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ABSTRACT

Infectious diseases typically spread over a contact network with millions of individuals, whose sheer size is a tremendous challenge to analyzing
and controlling an epidemic outbreak. For some contact networks, it is possible to group individuals into clusters. A high-level description of
the epidemic between a few clusters is considerably simpler than on an individual level. However, to cluster individuals, most studies rely on
equitable partitions, a rather restrictive structural property of the contact network. In this work, we focus on Susceptible–Infected–Susceptible
(SIS) epidemics, and our contribution is threefold. First, we propose a geometric approach to specify all networks for which an epidemic
outbreak simplifies to the interaction of only a few clusters. Second, for the complete graph and any initial viral state vectors, we derive
the closed-form solution of the nonlinear differential equations of the N-intertwined mean-field approximation of the SIS process. Third,
by relaxing the notion of equitable partitions, we derive low-complexity approximations and bounds for epidemics on arbitrary contact
networks. Our results are an important step toward understanding and controlling epidemics on large networks.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048779

An infectious disease spreads from one individual to another
only if the two individuals are in contact, e.g., by being closer
than 1.5 m. The specification of all contacts between individu-
als in a population results in the contact network: every indi-
vidual corresponds to a node, and there is a link between two
nodes if the respective individuals are in contact. Since most
infectious diseases spread among large populations, the contact
network is often of tremendous size, which results in challeng-
ing, large-scale epidemic models. To reduce the complexity of
such individual-based epidemic models, a common approach is
to describe the epidemic, at least approximately, between groups
(clusters) of individuals. However, only a few types of contact
networks are known to admit a grouping of individuals that
yields an accurate, low-complexity description of the epidemic.
In this work, we focus on Susceptible–Infected–Susceptible
(SIS) epidemics and determine all types of contact networks
that admit an exact grouping of individuals. Furthermore, for
any contact network, we derive low-complexity approximations
and bounds of the SIS epidemic model based on grouping
individuals.

I. INTRODUCTION

Modern epidemiology encompasses a broad range of spreading
phenomena.22,31,35 The majority of viruses spread through a popula-
tion of tremendous size, which renders individual-based modeling
impractical. However, most applications do not require to model
an epidemic on an individual level. Instead, a mesoscale descrip-
tion of the epidemic often is sufficient. For instance, suppose the
outbreak of a virus is modeled on the level of neighborhoods.
Then, sophisticated lockdown measures can be deployed which con-
strain neighborhoods differently, depending on the prevalence of the
virus in the respective neighborhood. The natural way to obtain a
mesoscale description of the epidemic is clustering (or grouping) of
individuals, for instance, by assigning individuals with similar age or
location to the same cluster. Thus, all individuals in one cluster are
considered indistinguishable and exchangeable. Additionally to the
complexity reduction, clustering for epidemics on networks has the
advantage that, on a mesoscale description, temporal fluctuations of
the individual-based contact network may average out.

We consider a contact network with N nodes. Every node
i = 1, . . . , N corresponds to an individual or a group of individuals.
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We focus on the Susceptible–Infected–Susceptible (SIS) epidemic
process in an individual-based mean-field approximation, where
every node i has a viral state vi(t) ∈ [0, 1] at every time t. The evo-
lution of the viral state vi(t) is governed by a set of N nonlinear
differential equations:

Definition 1 (NIMFA, Refs. 25, 60, and 54). For every node
i, the viral state vi(t) evolves in continuous time t ≥ 0 as

dvi(t)

dt
= −δivi(t) + (1− vi(t))

N
∑

j=1

βijvj(t), (1)

where δi > 0 is the curing rate of node i, and βij > 0 is the infection
rate from node j to i.

If the nodes correspond to individuals, then the differen-
tial equation (1) follows from a mean-field approximation of the
stochastic SIS process,57,60 and the viral state vi(t) approximates the
expected value E[Xi(t)] of the zero-one state Xi(t) of the stochas-
tic SIS process. For a zero-one, or Bernoulli, random variable,
expectation E[Xi(t)] is equal to the probability Pr[Xi(t) = 1] that
node i is infected at time t. In the remainder of this work, we
refer to (1) as NIMFA, which stands for “N-Intertwined Mean-
Field Approximation.”57,60 The advantage of NIMFA is that the
SIS Markov chain with 2N states is approximated by N nonlin-
ear differential equations. NIMFA follows from the SIS process
by the approximation E[Xi(t)Xj(t)] ≈ E[Xi(t)] E[Xj(t)]. Around the
epidemic threshold, the approximation of the stochastic SIS pro-
cess by NIMFA might be inaccurate.60 Furthermore, we stress that
NIMFA (1) assumes that the viral dynamics are Markovian and
that the infection rates βij do not depend on time t. Markovian and
non-Markovian viral dynamics can be substantially different.55

On the other hand, nodes can be interpreted as groups of
individuals.23,25,34 Then, the viral state vi(t) ∈ [0, 1] is the fraction of
infected individuals in node i. For group-based epidemic models, the
infection rates βij are determined by the mobility flow, or diffusion
of individuals, between group i and j. For more details on metapop-
ulation models, we refer the reader to Refs. 8, 9, and 23 and Sec. IX
of Ref. 35. The results of this work apply to NIMFA (1) for both an
individual-based and a metapopulation setting.

