Chaos ARTICLE

scitation.org/journal/cha

Clustering for epidemics on networks: A

geometric approach

Cite as: Chaos 31, 063115 (2021); doi: 10.1063/5.0048779

Submitted: 26 February 2021 - Accepted: 6 May 2021 -
Published Online: 14 June 2021

® th ®

View Online Export Citation CrossMark

Bastian Prasse,’'® () Karel Devriendt,>"

and Piet Van Mieghem'

AFFILIATIONS

TFaculty of Electrical Engineering, Mathematics and Computer Science, P.O. Box 5031, 2600 GA Delft, The Netherlands
?Mathematical Institute, University of Oxford, OX2 6GG Oxford, United Kingdom

2 Authors to whom correspondence should be addressed: b prasse@tudelft.nl
PEmail: devriendt@maths.ox.ac.uk. Also at: Alan Turing Institute, NW12DB London, United Kingdom.

ABSTRACT

Infectious diseases typically spread over a contact network with millions of individuals, whose sheer size is a tremendous challenge to analyzing
and controlling an epidemic outbreak. For some contact networks, it is possible to group individuals into clusters. A high-level description of
the epidemic between a few clusters is considerably simpler than on an individual level. However, to cluster individuals, most studies rely on
equitable partitions, a rather restrictive structural property of the contact network. In this work, we focus on Susceptible-Infected-Susceptible
(SIS) epidemics, and our contribution is threefold. First, we propose a geometric approach to specify all networks for which an epidemic
outbreak simplifies to the interaction of only a few clusters. Second, for the complete graph and any initial viral state vectors, we derive
the closed-form solution of the nonlinear differential equations of the N-intertwined mean-field approximation of the SIS process. Third,
by relaxing the notion of equitable partitions, we derive low-complexity approximations and bounds for epidemics on arbitrary contact
networks. Our results are an important step toward understanding and controlling epidemics on large networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048779

An infectious disease spreads from one individual to another
only if the two individuals are in contact, e.g., by being closer
than 1.5m. The specification of all contacts between individu-
als in a population results in the contact network: every indi-
vidual corresponds to a node, and there is a link between two
nodes if the respective individuals are in contact. Since most
infectious diseases spread among large populations, the contact
network is often of tremendous size, which results in challeng-
ing, large-scale epidemic models. To reduce the complexity of
such individual-based epidemic models, a common approach is
to describe the epidemic, at least approximately, between groups
(clusters) of individuals. However, only a few types of contact
networks are known to admit a grouping of individuals that
yields an accurate, low-complexity description of the epidemic.
In this work, we focus on Susceptible-Infected-Susceptible
(SIS) epidemics and determine all types of contact networks
that admit an exact grouping of individuals. Furthermore, for
any contact network, we derive low-complexity approximations
and bounds of the SIS epidemic model based on grouping
individuals.

. INTRODUCTION

Modern epidemiology encompasses a broad range of spreading
phenomena.”>*"*> The majority of viruses spread through a popula-
tion of tremendous size, which renders individual-based modeling
impractical. However, most applications do not require to model
an epidemic on an individual level. Instead, a mesoscale descrip-
tion of the epidemic often is sufficient. For instance, suppose the
outbreak of a virus is modeled on the level of neighborhoods.
Then, sophisticated lockdown measures can be deployed which con-
strain neighborhoods differently, depending on the prevalence of the
virus in the respective neighborhood. The natural way to obtain a
mesoscale description of the epidemic is clustering (or grouping) of
individuals, for instance, by assigning individuals with similar age or
location to the same cluster. Thus, all individuals in one cluster are
considered indistinguishable and exchangeable. Additionally to the
complexity reduction, clustering for epidemics on networks has the
advantage that, on a mesoscale description, temporal fluctuations of
the individual-based contact network may average out.

We consider a contact network with N nodes. Every node
i=1,...,N corresponds to an individual or a group of individuals.
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We focus on the Susceptible-Infected—Susceptible (SIS) epidemic
process in an individual-based mean-field approximation, where
every node i has a viral state v;(¢) € [0, 1] at every time ¢. The evo-
lution of the viral state v;(f) is governed by a set of N nonlinear
differential equations:

Definition 1 (NIMFA, Refs. 25, 60, and 54). For every node
i, the viral state v;(t) evolves in continuous time t > 0 as

dvi(D) al
= o)+ (=) D B (), 1)

j=1

where 8; > 0 is the curing rate of node i, and By > 0 is the infection
rate from nodej to i.

If the nodes correspond to individuals, then the differen-
tial equation (1) follows from a mean-field approximation of the
stochastic SIS process,”*’ and the viral state v;(¢) approximates the
expected value E[X;(#)] of the zero-one state X;(f) of the stochas-
tic SIS process. For a zero-one, or Bernoulli, random variable,
expectation E[X;(f)] is equal to the probability Pr[X;(f) = 1] that
node i is infected at time t. In the remainder of this work, we
refer to (1) as NIMFA, which stands for “N-Intertwined Mean-
Field Approximation.””*" The advantage of NIMFA is that the
SIS Markov chain with 2N states is approximated by N nonlin-
ear differential equations. NIMFA follows from the SIS process
by the approximation E[X;(1)X;(t)] ~ E[X;(#)] E[X;(#)]. Around the
epidemic threshold, the approximation of the stochastic SIS pro-
cess by NIMFA might be inaccurate.”” Furthermore, we stress that
NIMFA (1) assumes that the viral dynamics are Markovian and
that the infection rates ;; do not depend on time ¢. Markovian and
non-Markovian viral dynamics can be substantially different.”

On the other hand, nodes can be interpreted as groups of
individuals.”**>** Then, the viral state v;(t) € [0, 1] is the fraction of
infected individuals in node i. For group-based epidemic models, the
infection rates B;; are determined by the mobility flow, or diffusion
of individuals, between group i and j. For more details on metapop-
ulation models, we refer the reader to Refs. 8, 9, and 23 and Sec. IX
of Ref. 35. The results of this work apply to NIMFA (1) for both an
individual-based and a metapopulation setting.

The contact network, assumed to be fixed and time-invariant,
corresponds to the N x N infection rate matrix B, which is com-
posed of the elements 8;;. We denote by diag(x) the N x N diagonal
matrix with the vector components of x € RY on its diagonal. We
denote the N x N curing rate matrix S = diag(é;, . . ., dy). Then, the
matrix representation of NIMFA (1) is

dg? = —Su(t) + diag (u — v(D)) Bu(®), @)

where v(t) = (v,(§), . .., vx())7 is the viral state vector at time ¢, and
u is the N x 1 all-one vector. Homogeneous NIMFA® assumes the
same infection rate B and curing rate § for all nodes,

dv(t)
dt

= —év(t) + Bdiag (u — v(1)) Av(1), 3)

where A is an N x N zero-one adjacency matrix.
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For NIMFA (1), the basic reproduction number R, follows’” as
Ry = p(S7'B), 4)

where p(M) denotes the spectral radius of a square matrix
M. Around the epidemic threshold condition Ry =1, there is a
bifurcation.” If Ry < 1, then the all-healthy state, v;(f) = 0 for all
nodes i, is the only equilibrium of NIMFA (2), and it holds that
v(t) = 0 as t — oo. If Ry > 1, then there is a second equilibrium,
the steady-state vector vy, with positive components, and it holds
that v(f) — v as t — 00, if ¥(0) # 0. For homogeneous NIMFA
(3), the condition Ry > 1 reduces to T > t, with the effective infec-
tion rate T = /8 and the epidemic threshold 7, = 1/p(A), where
p(A) denotes the spectral radius of the adjacency matrix A.

The contact network, given by matrix B, has a significant
impact on the virus spread.””’"** First, the structure of the contact
network has an influence on the basic reproduction number R,. For
instance, for homogeneous NIMFA (3) on scale-free networks, the
epidemic threshold 7, = 1/p(A) converges to zero™ as the number
of nodes N — oo. Hence, there is always a non-zero steady state v,
for sufficiently large scale-free networks, regardless of the effective
infection rate 7. Second, the contact network determines the steady
state v,; of every node i. In particular, the steady-state vector v
can be expressed as a power series'>'>" in terms of the eigenvectors
of the infection rate matrix B. Third, some contact networks give
rise to disease localization, "' which means that the spread of
the epidemic is restricted to parts of the networks when the basic
reproduction Ry is just above 1.

Many papers deal with clustering of individuals into
communities,””* where individuals within the same community are
densely connected, and there are only a few links between individ-
uals of different communities. Hence, communities are defined by
structural properties of the contact graph. Most results are of the
type: if the network has a certain mesoscale structure, then also

the dynamics have some structure.>** In this work, we approach
clustering from the other direction: we presume structure in the
dynamics and aim to find all contact networks that are compatible
with the structured dynamics. More specifically, we are interested
in reducing the NIMFA dynamics (3) to only a few differential
equations. Hence, our results provide a framework to tame the
complexity of epidemics on large contact networks.

The central analysis tool in our analysis is the proper orthogo-
nal decomposition (POD)° of the N x 1 viral state vector v(t), which
is given by

m
v(t) = aldy (5)
=1
for some m < N. Here, the N x 1 agitation mode vectors y1,. .., Vm

are orthonormal (a set of vectors yy,..., ¥, is orthonormal if y!
¥ =0 for I # k and y]y, =1 for | = k), and the scalar functions
(b)) = lev(t) are obtained by projecting the viral state v(f) onto the
vector y;. Since any N x 1 vector v(f) can be written as the linear
combination of N orthonormal vectors, POD (5) is exact for any net-
work if m = N. However, we are particularly interested in networks,
for which the number of agitation modes m is (much) smaller than
the number of nodes N. If (5) holds true, then the viral state vector
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v(t) is the element of the m dimensional subspace

VY =span{y,...,¥Ym} (6)

at any time t, where the span (the set of all linear combinations) of
the vectors y, . . ., y, is denoted by

span {yl,...,ym} = {qu;‘cz S R} .

=1

With POD (5), the viral state v(f) can be described with less than
N differential equations: denote the right side of the NIMFA (2) by
fuvea (v(1) € RY. Then, NIMFA (2) reads more compactly

d
:;(:) = famra (V(D)) . (7)

With POD (5), we obtain that

m

d m
Z %}’1 = fuimra (Z Cz(l‘))’l> . (8)

=1 =1
Since the vectors y, . . ., , are orthonormal, we can project (8) onto
the agitation modes y; to obtain the differential equations

d : N
C;(tt) =y farvea (Z Cl(t))’l) » I=L....m. ©)

=1

Hence, POD (5) reduces the number of differential equations from
the number of nodes N to the number of agitation modes m. We
emphasize that POD (5) is a hybrid of linear and nonlinear analy-
sis: the viral state v(f) equals a linear combination of the agitation
modes y;, which are weighted by possibly nonlinear functions ¢;(#).
In Ref. 41, we have shown that POD (5) is an accurate approximation
for a diverse class of dynamics on networks. In this work, we study
under which conditions POD (5) is exact for the NIMFA epidemic
model (2).

