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a b s t r a c t 

Telecommunication networks, as well as other network types, are critical infrastructures where any ser- 

vice disruption has a notable impact on individuals. Hence, studying network dynamics under failures or 

attacks is of paramount importance. In this paper, we assess the robustness of networks with respect to 

the spread of Susceptible-Infected-Susceptible (SIS) epidemics, using the N-Intertwined Mean-Field Ap- 

proximation (NIMFA). A classical robustness metric is the NIMFA epidemic threshold, which is inversely 

proportional to the largest eigenvalue of the adjacency matrix, also called the spectral radius. Besides the 

NIMFA epidemic threshold, the viral conductance has been proposed as a measure incorporating the av- 

erage fraction of infected nodes in the steady state for all possible effective infection rates. In general, the 

viral conductance provides more information about the network’s behavior with respect to virus spread- 

ing, however, the full picture is not always necessary. The aim of this paper is to understand when the 

spectral radius is adequate for reflecting robustness. By analyzing the relationship between spectral ra- 

dius and viral conductance in several graph classes, we show that the two metrics are highly correlated. 

We thus conclude that the spectral radius is sufficient to compare the robustness of networks belonging 

to the same class. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Much effort has been devoted in the analysis of the spread of

epidemics, mainly due to the expected outbreak of new lethal bio-

logical viruses affecting individuals and the increasing threats from

cybercrime. In November 2014, for example, the Ebola epidemic

caused 9596 laboratory-confirmed cases of individuals infected by

the virus with 5459 total deaths, becoming the largest epidemic

in history affecting multiple countries in West Africa. In addition

to epidemic spread among individuals, there are other important

scenarios like telecommunication systems, power grids and trans-

portation networks, where the theory of the spread of epidemics

can be applied to characterize their vulnerability. E-mail worms,

computer viruses, the propagation of failures in power grids, and,

more generally, the spread of information and epidemic dissemi-

nation/routing in ah-hoc and peer-to-peer networks are just some
∗ Corresponding author. 
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xamples of scenarios, where studying the spread of epidemics is

rucial for maintaining high levels of robustness. Assessing net-

ork robustness not only allows us to compare the robustness

mong different network topologies, but also gives insights in the

esign of future networks to mitigate the spreading of a virus or

ascading failures, or maximize information diffusion (e.g. news,

umors, brand awareness, marketing of new products, etc.). 

In this paper, we focus on the spread of epidemics on telecom-

unication networks. Network operators are mainly interested in

nderstanding (a) how much robust their network is compared

o other networks and (b) how to protect or modify their infras-

ructure for improving its robustness minimizing costs. The aim of

his paper is to answer the first question focusing on the spread

f epidemics described through a Susceptible-Infected-Susceptible

SIS) model [1] . This model, which arose in mathematical biol-

gy, and its variants, are often used for the spread of viruses

nd malwares in computer networks [2–4] , and mobile social

pportunistic networks [5] , epidemic information dissemination

n unreliable distributed systems like P2P and ad-hoc networks

6] , cascading failures on BGP networks [7] and power grids [8] ,

martphone malware propagation [9] , and epidemic spreading in
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ireless sensor networks [10] . A network is represented by an

ndirected graph G ( N, L ), characterized by a symmetric adjacency

atrix A in which the element a i j = a ji = 1 if there is a link be-

ween nodes i and j , otherwise a i j = 0 . The infectious state of

 node i in G is specified by a Bernoulli random variable X i ∈
 0 , 1 } : X i = 0 for a healthy node and X i = 1 for an infected node.

 node i at time t can be in the infected state, with probabil-

ty v i (t) = Pr [ X i (t) = 1] , or in the healthy state, with probability

 − v i (t) . Both the arrival of an infection over a link and the curing

f an infected node i are assumed to be independent Poisson pro-

esses with rates β and δ, respectively, and the effective spread-

ng rate is defined as τ = 

β
δ

. This SIS model can be expressed ex-

ctly in terms of a continuous-time Markov chain with 2 N states as

hown in [11] . Since the exact solution v i ( t ) 1 ≤ i ≤ N for any network

s intractable, several approximations of the SIS model have been

roposed. In this paper, we focus on the N-Intertwined Mean-Field

pproximation (NIMFA) [11] that was earlier considered in discrete

ime in [12] and in [13] , whose paper was later improved in [14] .

IMFA has been shown in [15] to be better than the widely used

eterogeneous mean-field model of Pastor-Satorras and Vespignani

16] . 

A remarkable property of the SIS model is the existence of a

hase transition [16] when the effective spreading rate approaches

n epidemic threshold τ c : if τ > τ c , the infection becomes persis-

ent, while if τ < τ c , the virus dies out and the network is virus-

ree. Many authors (see, e.g., [2,17–19] ) mentioned the existence of

n epidemic threshold , however, the determination of this epidemic

hreshold is a long-standing open problem and a major contribu-

ion of NIMFA is the lower bound τ (1) 
c = 

1 
λ1 

≤ τc , where τ (1) 
c is the

IMFA epidemic threshold and λ1 is the largest eigenvalue of the

etwork adjacency matrix A , also called the spectral radius. The

IMFA epidemic threshold has been used as a measure for net-

ork robustness [20] . Recently, the viral conductance , introduced in

21,22] and analyzed in depth in [23] , was proposed as a robust-

ess measure considering both the value of the epidemic thresh-

ld and the number of infected nodes at the steady state above

he threshold. The viral conductance measures the integrated ef-

ect over all possible viral infection strengths on the network’s in-

ectious vulnerability and is shown to be a better robustness mea-

ure than the epidemic threshold, considering that viral conduc-

ance provides more information about the system’s behavior [22] .