The contact network, assumed to be fixed and time-invariant,
corresponds to the N× N infection rate matrix B, which is com-
posed of the elements βij. We denote by diag(x) the N× N diagonal
matrix with the vector components of x ∈ RN on its diagonal. We
denote the N× N curing rate matrix S = diag(δ1, . . . , δN). Then, the
matrix representation of NIMFA (1) is

dv(t)

dt
= −Sv(t) + diag (u− v(t)) Bv(t), (2)

where v(t) = (v1(t), . . . , vN(t))T is the viral state vector at time t, and
u is the N× 1 all-one vector. Homogeneous NIMFA60 assumes the
same infection rate β and curing rate δ for all nodes,

dv(t)

dt
= −δv(t) + βdiag (u− v(t)) Av(t), (3)

where A is an N× N zero-one adjacency matrix.

For NIMFA (1), the basic reproduction number R0 follows52 as

R0 = ρ(S−1B), (4)

where ρ(M) denotes the spectral radius of a square matrix
M. Around the epidemic threshold condition R0 = 1, there is a
bifurcation.25 If R0 ≤ 1, then the all-healthy state, vi(t) = 0 for all
nodes i, is the only equilibrium of NIMFA (2), and it holds that
v(t)→ 0 as t→∞. If R0 > 1, then there is a second equilibrium,
the steady-state vector v∞, with positive components, and it holds
that v(t)→ v∞ as t→∞, if v(0) )= 0. For homogeneous NIMFA
(3), the condition R0 > 1 reduces to τ > τc with the effective infec-
tion rate τ = β/δ and the epidemic threshold τc = 1/ρ(A), where
ρ(A) denotes the spectral radius of the adjacency matrix A.

The contact network, given by matrix B, has a significant
impact on the virus spread.22,31,35 First, the structure of the contact
network has an influence on the basic reproduction number R0. For
instance, for homogeneous NIMFA (3) on scale-free networks, the
epidemic threshold τc = 1/ρ(A) converges to zero36 as the number
of nodes N→∞. Hence, there is always a non-zero steady state v∞
for sufficiently large scale-free networks, regardless of the effective
infection rate τ . Second, the contact network determines the steady
state v∞,i of every node i. In particular, the steady-state vector v∞
can be expressed as a power series19,42,58 in terms of the eigenvectors
of the infection rate matrix B. Third, some contact networks give
rise to disease localization,10,14,17,28 which means that the spread of
the epidemic is restricted to parts of the networks when the basic
reproduction R0 is just above 1.

Many papers deal with clustering of individuals into
communities,1,7,38 where individuals within the same community are
densely connected, and there are only a few links between individ-
uals of different communities. Hence, communities are defined by
structural properties of the contact graph. Most results are of the
type: if the network has a certain mesoscale structure, then also
the dynamics have some structure.3,5,32 In this work, we approach
clustering from the other direction: we presume structure in the
dynamics and aim to find all contact networks that are compatible
with the structured dynamics. More specifically, we are interested
in reducing the NIMFA dynamics (3) to only a few differential
equations. Hence, our results provide a framework to tame the
complexity of epidemics on large contact networks.

The central analysis tool in our analysis is the proper orthogo-
nal decomposition (POD)6 of the N× 1 viral state vector v(t), which
is given by

v(t) =
m
∑

l=1

cl(t)yl (5)

for some m ≤ N. Here, the N× 1 agitation mode vectors y1, . . . , ym

are orthonormal (a set of vectors y1, . . . , ym is orthonormal if yT
l

yk = 0 for l )= k and yT
l yk = 1 for l = k), and the scalar functions

cl(t) = yT
l v(t) are obtained by projecting the viral state v(t) onto the

vector yl. Since any N× 1 vector v(t) can be written as the linear
combination of N orthonormal vectors, POD (5) is exact for any net-
work if m = N. However, we are particularly interested in networks,
for which the number of agitation modes m is (much) smaller than
the number of nodes N. If (5) holds true, then the viral state vector
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v(t) is the element of the m dimensional subspace

V = span{y1, . . . , ym} (6)

at any time t, where the span (the set of all linear combinations) of
the vectors y1, . . . , ym is denoted by

span
{

y1, . . . , ym

}

=

{

m
∑

l=1

clyl

∣

∣

∣
cl ∈ R

}

.