Example 1. Consider homogeneous NIMFA (3) on the path
graph in Fig. 1(a), for which the viral state vector v(t) evolves as
dvi ()
i —vi(H) + B (1 —vi()) v2(D),
dvy(t
20 < 500+ B - ) @+ @), (10
dvs(t
B s+ B (= (1) (0

Suppose that the initial viral states of nodes 1 and 3 are equal,
v1(0) = v3(0). Then, it holds that v,(t) = v5(t) at all times t due to
the symmetry of the path graph. Hence, the viral state vector v(t)
= (v (1), v2(D), v3 ()T satisfies

v(t) = ci(Oyr + 2 (Dys, (11)
where the orthonormal vectors y, and y, are given by
1 1 0
=— o], =[1]. 12
N ﬁ . )2 0 (12)

As illustrated by Fig. 1(b), the viral state v(t) remains in the m = 2
dimensional subspace V = span{y,, y,} at all times t, provided that

scitation.org/journal/cha

V2 =€

v(0)

v(t)

V1
€3

(@ (b)

FIG. 1. Proper orthogonal decomposition for a path graph. (a) A path graph with
N = 3 nodes. The top, middle, and bottom nodes are labeled by 1, 2, and 3,
respectively. (b) The black curve depicts the trajectory of the viral state v(t) in
the Euclidean space R®. The shaded area illustrates the viral state set 1, which
equals the span of the vectors y; and y,, given by (12). Provided that v(0) € V,
the viral state v(f) remains in the subspace V at every time t.

v(0) € V. On the subspace V, (9) yields that the N = 3 differential
equation (10) reduces to m = 2 equations

d 1
ij — —5ci(H) + V2B (1 - Eﬁ(ﬂ) & (),
dcfzit) = —86,(D) +2v2B (1 — & (D) 1 (D),

from which the viral state v(t) is obtained with (11).

Two conditions must hold for the set V to reduce NIMFA to
m differential equations. First, the set VV must be an m-dimensional
subspace, spanned by the basis vectors yi, . .., y,,. Second, if the ini-
tial viral state v(0) is the element of set V), then the viral state v(f)
must remain in the set )V at every time ¢t > 0. Hence, set V must be an
invariant set of NIMFA. Thus, we consider the geometric problem
as follows:

Problem 1 (Clustering in NIMFA). For a given number of
nodes N and a given number m < N of agitation modes, find all
N x N infection rate matrices B and the corresponding N x 1 agita-
tion modes yy, . . ., Ym, such thatV = span{y,, ..., y,,} is an invariant
set of NIMFA (2).

In contrast to Example 1, for which the agitation modes y,
and y, follow rather straightforwardly, Problem 1 considers the
interdependency of arbitrary graphs and invariant sets V in full
generality.

If m < N, then we expect that the invariant set V), and its basis
vectors y;, reflect a macroscopic structure, or a clustering, of the
contact graph. For instance, the agitation mode y; in Example 1 indi-
cates that the viral states v, () and v;(t) evolve equally and nodes 1
and 3 can be assigned to the same cluster.
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Furthermore, the invariant set )V allows for sophisticated, low-
complexity control methods for the viral state v(f) (see Ref. 31 for a
survey of control methods). More specifically, consider that an affine
control method is applied to NIMFA (7),

d m
% = fanvra (V(1)) + Zgz(t)yz- (13)

=1

Here, the scalar function g(f) is the control of the Ith agitation mode
y.. If the subspace V = span{yy, . .., ¥,,} is an invariant set of NIMFA
(2), then V is also an invariant set of (13). Hence, on the subspace
V, the viral state v(¢) can be controlled with only m distinct con-
trol inputs g (¢), . . ., g (?). If the agitation mode y; corresponds to a
group of nodes, such as in Example 1, then the control g() is applied
to all nodes of that group. For instance, g;(¢) could be the viral state
control of individuals of a certain age group and location.

Il. RELATED WORK

Clustering in NIMFA is closely related to equitable
partitions.”>">* We denote a general partition of the node set
N ={1,...,N} by [slightly deviating from common notation, we
also refer to 7 as an (equitable) partition of the infection rate matrix
B] m = {M,,...,N,}. Here, the cells N},..., N, are disjoint sub-
sets of the node set V, such that ' = A U -+ - U N,. We adapt the
definition of equitable partitions in Refs. 29 and 33 as follows:

Definition 2 (Equitable partition). Consider a symmetric
N x N infection rate matrix B and a partition 7 = {N,,...,N;} of
the node set N = {1,...,N}. The partition  is equitable if, for all
cellsl,p=1,...,r, the infection rates By satisfy

Y Bi=> Bk VijeN,.

keN; keN;

For an equitable partition 7, we define the degree from cell \V;
to cell V, as

dy = Z Bik (14)

keN;

for some node i € V,,. Definition 2 states that, for an equitable par-
tition 7, the sum of the infection rates (14) is the same for all nodes
i € N,. We denote the r x r quotient matrix by B”, whose elements
are defined as (B™),; = dy. Furthermore, we define the r x 1 all-one
vector u, = (1,..., l)T.

As shown by Bonaccorsi et al.” and Ottaviano et al.,” NIMFA
(2) can be reduced to r differential equations, provided that the
infection rate matrix B has an equitable partition 7 with r cells. For
our work, we summarize the results in Refs. 5 and 33 as follows:

Theorem 1 (Refs. 5 and 33). Consider NIMFA (2) on an
N x N infection rate matrix B with an equitable partition
= {N,..., V). Assume that §; = §; and v;(0) = v;(0) for all nodes
i,j in the same cell N. Then, it holds that v;(t) = v;(t) at every time
t > 0 for all nodes i,j € Nyand alll = 1,...,r. Furthermore, define

the r x 1 reduced-size viral state vector v™ (t) = (v,-l(t), ces vi,(t))T

scitation.org/journal/cha

and the r X r reduced-size curing rate matrix
STr = dlag (8,—1,...,8,-r), (15)

where i) denotes an arbitrary node in the cell N. Then, the reduced-
size viral state vector v (t) evolves as

dv;(t) = =SV (1) + diag (u, — V' () BV (). (16)

Remarkably, on both microscopic (2) and macroscopic (16)
resolutions, the viral dynamics follow the same class of governing
equations. For the Markovian Susceptible-Infectious—Susceptible
(SIS) process, Simon et al."’ proposed a lumping approach to
reduce the complexity, which is an approximation and merges
states of the SIS Markov chain (also see the work of Ward et
al®"). In Ref. 11, a generalized mean-field framework for Marko-
vian SIS epidemics has been proposed, which includes NIMFA as
a special case. Beyond epidemics, analogous results to Theorem
1 have been proved for a diverse set of dynamics on networks
with equitable partitions.'>'**>">*> [Specifically we believe that

Theorem 1 can be generalized to the dynamics % = —§;v;(t) +

Zjlil Big(vi(t), vj(t)), where the arbitrary function g(v;(t),v;(t))
describes the “coupling”*>*""! between node i and j.] As a direct
consequence of Theorem 1, equitable partitions are related to the
proper orthogonal decomposition (5) as follows:

Corollary 1. Consider NIMFA (2) on an N x N infection rate
matrix B with an equitable partition mt = {N), ..., N,}. Assume that
8; = 8; and v;(0) = v;(0) for all nodes i, j in the same cell N;. Then, the
subspace V = span{yi, ..., Yy} with m = r is an invariant set, where
the N x 1 agitation modes y, are given by

1 i
<yl>}={m e
S (¢ ifi g N,

and the scalar functions equal ¢;(t) = /INJIV] (£).

In other words, Corollary 1 states that every equitable partition
7 yields an invariant set V, whose dimension equals the number
of cells r in the partition . Example 2 illustrates Theorem 1 and
Corollary 1 as follows:

Example 2. Consider NIMFA on a graph with N = 6 nodes,

whose curing rate matrix equals S = diag (51,51,51,52,52,53) for

some curing rates 8,,8,,85. Furthermore, suppose that the infection
rate matrix B is symmetric and given by the graph in Fig. 2 as

Bu 0 O 0 Bis Bis

0 0 Bu Pu B P

B— 0 Bz 0 By 0 PBss
0 Bu Bz 0 PBss O
Bis Bs 0 Bss 0 0
Bis B B 0 0 0

Suppose that, for some degrees dy > 0, the infection rates B sat-
isfy: Bt = Bz = dit; Pis = Pas = dia and Pos = Pos = di2/2; Pis

= Bas = Pss = di3; and Bys = dy,. Then, the infection rate matrix B
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becomes

dll 0 0 0 d12 d13
0 0 dn dip/2 dip/2 dis
0 d11 0 d12 0 d13
0 dip/2 dp 0 dy 0

d12 dlz/z 0 d22 0 0

d13 d13 d13 0 0 0

B = (17)

Thus, matrix B has the equitable partition m = {N}, Ny, N3} with the
cells N1 = {1,2,3}, N, = {4,5} and N; = {6}. The quotient matrix
equals

dyn dip dis
B"=\|d, dn 0
ds 0 0

For the partition w, the reduced-size viral state can be chosen
[but, for instance, v" (t) = (v (D), vs (), ve (D)) is possible as well] as
V() = (i (), va(D), v6())T. Theorem 1 states that the vector v (£)
= (11 (1), v4 (1), vs(D) T evolves as

dv;t(t) = =SV (1) + diag (us — v (1)) BV (1),

with the 3 x 3 reduced-size curing rate matrix S* = diag (Sl, Sz, 33).

Furthermore, Corollary 1 states that the viral state v(t) has the proper
orthogonal decomposition

v(t) = V3V (1 +V2v; (O + v )y,
with the agitation modes

y=-—=@01 110 0 0,

Sl

1

y=—(0©0 0 0 1 1 0),

S

y=(0 0 0 0 0 1)

. EXACT CLUSTERING

Theorem 1 and Corollary 1 only give an incomplete answer to
Problem 1I: if the infection rate matrix B has an equitable partition
7, then there exists an invariant set V. But are there invariant sets V,
even if matrix B does not have an equitable partition 7?

We denote the orthogonal complement of the viral state set }V by

V= {we RNIWTV=0, Vv e V}.
The dimension of the set V equals m. Thus, the dimension of the

orthogonal complement V! equals N — m. Since the orthogonal
complement V* is a subspace, there is a set of N — m orthonormal

scitation.org/journal/cha

FIG. 2. Graph with a partition of the node set. A graph with N =6 nodes
and the partition 7 = {3, N2, N3}, whose cells are given by N; = {1,2,3},
N, = {4,5}, and A3 = {6}. For unit link weights, i.e., B; = 1 for all nodes i, j,
the partition 7 is not equitable. If the link weights g; satisfy (23), as in Example
2, then the partition 7 is equitable.

basis vectors y,,11, . . ., ¥y such that

yt= span{ymi1>- - > YN} (18)

The direct sum of two subspaces S, S, € RN is defined as the
subspace

S ® S, ={s1 +s:051 € Si,5, € 53} (19)

Thus, the Euclidean space is the direct sum RN =V @ V* of the two
subspaces V, V.

We rely on four assumptions to solve Problem 1.

Assumption 1. For every viral state v € V, we require that
diag (8;,...,8n) v € V.

Suppose that the curing rates are homogeneous, i.e., §;
=4 for all nodes i. Then, Assumption 1 is satisfied since
diag (8;,...,8y) v =08v € V for every viral state v € V. More gen-
erally, Assumption 1 states that the viral state set V is an invari-
ant subspace of the curing rate matrix diag (8;, .. .,8y). Intuitively
speaking, the curing rates §;,. ..,y are “set in accordance to” the
clustering given by the viral state set V, such as in Example 2.

Assumption 2. There is a viral state v € V whose entries
satisfy v; > 0 for every nodei=1,...,N.

If Ry > 1 and matrix B is irreducible, then® there is a unique
steady state v, with positive components v..; > 0. Since every viral
state v converges to the steady state v, the steady state v, is the ele-
ment of the invariant set V. Hence, Assumption 2 is always satisfied
if Ry > 1, provided matrix B is irreducible.

Assumption 3.  The curing rates are positive and the infection
rates are non-negative, i.e., §; > 0 and Bi = 0 for all nodes i, j.

Assumption 3 is rather technical since only non-negative cur-
ing rates and infection rates have a physical meaning.

Assumption 4. The infection rate matrix B is symmetric and
irreducible.