In this paper, we present an extensive analysis on the rela-

ionship between the viral conductance and the spectral radius 1 

n telecommunication networks. We chose to model the relation-

hip between epidemic threshold and viral conductance for the SIS

odel since these two robustness metrics have been defined for

his epidemic model. For the SIR model, for example, which is vari-

nt of the SIS model having a third state where a node can be re-

overed (R), there exist similar bounds for the epidemic threshold

24] but there is not yet an expression for the viral conductance.

his is the reason why we start analyzing the SIS model and leave

he study of the relationship between the two robustness metrics

n other epidemic models to future investigations. The aim of this

nalysis is to understand if both the two metrics are necessary

or characterizing the robustness of a network with respect to the

preading of a virus. In particular, we have chosen to test a set of

opologies to model the most widely diffused telecommunication

etworks (e.g. complete bipartite graphs for core telecommunica-

ion networks, Erd ̋os–Rényi random graphs [25] for peer-to-peer

nd ad hoc networks, Watts–Strogatz small-world graphs [26] for

obile contact networks, Bárabasi–Albert [27] scale-free graphs for
1 For the easier readability of the results obtained in this work, we consider the 

eciprocal of the NIMFA epidemic threshold (i.e. the spectral radius) when analyzing 

n deep the relationship between the two robustness metrics. 

[  

w  

i

 

b  
ocial networks, etc.) and a set of real-world Internet backbones.

he contributions of this paper can be summarized as follows: 

• we derive easy to use upper and lower bounds for the viral

conductance as a function of the spectral radius; 

• via examples, we show cases where both the viral conductance

and the spectral radius correctly compare the robustness be-

tween two networks, and cases where the spectral radius fails

to assess robustness; 

• we consider several graph classes representative of different

types of networks and derive the relationship between the viral

conductance and the spectral radius analytically, where possi-

ble, or through a correlation analysis; 

• we show that the two metrics are highly correlated and hence,

the information provided by the spectral radius is adequate for

comparing the robustness of networks belonging to the same

graph class. 

The rest of this paper is organized as follows. Section 2 reviews

he literature and related works. Section 3 reviews NIMFA. The vi-

al conductance measure is described in Section 4 . Section 5 com-

ares the viral conductance and the epidemic threshold through

ase studies. Section 6 and 7 analyze the relationship between the

iral conductance and the spectral radius in various graph classes.

onclusions are summarized in Section 8 . 

. Related works 

The spread of information or viruses, or the propagation of fail-

res in communication networks are similarly described as the

irus spread in a biological population [28] . Biological epidemic

odels were initiated by Kephart and White [2] , for example, to

escribe the spread of viruses in computer networks. In classical

pidemiology, epidemic models such as [1,29] introduced the basic

eproductive number R 0 representing the average number of infec-

ions due to a single infected case in the population. For R 0 < 1,

he epidemic dies out without causing an outbreak while for R 0 >

, the epidemic spreads in the population. The basic reproductive

umber R 0 bears some resemblance with the epidemic threshold

16] defined in complex network theory for SIS epidemic models

sing the heterogeneous mean-field approach. However, the basic

eproductive number R 0 does not contain any information about

he underlying contact network. Since the structure of networks is

ich and complex, R 0 is inadequate for assessing the threshold be-

avior of an outbreak in most networks. 

In the literature dealing with the epidemic threshold in net-

orks, Wang et al. [13] proposed a discrete-time epidemic model

o predict the infection size within a population suggesting that

he epidemic threshold equals the reciprocal of the spectral radius

f the adjacency matrix A . In another work, Van Mieghem et al.

11] studied SIS epidemics as a continuous-time Markov chain

nd introduced NIMFA, whose epidemic threshold was proved to

e equal to the inverse of the spectral radius of A . In [30] , an

eterogeneous version of NIMFA was used to design a strategy

or controlling an epidemic outbreak in an arbitrary contact net-

ork by distributing vaccination resources throughout the net-

ork. More recently, NIMFA has been extended to model the

IS epidemic spread in networks of individuals partitioned into

ommunities [31,32] , where the infection rate by which an in-

ividual infects individuals in its own community is different

rom the inter-community infection rate. In another recent work

33] , NIMFA has been used to design resilient and secure net-

orks for cyber attack-induced cascading link failures in critical

nfrastructures. 

