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tiplication of VðtÞ by the all one vector uT becausePN
i¼1v iðtÞ ¼ uTVðtÞ. Then, we find from (2) that

duTVðtÞ
dt

¼ uT diag 1& v iðtÞð ÞbA& dIð ÞVðtÞ

¼ b u& VðtÞð ÞTAVðtÞ & duTVðtÞ

Hence, we obtain a relation for y1 2 0;1½ % in terms of the vector V1:

Ny1 ¼ uTV1 ¼ s u& V1ð ÞTAV1 ð5Þ

Since the degree vector D satisfies uTA ¼ DT because A ¼ AT , we can
write (5) as

y1ðsÞ ¼ s
N

DTV1 & VT
1AV1

! "
ð6Þ

Finally, we write the degree vector D as D ¼ Du, where D ¼ di-
ag d1; d2; . . . ; dNð Þ, so that

Ny1 ¼ s uTDV1 þ VT
1DV1 & VT

1DV1 & VT
1AV1

! "

¼ s u& V1ð ÞTDV1 þ VT
1 D& Að ÞV1

! "

Introducing the Laplacian Q ¼ D& A of the graph G, the steady-state
fraction of infected nodes y1 is expressed as a quadratic form in
terms of the Laplacian [22],

y1 ¼ s
N

u& V1ð ÞTDV1 þ VT
1QV1

! "
ð7Þ

After left-multiplication of the steady-state version of (2) by the
vector VT

1diag vk&1
i1

# $
¼ vk

11 vk
21 ( ( ( vk

N1

% &
, which we denote

by Vk
1

! "T
, we obtain the scalar equation

Vk
1

! "T
V1 ¼

XN

j¼1

vkþ1
j1 ¼ s Vk

1

! "T
AV1 & Vkþ1

1

! "T
AV1

' (
ð8Þ

For k ¼ 0 in (8), and introducing the all one vector
u ¼ limk!0V

k
1, we obtain (5) again. For k ¼ 1 in (8), the norm

V1k k22 ¼ VT
1V1 ¼

PN
j¼1v2

j1 obeys

VT
1V1 ¼ s VT

1AV1 & VT
1diag v i1ð ÞAV1

! "
ð9Þ

When summing (8) over all k from m P 0 to infinity and taking
v j1
)) )) < 1 into account the telescoping nature of the right-hand side
leads to

X1

k¼m

Vk
1

! "T
V1 ¼

XN

j¼1

vmþ1
j1

1& v j1
¼ s Vm

1
# $TAV1 ð10Þ

When m ¼ 0, we have that Vm
1 ¼ u and we obtain, with the degree

vector uTA ¼ DT ,

1
s
XN

j¼1

v j1

1& v j1
¼ DTV1 ¼

XN

j¼1

djv j1 ð11Þ

As shown earlier in [27], the characteristic structure (10) of the N-
intertwined model follows more elegantly from the governing Eq.
(2) in the steady-state

V1 ¼ sdiag 1& v i1ð ÞAV1 ð12Þ

for finite s such that v i1 < 1. Indeed, after left-multiplying both

sides by diag 1& v i1ð Þð Þ&1 ¼ diag 1
1&v i1

! "
, we have

1
s diag

1
1& v i1

' (
V1 ¼ AV1

or

1
s

V1

1& V1
¼ AV1 ð13Þ

where V1
1&V1

! "T
¼ v11

1&v11

v21
1&v21

( ( ( vN1
1&vN1

h i
. By left-multiplication

of (13) by Vm
1

# $T , we obtain (10) again.

2.2. An eigenvector approach

Since the eigenvectors x1; x2; . . . ; xN belonging to the eigenvalues
k1 P k2 P ( ( ( P kN of the adjacency matrix A span the N-dimen-
sional vector space, we can write the steady-state infection proba-
bility vector V1ðsÞ as a linear combination of the eigenvectors of A,

V1ðsÞ ¼
XN

k¼1

ckðsÞxk ð14Þ

where the coefficient ckðsÞ ¼ xTkV1ðsÞ is the scalar product of V1ðsÞ
and the eigenvector xk and where the eigenvector xk obeys the nor-
malization xTkxk ¼ 1. Physically, (14) maps the dynamics V1ðsÞ of
the process onto the eigenstructure of the network, where ckðsÞ
determines the importance of the process in a certain eigendirec-
tion of the graph. The definition y1ðsÞ ¼ 1

N u
TV1ðsÞ shows that

y1ðsÞ ¼ 1
N

XN

k¼1

ckðsÞuTxk ð15Þ

Substitution of (14) into (5) yields

y1ðsÞ ¼ s
N

XN

k¼1

kkckðsÞ uTxk & ckðsÞ
# $

ð16Þ

For irregular graphs, generally, cmðsÞ ¼ xTmV1ðsÞ – 0 for m > 1 and
all eigenvalues and eigenvectors in (16) play a role. Moreover,
cmðsÞ can be negative, as well as km, while

PN
k¼1kk ¼ 0 (see [22, p.

30]). The larger the spectral gap k1 & k2 and the smaller kNj j, the
more y1 is determined by the dominant k ¼ 1 term in (16), and
the more its viral behavior approaches that of a regular graph.
Graphs with large spectral gap possess strong topological robust-
ness [22], in the sense that it is difficult to tear that network apart.

3. The viral conductance

The viral conductance w of a virus spreading process in a graph
was first proposed in [11] as a new graph metric and then elabo-
rated in more detail in [29]. The viral conductance w is defined as

w ¼
Z k1

0
y1ðsÞds ð17Þ

where s ¼ 1
s. Below the epidemic threshold sc , the network is virus-

free in the steady-state. Hence, v i1ðsÞ ¼ 0 for s < sc , and equiva-
lently, v i1ðsÞ ¼ 0 for s > 1

sc ¼ k1. Since the function y1ðsÞ versus s
is not integrable over all s, Kooij et al. [11] have proposed to con-
sider y1 1

s
# $

versus s ¼ 1
s. Fig. 1 illustrates the typical behavior of

y1ðsÞ versus s ¼ 1
s and y1ðsÞ versus s in the insert for a regular

and irregular graph. Theoretically – though debatable – one might
argue that the effective curing rate s ¼ d

b ¼
1
s is more natural than

the effective infection rate s ¼ b
d, because a Taylor expansion of

y1ðsÞ around s ¼ 0 can be deduced, while the corresponding one
for y1ðsÞ is a Laurent series in 1

s around s! 1 (see Lemma 2).
In most published work so far, network G1 was considered to be

more robust against virus spread than network G2 if the epidemic
threshold sc G1ð Þ > sc G2ð Þ. For example, in Fig. 1, the regular graph
with the same number N of nodes and nearly the same number L of
links possesses a higher epidemic threshold than the star, and,
thus, according to the above robustness criterion, the regular graph
is more robust against virus propagation than the star. However,
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when the effective infection rate s > 1 ¼ 2sc Gregular
# $

, we observe
from Fig. 1 that the percentage of infected nodes in the star is smal-
ler than in the regular graph. The extent of the virus-free region is
one aspect of the network’s resilience against viruses, but once that
barrier, the epidemic threshold, is crossed, the virus may conduct
differently in networks with high and low epidemic threshold. This
observation has led Kooij et al. [11] to propose the viral conduc-
tance as an additional metric. As mentioned in Section 1, robust-
ness metrics should be as complementary as possible. The
sensitivity or dependence of the viral conductance w on the
epidemic threshold sc could be assessed by

dw
dk1

¼
Z k1

0

@y1ðsÞ
@k1

ds

which is difficult to compute or by correlation simulations. Such
simulations on scale-free, Erd}os–Rényi and small-world graphs
indicate the relatively low correlation.