Assumption 4 holds if and only if the infection rate matrix B
corresponds to a connected undirected graph.”” Under Assumption
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4, matrix B is diagonalizable’ as
B =XxAXx". (20)

Here, we denote the N x N diagonal matrix A = diag(4,...,Axn)
whose diagonal entries are given by the real eigenvalues A; > A, >
.-+ > Ay, and the columns of the N x N matrix X = (xy,...,xy) are
given by the corresponding eigenvectors x;.

Lemma 1 states that the invariant set V' and the orthogonal
complement V* are spanned by eigenvectors of the infection rate
matrix B as follows:

Lemma 1. Suppose that Assumptions 1 and 4 hold, and con-
sider an invariant set V = span{y,,...,yn} of NIMFA (2) and
the orthogonal complement V& = span{y,41,...,yn}. Then, there
is some permutation ¢, ie., a bijective mapping from the node
set {1,...,N} to itself, such that V = span{xs),...,Xsm} and
V= span{xsonin) - - > Xpan ) Where xpays ..., Xpn denotes an
orthonormal set of eigenvectors of the infection rate matrix B to the
eigenvalues Aoy, - - . > Apav-

Proof. Appendix A. O

We denote the span of the vectors x,; of the subspace
V, which correspond to a non-zero eigenvalue Ay # 0 as Vo

= span {x¢(l) ‘l =1,...,mAsp # 0]. Let the number of non-zero

eigenvalues be denoted by m;. Without loss of generality, we
assume that, after the permutation ¢, the first m; eigenvalues
Ap(1)s - - - » Ap(my) are non-zero. Hence, the subspace V., equals

V.o = span {xw)’l: 1,...,m1}. 21

Analogously to (21), we define the span of the vectors x,, of the
subspace V, which correspond to a zero eigenvalue A4 = 0 as

VQ = Span {X¢(1)‘l =1,... ,m,)\.¢(1) = 0}

=span{x¢(l)’l=m1+1,...,m].

Thus, the subspace V is equal to the direct sum
V=V, & W. (22)

We emphasize that span {yl, . ,ym} = span {x¢(1), ... ,x¢(m)} does
not imply that y; = x4 for some k, l. An immediate consequence
of Lemma 1 is that the infection rate matrix B can be decomposed as
follows:

Lemma 2. Suppose that Assumptions 1 and 4 hold, and con-
sider an invariant set V = span{yi, ..., ¥} of NIMFA (2) and the
orthogonal complement V* = span{y,u41,...,yn}. Then, the infec-
tion rate matrix B is decomposable as B = By, + By,1, where

"
By = (n ym)By |
T
and
)’rTnH
By = (Ymni yN)Byo |
N

ARTICLE scitation.org/journal/cha

for some m x m matrix By and (N — m) x (N — m) matrix BVL.
Proof. Appendix B. ]
Lemma 2 shows that the sets VV and V* are invariant subspaces
of matrix B. In particular, the viral state dynamics on the invariant
set ) are the same for all infection rate matrices BV, B® with the
same submatrix BS) = Bg) but different submatrices Bg)L #* Bg)l
Example 3.  Suppose that Assumptions 1 and 4 hold. For some
degrees dyy,dys, dyy and some scalar &, consider the infection rate
matrix
du+& du—-§ dp
B=| du—§ duté di
diz diz dx

Thus, matrix B has the equitable partition © = {N},N,}, where
Ny = {1,2} and N, = (3}, and the scalar § specifies the difference
of the infection rate B1, = dy1 — & between nodes 1 and 2 and the
self-infection rates 11 = B = di1 + €. The quotient matrix is given

by
7T dll dlZ
B" = .
(dn dzz)

Corollary 1 states that the subspace V = span{yi,y,} is an invari-
ant set of NIMFA (2), where the agitation modes are equal to y,
= %(1, 1,0)" and y, = (0,0,1)". The orthogonal complement fol-
lows as V* = span{y;}, where y; = %(1,—1,0)7“. Furthermore,

Lemma 2 states that the infection rate matrix can be decomposed as
B = By, + By,1, where

) dll dll d12

2dy, «/Zd12> (le
By = =\|dy dy d
oo (G, )0 (o e
and
& —§£ 0
BVLZZS}/_@}/;: £ &£ 0
0 0 0

The eigenvectors Xy, Xp(2) are equal to a linear combination of the
agitation modes yy, y», and the third eigenvector equals x4y = y3.

Theorem 2 states our main result as follows:

Theorem 2. Suppose that Assumptions 1-4 hold. Then, any
invariant set )V = span {yl, . ,ym} of NIMFA (2) is equal to
the direct sum V = V4 @ Vy of two subspaces V.o,V,. Here, the
orthonormal basis vectors yi,. . ., Ym,, where my < m, of the subspace
Vo = span {y1,...,ym, } are given by

oy, = | TN 23)
"o ifig N

for some equitable partition w = {Ny,...,Nyu | of the infection
rate matrix B. If m; = m, then the subspace V, is empty. Other-

wise, if m; < m, then V, = span {xw)‘l =m+1,... ,m}for some

eigenvectors x4 of the infection rate matrix B belonging to the
eigenvalue 0.
Proof. Appendix C. g
The Euclidean space RY is always an invariant set of NIMFA.
For V = RY and V, = ¥, the equitable partition 7 in Theorem 2
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becomes trivial, i.e, m = {N),..., Ny} with exactly one node in
every cell Nj. On the other hand, if there is an invariant set V
of dimension m < N, then Theorem 2 implies that matrix B is
equitable with m; < m cells.

IfVy = ¥, then Theorem 2 essentially reverts Corollary 1. Thus,
every equitable partition 7 corresponds to an invariant set Vy, and
vice versa. In other words, the macroscopic structure of equitable par-
titions v and the low-rank dynamics of invariant sets V' are two sides
of the same coin. If Vy = @, then the dynamics on the invariant set
V =V, are given by the reduced-size NIMFA system (16) with
m = m; equations.

If V # 0, then Theorem 2 is more general than the inversion
of Corollary 1. Theorem 2 states that the invariant set of NIMFA
is equal to the direct sum V = V. @ V), where the subspace V.,
corresponds to an equitable partition 7 of the infection rate matrix,
and the subspace V) is a subset of the kernel of matrix B. If V, # ¢,
then the dynamics on the invariant set V = Vo @ V), are described
by the m > m; differential equation (9).

The curing rates §; satisfy Assumption 1 if there are some
scalars 8, . . ., Sml such that §; = §; for all nodes i in cell A}, where
I=1,...,m. However, Assumption 1 allows for more general cur-
ing rates. With Lemma 2 and Theorem 2, the infection rate matrix B
can be constructed from specifying the agitation modes y;, such that
V = span{y;,...,Yn} is an invariant set of NIMFA (2):

Example 4. Consider NIMFA (2) on a network of N=15
nodes and the subspaces V4 = span{yi,y,}, Vo = span{ys}, where
the agitation modes equal

111 0 0,

-2 1 0 0).

Furthermore, let ys,ys be two vectors, with ylys =0 and yly,
= ylys = 1, which are orthogonal to the agitation modes y1, 3, ys.
With Lemma 2, define the infection rate matrix as
T T
4

1= 8 ()b ()

where the symmetric 2 x 2 matrices By, 02 By are chosen such that
matrix B is irreducible and contains only non-negative elements. Fur-
thermore, consider the curing rate matrix S = diag(51,52,51,53,53)
for some curing rates 51,52,53 > 0. Then, Assumptions 1-4 are sat-
isfied, and Theorem 2 states that the subspace V = V. @V, is an
invariant set of NIMFA (2). (An alternative choice for the curing
rate matrix is S = diag(gl, 81,81,82,8,), which also satisfies Assump-
tion 1.)

In Ref. 42, we derived the solution of NIMFA model (2)
around the epidemic threshold Ry = 1. More precisely, under mild
assumptions, we derived the approximation v, (t) = c(f)ve with
an explicit, closed-form expression for the scalar function c(f). If
the initial viral state satisfies [|[v(0)]l, < & (R, — 1)* for some con-
stant & as Ry | 1, then it holds that [[v(f) — vepx (D)2 < 0 (Ry — 1)?

ARTICLE
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17(0)- ]
\

\\_//radius < 6(Ry — 1)?

FIG. 3. Viral dynamics around the epidemic threshold Ry = 1. An illustration of
the uniform convergence results in Theorem 3 of Ref. 42 for a network with N = 2
nodes. The black curve shows the trajectory of the 2 x 1 viral state vector v(f)
as time t evolves. The blue line shows the steady state v,,. The red curve depicts
the trajectory closed-form approximation Vap () = c(t)V.o, Which is in the sub-
space span{v.,} at every time {. If the initial viral state v(0) is positive and in
the disk of radius & (Ry — 1) for some constant &, then the approximation error
lv(t) — Vapx (D) || is bounded by o (Ry — 1)2 for some constant o at every time ¢
asRy | 1.

at every time f for some constant o as R, | 1. Hence, the viral state
v(t) converges to the approximation v, () uniformly in time ¢
Remarkably, since vypy = c()Voo, the viral state v(¢) lies in the one-
dimensional subspace V = span{v.,} when Ry | 1, for an arbitrarily
large and heterogeneous contact network. Figure 3 illustrates the
uniform convergence result in [Theorem 3 in Ref. 42].

As illustrated by Fig. 3, the viral state v(f) converges to the one-
dimensional dynamics v, () as Ry | 1. Are there networks for which
the approximation vy (t) is exact, for any basic reproduction number
Ry > 1? The infection rate matrix B is regular if

N N
Y Bi=Y B (24)
k=1 k=1

for all nodes i, j. From Theorem 2, we obtain the following:

Corollary 2. Suppose that Assumptions 1-4 hold and con-
sider that Ry > 1. Then, there is an m = 1 dimensional invariant
set V = span{y;} of NIMFA (2) if and only if Vy = @, the agita-
tion mode equals either y1 = Voo/||[Vooll2 07 y1 = —Vo/ Voo ll2 and
the infection rate matrix B is regular. Furthermore, the approxima-
tion vapx(t) = c(t)Voo is exact if and only if matrix B is regular and
v(0) = c(0)vs for some scalar c(0).

Proof. Appendix D. d

A. Decomposition of the viral dynamics

Suppose the infection rate matrix B has an equitable partition
7 and the infection rates Bij are the same between all nodes i, in
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any two cells (if matrix B is decomposable as B = By, + By,1 as in
Lemma 2, then the infection rates Bjj are the same between all nodes
i,j in any two cells if and only if By,1 = 0). Then, we can decompose
the dynamics of the viral state v(f) as follows:

Theorem 3. Consider NIMFA (2) on a symmetric N x N
infection rate matrix B with an equitable partitiont = {Ny,..., N,}.
Furthermore, suppose that the curing rates §; are the same for all
nodes i in any cell N, and that the infection rates B are the same for
all nodes i in any cell N and all nodes j in any cell N,. Denote the sub-
space Vo = span{yy, ..., y.}, with the basis vectors y; defined in (23),
and denote the kernel of matrix B by ker(B) = span{y,;1,. .., yn}. At
every time t > 0, consider the viral state decomposition

v(t) = 1~’(t) + Vier (8),

where the projection of the viral state v(t) on the subspace Vo equals

Wt =y (ve)m
=1

and the projection of the viral state v(t) on the kernel ker(B) equals

N
Vker(t) = Z ()/ZTV(t)) Y
l=r+1
Furthermore, denote the rx 1 reduced-size projection V" (t)
= ®,..., T/Z(t))T, where i denotes an arbitrary node in cell .
Then, the reduced-size projection V" (t) evolves, independently of the
projection Vi (1), as

di: D — 57 () + ding (w - 7 0) BT (0, (25)

with the quotient matrix B™ and matrix S” given by (15), and the
projection vy, (t) obeys

dvl;;(t) = — (S + diag (B¥(®)) vier (). (26)
Proof. Appendix E. O

In Theorem 3, the set V, is equal to the kernel ker(B), which
is equivalent to V* = {J and assuming the same infection rates B;
between all nodes i,j in any two cells. In contrast to Theorem 1,
we do not consider that the initial state satisfies v;(0) = v;(0) for all
nodes i,j in the same cell V.