The epidemic threshold was initially used to assess network ro-

ustness with respect to the spread of epidemics [20] : the larger
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the epidemic threshold, the more robust a network is against the

spread of an epidemic. Later, the viral conductance [21–23] was

proposed as a robustness measure integrating the fraction of the

infected nodes at the steady state for all possible infective infec-

tion strengths that an epidemic may possess. In this work, the au-

thors also introduced a computational heuristic for the viral con-

ductance, which is a function of the infected population and the

network characteristics. Complementarily to viral conductance, epi-

demic criticality (EC) [34] was recently proposed as robustness met-

rics for epidemic-like failure scenarios. While viral conductance

takes into account the fraction of infected nodes in the steady state

and considers several epidemic intensities, EC focuses on the indi-

vidual probability to be infected of each node and takes into ac-

count only one epidemic intensity. In the case where two topolo-

gies have the same viral conductances, EC would be able to de-

tect which of the two topologies would have a higher percentage

of critical nodes. Another network robustness metric was proposed

by Trajanovski et al. [35] in a work defining a temporal robust-

ness metric on time-varying networks. Results on real-world net-

works show that temporal connectivity is significantly more af-

fected by intelligent attacks than random failures. On the con-

trary, random errors and intelligent attacks exhibit a similar behav-

ior on randomly generated networks. In another work, Trajanovski

et al. [36] considered the problem of improving network robust-

ness in relation to the geographical embedding of a network. First,

they focused on finding a circular region with radius r that would

cause the biggest network degradation when removing all the cov-

ered nodes. Then, they also proposed a region-aware network aug-

mentation strategy proving on a set of real-world backbones that

adding few links may already induce significant robustness gains.

In addition, they proposed an algorithm for finding two paths with

minimum total weight between the source and the destination

node that can not be cut by a singular circular region failure of

radius r and to be used to reroute traffic after a regional failure. 

In addition to the aforementioned works proposing single ro-

bustness metrics, some works like [37–39] proposed the aggre-

gation of more robustness metrics into a single robustness value

identifying a network. In [37] , for example, a framework for com-

puting network robustness was proposed in order to compare dif-

ferent networks against various topological perturbations by using

the R value characterizing each network. Here, the R value ranges

between [0, 1] and is computed through a weighted linear model

taking into account several metrics that characterize the graph rep-

resenting the network (e.g. average hop count, minimum degree,

maximum degree, and so on). The higher the R value, the larger

the robustness. The same R value has been used in [39] to study

network robustness in real and random networks through an enve-

lope approach. Under node removal, considering both random node

failure and targeted node attacks based on network centrality met-

rics, this approach shows that although networks may have simi-

lar average-case performance under attack, they may differ signifi-

cantly in their sensitivities to certain attack sequences. Similarly in

[38] , the concept of robustness surface embracing more robustness

metrics was introduced in order to visually assess the network ro-

bustness variability. 

In summary, there exist different ways to measure network ro-

bustness. Specifically, when dealing with epidemic spreads that

are the focus of this paper, epidemic threshold and viral conduc-

tance are commonly used. Moreover, some works in the literature

combine more robustness metrics to define a unique robustness

value representing a network. However, since most of the robust-

ness metrics are computed from the adjacency matrix of the graph

representing the network, we may expect that most metrics are

dependent thus being redundant. As such, we study the relation-

ship between epidemic threshold and viral conductance showing

that the two metrics are highly correlated in several graph classes.
e finally conclude that the more complete information provided

y the viral conductance is not always necessary. 

. The SIS N- I ntertwined M ean- F ield A pproximation (NIMFA) 

Although a SIS epidemic process is an abstraction of how a real

irus spreads on a contact network, the SIS model is still too com-

lex for a general analytic treatment as shown in [11] . As such,

he behavior of SIS epidemics on networks is often analyzed ap-

roximately, using a variant of a mean-field approach such as the

-intertwined mean-field approximation (NIMFA). In NIMFA, the

robability for node i of being infected v i ( t ) is described by 

dv i (t) 

dt 
= β(1 − v i (t )) 

N ∑ 

j=1 

a i j v j (t ) − δv i (t) (1)

he time-derivative in Eq. (1) of the probability v i ( t ) depends

n two competing processes: (a) while healthy with probability

(1 − v i (t)) , the infected neighbors of node i , whose average num-

er is 
∑ N 

j=1 a i j v j (t) , try to infect i with rate β and (b) while in-

ected with probability v i ( t ), node i is cured with rate δ. By in-

roducing the vector V (t) = 

[
v 1 (t) v 2 (t) ... v N (t) 

]T 
, the

ifferential Eq. (1) can be written in matrix form as 

dV (t) 

dt 
= (βA − δI) V (t) − βdiag (v i (t )) AV (t ) (2)

here I is the identity matrix, diag( v i ( t )) is the diagonal matrix

hose diagonal elements are v 1 ( t ), v 2 ( t ), ..., v N ( t ) and A is the adja-

ency matrix of the network. Focusing on the NIMFA steady state

supposing a steady state depending on the initial values of V ( t )

xists), which is defined by v i ∞ 

= lim t→∞ 

v i (t) or lim t→∞ 

dv i (t) 

dt 
= 0

nd which corresponds to the metastable state in the exact Marko-

ian SIS model, by passing to the limit in Eq. (1) , we obtain for

ach node i 

N ∑ 

j=1 

a i j v j∞ 

− v i ∞ 

( 

β
N ∑ 

j=1 

a i j v j∞ 

+ δ

) 

= 0 (3)

ince the matrix A has all the diagonal elements equals to 0, a j j =
 , the steady-state probability v i ∞ 

can be written as 

 i ∞ 

= 

β
∑ N 

j=1 a i j v j∞ 

β
∑ N 

j=1 a i j v j∞ 

+ δ
= 1 − 1 

1 + τ
∑ N 

j=1 a i j v j∞ 

(4)

hich is the ratio between the mean infection rate caused by the

ode’s infected neighbors and the total mean rate of both the com-

eting infection and curing process. The trivial solution of Eq. (4) is

 i ∞ 

= 0 for all i (i.e., the overall-healthy state), which corresponds

o the absorbing state of the SIS Markov chain and reflects the

teady state of the exact SIS model. 