The viral conductance w is a graph metric that represents the
overall conductance of the virus for all possible effective infection
rates s: when w is high for the graph G, the virus can spread easily
in G. Thus, instead of grading graphs only based on their epidemic
threshold sc from virus vulnerable, where sc is small (high spectral
radius k1) to virus robust (where sc is large), the viral conductance
complements this classification with an average infection notion
because

y1 ¼ 1
k1

Z k1

0
y1ðsÞds < 1

so that w ¼ y1
sc < 1

sc ¼ k1. Graphs with small epidemic threshold may
possess a small average fraction of infected nodes y1 so that the
viral conductance can be equal to graphs with large epidemic
threshold and large y1.

The concept of viral conductance can be transferred to the syn-
chronization of coupled oscillators in a network [17]. The dynamic
coupling of oscillators (nodes) is comparable to virus spread in net-
works: there is a critical coupling strength gc ¼

g0
k1
, where g0 is a

constant and the behavior of the phase transition around gc is
mathematically similar [24]. The direct translation of the viral con-
ductance to the synchronizability S of a network is defined as

S ¼
Z k1

0
r2 uð Þdu

where u ¼ 1
g and r is the order parameter [17] instead of the fraction

of coupled or phase-locked oscillators. Thus, the analogue of the
effective infection rate s is the coupling strength g, the epidemic
threshold sc ¼ 1

k1
corresponds to the onset of synchronization

gc ¼
g0
k1
, while the steady-state fraction of infected nodes y1

translates to the order parameter r2. Similar to w, the synchroniz-
ability S measures the ease in which a set of oscillators in a given
network synchronize for all possible coupling strengths g: the
higher S, the easier oscillator nodes in a network synchronize. The
synchronizability S plays a same role as the viral conductance and
can be used to distinguish between networks. In particular in
medical sciences, a high synchronizability S of the functional brain
network would indicate that the patient is vulnerably for epileptic
seizures.

3.1. Some exact expressions for w

For regular graphs with degree d, the basic relation (4) for
y1;regular shows that the viral conductance equals

wregular ¼
Z d

0
1& s

d

! "
ds ¼ d

2
¼ L

N

which is independent of the size N of the network!
For the complete bipartite graph Km;n, where there are two par-

titions Nm with m nodes and Nn with n nodes so that N ¼ mþ n
and L ¼ mn, we have [27] that

v i1 ¼
mn& 1

s2
1
s þm
# $

n
i 2 Nn ð18Þ

and

v j1 ¼
mn& 1

s2
1
s þ n
# $

m
j 2 Nm ð19Þ

Since y1ðsÞ ¼ nv i1þmv j1
nþm , we obtain

y1ðsÞ ¼
mn& s2
# $

N
1

sþm
þ 1
sþ n

' (
ð20Þ

and, with k1 Km;nð Þ ¼
ffiffiffiffiffiffiffi
mn

p
(see [22, p. 130]), the viral conductance of

the complete bipartite graph Kn;m equals

wKn;m
¼ 1

N

Z ffiffiffiffiffi
mn

p

0

mn& s2

sþm
þmn& s2

sþ n

' (
ds

Using
R

A&s2
sþm ds ¼ A&m2

# $
log sþmð Þ & s2

2 þmsþ c, where c is a con-
stant, we obtain

wKn;m
¼

ffiffiffiffiffiffiffi
mn

p
&mn

N
þ n&mð Þ

N
log

1þ
ffiffiffi
n
m

p# $m

1þ
ffiffiffi
m
n

p# $n ð21Þ

Notice the symmetry in (21), namely that wKn;m
¼ wKm;n

. Also, if
m ¼ n, we again obtain a regular graph, for which wKn;n

¼ n
2. The

other extreme occurs for a star K1;n, where m ¼ 1 and n ¼ N & 1 in
(21). After some tedious manipulations, we obtain

wstar ¼
logN
2

& 1
2
þ O

1ffiffiffiffi
N

p
' (

ð22Þ

The cycle, which is a regular graph with degree d ¼ 2, only has
wcycle ¼ 1, irrespective of the number N of nodes. Given a fixed num-
ber N of nodes, the viral conductance wKn;N&n

(as well as the number
L ¼ n N & nð Þ of links) increases with n from n ¼ 1 (star) up to n ¼ N

2
(a regular graph). When both N and the average degree E D½ % ¼ 2L

N are
fixed, the following lemma is proved in Appendix E:

Lemma 1. For a given N and L, the viral conductance of the complete
bipartite graph Km;n is minimal when it is regular (m ¼ n).

Fig. 1. The steady-state fraction y1 of infected nodes versus s ¼ 1=s (and versus s in
the insert) for a regular graph with degree d ¼ 2 and a star with N ¼ 100 nodes.
Both graphs have almost the same average degree.
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4. Derivatives of y‘ðsÞ at s ¼ 0 and s ! k1

Extremely high effective infection rates s ! 1ð Þ correspond to
s ¼ 0 at which y1ðsÞ ¼ 1 and below the epidemic threshold,
s < sc or s > sc ¼ k1; y1ðsÞ ¼ 0. Besides these two points, the
derivative at lims!0

dy1ðsÞ
ds and lims!k1

dy1ðsÞ
ds can be computed exactly,

as shown here for the first time. This section provides new series
expansion for the viral steady-state probabilities v i1, which will
be used in Section 5 to bound the viral conductance w.

The following Lemma 2 is proved in Appendix C.

Lemma 2. The Laurent series of the steady-state infection probability

v i1ðsÞ ¼ 1þ
X1

m¼1

gm ið Þs&m ð23Þ

possesses the coefficients

g1 ið Þ ¼ & 1
di

ð24Þ

and

g2 ið Þ ¼ 1
d2
i

1&
XN

j¼1

aij
dj

 !
ð25Þ

and for m P 2, the coefficients obey the recursion

gmþ1 ið Þ ¼ & 1
di
gm ið Þ 1&

XN

j¼1

aij
dj

 !
& 1
di

Xm

k¼2

gmþ1&k ið Þ
XN

j¼1

aijgk jð Þ ð26Þ

For regular graphs with degree d, we observe that
g1 ið Þ ¼ g1 ¼ & 1

d and gm ið Þ ¼ 0 for all m > 1, which is in agreement
with (4). From the Laurent series (23) in Lemma 2 after the trans-
form s ¼ 1

s, the derivative at lims!0
dy1ðsÞ

ds can be computed exactly as

lim
s!0

dy1ðsÞ
ds

¼ & 1
N

XN

j¼1

1
dj

¼ &E
1
D

+ ,
ð27Þ

which is minus the harmonic mean of the degrees in the graph. The
harmonic, geometric and arithmetic mean inequality (see e.g. [22, p.
138]) shows3 that

E
1
D

+ ,
¼ 1

N

XN

j¼1

1
dj

P
1

E D½ %
P

1
k1

with equality for the regular graph. Hence, the slope lims!0
dy1ðsÞ

ds is
the least steep for the regular graph as also illustrated in Fig. 1.
We also mention that (27) has been inferred in [27] based on sim-
ulations, but not rigorously proved as here.

While the right-derivative4 lims#k1
dy1ðsÞ

ds ¼ 0, the left-derivative at
lims"k1

dy1ðsÞ
ds can be computed explicitly from the following theorem,

proved in [24]:

Theorem 3. For any graph with spectral radius k1 and corresponding
eigenvector x1 normalized such that xT1x1 ¼

PN
j¼1 x1ð Þ2j ¼ 1, the

steady-state fraction of infected nodes y1 obeys

y1ðsÞ ¼ 1
k1N

PN
j¼1 x1ð ÞjPN
j¼1 x1ð Þ3j

s&1
c & s&1# $

þ O s&1
c & s&1# $2 ð28Þ

when s approaches the epidemic threshold sc from above.