With the definition of the agitation mode y; in (23), the viral
state average in cell \V; follows from the projection of the viral state
v(t) on the vector y; as

1 1,

—_— Vi(t) = ——=y; v(t

|M|,-GZN, () = —=myiv(®
foreverycelll = 1, ..., r. Furthermore, the subspace V., is spanned
by the vectors y;,..., y,. Hence, the dynamics of the projection ¥(f)
on the subspace V., describes the evolution of viral state averages
of every cell AV}, which is described by r differential equation (25)
on the quotient graph B”. Since the steady state v.,; of every node
i in the same cell AV is the same,”” it holds that vs € V., which
implies that vy (t) — 0 as t — oo. Furthermore, from Theorem 1,
it follows that, if ¥,(0) = 0, then v, (f) = 0 at every time t. Thus,

scitation.org/journal/cha

the evolution of the projection v, (f) describes the convergence of
the viral states v;(f) to the respective cell-averages. By (25), Theorem
3 implies that the viral state cell-averages evolve independently of the
dynamics on the kernel ker(B). Schaub et al.”” obtained an analogous
result for linear dynamics on networks.

If we can derive the closed-form expression for the projection
¥(t) by solving (25), then the dynamics vi.(¢) follow by the lin-

ear time-varying system (26). Furthermore, the reduced-size steady
state v, = (V3 ,..., Vgo,ir)T is an equilibrium of (25). Thus, if
V() = Vo0, then the dynamics of the projection vy, (f) obey the linear

time-invariant (LTI) system

deer(t) _
a

(S + diag (Bvao) ) ier (1).

Thus, the affine subspace {vw + vke,‘vke, € ker(B)} is an invariant
set of NIMFA, on which the viral dynamics are linear.

Loosely speaking, Theorem 3 shows that a crucial challenge for
solving NIMFA on graphs with equitable partitions is the dynam-
ics of the projection ¥(f), since solving the set of nonlinear Eq. (25)
seems more difficult than solving the linear time-varying system
(26) for a given ¥(f). For a complete graph, the solution () to set
of nonlinear equation (25) is one-dimensional and can be stated in
the closed form.”” Thus, we obtain the solution of NIMFA on the
complete graph, for arbitrary initial viral states v(0), as follows:

Theorem 4. Consider NIMFA (2) on the complete graph,
whose infection rates equal Bi; = B > 0 for all nodes i,j=1,...,N.
Suppose the curing rates satisfy 8; = & for all nodes i. Then, for any
initial viral state v(0) € [0, 1], the solution of NIMFA (2) equals

v(t) = Oy + 2 (D Vier (0),

with the agitation mode y, = u/\/ﬁ, and the N x 1 vector vie(0)
given by

Vier(0) = (I = y1y7) v(0).
The functions ¢, (t) and c,(t) follow explicitly as:

1. If§ # BN, then the scalar function c,(t) equals

o) = zﬂ%\] (1 + tanh (gt e (0))) . @

with the viral slope w = BN — § and the constant
N
Y,;(0) = arctanh (ZM)/ITV(O) — 1) ,
w

and the scalar function c,(t) equals
6 () = Y2(0)e™* sech (gt +M (0)) , (28)

with the constants ® = w/2 + § and

v, (0)v(0)

T,(0) =
0= on

cosh (1,(0)). (29)

Chaos 31, 063115 (2021); doi: 10.1063/5.0048779
Published under an exclusive license by AIP Publishing.

31,063115-8


https://aip.scitation.org/journal/cha

Chaos ARTICLE

2. If§ = BN, then the scalar function ¢, (t) equals
AN
yiv(0)

a() =N <5t + (30)
and the scalar function c,(t) obeys

BN

N )

_AF —8t
Cz(t) = TZ(O)e (5t + y{v(o)

where the constant Y, (0) is given by

BN
vE (Ow©) [ VN \°
e O3 \yTv(0) ]

Proof. Appendix F. O
Figure 4 illustrates the closed-form solution of NIMFA for
complete graphs, as given by Theorem 4. In Figs. 4(a) and 4(b),
even though the viral state average v(f) is monotonically increas-
ing, the viral state v, (f) = ¥ (f) + Vker,1 () is decreasing until ¢t = 1,

T,(0) =

Viral State

Viral State

scitation.org/journal/cha

which is due to the dynamics of the projection v, (¢) on the kernel
ker(B).

Theorem 4 implies that Conjecture 1 in Ref. 42 is wrong. More
specifically, Theorem 4 shows that, at least for the complete graph
and general initial states v(0), the viral state v(f) does not converge
to the approximation Vapx (2) with respect to the L,-norm as R, |, 1.
[In Fig. 3, the initial viral state v(0) was not general, since [|v(0) ||, <
&Ry —1)?asRy | 1]

IV. APPROXIMATE CLUSTERING

As shown by Theorem 2, equitable partitions and low-
dimensional viral state dynamics in NIMFA are equivalent. Many
networks possess some macroscopic structure, which may resemble
an equitable partition, but which is not precisely an equitable parti-
tion. Is it possible to reduce the number of NIMFA equations, if the
network has an “almost” equitable partition?

For two N x 1 vectors x, y, x > y denotes that x; > y; for all
entries i = 1,...,N. Theorem 5 shows that NIMFA (2) on any net-
work can be bounded by increasing or decreasing the spreading rates
Bij»5; as follows:

Projection

= 0.01

S

g 0

B

A —0.014

—0.02
0 5 10 15 20
Time ¢
(d)

FIG. 4. Closed-form solution of NIMFA on the complete graph. The solution of NIMFA (1) for a complete graph with N = 3 nodes and homogeneous spreading rates. The first
and second rows correspond to a basic reproduction number of Ry = 1.3 and Ry = 1, respectively. As stated by Theorem 3, the viral state satisfies v(t) = V(f) + Vier(t),
where ¥(f) and vie:(f) denote the projection of the viral state v(t) on the subspace V. and the kernel ker(B), respectively. (a) and (c) The viral state v;(t) vs time ¢ for every
node /. (b) and (d) The projections V(f) and Vier(f), which follow from Theorem 4 as V;(f) = ¢1(f)Veo,; and Vieri(f) = C2(t) (y2); for all nodes i, where the scalar functions
¢4 (t) and c,(t) are given by the closed-form expressions (27) and (28), respectively. Since the steady state v, is the same for every node i in the complete graph, it holds

that ;(t) = V() for all nodes i, j.
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Theorem 5. Consider two NIMFA systems with respective pos-
itive curing rates 8; and 8;, non-negative infection rates Bij and ,8,,,
and viral states v;(t) and v;(t). Suppose that the initial viral state
v;(0),7;(0) are in [0, 1] for all nodes i and that matrices B and B, with
elements B;; and B,j, respectively, are irreducible. Then, ifSi < §; and
ﬁij > Bjj for all nodes i, j, v(0) > v(0) implies that v(t) > v(t) at every
time t.

Proof. Appendix G. g

We emphasize that Theorem 5 does not assume symmetric
infection rate matrices B, B. Building upon Theorem 5, we aim to
bound the viral state v(f) of any network at every time ¢ by the viral
state of networks with equitable partitions. In the following, we con-
sider a partition 7 = {N,, ..., N,} of the node set V' = {1,...,N}
of an arbitrary network. We stress that 7w can be any, not necessar-
ily equitable, partition. We define the minimum d;y 5 of the sum of
infection rates from cell \V; to NV, as

dmmpl = mln Z ,31k (31)

keJ\fl

and the maximum dpy pr s

dmaxpl max Z ﬂzk (32)

ke/\/l

Furthermore, we denote the r x r matrices By, and Bp,.x, whose ele-
ments are given by din i and dmaxpi» respectively. Analogously, we
define the minimum 8, of the curing rates in cell V; as

Sminy = Min g;
min, IEM 1

and the maximum 8,y as

8max - 6,’. 33
4= max (33)
We combine Theorems 1 and 5 to obtain the following:

Theorem 6. Suppose that Assumptions 3 and 4 hold. At every
time t, consider the r x 1 reduced-size lower bound vy, (t) and r x 1
upper bound vy, (t), which evolve as

dv (¢
Z)t( ) = - dlag (Smax,lx DY Bmax,r) vlb(t)
+ dlag (ur — Vb (t)) Bminvlb(t) (34)
and
Avyy (¢
vdbt( ) = - dlag ((Smin,l) cee (Smin,r) Vub (£)

+ dlag (ur — Vuw (t)) Bmaxvub(t)-

Then, if the initial states satisfy vip;(0) < v;(0) < vy,(0) for all nodes
i in any cell N, the viral state vi(t) of all nodes i in any cell N, is
bounded by

Vg () < vi(®) < vpi(t) VE= 0. (35)
Proof. Appendix H. O
Theorem 6 states that the N x 1 viral state v(¢) on any network

is bounded by the r x 1 viral states vy, (£), vy (f) on networks with
equitable partitions and r cells. Reducing the N-dimensional viral

ARTICLE scitation.org/journal/cha

state dynamics to r-dimensional dynamics comes at the cost of an
approximate description by the bounds in (35). If the partition
is equitable, then it holds that dpinpi = dinaxpi» and the bounds in
Theorem 6 can be replaced by the exact statement in Theorem 1.

Similarly to the lower bound and upper bound of the degrees
in (31) and (32), respectively, we define the average degree from cell
N, to N, for any partition 7 as

2D bw

ieNp keN;

\N

Then, we define the r x r reduced-size infection rate matrix B, which
consists of the elements d,. Furthermore, we define the average
curing rate of any cell \; as

> s

ieN]

\Nl

Then, we approximate the viral state by v;(f) = v,(¢) for all nodes
i in any cell V. Here, the r x 1 reduced-size viral state vector ¥(£)
evolves as

dv(t _ - _
2)=—ﬁ%@pw&ﬁm+mgwpwmwwm (36)
and, for all cells V,, the initial state equals
1
7(0) = 7 D v(0).
‘-A/’l ieN]

If matrix B has an equitable partition 7 and the rates §;, 8; are the
same between all nodes i,j in any two cells as in Theorem 3, then
the approximation v(f) coincides with the projection ¥(¢) of the viral
state v(¢) on the subspace V.

To illustrate the accuracy of the bounds in Theorem 6 and
the reduced-size viral state ¥(f) for networks without equitable par-
titions, we consider the Stochastic Blockmodel (SBM), originally
introduced by Holland et al.*” We consider a network with N = 1000
nodes and a partition 7 with r = 5 cells Vj,..., Ns. The cells are
of size |N;| = 400, |N;| = 250, |N3| = 200, |N;| = 100, and ||
= 50. With a probability of 0.7, there are no links between two cells
Ny, N ie., Bj = Bii = 0 for allnodes i € N, and j € NV;. Otherwise,
with a probability of 0.3, we denote the mean of the links between
the cells N, N, by Bpl = ,51;,, which is set to a uniform random num-
berin [0.1,0.2]. Then, the infection rate ,B,J ,BJ, forallnodesi € N,
and j € AV is set to a random number [ﬂp,, /31,1(1 + 0v4)], where we
vary the relative variance o,y for different scenarios in the numer-
ical evaluation. If o,y = 0, then the partition 7 is equitable. The
larger the variance o, the “less equitable” the partition . For every
node i, the curing rate §; is set to a uniform random number in
[1,1 + 0,a], and the initial viral state v;(0) is set to a uniform random
number in [0.01,0.01(1 + o0.y)]. Hence, if the variance o, = 0, then
it holds that vy, ;(f) = v (t) = v;(¢) for every node i in any cell MV,
Last, the curing rates are decreased to §; <— ¢§;, where the scalar c is
chosen such that the basic reproduction number (4) equals Ry = 3.
To obtain the viral state v(f), we discretize NIMFA (1) with a suf-
ficiently small sampling time, see’”"**" for a detailed analysis of the
resulting discrete-time NIMFA model.
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Figure 5 illustrates the accuracy of the bounds vy ;(f), Vyb,(f)
in Theorem 6 and the approximation accuracy of ¥(¢) in (36) for
the largest cell \V; and the smallest cell AVs. For both o,y = 0.25 and
ore = 0.5, the approximation ¥;(#) is close to the exact average viral
state in cell V},

Vavg,l(t) = ‘1 Z Vl(t)~
I

ieN]

The accuracy of the bounds v, ;(t), vub,(f) on any viral state v;(¢) in
cell V) decreases when the variance o, is increased. Nonetheless, the
bounds viy,(f), vup,(f) are reasonably accurate for both o,y = 0.25
and 0,4 = 0.5.