In NIMFA, the largest eigenvalue λ1 of the graph’s adjacency

atrix A rigorously defines the first order epidemic threshold
(1) 
c = 

1 
λ1 

. A second-order epidemic threshold τ (2) 
c ≤ τ (1) 

c has been

tudied in [40] which also presents a different derivation of the

-intertwined equations. In [11] and [40] , it is proven that a ma-

or property of the N-intertwined approximation is that V i ( t ) ≥
 i ( t )| exact . Hence, NIMFA upper-bounds the SIS epidemics and, con-

equently, τ (1) 
c ≤ τc . Further details on the properties of NIMFA ap-

roximation and its relationship with the characteristics of the SIS

odel can be found in [41] . 

. The viral conductance 

The viral conductance, proposed in [21] as a robustness graph

easure, is defined as 

 = 

∫ λ1 

0 

y ∞ 

(s ) ds (5)
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Fig. 1. The NIMFA average steady-state fraction of infected nodes in a star and a ring graph with N = 50 nodes versus (a) τ and (b) s = 1 /τ . The two graphs have similar 

average degree. 

w  

t  

 

i  

t  

s

r

 

a  

t  

c  

c  

a  

a  

τ  

n  

t  

n  

t  

a  

t  

G  

G  

m  

a

 

r  

d

ψ  

w  

a  

t  

t

ψ

w

 

d

Z

w  

o  

λ  ∑
 

 

t  

s  

l

ψ

a

ψ

C

Z  

w  

v

5

 

l  

r  

c  

n  

g  

[  

L  

i  

t  

τ  

l  

r

R  

g  

l  

a

 

e  

t  

w  

t  

w  

c  
here y ∞ 

= 

1 
N 

∑ N 
i =1 v i ∞ 

is the average fraction of infected nodes in

he steady state and s = 

1 
τ . For τ < τ c and equivalently, for s >

1 
τc 

= λ1 , the network is virus-free in the steady state. Since y ∞ 

( τ )

s not integrable over all τ , the viral conductance was defined in

erms of y ∞ 

( 1 τ ) . Fig. 1 (a) and Fig. 1 (b) show the NIMFA average

teady-state fraction of infected nodes as a function of τ and s = 

1 
τ

espectively, for a star and a ring graph with N = 50 nodes. 

In most papers on virus spread, the robustness of a network

gainst virus spread is measured by the epidemic threshold. Given

wo networks, the network with the highest epidemic threshold is

onsidered more robust and, hence, more resistant to the virus. Ac-

ording to this criterion, the ring graph in Fig. 1 (a) is more robust

gainst virus propagation than the star, because the ring graph has

 higher epidemic threshold. However, Fig. 1 (a) illustrates that for

> 1, the ring graph has a larger average fraction of infected

odes and hence, it is more vulnerable than the star graph. Once

he epidemic threshold is crossed, the virus behaves differently in

etworks with low and high epidemic thresholds. Motivated by

his consideration, Kooij et al. [21] proposed the viral conductance

s an additional robustness measure accounting for the conduc-

ance of the virus for all possible infection rates: given two graphs

 1 and G 2 , the graph G 1 is considered more robust than the graph

 2 if ψ G 1 
< ψ G 2 

. Hence, considering Fig. 1 (b), the ring graph is

ore robust against virus propagation than the star, since it has

 lower viral conductance. 

In [23] , exact expressions for the viral conductance were de-

ived. For regular graphs with degree d and L links, the viral con-

uctance equals 

 regular = 

∫ d 

0 

(
1 − s 

d 

)
ds = 

d 

2 

= 

L 

N 

(6)

hich is independent of the number of nodes N . The ring, which is

n example of a regular graph with d = 2 , has ψ ring = 1 , irrespec-

ive of the number of nodes N . For complete bipartite graphs K m, n ,

he exact expression of the viral conductance is 

 K m,n 
= 

√ 

mn − mn 

N 

+ 

n − m 

N 

ln 

(1 + 

√ 

n/m ) m 

(1 + 

√ 

m/n ) n 
(7) 

hich is symmetric, so that ψ K m,n 
= ψ K n,m 

. 

Sharp bounds for the lower and upper bound of the viral con-

uctance ψ exist, 

 + ζ (1 − Z) + K min ≤
ψ 

λ1 

2 

≤ Z + ζ (1 − Z) + K max ≤ 1 

here Z = 

1 
N 

∑ N 
j=1 (x 1 ) j ∑ N 
j=1 (x 1 ) 

3 
j 

≤ 1 with ( x 1 ) j the j -th vector component

f the principal eigenvector x of A belonging to the eigenvalue
1 
1 (also known as eigenvector centrality [42] of j -th node) and
 N 
j=1 (x 1 ) j = w 1 the fundamental weight [43] , and where ζ =

1 −Z 

| λ1 E 
[

1 
D 

]
−Z| ≤ 1 , but K min ≥ 0 and K max ≥ 0 are more complicated

o evaluate (see [23, Eq. (39) and (40)] ). Therefore, we limit our-

elves to the slightly worse lower bound in which we consider the

owest possible value for K min obtaining 

 LB = 

λ1 

2 

( Z + ζ (1 − Z) ) (8) 

nd the upper bound (proved in [23] ) 

 UB = 

λ1 

2 

(9) 

ombining Eqs. (8) and (9) leads to 

 + ζ (1 − Z) ≤ ψ 

λ1 

2 

≤ 1 (10)

hich shows that, the closer Z + ζ (1 − Z) is to 1, the closer the

iral conductance is to Eq. (9) . 