From (28), we have

dy1ðsÞ
ds

))))
s¼k1

¼ &
1

k1N

PN
j¼1 x1ð ÞjPN
j¼1 x1ð Þ3j

ð29Þ

which is shown in [24] to be bounded as

& 1
k1

6 dy1
ds

))))
s"k1

6 1
k1Nmax

16j6N
x1ð Þj

< 0 ð30Þ

Theorem 3 suggests, for all 1 6 k 6 N, the existence of the power
series

ckðsÞ ¼
X1

j¼1

cj kð Þ s&1
c & s&1# $j ð31Þ

where c1 kð Þ ¼ 0 for 2 6 k 6 N and c1 1ð Þ ¼ k1
PN

j¼1 x1ð Þ3j
! "&1

. In par-

ticular, from the definition (15), we obtain the series expansion of
y1ðsÞ around s&1

c & s&1 as

y1ðsÞ ¼ 1
N

X1

j¼1

XN

k¼1

cj kð ÞuTxk s&1
c & s&1# $j ð32Þ

valid for sP 1
k1
. Similarly, from the eigenvector expansion (14), all

steady-state infection probabilities v i1ðsÞ are expanded as

v i1ðsÞ ¼
X1

j¼1

XN

k¼1

cj kð Þ xkð Þi s&1
c & s&1# $j ð33Þ

We extend the above analysis and determine all coefficients cj kð Þ
in a recursive way as specified in Lemma 4, which is proved in
Appendix D.

Lemma 4. Defining

X m; l; kð Þ ¼
XN

q¼1

xmð Þq xlð Þq xkð Þq

the coefficients cj mð Þ in (31) obey, for m > 1 and j > 2, the recursion

cj mð Þ ¼ cj&1 mð Þ
k1 & km

1& c1 1ð Þ k1 þ kmð ÞX m;m;1ð Þf g

& c1 1ð Þ
k1 & km

XN

k¼1;k–m

k1 þ kkð Þcj&1 kð ÞX m; k;1ð Þ

& 1
k1 & km

Xj&2

n¼2

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ ð34Þ

while, for j ¼ 2 and m > 1,

c2 mð Þ ¼ & 1
k1 & km

X m;1;1ð Þ
k1X2 1;1;1ð Þ

ð35Þ

and c1 mð Þ ¼ 0. For m ¼ 1, there holds that c1 1ð Þ ¼ k1
PN

j¼1 x1ð Þ3j
! "&1

and for j > 1, the coefficients cj 1ð Þ satisfy the recursion

cj 1ð Þ ¼ & 1
k1X 1;1;1ð Þ

XN

k¼2

k1 þ kkð Þcj kð ÞX 1;1; kð Þ

&
Xj&1

n¼2

XN

l¼1

XN

k¼1

cjþ1&n lð Þcn kð ÞkkX 1; l; kð Þ ð36Þ

The radius of convergence of the Laurent series (23) and of the
series (31) is, in general, unknown and still an open problem. In
addition to Theorem 3, we present an orthogonality condition,
proved in Appendix B, for the derivative of the vector V1 defined

as dVT
1

ds ¼ dv11
ds

dv21
ds ( ( ( dvN1

ds

h iT
at s ¼ k1:

Lemma 5. In any graph, the vector dV1
ds

)))
s¼k1

is orthogonal to the vector
D& k1u.

3 Since f xð Þ ¼ 1
x is convex for x > 0, Jensen’s inequality [21], f E½X%ð Þ 6 E f ðXÞ½ %, applies

as well.
4 The notation limx#x0 f xð Þ is the limit towards x0 when x approaches x0 from above,

i.e. x > x0.
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Expression (28) illustrates that, among all graphs with N nodes
and L links, the regular graph with degree d ¼ 2L

N has the largest epi-
demic threshold sc ¼ 1

d, but also the largest (in absolute value)

derivative dy1
ds

)))
s!k1

¼ & 1
k1
¼ & 1

d because equality in (30) is reached.

This means that a higher effective infection rate s is needed to
cause a non-zero steady-state fraction of nodes in the regular
graph to be permanently infected, but that, slightly above that crit-
ical rate sc , a higher relative fraction of nodes is infected than in
other graphs. In other words, the change in virus conductivity at
s ¼ sc þ ! is highest in regular graphs. Thus, when we are asked
to classify networks according to their proneness to viral infec-
tions, the epidemic threshold alone is insufficient as metric alone.
Our analysis based on Theorem 3 supports the viral conductance w
as an additional candidate metric that complements the epidemic
threshold sc ¼ 1

k1
.

5. Analysis of the viral conductance w

As in [29], one may device heuristics to approximate the steady-
state fraction of infected nodes y1ðsÞ in the s-interval 0; k1½ % based
on the two endpoints, their derivative and on the convexity5 of
y1ðsÞ. Strict convexity (for irregular graphs) also means that the
derivative dy1

ds decreases from s ¼ 0 up to s ¼ k1 consistent with both
Lemma 2 and Theorem 3. Here, we present an analysis of the viral
conductance w using the knowledge of y1 k1ð Þ ¼ 0; y1ð0Þ ¼ 1 and
the corresponding derivatives, y01 k1ð Þ and y01ð0Þ specified in Section
4, together with the convexity of y1ðsÞ.

Since y1ðsÞ 6 1, we obtain the trivial upper bound w 6 k1 for the
viral conductance (17). Convexity of y1ðsÞ implies that
y1ðsÞ 6 1& s

k1
from which the sharper upper bound

w 6 k1
2

is immediate.
After partial integration, the definition of the viral conductance

(17) becomes, for any real x,

w ¼
Z k1

0
y1ðsÞds ¼ x&

Z k1

0
s& xð Þy01ðsÞds

Again partially integrating yields

w ¼ xþ 1
2
x2y01ð0Þ & 1

2
k1 & xð Þ2y01 k1ð Þ þ 1

2

*
Z k1

0
s& xð Þ2y001ðsÞds ð37Þ

Convexity, i.e. y001ðsÞ P 0 with equality only for regular graphs, im-
plies that

w P f xð Þ ¼ xþ 1
2
x2y01ð0Þ & 1

2
k1 & xð Þ2y01 k1ð Þ

¼ 1þ y01 k1ð Þk1
- .

xþ 1
2
x2 y01ð0Þ & y01 k1ð Þ
- .

& 1
2
y01 k1ð Þk21

Furthermore,

f 0 xð Þ ¼ 1þ xy01ð0Þ þ k1 & xð Þy01 k1ð Þ

while

f 00 xð Þ ¼ y01ð0Þ & y01 k1ð Þ < 0

demonstrates that the solution of f 0 fð Þ ¼ 0, i.e.

f ¼ & 1þ k1y01 k1ð Þ
y01ð0Þ & y01 k1ð Þ

generates a maximum

f fð Þ ¼ &1
2
y01 k1ð Þk21 &

1
2

1þ k1y01 k1ð Þ
# $2

y01ð0Þ & y01 k1ð Þ

Thus, for irregular graphs, our optimized lower bound for w is

w P
k21
2

&y01 k1ð Þ
# $

þ 1
2

1& k1 &y01 k1ð Þ
# $# $2

y01ð0Þ & y01 k1ð Þ
)) ))

Explicitly, with (27) and (29),

w P
k1
2

Z þ 1& Zð Þ2

k1E 1
D

% &
& Z

)) ))

 !
ð38Þ

where Z ¼ 1
N

PN

j¼1
x1ð ÞjPN

j¼1
x1ð Þ3j

and f ¼ 1&Z
k1E 1

D½ %&Z
6 1 because k1E 1

D

% &
P k1

E D½ % P 1.