A. Clustering for epidemics on real-world networks

Approximating the viral state dynamics by m < N equations
requires the specification of a partition 7 of the nodes. In some cases,
this partition is given a priori, as in the experiments in Fig. 5, where
the node partition r was chosen corresponding to the SBM blocks.

ARTICLE scitation.org/journal/cha

In contrast, for real-world networks, it is more challenging to deter-
mine an appropriate clustering and, hence, to obtain an accurate
description of the viral state dynamics by m < N equations.

1. Bethe clustering

We consider a two-step approach to reduce NIMFA to
m = r < N equations. First, we obtain a partition 7 of the nodes
by the Bethe spectral clustering algorithm,” which makes use of
the Bethe Hessian Hi = (dug — 1)1 & d,ygB + D, with the aver-
age degree d,y; and the degree matrix D = diag(d,, . .., dy). When
matrix B has an (approximate) SBM structure, the negative eigen-
values of Hy have corresponding eigenvectors, which are (approx-
imately) piecewise constant on the blocks of B. The spectral clus-
tering algorithm partitions the nodes of B based on a k-means
clustering of the negative eigenvector entries of Hy. Second, we
evaluate the accuracy of reduced-size viral state ¥(¢) in (36) by the

0.6
0.6

3 2

< <

Z 04 z

£ £

s >
0.2

<
N

FIG. 5. Low-dimensional approximation
of the viral state dynamics. For a stochas-
tic blockmodel network with N = 1000
nodes and r = 5 cells, the accuracy of the
approximation v;(f) and the tightness of
the bounds vy, (f), vup, () are depicted.
The reduced-size viral states v(t),v(f)

and v, (f) are equal to the linear combi-
nation of m = r = 5 agitation modes y;,
each of which corresponds to one cell. (a)
and (b) The first row corresponds to the
relative variance oy = 0.25. (c) and (d)
The second row corresponds to the rel-

0.8 f f ative variance o,q = 0.5. (a) and (c) The
P left column corresponds to the largest cell
0.6 - g N;. (b) and (d) The right column corre-
0.6 sponds to the smallest cell Ns. The viral
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= = tive cell AV} is within the shaded gray area.
& 04 (a) Cell N; and relative variance o =
— 0.4 = 0.25. (b) Cell N5 and relative variance
.Ej = p ol = 0.25. (c) Cell A7 and relative vari-
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0.2 0.2 1 - == vgpa(t) H variance o = 0.5.
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FIG. 6. Low-dimensional approximation of epidemics on real-world networks. The error e,y of the reduced-size viral state v(t), in (36), for partitions obtained by Bethe
clustering and random partitions. The accuracy is evaluated for three real-world networks: (a) American football network; (b) primary school network; (c) train bombing

network.

deviation of the prevalence,
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Here, At denotes the sampling time, k is the discrete time, and the
number of observations 7 is chosen such that the viral state v(nAt)
practically converged to the steady state v.
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We applied the Bethe clustering algorithm to three real-world
networks, which were accessed through:** the American football
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FIG. 7. Low-dimensional bounds of epidemics on real-world networks. The errors of the low-dimensional bounds v, () and v, (f), stated by Theorem 6, for partitions
obtained by Bethe clustering and random partitions. The subplots in the first and second row show the errors €,, and €, of the upper bound v,,,(f) and the lower bound
Vuo, (f), respectively. The accuracy is evaluated for three real-world networks: (a) and (d) American football network; (b) and (e) primary school network; (c) and (f) train

bombing network.
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FIG. 8. Clustering NIMFA for the cholera outbreak in London, 1854. The blue
curves show the daily cholera deaths in London, gathered by Snow.*’ The red
curve shows the change y[k] — ylk — 1] in the prevalence y[k] = Y"1, vi[K] of
the NIMFA epidemic model vs day k. The NIMFA parameters were set in accor-
dance to Paré et al.** The brown curve shows the prevalence y[k] = > Velk] of
the reduced-size NIMFA model with: (a) r = 3 clusters, for which the cell A7 is not
further partitioned (s = 1); (b) r = 6 clusters, for which the cell \; is partitioned
into s = 4 clusters.

network'® with N = 115 nodes and L = 613 links, for which r = 10
clusters were detected; the primary school contact network (day 1)
with N = 236 nodes and L = 5899 links, resulting in » = 8 clusters;
and the train bombing network'® with N = 64 nodes, L = 243 links,
and r = 3 identified clusters. For all networks, we considered homo-
geneous spreading rates S, §;, which were set such that the basic
reproduction number equals Ry = 3. The initial viral state was set
to v;(At) = 1/N for every node i. To evaluate the accuracy of the
Bethe clustering approach, we additionally considered a collection
of random partitions, which are obtained by randomly permuting
the nodes in the partition 7 of the Bethe clustering.

Figure 6 shows that, for the football and the school network,
which have a clear community structure, the Bethe spectral cluster-
ing approach results in significantly more accurate low-dimensional
viral dynamics ¥(¢) than for random partitions. For the train net-
work, which does not possess a clear community structure, there is
a smaller advantage of Bethe clustering. Thus, our results indicate
that if the network has an underlying community structure, then
spectral clustering may be used to find an accurate low-dimensional
approximation of the viral state dynamics.

Furthermore, for any partition 7 of the nodes, there are low-
dimensional bounds v, (), v (f) of the viral state dynamics, as
stated by Theorem 6. We define the errors €, and €, of the bounds
Vb, (f) and vy (£) analogously to (37). Figure 7 demonstrates that the
partition of the nodes by the Bethe clustering algorithm results in
significantly more accurate lower bounds vy, (#) than those obtained
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from random partitions and somewhat more accurate upper bounds
Vub,(£).

2. Cholera outbreak in London

We evaluate the NIMFA clustering method for the London
cholera outbreak in 1854. By mapping the cholera deaths to indi-
vidual households, Snow" argued that the spread of cholera was
due to infected water of the Broad Street Pump, which was accessed
by the majority of households. The dataset of Snow consists of
N = 251 nodes. Thenodesi = 1,...,250 correspond to households,
and node i = 251 refers to the Broad Street Pump. Furthermore,
the household i = 208 is a workhouse, whose residents had an own
well and did not use the Broad Street Pump much. We follow the
approach by Paré et al. [Matrix A® in Ref. 34] and set the elements
of the 251 x 251 infection rate matrix B to

1 ifi=j,

1/10 if j = 251, i = 208,
1 if j = 251, i # 208,
0 otherwise.

Bij = (38)

Thus, every household i # 208 is connected to the Broad Street
Pump j = 251 with infection rate B;»5; = 1, except for the ware-
house i = 208 whose limited access to the pump is considered by
the lower infection rate Bys251 = 1/10. Furthermore, every house-
hold i has a unit-weight self-infection rate g; = 1, which accounts
for the interaction of members within the same household. The cur-
ing rates §; are determined based on the fraction of cholera deaths in
household i. For more details on the data and modeling approach,
we refer to Ref. 34.

We define the partition 7 = {N}, N5, N3} with the cells
Ny =1{1,...,207,209,...,250}, N, = {208} and N; = {251}. For
all cells [,p = 1,2, 3, the sum of the infection rates Zke A Bi and
D ke ~; Bri is the same for all nodes i € N,. Hence, the partition
7 of the asymmetric matrix B is inward equitable and outward
equitable,” and the NIMFA viral dynamics could be reduced sim-
ilarly to Theorem 1, which considered symmetric matrices B, pro-
vided the curing rates satisfy §; = §; for all nodes i,j in any cell M.
However, the curing rates §; are not the same for all nodes i € N,.
Hence, Assumption 1 does not hold, and an exact reduction of the
N = 251 NIMFA equations to r = 3 clusters is not possible.

Instead, we aim to approximate the N = 251 NIMFA equa-
tions by the reduced-size r x 1 viral state ¥(t) in (36). Since the
curing rates &; are not the same for all nodes i € N;, we fur-
ther partition the nodes in cluster ;. More precisely, we obtain
a partition Ni;, N, ..., Nj, of the cluster A} such that §; ~ §;
for all nodes i,j € Ny, where [ =1,...,s. We obtain the s clusters
My, ..., Nj; by the Matlab command kmeans applied to the cur-
ing rates §;, where i € N,. Thus, in total, there are s + 2 clusters
M, ..., Nig, Ny, Ns. We vary the number of subclusters from s = 1
tos=4.

Figure 8 shows that the full-size NIMFA model with N = 251
nodes accurately captures the empirical data on the cholera deaths,
as already reported by Ref. 34. Here, v[k] = v(kAf) and V[k]
= v(kAt) denote the full-size and reduced-size viral states, respec-
tively, at day k, and the discrete time step At equals one day.
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Figure 8(a) shows that clustering the nodes only based on the
equitable partition 7 = {N}, N3, N3} of matrix Bin (38) yields a rea-
sonably accurate, reduced-size approximation of NIMFA with only
r = 3 differential equations. The difference of reduced-size NIMFA
to full-size NIMFA in Fig. 8(a) is due to the different curing rates §;
fornodes i € NV}.In Fig. 8(b) cell V; is further partitioned into s = 4
cells M1y, . .., N4, based on the curing rates §;. Then, the difference
of reduced-size NIMFA to full-size NIMFA is negligible. Hence, we
can describe the cholera outbreak in London by the interaction of
r = 6 clusters, given by the reduced-size system (36).

V. CONCLUSIONS

In this work, we focused on reducing NIMFA on a network
with N nodes to only m « N differential equations. We believe
that the geometric clustering approach outlined in this work can be
applied to other dynamics on networks, particularly to general epi-
demic models*** and the class of dynamics in Refs. 4, 26, 41, 51.
Our contribution is composed of three parts. In the first part, we
showed that the viral dynamics evolve on an m-dimensional sub-
space V if and only if the contact network has an equitable partition
with m; < m cells. Thus, low-dimensional viral state dynamics and
the macroscopic structure of equitable partitions are equivalent.

In the second part, we focused on equitable partitions 7 with
the same spreading rates f8; and §; for all nodes i,j in the same
cell V. We considered the decomposition of the viral state v(f)
= Vier () + V(£) into two parts: the term V(¢) describes the viral state
average in every cell AV; and the term vy, (f) equals the projection
of the viral state v(t) onto the kernel of the infection rate matrix B.
By showing that the term ¥(f) evolves independently from the pro-
jection vy () and the projection v, (f) obeys a linear time-varying
system, we derived the solution of the NIMFA differential equations
on the complete graph for arbitrary initial conditions v(0).