. Viral conductance versus epidemic threshold 

In the example shown in Fig. 1 , the two robustness metrics

ead to the same conclusion: both τ (1) 
c = 

1 
λ1 

and ψ consider the

ing graph more robust than the star graph. However, there are

ases in which the epidemic threshold fails to assess the robust-

ess of networks. Fig. 2 shows an example of two networks, a star

raph G 1 with N 1 = 62 nodes and an Erd ̋os–Rényi random graph

25] G 2 with N 2 = 50 nodes and edge probability p = 0 . 15 , having

 1 > L 2 and almost the same NIMFA epidemic threshold. Accord-

ng to the robustness criterion based on the epidemic threshold,

he two networks have almost the same robustness. However, for

> τ (1) 
c , the star graph has an average fraction of infected nodes

ower than the Erd ̋os–Rényi random graph. This behavior is well

eflected by the viral conductance which is higher for the Erd ̋os–

ényi random graph ( Fig. 2 (b)) and properly assesses that the star

raph is more robust than the Erd ̋os–Rényi random graph. Simi-

ar examples showing networks with the same epidemic threshold

nd different viral conductance can be found in [22] and in [21] . 

There are other cases in which the two metrics answer differ-

ntly to the question “Which network is the most robust?”. In [21] ,

he viral conductance of some real-life networks and synthetic net-

orks with approximately 10 0 0 nodes is computed. For example,

he Abilene backbone network [21] has τc = 0 . 11 and ψ = 1 . 43 ,

hile the Stanley Ring network has τc = 0 . 14 and ψ = 1 . 79 . If we

ompare the two networks with respect to the epidemic threshold,
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Fig. 2. The NIMFA average steady-state fraction of infected nodes in a star with N = 62 nodes and an Erd ̋os–Rényi random graph with N = 50 nodes and edge probability 

p = 0 . 15 versus (a) τ and (b) s = 1 /τ . The two graphs have almost the same epidemic threshold but different viral conductance. 
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2 https://ams-ix.net/ 
we conclude that the Stanley Ring network is the most robust. On

the contrary, if we compare them with respect to the viral conduc-

tance, we conclude that the Abilene network is the most robust. In

general, we consider the viral conductance as the most reliable, vi-

ral robustness measure since it incorporates the fraction of infected

nodes at the steady state for all effective infection strengths. 

The previous examples illustrated cases in which both the epi-

demic threshold and the viral conductance similarly assess the ro-

bustness of networks and cases in which the epidemic threshold

is not an adequate measure of network robustness. However, for

most networks, we cannot analytically compute the fraction of in-

fected nodes y ∞ 

( s ) nor the viral conductance explicitly. Therefore,

we use numerical analysis to determine the steady-state values for

the fraction of infected nodes, for a given value of s . The average

fraction y ∞ 

( s ) of infected nodes is evaluated for 100 equidistant

values of s , between 0 and λ1 . Finally, the viral conductance ψ is

determined approximating the integral of y ∞ 

( s ) via the trapezoidal

method. Here, we are interested in finding particular cases where

the more complete information about network’s behavior given by

the viral conductance is not necessary and the robustness of two

different graphs can be assessed by the spectral radius. Thus, we

state: 

Intra-class Network Robustness Hypothesis: the robustness of net-

works belonging to the same class can be assessed by the spectral

radius . 

This hypothesis is verified in the following section for different

network classes. 

6. Relationship between robustness metrics in graphs with 

exact expressions for ψ

In this section, we start analyzing the relationship between the

viral conductance and the spectral radius for the regular graph and

the complete bipartite graph. Specifically, we show the relationship

between ψ and λ1 by reporting the expression of ψ as a function

of λ1 . 

6.1. Regular graphs 

In a regular graph, every node has the same degree d . Since the

spectral radius for a regular graph is λ1 = d (see [42] ), the viral

conductance Eq. (6) can be written as 

ψ regular = 

d 

2 

= 

λ1 

2 

(11)

so that the viral conductance for the regular graph is half of the

spectral radius, and equivalently, half of the inverse of the epi-

demic threshold. 
.2. Complete bipartite graphs 

The complete bipartite graph K m, n is characterized by two par-

itions P m 

and P n containing respectively m and n nodes, form-

ng a graph with N = m + n nodes. All nodes of the partition P m 

re connected to all the nodes of P n , while nodes belonging to

he same partition do not connect. Core telecommunication net-

orks are often modeled as complete bipartite graphs for their ro-

ustness against link failures. For example, the Amsterdam Inter-

et Exchange 2 , one of the largest Internet exchange points in the

orld, uses this topology. Also sensor networks are often modeled

y K m, n . 

Since the spectral radius for the K m, n graph [42] is λ1 = 

√ 

mn ,

he exact expression of the viral conductance can be written as 

 K m,n 
= λ1 

(
1 − λ1 

N 

)
+ c m,n (12)

here 

 m,n = 

n − m 

N 

ln 

(1 + 

√ 

n/m ) m 

(1 + 

√ 

m/n ) n 
(13)

s an asymmetry correction. For m = n, we obtain a regular graph

q. (6) . 