Equality in (38) occurs for regular graphs where Z ¼ 1 and k1 ¼ d.
With the bounds for irregular graphs

1
Nmax1 6 j 6 N x1ð Þj

< Z < 1

we see that the second term in (38) is, indeed, a small correction.
The general form (37) shows that the lower bound (38) can be

sharpened by adding

Z k1

0

s& xð Þ2

2
y001ðsÞds > 1

2
min
s2 0;k1½ %

y001ðsÞ
Z k1

0
s& xð Þ2ds

¼ k1
2

min
s2 0;k1½ %

y001ðsÞ k21
3
& k1xþ x2

 !

evaluated at x ¼ f < 1 because k21
3 & k1fþ f2 > 0 when k1 P 3. In

summary, we arrive at

w P
k1
2

Z þ f 1& Zð Þ þ min
s2 0;k1½ %

y001ðsÞ k21
3
& k1fþ f2

 !( )
ð39Þ

Similarly, a same type of upper bound follows directly as

w 6 k1
2

Z þ f 1& Zð Þ þ max
s2 0;k1½ %

y001ðsÞ k21
3
& k1fþ f2

 !( )
ð40Þ

For the complete bipartite graph Kn;m, the second derivative of
(20) equals

y001ðsÞ ¼
2 m& nð Þ2 m2n& s3 þmn nþ 3sð Þ

# $

mþ nð Þ mþ sð Þ3 nþ sð Þ3

and mins2 0;k1½ %y001ðsÞ ¼ y001 k1ð Þ ¼ 2 m&nð Þ2

mþnð Þ
ffiffiffiffiffi
mn

p ffiffiffi
m

p
þ

ffiffi
n

pð Þ4
and maxs2 0;k1½ %

y001ðsÞ ¼ y001ð0Þ ¼ 2 m&nð Þ2

m2n2 . The ratio y001ð0Þ
y001 k1ð Þ ¼ 1þ n

m

# $ ffiffiffi
n
m

p
1þ

ffiffiffi
m
n

p# $4 in-
creases with increasing irregularity, i.e. with increasing ratio n

m.
The class of complete bipartite graphs can range from regularity
m ¼ n to extreme irregularity in the star, where m ¼ 1 and
n ¼ N & 1. Therefore, that class of Kn;m is our benchmark.

If the right-hand side in (39) can be shown to exceed 1
2 E D½ % ¼ L

N,
then it would imply that the viral conductance of the regular graph
is the smallest among all graphs with N nodes and L links. Lemma 1
states that the claim holds for the class of complete bipartite
graphs and simulations in [29] suggest the truth of the claim for
other types of graphs as well.

5 A long the same lines as in [26], we can prove that v j1ðsÞ is (strict) convex in s, for
s < sc .
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5.1. Series expansions for the viral conductance w

When using the Laurent expansion in (23), the steady-state
fraction of infected nodes can be formally written as

y1ðsÞ ¼ 1þ 1
N

X1

m¼1

XN

i¼1

gm ið Þsm

while (32) yields

y1ðsÞ ¼ 1
N

X1

j¼1

XN

k¼1

cj kð ÞuTxk k1 & sð Þj

We write the integral in (17) as

w ¼
Z k1

2

0
y1ðsÞdsþ

Z k1

k1
2

y1ðsÞds

and use the expansion around s ¼ 0 in the first and the other expan-
sion in the second integral to obtain

w ¼ k1
2
þ 1
N

X1

m¼1

XN

k¼1

gm kð Þ þ cm kð ÞuTxk
# $ kmþ1

1

2mþ1 mþ 1ð Þ

This series for w is valid provided the convergence radius of both
series for y1ðsÞ is at least k1

2 . Executing the first term yields

w ¼ k1
2
& 1
N

XN

k¼1

1
dk

& uTx1

k1
XN

j¼1
x1ð Þ3j

0

@

1

A k21
8
þ R2

¼ k1
2

1& 1
4

k1E
1
D

+ ,
& Z

' (/ 0
þ R2

where the remainder R2 is

R2 ¼ 1
N

X1

m¼2

XN

k¼1

gm kð Þ þ cm kð ÞuTxk
# $ k1ð Þmþ1

2mþ1 mþ 1ð Þ

Subject to the above convergence condition, both expansions can be
numerically computed up to any desired accuracy when the adja-
cency matrix A is given, from which the spectral expression
A ¼ XKXT can be computed [22].

6. Bounds for the viral conductance

In addition to the upper (40) and lower bound (39) derived in
Section 5 and based on derivatives of y1ðsÞ, we here present other
types of upper and lower bounds that lead to relatively simple
expressions in terms of graph properties.

6.1. Upper bounds for the viral conductance

By exploiting Theorem 9, proved in [27] and alternatively in
Appendix A, considerably sharper bounds can be deduced. Each
convergent of the continued fraction expansion (50) provides an
upper bound for v i1. The first convergent of (50),

v i1 6 1& 1
1þ sdi

leads to

y1ðsÞ 6 1& 1
N

XN

i¼1

1
1þ di

s

Hence, the viral conductance is bounded by

w 6
Z k1

0
1& 1

N

XN

i¼1

1
1þ di

s

 !
ds

¼ 1
N

XN

i¼1

di ln 1þ k1
di

' (
ð41Þ

For regular graphs, this upper bound (41) translates to VCregular 6
d ln 2 ¼ 0:693d. Also, we deduce from (41) that

w < ln 1þ k1
dmin

' (
1
N

XN

i¼1

di ¼ E D½ % ln 1þ k1
dmin

' (

where E D½ % denotes the average degree.
The second convergent of the continued fraction expansion (50)

is

v i1 6 1& 1
1þ sdi & s

PN
j¼1

aij
1þsdj

and the viral conductance is bounded by

w 6
Z k1

0
1&

1
N

XN

i¼1

1
1þ di

s &
1
s

PN
j¼1

aij

1þ
dj
s

0

B@

1

CAds

¼ k1 &
1
N

XN

i¼1

Z k1

0

sds
sþ di &

PN
j¼1

aij
sþdj

But this integral cannot be evaluated formally. Instead, we approx-
imate the integral by

Z k1

0

sds
sþ di &

PN
j¼1

aij
sþdj

6
Z k1

0

sds
sþ di &

PN
j¼1

aij
dj

and obtain

w 6 1
N

XN

i¼1

di &
XN

j¼1

aij
dj

 !
ln 1þ k1

di &
PN

j¼1
aij
dj

0

@

1

A ð42Þ

When di &
PN

j¼1
aij
dj
¼ 0, this i-th term does not contribute to the viral

conductance (because limx!0x ln 1þ c=xð Þ ¼ 0).
For a regular graph, this bound simplifies to

w 6 d& 1ð Þ ln 1þ d
d& 1

' (

¼ d& 1ð Þ ln 2þ ln 1þ 1
2 d& 1ð Þ

' (/ 0

¼ d& 1ð Þ ln 2þ
X1

k¼1

&1ð Þk&1

k2k

1
d& 1ð Þk&1

¼ d ln 2& ln 2& 1
2

' (
& 1
8

1
d& 1

þ O
1

d& 1ð Þ2

 !

which is better than the previous bound w 6 d ln 2. Using

di &
XN

j¼1

aij
dj

P min
16i6N

di &
XN

j¼1

aij
dj

 !