With POD (5), the viral state v(t) can be described with less than
N differential equations: denote the right side of the NIMFA (2) by
fNIMFA (v(t)) ∈ RN. Then, NIMFA (2) reads more compactly

dv(t)

dt
= fNIMFA (v(t)) . (7)

With POD (5), we obtain that
m
∑

l=1

dcl(t)

dt
yl = fNIMFA

(

m
∑

l=1

cl(t)yl

)

. (8)

Since the vectors y1, . . . , ym are orthonormal, we can project (8) onto
the agitation modes yl to obtain the differential equations

dcl(t)

dt
= yT

l fNIMFA

(

m
∑

l=1

cl(t)yl

)

, l = 1, . . . , m. (9)

Hence, POD (5) reduces the number of differential equations from
the number of nodes N to the number of agitation modes m. We
emphasize that POD (5) is a hybrid of linear and nonlinear analy-
sis: the viral state v(t) equals a linear combination of the agitation
modes yl, which are weighted by possibly nonlinear functions cl(t).
In Ref. 41, we have shown that POD (5) is an accurate approximation
for a diverse class of dynamics on networks. In this work, we study
under which conditions POD (5) is exact for the NIMFA epidemic
model (2).

Example 1. Consider homogeneous NIMFA (3) on the path
graph in Fig. 1(a), for which the viral state vector v(t) evolves as

dv1(t)

dt
= −δv1(t) + β (1− v1(t)) v2(t),

dv2(t)

dt
= −δv2(t) + β (1− v2(t)) (v1(t) + v3(t)) ,

dv3(t)

dt
= −δv3(t) + β (1− v3(t)) v2(t).

(10)

Suppose that the initial viral states of nodes 1 and 3 are equal,
v1(0) = v3(0). Then, it holds that v1(t) = v3(t) at all times t due to
the symmetry of the path graph. Hence, the viral state vector v(t)
= (v1(t), v2(t), v3(t))

T satisfies

v(t) = c1(t)y1 + c2(t)y2, (11)

where the orthonormal vectors y1 and y2 are given by

y1 =
1
√

2





1
0
1



 , y2 =





0
1
0



 . (12)

As illustrated by Fig. 1(b), the viral state v(t) remains in the m = 2
dimensional subspace V = span{y1, y2} at all times t, provided that

(a) (b)

FIG. 1. Proper orthogonal decomposition for a path graph. (a) A path graph with
N = 3 nodes. The top, middle, and bottom nodes are labeled by 1, 2, and 3,
respectively. (b) The black curve depicts the trajectory of the viral state v(t) in
the Euclidean space R3. The shaded area illustrates the viral state set V , which
equals the span of the vectors y1 and y2, given by (12). Provided that v(0) ∈ V ,
the viral state v(t) remains in the subspace V at every time t.

v(0) ∈ V . On the subspace V , (9) yields that the N = 3 differential
equation (10) reduces to m = 2 equations

dc1(t)

dt
= −δc1(t) +

√
2β

(

1−
1
√

2
c1(t)

)

c2(t),

dc2(t)

dt
= −δc2(t) + 2

√
2β (1− c2(t)) c1(t),

from which the viral state v(t) is obtained with (11).
Two conditions must hold for the set V to reduce NIMFA to

m differential equations. First, the set V must be an m-dimensional
subspace, spanned by the basis vectors y1, . . . , ym. Second, if the ini-
tial viral state v(0) is the element of set V , then the viral state v(t)
must remain in the setV at every time t > 0. Hence, setV must be an
invariant set of NIMFA. Thus, we consider the geometric problem
as follows:

Problem 1 (Clustering in NIMFA). For a given number of
nodes N and a given number m ≤ N of agitation modes, find all
N× N infection rate matrices B and the corresponding N× 1 agita-
tion modes y1, . . . , ym, such thatV = span{y1, . . . , ym} is an invariant
set of NIMFA (2).

In contrast to Example 1, for which the agitation modes y1

and y2 follow rather straightforwardly, Problem 1 considers the
interdependency of arbitrary graphs and invariant sets V in full
generality.

If m+ N, then we expect that the invariant set V , and its basis
vectors yl, reflect a macroscopic structure, or a clustering, of the
contact graph. For instance, the agitation mode y1 in Example 1 indi-
cates that the viral states v1(t) and v3(t) evolve equally and nodes 1
and 3 can be assigned to the same cluster.
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Furthermore, the invariant set V allows for sophisticated, low-
complexity control methods for the viral state v(t) (see Ref. 31 for a
survey of control methods). More specifically, consider that an affine
control method is applied to NIMFA (7),

dv(t)

dt
= fNIMFA (v(t)) +

m
∑

l=1

gl(t)yl. (13)

Here, the scalar function gl(t) is the control of the lth agitation mode
yl. If the subspaceV = span{y1, . . . , ym} is an invariant set of NIMFA
(2), then V is also an invariant set of (13). Hence, on the subspace
V , the viral state v(t) can be controlled with only m distinct con-
trol inputs g1(t), . . . , gm(t). If the agitation mode yl corresponds to a
group of nodes, such as in Example 1, then the control gl(t) is applied
to all nodes of that group. For instance, gl(t) could be the viral state
control of individuals of a certain age group and location.