A particular complete bipartite graph is the star graph where

 = 1 and n = N − 1 . For any connected graph, an upper bound for

he spectral radius is λ1 ≤
√ 

2 L − N + 1 , where equality is reached

or the complete graph and the star graph [42] . Since the number

f links in the star graph is L = N − 1 , we obtain λ1 = 

√ 

N − 1 . For

he viral conductance, an expression was derived in [23] by ma-

ipulating Eq. (7) as 

 K 1 ,N−1 
= 

ln N 

2 

− 1 

2 

+ O 

(
1 √ 

N 

)
(14)

hich can be written as a function of the spectral radius as 

 K 1 ,N−1 
= ln λ1 − 1 

2 

+ O 

( 

1 √ 

λ2 
1 

− 1 

) 

(15)

. Relationship between robustness metrics in graphs without 

xact expressions for ψ

There are graph classes that do not have an analytical expres-

ion for viral conductance. As such, we compute the Pearson’s

https://ams-ix.net/
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Fig. 3. (a) Robustness in path graphs. (b) Normalized values of viral conductance ψ and of lower bound ψ LB with respect to upper bound ψ UB = λ1 / 2 value. 
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orrelation coefficient ρ between ψ and λ1 as ρ	,λ1 
= 

COV (	,λ1 ) 
δ	δλ1 

here COV ( 	 , λ1 ) is the covariance between 	 and λ1 , and δ	

nd δλ1 
are the standard deviations. For those graph classes, when

omputing the steady-state probabilities of being infected for each

ode, we initialized vector V (0) to all ones, assuming that all nodes

re initially infected with probability v i (0) = 1 . All the simulations

ave been performed using MATLAB. 

.1. Path graphs 

The path graph is a particularly simple example of a tree graph,

here every root node has a branch and only the last root node

s not branched at all. As shown in [42] , the spectral radius of

he path graph is λ1 = 2 
(
1 − cos 

(
π N−1 

N 

))
. For the viral conduc-

ance, we do not have an exact expression, thus we consider a set

f graph samples with network size 10 ≤ N ≤ 300 and we show

he relationship between ψ and λ1 by plotting ψ (green mark-

rs), its lower bound ψ LB (magenta markers) and upper bound

 UB (cyan markers), and λ1 (blue markers) versus the number of

odes. Fig. 3 (a) shows that the viral conductance of the path graph

s very similar to the ring graph where ψ ring = 1 for each N . This

s expected, because the average fraction of infected nodes in the

teady state is about the same in the two graphs. We also veri-

ed the validity of lower and upper bounds ψ LB and ψ UB , noticing

hat for all network sizes ψ is bounded and the difference between

 and its upper and lower bounds decreases as N increases. The

nsert in Fig. 3 (a) shows that λ1 and ψ are very strongly corre-

ated for the path graph, having a Pearson’s correlation coefficient

= 0 . 9458 . Fig. 3 (b) shows the relationship between ψ and λ1 , as

efined in Eq. (10) with respect to the upper and lower bounds,

or different network sizes. The viral conductance normalized with

espect to the upper bound λ1 /2 is slightly lower than 1 and the

ormalized lower bound (which equals Z + ζ (1 − Z) ) is close to 1,

hus showing that the viral conductance approximately equals half

f the spectral radius and confirming the strong relationship be-

ween the two robustness metrics. 

.2. Erd ̋os–Rényi random graphs 

The Erd ̋os–Rényi random graph G p ( N ) can be generated from a

et of N nodes by randomly assigning an edge with probability p to

ach pair of nodes [25] . Besides its analytic tractability, this graph

s a reasonably accurate model for peer-to-peer and ad-hoc net-

orks. 

A threshold function for the connectivity of the Erd ̋os–Rényi

raph is p c ≈ ln ( N )/ N for large N . Thus, an Erd ̋os–Rényi graph is al-

ost surely connected if p > p c . In our simulations, we considered

 set of graph samples with network size 10 ≤ N ≤ 200, we set
p = 2 p c and checked each generated Erd ̋os–Rényi graph for con-

ectivity. Fig. 4 (a) depicts the viral conductance with its lower and

pper bounds, and the spectral radius as a function of the network

ize N . For each network size N , we generated 10 2 network realiza-

ions of Erd ̋os–Rényi random graph. Hence, each point in the plot

orresponds to an average value. For large networks, high values of

1 cause an epidemic outbreak and very high values of ψ charac-

erize the ease of virus spread within the network. Moreover, ψ LB 

nd ψ UB are accurate. The inserted plot shows a very strong corre-

ation between the two robustness metrics: the resulting Pearson

orrelation coefficient is ρ = 0 . 9978 . We further verified the strong

elationship between the viral conductance and the spectral radius

y plotting both ψ and its lower bound ψ LB normalized with re-

pect to the upper bound λ1 /2 as a function of network size. As

hown in Fig. 4 (b), the normalized viral conductance ranges be-

ween 0.8822 and 0.9588 and the normalized lower bound is also

igh, thus showing that ψ values for this graph type are also near

1 /2. 