P min
16i6N

di &
di

dmin

' (
¼ dmin & 1
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in (42), we deduce, for dmin > 1, that

w 6 ln 1þ k1
dmin & 1

' (
1
N

XN

i¼1

di &
1
N

XN

i¼1

XN

j¼1

aij
dj

( )

< ln 1þ k1
dmin & 1

' (
E D½ % & 1

N

XN

j¼1

1
dj

XN

i¼1

aij

( )

¼ ln 1þ k1
dmin & 1

' (
E D½ % & 1f g

The viral conductance of the star, where k1 AK1;N&1

! "
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N & 1

p
and

E D½ % ¼ 2& 2
N, shows that the logarithmic prefactor can be significant

and that w can be larger than E D½ %. In particular, the bound (42) for
the star K1;N&1 is

w / logN
2

& 2 ln2þ O
1ffiffiffiffi
N

p
' (

which is correct to first order for large N as verified from (22).

6.2. Lower bound for the viral conductance

Using the lower bound derived in [27], valid for sP 1
dmin

or
s 6 dmin,

1& 1
1& di

dmin
þ sdi

6 v i1

the viral conductance is lower bounded as

w ¼
Z dmin

0
y1ðsÞdsþ

Z k1

dmin

y1ðsÞds

P
1
N

XN

j¼1

Z dmin

0
v i1ðsÞds

With
Z dmin

0
v i1ðsÞds P

Z dmin

0
1& 1

1& di
dmin

þ di
s

 !
ds

¼ didmin

di & dmin
1þ dmin

di & dmin
ln

dmin

di

' (/ 0

we arrive at the lower bound

w P
dmin

N

XN

i¼1

1
1& dmin

di

1&
ln di

dmin

! "

di
dmin

& 1

8
<

:

9
=

; ð43Þ

Only for regular graphs where di ¼ dmin ¼ d, equality in the lower
bound (43) is achieved, because6

Z dmin

0
v i1ðsÞds P

Z d

0
1& s

d

! "
ds ¼ d

2

illustrating that the lower bound (43) is the best possible among all
graphs. Since the function 1= 1& 1=xð Þ 1& ln x

x&1

# $
is strict increasing

from 1=2 for x ¼ 1 to 1 when x ! 1, we conclude from (43) that
the viral conductance is always larger than the minimum degree
dmin
2 for non-regular graphs.
In summary, the upper bound (42) and the lower bound (43)

provide us with the elegant bounds

dmin

2
6 w < ln 1þ k1

dmin & 1

' (
E D½ % & 1f g

The largest possible ratio k1
dmin

¼ O
ffiffiffiffi
N

p! "
occurs in the star, which

illustrates that the viral conductance is bounded by 1
2 E D½ % logN.

Likely, the star possesses the largest viral conductance among all
graphs with N nodes and L links.

7. Behaviour of y‘ðsÞ around s ¼ E D½ %
2

Via extensive simulations, Youssef et al. [29] have observed that
y1 ’ 1

2 around s ¼ E D½ %
2 . In this section, we aim to explain these

observations. In [15], we have shown, for any graph, that y1 6 1
2

for s 6 1
E D½ %. Here, sharper general bounds are derived.

Lemma 6. For any graph, it holds that

y1ðsÞ 6 1
2
þ 1
2

1& E D½ %
k1

' (
for s ¼ E D½ %

2
ð44Þ

and equality is only possible for the regular graph.

Proof. Convexity of y1ðsÞ for s 2 0; k1½ % implies that
y1 qaþ 1& qð Þbð Þ 6 qy1 að Þ þ 1& qð Þy1 bð Þ for any a; b 2 0; k1½ %. By
choosing a ¼ 0; b ¼ k1 and 1& qð Þb ¼ E D½ %

2 , we find (44). Equality
only holds for the regular graph since only then y001ðsÞ ¼ 0 as veri-
fied from (4). h

Lemma 7. For any graph, it holds that

y1ðsÞ 6 s E D½ %
4

þ VT
1QV1

N

 !
ð45Þ

and equality is only possible for the regular graph for which
VT

1QV1 ¼ 0.

Proof. Consider the Laplacian expression (7) for steady-state frac-
tion of infected nodes y1. The Rayleigh principle [22] states that
lN ¼ 0 6 VT

1QV1 6 l1V
T
1V1, where l1 and lN are the largest and

respectively smallest eigenvalue of the Laplacian Q. The eigenvector
u belongs to the smallest eigenvalue lN ¼ 0 of Q. Thus, only for reg-
ular graphs where each node has degree di ¼ d and V1 ¼ v1u, we
observe that VT

1QV1 ¼ 0. The first quadratic form in (7)

u& V1ð ÞTDV1 ¼
XN

j¼1

1& v j1
# $

djv j1

is maximal when, at each node k;vk1 ¼ 1
2, resulting in

u& V1ð ÞTDV1 6 1
4

PN
j¼1dj ¼ L

2. Due to symmetry, this maximum is
only reached in the regular graph and (45) is proved. h

Lemma 7 shows for the regular graph that the ‘‘tangent’’ line
through the origin s ¼ 0ð Þ lies above y1;regular and only touches
y1;regular at the point s ¼ 2

E D½ % ¼
2
d. For any other graph, the slope is

not larger than E D½ %
4 þ VT

1QV1
N and, after transforming s ¼ 1

s in (45),
we find

y1ðsÞ 6 1
2
þ 2VT

1QV1

NE D½ %
for s ¼ E D½ %

2
ð46Þ

that complements (44). The correction 1
2 1& E D½ %

k1

! "
in (44) and the

correction 2VT
1QV1
NE D½ % in (46) are positive and small, but nevertheless

show that y1ðsÞ can be larger than 1
2 at s ¼

E D½ %
2 , as numerically found

in [29].

Lemma 8. For any graph, it holds that

y1ðsÞ
s P rðsÞ ¼ 1

N

XN

j¼1

v j1 dj & k1v j1
# $

ð47Þ

where the lower bound obeys, for any s,
6 By taking the limit di ! dmin in (43), we find the same result (after invoking de

l’Hospital’s rule twice).
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rðsÞ 6 N2

4Nk1

and where Nk ¼ uTAku denotes [22] the number of walks of length k.

Proof. The Rayleigh principle [22] and the fact that all involved
elements of A and V1 are non-negative imply that
0 6 VT

1AV1 6 k1VT
1V1, with equality in the upper bound only for

the regular graph, where the eigenvalue 2L
N ¼ k1 corresponds to

the eigenvector u and V1 ¼ v1u. Hence, (6) is bounded by

y1ðsÞ P s
N

DTV1 & k1VT
1V1

! "
ð48Þ

with equality for the regular graph, from which (47) is immediate.
The lower bound rðsÞ in (47) has an extremum at s ¼ n > sc that
obeys

1
N

XN

j¼1

v 0
j1ðnÞ dj & 2k1v j1ðnÞ

# $
¼ 0

There are three possible cases: (a) neither all v 0
j1ðnÞ ¼ 0 nor all

v j1ðnÞ ¼ dj
2k1

, which leads to a complicated, not analytically manage-
able relation defining n; (b) v 0

j1ðnÞ ¼ 0 for all 1 6 j 6 N, in which
case v j1ðnÞ ¼ 1, n ! 1 and y1ðnÞ

n ! 0. This case corresponds to a
minimum and the lower bound is then negative and, hence, useless;
(c) v j1ðnÞ ¼ dj