Strictly speaking, most contact networks do not have an equi-
table partition, and an exact reduction of the number of NIMFA
equations is not possible. In the third part, we considered arbitrary
contact networks with a (not necessarily equitable) partition of the
nodes into m cells. For any partition of the nodes, we derived bounds
and approximations of the NIMFA epidemics with only m differen-
tial equations. The “more equitable” the partition, the more accurate
the approximation. Thus, finding (almost) equitable partitions is
crucial for reducing an epidemic outbreak in a large population to
the interaction of only few groups of individuals.
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APPENDIX A: PROOF OF LEMMA 1

Let w denote a vector in the orthogonal complement V* of the
invariant set V. Hence, it must hold that wv(f) = 0 for every time

scitation.org/journal/cha

t > 0if v(0) € V, which is equivalent to both w'v(0) = 0 and
dwTv(t))
dt

We replace the notation v(f) € V by v € V. Then, we obtain from
NIMFA equation (2) that (A1) is equivalent to

=0 Vv(t)eV,we V" (A1)

wl (—Sv + diag(u — V)BV) =0 VYveV,we V.

Under Assumption 1, it holds that Sv € V. Hence, the vector w € V*
is orthogonal to the vector Sv, which yields that

wl diag(u — v)Bv = 0.
Since diag(u) is the identity matrix, we obtain that
w'By = w' diag(v)Bv. (A2)

Since the invariant set V is a subspace of RY, v € V implies that yv €
V for any scalar y € R. For the vector y v, where we consider y > 0,
it follows from (A2) that

yw'Bv = y*w" diag(v)Bv,
which is equivalent to
w!'By = yw" diag(v)Bv.
Thus, we obtain with (A2) for every scalar y > 0 that
wl diag(v)Bv = ywl diag(v)Bv,
which implies that
wl diag(v)Bv = 0. (A3)
Then, from (A2), it follows that
wi'By =10

for all vectors w € V*, v € V. The vector Bv is orthogonal to all
vectors w € V*, only if Bv € V. Thus, the set V is an invari-
ant subspace’” of the infection rate matrix B. The sets of vectors
V1>« o> Ymand Y41, . . ., ¥y span the invariant set VV and the orthog-
onal complement V*, respectively [see (6) and (18)]. Thus, we can
express the symmetric matrix B as

) (Ag Aﬁj) ] (Ad)

N,

Bz(yl

for some m x m symmetric matrix M; and some (N —m)
x (N — m) symmetric matrix M,. The m x (N — m) matrix M,
describes the mapping from the subspace V' to the subspace V.
Since matrix B is symmetric, it holds that M;, =0, and (A4)

becomes
M 0
) ( 0 Mz)

Furthermore, since matrix B is diagonalizable as (33), matrices M;
and M, are diagonalizable (Exercise 24, Sec. 5.4 in Ref. 15). Thus,

"
B= (}/1 .

N
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there is some orthogonal m x m matrix C; and some orthogonal
(N — m) x (N — m) matrix C, such that

)CIOAloclTo
Ml o ¢J\o a)\o

where the m x m diagonal matrix A; and the (N — m) x (N — m)
diagonal matrix A, contain the eigenvalues of B. In contrast to the
N x N matrix A in (20), the diagonal entries of matrices A; and A,
may not be ordered with respect to their magnitude. Hence, there
is some permutation ¢ : {1,...,N} — {1,..., N} of the eigenvalues
Als. .., Ay such that

A = d1ag (}»q&(l)s cee ,)\-¢(m))

B= (}’1
N.
(A5)

and
Az = dlag ()V¢(m+1)) e Ad)(N)) .

We define the N x m matrix Ey, and the N x (N — m) matrix Ey,1

as
Ey = (n ym) Ci

and
Ey, = ()/me )’N) G.

Since matrices C; and C, are nonsingular, the columns of matrices
Ey and Ey,1 span the subspaces V and V4, respectively. We obtain
that

T
B=(Ey Eyi)diag(Aeqy---»hom) (E%;) .
Thus, matrices Ey, and Ey,1 are equal to
Ev = (%0 Xpm) (A6)
and
Ey1 = (Xpn-m) Xp0)) »
where the columns x4y, . . ., X5 are eigenvectors to the eigenval-

ues Ag(), - - - » Agyy of matrix B, which completes the proof.

APPENDIX B: PROOF OF LEMMA 2
From (A5), it follows that

T
N
B=(n Ym) CGLACT | 2 [+ (e yn) C2A2C)
T
y3;+1
o
N

We complete the proof by identifying the m x m matrix
By = C,A,CT and the (N — m) x (N — m) matrix B,,. = C;A,C!.
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APPENDIX C: PROOF OF THEOREM 2

The proof of Theorem 2 is based on four lemmas. First, Lemma
3 relates the product diag(w)v to the subspaces V4, and V*:

Lemma 3. For all vectors v € V4 and w € V-, it holds that
diag(w)v € V*.

Proof. Since w' diag(v) = (w,v,,..
obtain from (A3) that

., wyvy) = v diag(w), we

vl diag(w)Bv = 0.
Equivalently, by taking the transpose, it holds that
v B diag(w)v = 0. (C1)

The invariant set V is given by the span of some orthogonal vec-
tors yy,. .., ¥m. By Lemma 1, it holds that V = span{xsa), . . .» Xp(m }»
where x,, is an eigenvector of matrix B to the eigenvalue A, for
some permutation ¢. Thus, every vector v € V can be written as

v= (%0 Xpm) 2 (C2)

for some m x 1 vector z = (zi, ... ,zm)T, and the subspace V equals

Y = {(X¢(1) X¢(m)) Z‘Z € Rm} .
With (C2), we can rewrite (C1) as
T
X
Z'A | | diagw) (%0 Xpm)2=0,  (C3)
T
Xp(m)

with the m x m diagonal matrix A; = diag(Asq)s . -->Aeem). The
quadratic form (C3) equals zero for all vectors cz € R™ if and only if

T
X6
Ay diag(w) (X¢(1) X¢(m)) =0,
T
X (m)
which implies, with (C2), that
T
Xp)
Ay : diag(w)v =0
T
X (m)

for all vectors v € V. Componentwise, we obtain that
Ad,(l)x;(l) diag(w)v =0 (C4)

for all rows I =1,...,m and all vectors v € V. Equation (C4) is
satisfied if and only if X4, = 0 or xg(,) diag(w)v = 0 for all rows
I=1,...,m. The subspace )V, contains the vectors x4y for
which Agp) =0, and the subspace V! contains the vectors
Xp(m+1)s - - - » Xp () Which are orthogonal to the vectors x4 1), . . . » Xg(m)-
Thus, the vector diag(w)v must be element of the subspaces V, or
V1, or the vector diag(w)v must be equal to the sum of two vectors
in the subspaces V), and V. Hence, with the direct sum (19), we can
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reformulate (C4) as
diag(w)v € Vt @V, (C5)

for all vectors v € V. We define the N x m; matrix E, 4o @S

Ev,, = (*p01) Xpmy))
and the N x (m — m,) matrix Ey,, as
Evy = (Xpm+1) Xp(m)) -

Thus, the definition of matrix Ey in (A6) implies that Ey,
= (Ev 20 Evo), and matrix diag(w) can be written as

T

My My M Ev#,

diag(w) = (Ev,, Ev, Eyi) My My My Ey,

M M Ms; E; "

for some matrices My, where i,j = 1,2,3, whose dimensions fol-
low from the dimension of matrices Ey o> Evp> and E,,1. Matrices
M, and M, describe the mapping of matrix diag(w) from the sub-
spaces Vo and V), respectively, to the subspace V. From (C5),
we obtain that M;; = 0 and M;, = 0. Furthermore, since matrix
diag(w) is symmetric, it holds that M,; = M, = 0. Hence, to satisfy
(C5), matrix diag(w) must be equal to

ET
0 0 My Vo
diag(w) = (EV;&O Ev, Eyi)| 0 My, My E]T;O >
Mz Mz, Mss) \ gr
AVAS

which implies for all vectors v € V., that diag(w)v € V*. O
Lemma 3 states that for all vectors v € V4 and w € V*, there
must be some vector w € V! such that

diag(w)v = w. (Ce6)

We aim to find all subspaces V., and V+ whose elements v and w, #,
respectively, satisfy (C6). From Lemma 1, it follows that a basis of
the N — m dimensional subspace V* is given by the columns of the
matrix

(x¢<m+1))1 (X¢(N))1
EyL = : . : . (C7)

(x¢<m+1)) N (’%(N))N

For every matrix, the column rank equals the row rank. Since the
columns of matrix Ey,1 are linearly independent, there are N — m
linearly independent rows of matrix E,,1 . Without loss of generality
(otherwise, consider a permutation of the rows, which is equivalent
to a relabeling of the nodes), we assume that the first N — m rows of
matrix E,,1 are linearly independent. Hence, the first N — m rows
span the Euclidean space RN,

(x¢<m+1))1 (x¢(m+1>)z (x¢(m+1))N7m
span N ey
(xqm\r))1 (x¢>(N))z (’%(N))N_m
— ]RN—m. (CS)
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Thus, for all vectors w € V* and v € V., there is a vector w € V*
whose first N — m entries satisfy (C6), i.e.,

wi=wyv, i=1...,N—m. (C9)

The last m entries of the vector w € V* are determined by the first
(N — m) entries of the vector w, as shown by Lemma 4. (Lemma 4
is not a novel contribution, but we include Lemma 4 for complete-
ness.)

Lemma 4. Suppose that the first N — m rows of matrix Ey,1
are linearly independent. Then, there are some (N — m) X 1 vectors
XN—m> - - - » X Such that the last m entries of any vector w € V* follow
from the first (N — m) entries as

w1
Wi:X,'T , i=N-—-m+1,...,N.

WN—m

Proof. With the definition of matrix Ey,1 in (C7), every vector
w € V1 can be written as

Zm+1

(C10)

w= (x¢(m+1) x¢(N>)

2N

for some scalars z,,41,...,2zy € R. Thus, the first N — m entries of

the vector w follow as

(C11)

WN—m ZN

where the (N — m) x (N — m) matrix M equals the first N — m rows
of matrix Ey, 1,

(x¢(m+1>)1 (’%(N))l

(x¢(m+1))N—m (x¢(N))N—m

By assumption, the first N — m rows of matrix E,,1 are linearly
independent. Hence, matrix M is nonsingular, and the scalars

Zmt1s - - - » 2y follow from (C11) as

Zm+1 Wi
=M

ZN WN—m
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Thus, we obtain the last m entries of the vector w with (C10) as

WN—m+1 (x¢(M+1))N,m+1 (x¢(N))N,m+1 Zim+1

wN (*pmr1)) N (xs0) N 2N

(x¢(m+1>)N—m+1 (x¢(N))N—m+1

= M!
(xpn+1)) N (EA)) N
w1
x
WN—m
To complete the proof, we define the vectors xn_pm1> - - -» Xn as

Xlz;—erl (x¢(m+1))N—m+l (x¢(M)N—m+l
= : . : M
XN (x¢><m+1>)N (x¢(N))N

O
We combine Lemma 4 and (C9), which yields for the last
(N — m) entries of the vector w € V* that

N—m
w; = E X,‘jo
j=1

N—m
= 2 XiiWiVj>
j=1

where i=N-—m+1,...,N. Furthermore, (C6) states that w;
= v;w;. Thus, it must hold that

N—m
wiv; = E XI]WJVJ
j=1

for the entries i = N— m + 1,..., N. Since the vector w is the ele-
ment of the subspace V*, we apply Lemma 4 again and obtain
that

N—m N—m
Z Xijo v, = Z XijoVj~
j=1 j=1
Thus, for all entriesi = N — m + 1,..., N, it must hold that

N—-m
Z Xiwj(vi —v;) =0

j=1

(C12)

for all vectors w € V*+ and v € V. Since the first N — m rows of
matrix E,,1 are linearly independent [see (C8)], it follows that (C12)
must be satisfied for all scalars wy,..., wy_,, in R. Hence, for all
vectors v € Vo, it must hold that y;(v; —v;) = 0 for all indices
j=1,...,N— m, which is equivalent to Xi =0 or v; = v, Thus,
the non-zero entries of the vectors y; indicate which nodes j have
the same viral state as node i.
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Example 5. Consider a network of N =5 nodes with an
invariant set V of dimension m = 3. Furthermore, consider that V,
= @, which implies with (22) that V = V. Thus, there are N —m
= 2 vectors x4 and xs. Suppose that the vectors x4 and xs are equal
to x4 = (Xa1> O)T and xs = (0, X52)T: where x41, 52 # 0. Then, (C12)
implies that v = vy and v, = vs for every viral state v € V. Hence,
the subspace V = span{yi, y,, ys} is given by the basis vectors

1 0 0

Ly L |
= —F= s )2 — s Y3 =

V2 | V2 |o 0

0 1 0

For 1=1,2,3, the eigenvector x4, of the infection rate matrix B
equals a linear combination of the basis vectors y1, ¥, ¥3.