.3. Watts–Strogatz small-world graphs 

The Watts–Strogatz small-world graph [26] can be generated

rom a ring lattice of N nodes where each node is connected to k

odes, by rewiring each edge with probability p . Within this graph,

ost of the nodes can be reached within a small number of hops.

oreover, besides the presence of short paths between nodes, a

mall-world graph also presents a high clustering coefficient fea-

ure. The structural properties of Watts–Strogatz small-world graph

ave been found in several real-world networks, such as mobile

ontact networks (e.g. Bluetooth, Wi-Fi and Zig-Bee contact net-

orks), neural networks and biological oscillators. 

Fig. 5 (a) shows the values of ψ LB , ψ UB , ψ and λ1 for different

etwork sizes in Watts–Strogatz small-world graphs with rewiring

robability p = 0 . 5 and k = 6 . For this set of simulations, we con-

idered again 10 2 realizations for each graph of size N .The viral

onductance of this topology shows a behavior similar to the path

nd the star graph. Here, ψ is almost constant with N , with an av-

rage value of 3.06. This means that the number of nodes does not

nfluence the viral conductance of the Watts–Strogatz small world

raph with a given rewiring probability. We can further note that

he accuracy of upper and lower bounds for the viral conductance

s verified and the resulting correlation between ψ and λ1 is also

igh ( ρ = 0 . 9311 ). Moreover, Fig. 5 (b) shows that the normalized

iral conductance ranges between 0.9348 and 0.9777 and the nor-

alized lower bound is also close to 1, thus concluding that the

ehavior of Watts–Strogatz small-world graphs is similar to path

raphs and Erd ̋os–Rényi random graphs, having ψ values very near

/2. 
1 
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Fig. 4. (a) Robustness in Erd ̋os–Rényi graphs with p = 2 ln (N ) /N . (b) Normalized values of viral conductance ψ and of lower bound ψ LB with respect to upper bound ψ UB . 

Fig. 5. (a) Robustness in Watts–Strogatz small-world graphs with p = 0 . 5 and k = 6 . (b) Normalized values of viral conductance ψ and of lower bound ψ LB with respect to 

upper bound ψ UB . 

Fig. 6. Watts–Strogatz small-world graphs with k = 4 and 6, and rewiring probability 0.1 ≤ p ≤ 1: (a) average robustness and (b) Pearson’s correlation coefficient between 

ψ and τ c . 
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The above analysis of the viral conductance versus the spectral

radius was also applied to the Watts–Strogatz small-world graphs

with other rewiring probabilities and k = 6 leading to the same ob-

servations as discussed in this subsection. Fig. 6 (a) shows the av-

erage robustness in Watts–Strogatz small-world graphs with k = 4

and 6, and rewiring probability 0.1 ≤ p ≤ 1, while Fig. 6 (b) shows

the corresponding correlation values. We observe that the values of

viral conductance for k = 6 are higher than the values with k = 4 ,

and also the correlation values for most of the rewiring proba-

bilities are higher for the Watts–Strogatz small-world graphs with

k = 6 . 
.4. Bárabasi–Albert scale-free graphs 

The Bárabasi–Albert scale-free graph [27] can be generated

tarting from m nodes, and at every time step, a new node with m

dges is added to m different nodes already present in the graph.

he probability that a new node will be connected to an existing

ode during a certain time step is proportional to the degree of the

xisting node. This is also referred to as preferential attachment . The

elevant feature of Bárabasi–Albert scale-free graph is its power-

aw degree distribution which has been found in many real-world

omplex networks including the Internet, the World Wide Web, ci-
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Fig. 7. (a) Robustness in Bárabasi–Albert scale-free graphs with m = 2 . (b) Normalized values of viral conductance ψ and of lower bound ψ LB with respect to upper bound 

ψ UB value. 

Fig. 8. Bárabasi–Albert scale-free graphs with m = 2 , 3 , 4 , and 5: (a) average robustness and (b) Pearson’s correlation coefficient between ψ and τ c . 

Fig. 9. BT IP backbone networks within North America and Europe. 
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ation networks and some social networks. These networks have a

igh number of nodes (i.e. hub nodes) with degree higher than the

verage degree found in the network. 

Fig. 7 (a) shows ψ LB , ψ UB , ψ and λ1 values, and the correlation

etween ψ and λ1 for a set of Bárabasi–Albert scale-free graphs

ith network size 10 0 0 ≤ N ≤ 120 0 and m = 2 . For this set of sim-

lations, we generated 10 2 realizations of Bárabasi–Albert scale-

ree graph for each network size N . We observe that the viral con-

uctance is bounded. However, the lower bound is more accurate

han the upper bound. As far as the correlation between the two

obustness metrics is concerned, we found again a very strong cor-
elation ( ρ = 0 . 9713 ). Moreover, as shown in Fig. 7 (b), the ratio be-

ween the viral conductance and the half of spectral radius is sig-

ificantly lower than the ratio found for the other graph classes

nalyzed in this work. 

To address the differences between ψ and λ1 for graphs hav-

ng other m values, we show the average values of ψ and λ1 for

árabasi–Albert scale-free graphs having m = 2 , 3 , 4 , and 5, which

orrespond to the average degrees 4, 6, 8 and 10, respectively, in

ig. 8 (a). Both the viral conductance and the spectral radius in-

rease as the average graph degree increases. Moreover, the ratio

/ λ1 increases with the average degree. Also, we evaluated the
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Fig. 10. (a) Robustness in a set of Internet Backbone graphs from the Internet Topology Zoo. (b) Normalized values of viral conductance ψ and of lower bound ψ LB with 

respect to upper bound ψ UB . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Z function and the fundamental weight w 1 in the I nternet backbone graphs. 