2k1
for each 1 6 j 6 N in which case the maximum lower

bound is attained

rðsÞ 6 rðnÞ ¼ 1
4Nk1

XN

j¼1

d2
j ¼ N2

4Nk1
ð49Þ

This demonstrates the lemma. h

We will now estimate the value n for which rðnÞ ¼ N2
4Nk1

in irreg-
ular graphs where Var D½ % > 0. The proof of Lemma 8 shows that
rðnÞ attains the maximum bound (49), provided that there exists
a value of s ¼ n for which v j1ðnÞ ¼ dj

2k1
for each 1 6 j 6 N, in which

case

y1ðnÞ ¼ 1
N

XN

j¼1

dj

2k1
¼ 1

2k1
2L
N

¼ 1
2
E D½ %
k1

<
1
2

Lemma 8 then states that y1ðnÞ P nN2
4Nk1

or
1
k1

L
N

P
nN2

4Nk1

from which

n 6 4L
N2

¼ 2
E D½ %

E D½ %ð Þ2 þ Var D½ %
<

2
E D½ %

In conclusion, there may exist a value n such that sc < n < 2
E D½ % for

which y1ðnÞ ¼ 1
2

E D½ %
k1

< 1
2.

We end by deducing, approximately though, another type of
lower bound. Concavity of y1ðsÞ for s P sc ¼ 1

k1
similarly leads to

y1 qsc þ 1& qð Þmscð Þ P 1& qð Þy1 mscð Þ. For sufficiently large m,
the Laurent series (23) up to first order leads to

y1 mscð Þ P 1& 1
mscN

XN

j¼1

1
dj

because the second order term of O 1
mscð Þ2

! "
is positive due to

g2 ið Þ > 0 in (25). Choosing qsc þ 1& qð Þmsc ¼ 2
E D½ % provides us with

y1
2

E D½ %

' (
P

2
E D½ % & sc
m& 1ð Þsc

1& 1
mscN

XN

j¼1

1
dj

 !

>
2k1
E D½ %

& 1
' (

1
m

1&
k1E 1

D

% &

m

' (

Ignoring the integer nature of m, the maximizer of the right-hand
side occurs at m ¼ 2k1E 1

D

% &
, resulting in

y1
2

E D½ %

' (
’

2k1
E D½ % & 1

4k1E 1
D

% &

Notice that
2k1
E D½ %&1

4k1E 1
D½ %
6

2k1
E D½ %&1

4 k1
E D½ %

< 1
2.

In summary, both last lower bound arguments illustrate, to-
gether with the upper bounds in Lemmas 6 and 7 that, for values
of s approaching 2

E D½ %, the steady-state fraction of infected nodes
y1ðsÞ is close to 1

2 in any graph, in agreement with simulations [29].

8. Conclusion

We have reviewed and justified the viral conductance w as an
additional virus-robustness metric to classify networks: the viral
conductance w reflects the ease of virus spread in a network under
all possible effective infection rates. In addition, we have derived
easy to use analytic bounds on the viral conductance of different
type: the general lower bounds (39) and (43) and upper bounds
(40) and (42). Through a set of Lemmas 6–8, we have theoretically
explained the observation that y1ðsÞ is close to 1

2 for s ¼ E D½ %
2 , made

by simulations in [29]. We show that the claim ‘‘among all graphs
with N nodes and L links, the viral conductance is minimal for the
regular graph’’ is correct, at least for the class of complete bipartite
graphs. In a similar vein, we believe that the star has the largest
viral conductance among all graphs with N nodes and L links. Rig-
orous proofs of both claims would be desirable. Finally, we have
complemented the theory of N-intertwined model by deriving
two series expansions (23) and (33) around s ¼ 0 and s ¼ k1 ¼ 1

sc ,
respectively.

Two dynamic processes on graphs, virus spread and the cou-
pling of oscillators, are argued to be mathematically related, which
has inspired us to propose the synchronizability S as the analogue
of the viral conductance w. An analysis as here still needs to be per-
formed for the synchronizability, but we speculate that properties
of w may translate to S for a same network.
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Appendix A. The continued fraction expansion

We present a slightly different derivation of the continued frac-
tion in Theorem 9 proved in [27]:

Theorem 9. For any effective spreading rate s ¼ b
d P 0, the non-zero

steady-state infection probability of any node i in the N-intertwined
model can be expressed as a continued fraction

v i1 ¼ 1& 1
1þ sdi & s

PN
j¼1

aij

1þsdj&s
PN

k¼1

ajk

1þsdk&s
PN

q¼1

akq

1þsdq& . .
.

ð50Þ

where di ¼
PN

j¼1aij is the degree of node i.

Proof of Theorem 9. We rewrite (3) as

1& v i1 ¼ 1
1þ sdi & s

PN
j¼1aij 1& v j1

# $
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and define the kth convergent as

wi kð Þ ¼ 1
1þ sdi & s

PN
j¼1aijwj k& 1ð Þ

ð51Þ

with starting value wið0Þ ¼ 0 and v i1 ¼ 1& limk!1wi kð Þ. The differ-
ence hi kð Þ ¼ wi kð Þ &wi k& 1ð Þ, satisfying

hi kð Þ ¼ wi kð Þwi k& 1ð Þs
XN

j¼1

aijhi k& 1ð Þ

with starting value hi 1ð Þ ¼ 1þ sdið Þ&1, is bounded by

hi kð Þ P
s
PN

j¼1aijhi k& 1ð Þ
1þ sdið Þ2

P 0

which shows that the sequence of convergents

wið0Þ 6 wi 1ð Þ 6 ( ( ( 6 wi k& 1ð Þ 6 wi kð Þ 6 ( ( (

is non-decreasing and leads, in the limit for k ! 1, to the partial
fraction (50). h

Appendix B

Proof of Lemma 5. After transforming (11) by s ¼ 1
s, differentia-

tion with respect to s yields

XN

j¼1

v j1

1& v j1
¼
XN

j¼1

dj &
s

1& v j1
# $2

 !
dv j1

ds

Evaluation at the critical threshold s ¼ k1, where v j1 ¼ 0 for all
1 6 j 6 N leads to

XN

j¼1

dj
dv j1

ds
¼ k1

XN

j¼1

dv j1

ds
¼ k1N

dy1
ds

))))
s¼k1

such that

dy1
ds

))))
s¼k1

¼ 1
k1N

XN

j¼1

dj
dv j1

ds

))))
s¼k1

By definition of y1, we also have that

dy1
ds

))))
s¼k1

¼ 1
N

XN

j¼1

dv j1

ds

))))
s¼k1

ð52Þ

Combining both yields, in vector notation,

u& 1
k1

D
' (TdV1

ds

))))
s¼k1

¼ 0

This equality implies that the vector dV1
ds

))
s¼k1

should be orthogonal to
the vector D& k1u. h

For a regular graph, dvk1
ds ¼ & 1

d and D& k1u ¼ 0. For any other
non-regular graph, dmax > k1 > E D½ % so that D& k1u has at least one

positive component, while all components of dV1
ds

)))
s¼k1

are non-

positive. Such condition on the vector components is necessary for
orthogonality.

Appendix C

Proof of Lemma 2. By introduction of the Laurent series (23) into
(3)

1þ s
XN

j¼1

aijv j1

 !

we obtain, with g0 ið Þ ¼ 1,

1 ¼ 1&
X1

j¼0

gj ið Þs&j

 !
1þ s

XN

j¼1

aij
X1

k¼0

gk jð Þs&k

 !