From (C12), we can determine disjoint subsets N}, N5, ... of
the set of all nodes N = {1, .. ., N} as follows: if two nodes i,j are the
elements of the same subset \; € N/, then the viral states are equal,
v; = vj, for every viral state v € V. If a subset contains only one
node, NV} = {i}, then the viral state can be arbitrary v; € R, indepen-
dently of the viral state v; of other nodes j # i. Every subset defines
a basis vector y; of the subspace V., as

00, = | 7 ifi € N,
o [} ifi & N

(C13)

Then, the subspace V., equals the span of the vectors y; of all subsets
N Since the dimension of the subspace V. is m;, there must be
m;y subsets Ay, ..., N, . Every node i is the element of at most one

subset ;. Hence, the vectors 1, yj are orthogonal for [ # 1

Furthermore, some nodes i might not be the element of any
subset V7, ... ,le, which would imply that (y;); = 0 for all basis
vectors ¥, of V. We define the subset N, 11, whose elements are
the nodes i that are not in any other subset Ay, ... ,le. As shown
by Lemma 5, the set \V,,,, 41 is empty.

Lemma 5. Under Assumptions 1-4, it holds that N, 1 = 0.

Proof. Under Assumption 2, there is a viral state vector v € V
with positive entries. The positive viral state vector v satisfies

m

mj
v = Zzzyl + Z Z1y1
=1

I=m1+1

(C14)

for some scalars zi,...,z, € R. We denote the projection of the
viral state v onto the subspace V), as

m
Vier = E Z1y1.

I=mj+1

Every basis vector y; of the subspace V, satisfies (y;), = 0 for all
nodes i € N, 11. Thus, we obtain with (C14) that

(Vker)i =v;>0 (C15)

for all nodes i € NV, +1. Any vector ¥ € V. is orthogonal to the
vector vier € V,. Hence, it holds that
N

Y (3), )i =0

i=1
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We split the sum
my
Z Z (;)! Vker); + Z (;)1 (Vker); = 0.
=1 ieN] iENm1+1

Since (T/)i = 0 for all nodes i € N, 11, we obtain that

Z Z (a), (Vker)i =0 Vve V;éO-

I=1 ieN]

(C16)

Furthermore, we define the N x 1 vector u, with the entries

1 ifi g Nyt

Wi =10 ifie Ny,

From the definition of the basis vectors y; in (C13), it follows that
the vector u, equals

my
ug =Y Ny
I=1

Thus, vector u, is the element of V. Since the vector vy, is in the

kernel of matrix B, it holds that Bvy,, = 0, which implies that
u:kaer =0. (C17)

We decompose the vector vier s Vier = Viera + Viker,p> Where the first
addend equals

ifi gNmH—l:

(V ) _ (Vker)i
ker,a ) ; 0 ifie Nm1+1’

and the second addend equals

0 if i & Ny
Vierb ), = C18
(), {(vker)f ifi € Ny e
Then, (C17) becomes
uZkaem + u;erker,b =0.

Since u, € V4 and V is an invariant subspace of matrix B, it
holds that Bu, € V. Thus, (C16) implies that u!Bvie, = 0, and
we obtain that

uZkaer,;, = 0,
which is equivalent to
m N
Z Z Z Bij (Vker,b)j =0.
I=1 ieN) j=1
With the definition of the vector v, in (C18), we obtain that

Z Z Z :Bij (vker)j =0.

I=1 ieN] jeNp, +1

(C19)

As stated by (C15), the entries (Vker); are positive for all nodes
j € Ny 41. Furthermore, the infection rates B; are non-negative
under Assumption 3. Hence, (C19) is satisfied only if 8; = 0 for all
nodes j € N,y 41 and i € N for all subsets I =1,...,m;. In other
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words, the nodes in N, 4 are not connected to any nodes in
N, ... ,le , which contradicts the irreducibility of matrix B under
Assumption 4. Hence, it must hold that N, 11 = . O

Since N, 41 = @, it holds that M; U --- UN,,, = N. Hence,
the disjoint subsets Nj,..., N, define a partition of the set of all
nodes ' = {1,...,N}. To complete the proof of Theorem 2, we
must show that the subsets Nj,..., le are an equitable partition
of the infection rate matrix B. Hence, we must show that the sum of
the infection rates Bij»

Z /3 ij>

jeN;

(C20)

is the same for all nodes i € A, and all cells ,p =1, ..
1 states that

.,m;. Lemma

. )yml }
= span {x¢(1), ..

Thus, there must be some nonsingular m; x m; matrix H such that

(xs0) Xpmp) = (1 Ym ) H.

Since the set eigenvectors x; and the set of vectors y; are orthonor-
mal, matrix H is orthogonal (since x/x; =1 if i =j and x/x; =0
if i # j and analogously for the vectors y;, y;, it follows from x!x;
= y'H"Hy; that matrix H is orthogonal). The eigendecomposition

of matrix B reads

V.o = span {yl, ..

. )x¢<m1)} .

(C21)

A
B = (%) Xpnp)) diag (A - -+ Aoomy)
xg(ml)
Xomy +1)
+ (Xp0m+1 Xpm) diag (Apom+1)s - - +> 2gm)
Xpim)
Xgom+1)
+ (Xpont) Xpan) diag (Apnsns - > Ao
X5
With (C21), and since the eigenvalues Agp =0 for I =m; +
1,...,m, we obtain that

"
B = ()/1 yml)Hdlag ()‘KP(I)”' .,)\.¢(ml)) HT
T
my
x£<m+1>
+ (xpemr) Xpan) diag (Aponsns - > hpav)
5T
P (N)
(C22)
Consider two nodes i € NV, and a subset V; for some [ =1,...,m;.
Since
L ifj e N,
), = VI J
j .
0 ifj €N,
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we can express sum (C20) as

Z B = /311 cee ﬁiN) i

jeN;

Thus, with the N x 1 basic vector ¢;, it holds that

Y Bi=

jEN

|e By,.

From the orthogonality of the vectors yi,...,y,, and from xqf(k) Vi

=0fork=m+1,...,N, we obtain with (C22) that
> By =Nl (n ;) H diag
jeN

(Agys - - > Agom)) H emyxips (C23)

where the Ith entry of the m; x 1 vector e, «1,; equals one, and the
other entries of e, x1; equal zero. Since node i is the element of
exactly one subset N, it holds that

1
& (o Im) = =y

Then, (C23) becomes

Z Bij = di,

jeN;

where

VNI
dil = I | lelpHdlag ()"4’(1)’ e
p

> )"d)(ml)) HTeml x1,]
is the same for all nodes i € AV, which completes the proof.

APPENDIX D: PROOF OF COROLLARY 2

Since Ry > 1, the viral state v(f) converges to a positive steady
state v, as t — 00. Thus, the steady state v, must be the element of
the m = 1 dimensional invariant set V = span{y,}, which implies
that vo, = ¢y, for some scalar c. Hence, the unit-length agitation
mode equals either y; = voo/|[Vooll2 OF 1 = —Voo/|[Vooll2. With-
out loss of generality, assume that y; = voo/||Veoll2- Then, under
Assumption 4, matrix B is connected, which implies that By, # 0
since the vector y; is positive. Thus, the subspace V, must be empty.

To prove Corollary 2, we must show two directions. “If” direc-
tion: Suppose the infection rate matrix B is regular. Then, the viral
state vo,; is the same for all nodes i, and v(0) € V implies that
v;(0) = v;(0) for all nodes i, j. Since matrix B is regular and the ini-
tial viral state v;(0) is the same for every node i, the approximation
Vapx (1) = c(H)vo s exact.”>” Since v(f) = c(f)voo at every time ¢, the
invariant set V = span{y, } is indeed a one-dimensional invariant set
of NIMFA.

“Only if” direction: Suppose the one-dimensional subspace
V = span{y,} is an invariant set of NIMFA. Then, Theorem 2 yields
that the infection rate matrix B has the equitable partition 7 = {N,},
where the cell V] = {1,..., N} contains all nodes. Thus, (14) yields,
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that there exists some degree d,;, which satisfies

dy= Y Bu

ke N,

N
=) B«
k=1

for all nodes i. Thus, we obtain with definition (24) that matrix B is
regular.

APPENDIX E: PROOF OF THEOREM 3

By assumption, the infection rates f;; are the same for all nodes
i in any cell V; and all nodes j in any cell N,. Thus, with the
definition of the vectors y;,..., y, in (23), the symmetric infection
rate matrix equals

i

¥) By, | (E1)

T
,

Bz(yl

for some symmetric r X r matrix By, Lo~ Since the kernel ker(B)
is the orthogonal complement of the subspace V.o, it holds that
= Vo @ ker(B). Thus, any viral state vector v(t) € [0, 1]V can be
decomposed as v(t) = ¥(t) + vier (1), where ¥(f) € V4 and vier (£) €
ker(B). With the decomposition v(f) = V(£) + Vi (£), NIMFA (2)
becomes
dv(t)
dt

=S (¥(1) + Wer(D))

+ diag (u — V() — Vier (1) B (V(8) + Vieer (1))
= —SV(t) — Svier (1) + diag (u — ¥(£) — vier (1)) BU(D),
where the second equality follows from Bvy,(f) = 0. Further rear-
rangement yields that
dv(t)
dt

= (B — ) v(t) — diag (¥(1)) BV(t) — Svier (1)

— diag (vier (1)) BY(2). (E2)

We decompose the derivative dv(f)/dt into two addends, by
making use of two lemmas as follows:

Lemma 6. Suppose that the assumptions in Theorem 3 hold
true. Then, if v € Vo, the vector

Bv — Sv — diag (V) By (E3)

is the element of V.

Proof. We consider the three addends of the vector (E3) sep-
arately. First, (E1) shows that the addend BV is the element of V,
if v € V4. Second, we consider the addend Sv. By assumption, the
curing rates §; are the same for all nodes i in the same cell \V;. Thus,
we obtain from the definition of the agitation modes y; in (23) that

Syr =iy (E4)

for I =1,...,r, where i denotes an arbitrary node in cell V. Since
the agitation modes yi,..., y, span the subspace Vo, (E4) implies
that SVif v € V.
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Third, we consider the addend diag (i) Byv. Since v € Vi, it
holds that

v=> (i)
=1

Similarly, since BV € V., it holds that

Bo =" (/BV) . (ES)
=1

Thus, we obtain that
diag (7) B7 = > Y (479 <y;Ba) diagy)y,.  (E6)
I=1 p=1
From the definition of the vectors y; in (23), it follows that

yi ifl=p,
0 ifl#p,

where the Nx1 vector y? = ((m3i..., (yz)lz\,)T denotes the
Hadamard product of the vector y; with itself. Thus, (E6) becomes

diag (yl) Yy = :

r

diag (v) BV =) (v/7) (v/BY) 57 (E7)

I=1
With (23), the Hadamard product y7 equals
L
W ifieN,
0 ifi g N,
which implies that (y;)* = y,/+/[NV]] and yields with (E7) that

diag (17) Bv = Xr: ww

=1

=

1l

Thus, the vector diag (V) BV is a linear combination of the vectors
Y>> ¥r» which implies that diag (17) BvV4. Hence, we have shown
that all three addends of the vector (E3) are in Vo, which completes
the proof. O

Lemma 7. Suppose that the assumptions in Theorem 3 hold
true. Then, if v € V.o and v € ker(B), the vector

Svker + dlag (Vker) By (ES)

is the element of ker(B).