Table 1 

Spectral radius and viral conductance for some realistic 

I nternet backbone networks. 

Network N L E[d] λ1 ψ 

Pern 127 129 2 .0315 5 .6133 1 .3895 

UsCarrier 158 189 2 .3924 2 .9842 1 .2708 

Cogent 197 243 0 .42 3 .7873 1 .4036 
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Pearson’s correlation coefficient between ψ and λ1 for different m

values. Fig. 8 (b) shows a very strong correlation with correlation

values decreasing as m increases. 

7.5. Real-world graphs: I nternet backbones 

In this subsection, we consider a set of realistic networks taken

from the Internet Topology Zoo 3 , a repository containing Internet

network topologies coming from all over the world. Most of the

network data provided by this website have been created from

the information made public by several network operators [44] .

As such, it is the most accurate large-scale collection of network

topologies currently available. Fig. 9 shows two examples of Inter-

net backbones taken from this repository. Routing attacks on an

Internet backbone can affect a large number of hosts, entire net-

works, or even the global Internet. A compromised BGP router, for

example, can modify, drop, or introduce fake BGP updates leading

to blackholing, redirection or instability [45] . 

For this analysis with realistic networks, we considered 236 In-

ternet backbones graphs. The Internet Topology Zoo currently con-

tains more than 250 networks but in our analysis, we did not

consider small topologies with less than 7 nodes. Each network

topology has been converted from a .gml format to an adjacency

matrix in a .mat format using a Python script. In Fig. 10 (a), we

show ψ LB , ψ UB , ψ and λ1 values for the set of Internet back-

bone networks considered. Note that there are networks having

the same number of nodes and hence, for a given network size,

there can be more robustness values. As can be further observed,

most of the networks have a number of nodes ranging from 10

to 75 nodes. We observe again that the lower bound is more ac-

curate than the upper bound. However, differently from the other

graphs types, Fig. 10 (b) shows that the ratio between the viral con-

ductance and the half of spectral radius is more variable, ranging

between 0.4112 and 0.9679. We can further observe that the nor-

malized lower bound for the viral conductance lies around 0.625

on average, with a standard deviation which is higher than in the

other graph classes. Here, there are network topologies with nor-

malized 	LB close to 0 and with a high normalized 	 . Looking

at Fig. 11 , where the Z function and the fundamental weight w 1 

are shown, we note that while the w 1 values are medium high for

these particular network topologies, thus justifying the high cor-

responding values of viral conductance, the corresponding Z val-

ues are small. Higher values for the fundamental weight, in fact,

are representative of network topologies having a high number of
3 http://www.topology-zoo.org/ 

c  

s  

e

nfected nodes due to the high cumulative eigenvector centrality

easured adding the eigenvector centrality of each node. This lead

s to conclude that for these topologies with normalized 	LB close

o 0, the correction factor K min is needed. 

As far as the correlation between ψ and λ1 is concerned, we

ound again a very strong correlation ( ρ = 0 . 8339 ). However, the

orrelation value found is the lowest compared to the other graph

lasses. This means that there may be some cases (with low prob-

bility to occur considering that the correlation is very strong) in

hich epidemic threshold may fail to assess network robustness.

n Fig. 10 (a), we also highlighted some networks that are interest-

ng to analyze. In Table 1 , we summarize their characteristics in

erms of network size, number of links, average degree and robust-

ess values. Comparing Cogent and UsCarrier, for example, both ψ 

nd λ1 consider UsCarrier as the most robust backbone. On the

ontrary, comparing Cogent and Pern, the viral conductance con-

iders Cogent as the most robust, while the spectral radius consid-

rs Pern as the most robust. 

http://www.topology-zoo.org/
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. Conclusions 

This paper has studied the relationship between the viral con-

uctance 	 and the spectral radius λ1 which is the inverse of the

IMFA epidemic threshold τ (1) 
c in networks. Through examples, we

ave described how the two metrics quantify network robustness

ith respect to the spread of SIS epidemics and showed cases in

hich the viral conductance better assesses network robustness.

owever, even if the viral conductance provides more information

bout network’s behavior with respect to the spread of a virus,

e have shown that this more complete information is not always

ecessary. 

For conducting our analysis, we have chosen as target network

raphs those modeling the most widely diffused telecommunica-

ion networks (e.g. complete bipartite graphs for core telecom-

unication networks, Erd ̋os–Rényi random graphs for peer-to-peer

nd ad hoc networks, Watts–Strogatz small-world graphs for mo-

ile contact networks, Bárabasi–Albert scale-free graphs for social

etworks, etc.) and a set of real-world Internet backbones. Our

orrelation analysis, while limited to a set of topologies, revealed

hat in regular graphs, complete bipartite graphs, path graphs,

rd ̋os–Rényi random graphs, Watts–Strogatz small-world graphs,

árabasi–Albert scale-free graphs and Internet backbone graphs

he viral conductance and the spectral radius are highly correlated

hus concluding that 	 is generally close to αλ1 /2 with α close to

 but smaller. Hence, when comparing networks of the same class,

he spectral radius is adequate for comparing network robustness.

he extension of this result proving the high correlation between

he two robustness metrics to other network classes remains an

pen question. For future work, we will explicitly focus on this re-

earch direction. 
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