¼ 1&
X1

j¼0

gj ið Þs&j þ
X1

k¼0

XN

j¼1

aijgk jð Þs1&k

&
X1

m¼0

Xm

k¼0

gm&k ið Þ
XN

j¼1

aijgk jð Þ

( )

s1&m

Rewritten,

0 ¼ &
X1

m¼0

gm ið Þs&m þ
X1

m¼0

XN

j¼1

aijgmþ1 jð Þs&m

&
X1

m¼0

Xmþ1

k¼0

gmþ1&k ið Þ
XN

j¼1

aijgk jð Þ

( )

s&m

Equating corresponding powers in s&m yields, for m P 0

&gm ið Þ þ
XN

j¼1

aijgmþ1 jð Þ &
Xmþ1

k¼0

gmþ1&k ið Þ
XN

j¼1

aijgk jð Þ ¼ 0

which is equivalent to

&gm ið Þ &
Xm

k¼0

gmþ1&k ið Þ
XN

j¼1

aijgk jð Þ ¼ 0

For m ¼ 0 and m ¼ 1, we find (24) and (25), while after rewriting
the above relation, we arrive at the recursion (26) from which all
powers can be determined in terms of the adjacency matrix
elements. h

Appendix D. A power series expansion of y‘ðsÞ around s&1
c & s&1

Proof of Lemma 4. We substitute the definition (14) of V1 in
terms of eigenvectors of the adjacency matrix A into the general
steady-state Eq. (12), rewritten as

AV1 & s&1V1 ¼ diag v i1ð ÞAV1

and find

XN

k¼1

kk & s&1# $
ckðsÞxk ¼ diag

XN

l¼1

clðsÞ xlð Þi

 !
XN

k¼1

ckðsÞkkxk

After left-multiplication by xTm and exploiting the orthogonality be-
tween eigenvectors, we obtain

km & s&1# $
cmðsÞ ¼ xTmdiag

XN

l¼1

clðsÞ xlð Þi

 !
XN

k¼1

ckðsÞkkxk

¼
XN

q¼1

xmð Þq
XN

l¼1

clðsÞ xlð Þq
XN

k¼1

ckðsÞkk xkð Þq

¼
XN

l¼1

clðsÞ
XN

k¼1

ckðsÞkk
XN

q¼1

xmð Þq xlð Þq xkð Þq
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and

km & s&1# $
cmðsÞ ¼

XN

l¼1

XN

k¼1

clðsÞckðsÞkkX m; l; kð Þ ð53Þ

where X m; l; kð Þ ¼
PN

q¼1 xmð Þq xlð Þq xkð Þq and X m; l; kð Þ is unchanged by
any permutation of the indices m; l and k. Introducing the power
series (31) of ckðsÞ into (53) and executing the Cauchy product for
clðsÞckðsÞ yields

km & s&1# $X1

j¼0

cj mð Þ s&1
c & s&1# $j

¼
X1

j¼0

Xj

n¼0

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ
( )

s&1
c & s&1# $j

Using s&1
c ¼ k1, the left-hand side is rewritten as

km & s&1# $X1

j¼0

cj mð Þ k1 & s&1# $j

¼ km & k1 þ k1 & s&1# $X1

j¼0

cj mð Þ k1 & s&1# $j

¼ km & k1ð Þ
X1

j¼0

cj mð Þ k1 & s&1# $j þ
X1

j¼0

cj mð Þ k1 & s&1# $jþ1

¼
X1

j¼0

km & k1ð Þcj mð Þ k1 & s&1# $j þ
X1

j¼1

cj&1 mð Þ k1 & s&1# $j

Equating corresponding powers in k1 & s&1
# $j yields, for j ¼ 0,

km & k1ð Þc0 mð Þ ¼
XN

l¼1

XN

k¼1

c0 lð Þc0 kð ÞkkX m; l; kð Þ ¼ 0

because c0 kð Þ ¼ 0 for all 1 6 k 6 N and, for j > 0,

km & k1ð Þcj mð Þ þ cj&1 mð Þ ¼
Xj

n¼0

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ

¼
Xj&1

n¼1

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ

Before proceeding, we confine to the case where j ¼ 1; km & k1ð Þ
c1 mð Þ ¼ 0, illustrating that all c1 mð Þ ¼ 0 for m > 1, except when
m ¼ 1, which is in agreement with Theorem 3. Next, the case for
j ¼ 2 yields

km & k1ð Þc2 mð Þ þ c1 mð Þ ¼
XN

l¼1

XN

k¼1

c1 lð Þc1 kð ÞkkX m; l; kð Þ

¼ c21 1ð Þk1X m;1;1ð Þ
so that, for m ¼ 1, taking into account that c1 mð Þ ¼ 0 for m > 1,

c1 1ð Þ ¼ c21 1ð Þk1X 1;1;1ð Þ

or c1 1ð Þ ¼ k1X 1;1;1ð Þð Þ&1, which is also in agreement with Theorem
3, while for m > 1, we obtain

c2 mð Þ ¼ &
c21 1ð Þ

k1 & km
k1X m;1;1ð Þ ¼ &

1
k1 & km

X m;1;1ð Þ
k1X

2 1;1;1ð Þ
Continuing, for j > 2 and using that all c1 mð Þ ¼ 0 for 2 6 m 6 N,
except for c1 1ð Þ, we have

km & k1ð Þcj mð Þ þ cj&1 mð Þ

¼
XN

l¼1

XN

k¼1

cj&1 lð Þc1 kð ÞkkX m; l; kð Þ þ
XN

l¼1

XN

k¼1

c1 lð Þcj&1 kð ÞkkX m; l; kð Þ

þ
Xj&2

n¼2

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ

¼ c1 1ð Þk1
XN

l¼1

cj&1 lð ÞX m; l;1ð Þ þ c1 1ð Þ
XN

k¼1

cj&1 kð ÞkkX m;1; kð Þ

þ
Xj&2

n¼2

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ

Permutation of the indices leaves X m; l; kð Þ unchanged,

c1 1ð Þk1
XN

l¼1

cj&1 lð ÞX m; l;1ð Þ þ c1 1ð Þ
XN

k¼1

cj&1 kð ÞkkX m;1; kð Þ

¼ c1 1ð Þ
XN

k¼1

k1 þ kkð Þcj&1 kð ÞX m; k;1ð Þ

leading to

km & k1ð Þcj mð Þ þ cj&1 mð Þ

¼ c1 1ð Þ
XN

k¼1

k1 þ kkð Þcj&1 kð ÞX m; k;1ð Þ

þ
Xj&2

n¼2

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ

¼ c1 1ð Þ k1 þ kmð Þcj&1 mð ÞX m;m;1ð Þ

þ c1 1ð Þ
XN

k¼1;k–m

k1 þ kkð Þcj&1 kð ÞX m; k;1ð Þ

þ
Xj&2

n¼2

XN

l¼1

XN

k¼1

cj&n lð Þcn kð ÞkkX m; l; kð Þ

Finally, after rearrangement, we arrive at the general recursion (34)
for the coefficients cj mð Þ for m > 1 and j > 2. The recursion for cj 1ð Þ
and j > 2 follows as