Proof. The kernel ker(B) is the orthogonal complement of the
subspace V. Thus, the vector (E8) is the element of ker(B) if Svie,
is orthogonal to every basis vector y;,..., y, of the subspace V_,. We
show separately that both addends of the vector (E8) are orthogonal
to every vector yi,..., y,. First, forany I = 1, ..., r, we obtain for the
first addend in (E8) that

leSVker = (Syl) ! Viker»

since matrix S is symmetric. With (E4), we obtain for an arbitrary
node i € NV that

y[TSVker = aileVker =0.

Thus, the addend Svy., is the element of ker(B).
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Second, for any / = 1,...,r, we obtain for the second addend

in (E8) with (E5) that

y,Tdiag (Vier) BV = Z (leBT/) lediag (Vier) Vg

gq=1
= 3 (5759) ol ding () 3,
q=1

Analogous steps as in the proof of Lemma 6 yield that

o),
VINT

Thus, by the orthogonality of the vectors v, and y;,

lediag (Vier) BV =

y,Tdiag (Vier) BV = 0,

which completes the proof. |
With Lemmas 6 and 7, we obtain from (E2) that

dv(t)y _ dv() n deer(t)’

dt dt dt
where
dz(:) = —S¥(t) + diag (u — ¥(t)) BU(1)
and
dV‘Z;(t) = —Sver(t) — diag (v (1)) BV (D),

which completes the proof, since

diag (vier (1) BV(1) = diag (BV(1)) vier (8).

APPENDIX F: PROOF OF THEOREM 4

Since the spreading rates are homogeneous, Bi=8 and §; = §
for all nodes i, j, the infection rate matrix equals

B = Buu”, (F1)
and the curing rate matrix equals
NERIS (F2)

Thus, with r =1 cell MV} = {1,..., N}, Theorem 3 yields that the
viral state v(¢) can be decomposed as v(t) = V(£) + Vier (£). We prove
Theorem 4 in two steps. First, we show that the projection ¥(f) equals
c1(t)vs at every time . Second, we prove that the projection vy (f)
equals ¢,(f)y, at every time t.

1. Projection on the subspace Vo

With the reduced-size curing rate matrix $* = § and the quo-
tient matrix B = Nf, Theorem 1 yields that the projection on the
subspace V satisfies ¥(f) = v" (f)u. Evolution (16) of the reduced-
size, scalar viral state v" (f) becomes

v (t)
dt

We consider two cases for the value of the spreading parameters
and $.

= =8V () + (1 —v" (H)) NBV" (). (F3)
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1. If § # BN, then the solution of (F3) equals™

Vi) = Y= (1 + tanh (—t+ Tl(O)))

with the reduced-size steady state v2 =
w = BN — §, and the constant

5N’ the viral slope

Y,;(0) = arctanh (21}(”—) - 1) .

o0

Thus, the projection ¥(f) = v* (f)u is equal to ¢;(f)y; at every

time ¢.
2. If § = BN, then the differential equation (F3) reduces to
() 2
==50"@®)",
I v ()

whose solution equals

1 -1
Vi(t) = <6t+ v”(O)) .

With v" (0) = yTv(0)/ /N, we arrive at the closed-form expres-
sion (30) for the function ¢, (¢).

2. Projection on the kernel ker(B)

With (F1) and (F2), Theorem 3 yields that the projection v, (f)
obeys

d er (£ 1 V
det( ! = (o1 + B ding (un5(1)) s
Since ¥(#) = ¢;(t)y; and (1), = 1/+/N for all nodes i, we obtain that
d er t
det( ) __ (51+ ﬁ«/ﬁcl(t)l) Vier (1)

=~ (84 BYNa(®) her(0). (Fa)

For any initial condition vy (0) € ker(B), the right side of (F4) is
in the one-dimensional subspace span{vi.(0)}. Thus, the projec-
tion Vier(f) obeys Vier(£) = ¢2(#) Vier (0). We solve (F4) in two steps.
First, we compute the initial condition vy, (0). Since ¥(0) = Vi, (0)
+ ¢1(0)y1, the initial condition v, (0) is obtained as

Viker (0) = v(0) — c1(0)y
=v(0) — (y{v(0)) »1
Hence, it follows that
Vier(0) = (I = y1y7) v(0).

Second, using Vier(f) = c3(f)Vier(0), we project (F4) on the initial
condition vy, (0) to obtain that the scalar function c,(t) obeys the
linear differential equation

dey (1)
dt

Again, we consider two cases for the value of the spreading parame-
ters 8 and 8.

= —38c,(t) — BV Ner (e (D). (E5)
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1. If § # BN, then we obtain with the function ¢, (f) given by (27)

that

dey (1)
dt

Hence, with the constant ® = w/2 + 4, it follows that

— —Se) - 2 (1 + tanh <7t+ Tl(O))) o).

log (6 (1) = — fot (q> + gtanh (%g + TI(O))) dt.

The integral of the hyperbolic tangent equals to the logarithm of
the hyperbolic cosine,’

/ tanh (£) d¢ = log (cosh(S)) ,
which yields that
w2 w
log (¢, (8)) = —dt — T log (cosh (Et + Ty (0))) + K(0)
w
= —®t —log (cosh <5t + T (O))) + K(0)
for some constant K(0), which is equivalent to
w -1
log (c;(£)) = — Pt + log (cosh (Et + M (0)) ) + K(0).
With the hyperbolic secant sech(x) = cosh (x) ', we obtain that
(1) = T5(0)e sech (%Vt 1 (0)) , (F6)

where Y,(0) = exp(K(0)). At the initial time t=0, (F6)
becomes

2(0) = Y,(0) sech (Y1(0)),

and it holds that

v, (0)v(0)

. F7
”vker(o)”% ( )

6 (0) =

Thus, with sech(x) = cosh (x) !, we obtain the constant Y, (0)
(29), which completes the proof.

. If § = BN, then the function ¢, (¢) is given by (30). Thus, the

differential equation (F5) for the function ¢, () becomes

-1
dCz(t) \/N
o () — BN <8t + (O)) ().
Thus, it holds that
-1
t
log (c2(2)) = —/ 8 +,3N<5§ + T\/Z(Z)) dt.

Since

JN\T JN
IR B! N,
/ (5§+yfv<0>> F=5ls (85+yfv(0))
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we obtain for some constant K,(0) that

BN VN
1 t) = —6t— —1 St K, (0
og (c2(1)) 3 0g< + lev(O)) + Kz (0)
VN
= —6t+1 St K;(0).
Hence, the function ¢, (t) equals
- VN
1) = Y,(0)e " | 6t
103) 2(0)e ( + 0

where Y,(0) = 2@ _ At the initial time ¢ = 0, we obtain that

- N i
Cy (0) = Tz(o) (};’{v(())) .
Thus, it holds that
Ui\
- N
1,(0) = 2(0) (yfv(()))

b

Vi (O(0) [ VN
”Vker(o)”% }’1TV(0)

where the second equality follows from (F7).

APPENDIX G: PROOF OF THEOREM 5

The viral state ;(t) evolves as

dv; ~
i (t) = famea,i (V(0)),

where we define, for every node i,
N
Fanpai(P(D) = =5:(H) + (1 = T(®) Z By (2). (G1)

Since ,3~,-j > B and Si < §; for all nodes i, we obtain an upper bound
on NIMFA (1) as

dvi(t)
dt

N
< =8wit) + (L —vi(®) Y Byv()

j=1

= }NIMFA,:’ (D).

Since dv;(t)/dt S}NIMFAJ(V(t)), we can apply the Kamke-Miiller
condition’"" (see also Ref. 22), if v < ¥ and v; = ¥; implies that
}NIMFAJ(V) S}NIMFA,,- (17) for all nodes i, then v(0) < v(0) implies that
v(t) < ¥(t) at every time ¢ > 0.
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Thus, it remains to show that v < ¥ and v; = ¥; implies that
Faveai (V) < fameai (7). From (G1), we obtain that

N
}NIMFA,i(V) _}NIMFA,i (17) = _gi (Vi - 171’) +1—w) Z Iéij"j

j=1
N
- 1~’i) Z :311{’1
j=1
From v; = ¥;, it follows that

N
Faimea; () — fairas ) =0a-w ZBUVJ’ -
=1

N
—v) Y Bty
j=1

which yields that

Since (v; — ¥;) < 0, we obtain that Favrai (V) < furas (7 (¥), which
completes the proof.

APPENDIX H: PROOF OF THEOREM 6

Here, we prove that v;() > v, (#) for all nodes i in any cell V.
The proof of v;() < vy, () follows analogously. First, we define the
curing rates &gy by

amax,i = amax,l

for all nodes i in any cell J\/p. Thus, (33) implies that Smax,i > §; for
allnodesi=1,...,N. ~
Lemma 8. For all nodes i, j, there are infection rates Bij» which

satisfy By < Bj and
Z :B~1] = Omin,pl

jeN;

for all nodes i in any cell N, and all cells N.
Proof. With the definition of the lower bound dy5 5 in (31), we
obtain that (H1) is satisfied if

(H1)

D Bi= min > B (H2)
jeN P ke
Denote the difference of the infection rates by &; = 8;; — B,-j. Thus,

i < Bjand B; > Ohold ifand only if 0 < &; < ;. We obtain from
(H2) that the differences &; must satisfy

Z :811 Z &ij = 1’1’111’1 Z ﬁtk)
jeN] jeN; keNz
which yields that

Z 8!} Z :31) - !!’l’lln Z ﬁxk-

jeN] jeN] P ken

(H3)
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To complete the proof, we must show that there exist some ¢; €
[0, B;] that solve (H3). Since

Zﬂijzglj{}; Zﬂik

jeN; keNj

and Bi =0, the right side of (H3) is some value in [0, Zjej\fl ,Bij].
Since the feasible values of the infection rate differences ¢; are in the
interval [0, ﬂij], the left side of (H3) may attain an arbitrary value in
[o, Zje N Bijl. Thus, there are some infection rate differences ¢; €

[0, B;] that solve (H3), which completes the proof. O
Lemma 8 states the existence of an N x N matrix By, whose

elements B satisfy B; < B; and (H1). Thus, 7 is an equitable

partition of matrix Buin. We define the N x 1 viral state 7, (¢) as

i (¢ ) N
i;)t( ) = - dlag ((Smax,l) cees 8max,N) Vlb(t)

+ diag (u — 715 (5)) Bunin ¥ (£), (H4)
with the initial viral state

~,‘O= i O
1,1 (0) JFBJ{EV]()

for all nodes i in any cell /\/;,. Since ,,;,(0) < v;(0), Smax,,- > §; and
Emin,,-j < Bjj for all nodes i, j, Theorem 5 yields that vy, ;(t) < v;(t) for
every node i at every time t. Furthermore, Theorem 1 yields that
the N-dimensional dynamics of the viral state ¥, (#) in (H4) can
be reduced to the r-dimensional dynamics of the reduced-size viral
state vy, () in (34), which completes the proof.
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