cj&1 1ð Þ ¼
c1 1ð Þ

PN
k¼2 k1 þ kkð Þcj&1 kð ÞX 1;1; kð Þ
1& 2c1 1ð Þk1X 1;1;1ð Þ

þ
Pj&2

n¼2
PN

l¼1
PN

k¼1cj&n lð Þcn kð ÞkkX 1; l; kð Þ
1& 2c1 1ð Þk1X 1;1;1ð Þ

With c1 1ð Þ ¼ k1X 1;1;1ð Þð Þ&1, we arrive at (36). This proves
Lemma 4. h

For example, for j ¼ 2 in (36),

c2 1ð Þ ¼ & 1
k1X 1;1;1ð Þ

XN

k¼2

k1 þ kkð Þc2 kð ÞX 1;1; kð Þ

Using (35),

c2 1ð Þ ¼ 1
k21X

3 1;1;1ð Þ

XN

k¼2

k1 þ kk
k1 & kk

X2 k;1;1ð Þ ð54Þ

After the transformation s ¼ 1
s, the derivatives

djy1ðsÞ
dsj

)))))
s"k1

¼ j!
N

XN

k¼1

cj kð ÞuTxk

are immediate from (32). In particular, for j ¼ 2, we obtain

d2y1ðsÞ
ds2

)))))
s¼k1

¼ 2
N
c2 1ð ÞuTx1 þ

2
N

XN

k¼2

c2 kð ÞuTxk

and substituting (54) and (35) yields

d2y1ðsÞ
ds2

)))))
s"k1

¼ 2uTx1
Nk21X

3 1;1;1ð Þ

XN

k¼2

k1 þ kk
k1 & kk

X2 k;1;1ð Þ

& 2
Nk1X

2 1;1;1ð Þ

XN

k¼2

uTxk
k1 & kk

X k;1;1ð Þ ð55Þ

For example, from (20), the second derivative at s ! k1 ¼
ffiffiffiffiffiffiffi
mn

p
for

the complete bi-partite graph is
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d2y1ðsÞ
ds2

)))))
s"k1

¼ 2
N

ffiffiffiffiffiffiffi
mn

p
ffiffiffiffiffi
m

p
&

ffiffiffi
n

p
ffiffiffiffiffi
m

p
þ

ffiffiffi
n

p
' (2

The general formula (55) requires the determination of X k;1;1ð Þ.
With xT1 ¼ u1*mffiffiffiffiffi

2m
p u1*nffiffiffiffi

2n
p

h i
, we have

X k;1;1ð Þ ¼
XN

q¼1

xkð Þq x1ð Þ2q ¼ 1
2m

Xm

q¼1

xkð Þq þ
1
2n

XN

q¼mþ1

xkð Þq

Orthogonality of xk and x1 implies that

0 ¼
XN

q¼1

xkð Þq x1ð Þq ¼
1ffiffiffiffiffiffiffi
2m

p
Xm

q¼1

xkð Þq þ
1ffiffiffiffiffiffi
2n

p
XN

q¼mþ1

xkð Þq

and, similarly, orthogonality of xk and xN ¼ u1*mffiffiffiffiffi
2m

p & u1*nffiffiffiffi
2n

p
h iT

results in

0 ¼
XN

q¼1

xkð Þq xNð Þq ¼
1ffiffiffiffiffiffiffi
2m

p
Xm

q¼1

xkð Þq &
1ffiffiffiffiffiffi
2n

p
XN

q¼mþ1

xkð Þq

Hence, for 1 < k < N, we have that
Pm

q¼1 xkð Þq ¼ 0 andPN
q¼mþ1 xkð Þq ¼ 0 so that X k;1;1ð Þ ¼ 0. With kN ¼ &k1 ¼

ffiffiffiffiffiffiffi
nm

p
and

X N;1;1ð Þ ¼ 1
2

ffiffiffi
2

p 1ffiffiffiffiffi
m

p & 1ffiffiffi
n

p
' (

X 1;1;1ð Þ ¼ 1
2

ffiffiffi
2

p 1ffiffiffiffiffi
m

p þ 1ffiffiffi
n

p
' (

we obtain from (55)

d2y1ðsÞ
ds2

)))))
s"k1

¼ & 2
Nk1X2 1;1;1ð Þ

uTxN
k1 & kN

X N;1;1ð Þ

¼ 2
N

ffiffiffiffiffiffiffi
mn

p
ffiffiffiffiffi
m

p
&

ffiffiffi
n

p
ffiffiffiffiffi
m

p
þ

ffiffiffi
n

p
' (2

which agrees with direct derivation of the closed form (20). h

Appendix E

Proof of Lemma 1. The viral conductance (20) of the bipartite
graph Kn;m is, with E D½ % ¼ 2nm

N ,

wKn;m
¼ E D½ %

2
þ Yn;m

where

Yn;m ¼
ffiffiffiffiffiffiffi
mn

p
& 2mn

N
þ n&mð Þ

N
log

1þ
ffiffiffi
n
m

p# $m

1þ
ffiffiffi
m
n

p# $n

and we need to show that Yn;m is always positive for n > m and only
zero if n ¼ m. First, with

ffiffiffiffiffiffiffi
mn

p
& 2mn

N
¼

ffiffiffiffiffiffiffi
mn

p

N
mþ n& 2

ffiffiffiffiffiffiffi
mn

p# $
¼

ffiffiffiffiffiffiffi
mn

p

N
ffiffiffiffiffi
m

p
&

ffiffiffi
n

p# $2

we have

NYn;m ¼
ffiffiffiffiffiffiffi
mn

p ffiffiffi
n

p
&

ffiffiffiffiffi
m

p# $2 þ n&mð Þ log
1þ

ffiffiffi
n
m

p# $m

1þ
ffiffiffi
m
n

p# $n

which shows that Yn;m ¼ 0 for n ¼ m. In addition, symmetry applies
so that NYn;m ¼ NYm;n which allows us to further confine to the case
that n > m. Next, assuming that n > m, we rewrite

log
1þ

ffiffiffi
n
m

p# $m

1þ
ffiffiffi
m
n

p# $n ¼ m
2

log
n
m

! "
& n&mð Þ log 1þ

ffiffiffiffiffi
m
n

r' (

so that

NYn;m ¼
ffiffiffiffiffiffiffi
mn

p ffiffiffi
n

p
&

ffiffiffiffiffi
m

p# $2 þ n&mð Þm
2

log
n
m

! "
& n&mð Þ2

* log 1þ
ffiffiffiffiffi
m
n

r' (
ð56Þ

and

NYn;m

n&mð Þ2
¼

ffiffiffiffiffiffiffi
mn

p
ffiffiffi
n

p
þ

ffiffiffiffiffi
m

p# $2 þ
m

2 n&mð Þ
log

n
m

! "
& log 1þ

ffiffiffiffiffi
m
n

r' (

¼
ffiffiffi
n
m

p

1þ
ffiffiffi
m
n

p# $2 &
m
n

2 1& m
n

# $ log
m
n

! "
& log 1þ

ffiffiffiffiffi
m
n

r' (

With y ¼ m
n 2 0;1½ %, we have

NYn;m

n&mð Þ2
¼ gðyÞ ¼

ffiffiffi
y

p

1þ ffiffiffi
y

p# $2 &
y

2 1& yð Þ
logðyÞ & log 1þ

ffiffiffi
y

p
ð Þ

where gð0Þ ¼ 0. The function gðyÞ is monotonous increasing for
0 6 y 6 1 because g0ðyÞ ¼ &4 1&

ffiffi
y

p
ð Þ& 1þ

ffiffi
y

p
ð Þ log y

2 1& ffiffi
y

pð Þ2 1þ ffiffi
y

pð Þ
and & 1þ ffiffiffi

y
p# $

log y >

4 1& ffiffiffi
y

p# $
. The latter inequality follows from the expansion

log z ¼ &2
P1

k¼1
1

2k&1
1&z
1þz

! "2k&1
, valid for Re zð Þ P 0, but z– 0 (see [1,

Section 4.1.27]), for z ¼ ffiffiffi
y

p
. Hence, for 0 6 y 6 1; g0ðyÞ P 0 so that

gðyÞ P 0 and this proves Lemma 1. h
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