II. RELATED WORK

Clustering in NIMFA is closely related to equitable
partitions.46,47,56 We denote a general partition of the node set
N = {1, . . . , N} by [slightly deviating from common notation, we
also refer to π as an (equitable) partition of the infection rate matrix
B] π = {N1, . . . ,Nr}. Here, the cells N1, . . . ,Nr are disjoint sub-
sets of the node set N , such that N = N1 ∪ · · · ∪Nr. We adapt the
definition of equitable partitions in Refs. 29 and 33 as follows:

Definition 2 (Equitable partition). Consider a symmetric
N× N infection rate matrix B and a partition π = {N1, . . . ,Nr} of
the node set N = {1, . . . , N}. The partition π is equitable if, for all
cells l, p = 1, . . . , r, the infection rates βik satisfy

∑

k∈Nl

βik =
∑

k∈Nl

βjk ∀i, j ∈ Np.

For an equitable partition π , we define the degree from cell Nl

to cell Np as

dpl =
∑

k∈Nl

βik (14)

for some node i ∈ Np. Definition 2 states that, for an equitable par-
tition π , the sum of the infection rates (14) is the same for all nodes
i ∈ Np. We denote the r× r quotient matrix by Bπ , whose elements
are defined as (Bπ )pl = dpl. Furthermore, we define the r× 1 all-one
vector ur = (1, . . . , 1)T.

As shown by Bonaccorsi et al.5 and Ottaviano et al.,33 NIMFA
(2) can be reduced to r differential equations, provided that the
infection rate matrix B has an equitable partition π with r cells. For
our work, we summarize the results in Refs. 5 and 33 as follows:

Theorem 1 (Refs. 5 and 33). Consider NIMFA (2) on an
N× N infection rate matrix B with an equitable partition π
= {N1, . . . ,Nr}. Assume that δi = δj and vi(0) = vj(0) for all nodes
i, j in the same cell Nl. Then, it holds that vi(t) = vj(t) at every time
t > 0 for all nodes i, j ∈ Nl and all l = 1, . . . , r. Furthermore, define

the r× 1 reduced-size viral state vector vπ (t) =
(

vi1(t), . . . , vir(t)
)T

and the r× r reduced-size curing rate matrix

Sπ = diag
(

δi1 , . . . , δir

)

, (15)

where il denotes an arbitrary node in the cell Nl. Then, the reduced-
size viral state vector vπ (t) evolves as

dvπ (t)

dt
= −Sπvπ (t) + diag (ur − vπ (t)) Bπvπ (t). (16)

Remarkably, on both microscopic (2) and macroscopic (16)
resolutions, the viral dynamics follow the same class of governing
equations. For the Markovian Susceptible–Infectious–Susceptible
(SIS) process, Simon et al.48 proposed a lumping approach to
reduce the complexity, which is an approximation and merges
states of the SIS Markov chain (also see the work of Ward et
al.61). In Ref. 11, a generalized mean-field framework for Marko-
vian SIS epidemics has been proposed, which includes NIMFA as
a special case. Beyond epidemics, analogous results to Theorem
1 have been proved for a diverse set of dynamics on networks
with equitable partitions.12,13,32,37,45 [Specifically we believe that
Theorem 1 can be generalized to the dynamics dvi(t)

dt
= −δivi(t) +

∑N
j=1 βijg(vi(t), vj(t)), where the arbitrary function g(vi(t), vj(t))

describes the “coupling”4,26,41,51 between node i and j.] As a direct
consequence of Theorem 1, equitable partitions are related to the
proper orthogonal decomposition (5) as follows:

Corollary 1. Consider NIMFA (2) on an N× N infection rate
matrix B with an equitable partition π = {N1, . . . ,Nr}. Assume that
δi = δj and vi(0) = vj(0) for all nodes i, j in the same cellNl. Then, the
subspace V = span{y1, . . . , ym} with m = r is an invariant set, where
the N× 1 agitation modes yl are given by

(

yl

)

i
=

{

1√
|Nl|

if i ∈ Nl,

0 if i )∈ Nl,

and the scalar functions equal cl(t) =
√

|Nl|vπ
l (t).

In other words, Corollary 1 states that every equitable partition
π yields an invariant set V , whose dimension equals the number
of cells r in the partition π . Example 2 illustrates Theorem 1 and
Corollary 1 as follows:

Example 2. Consider NIMFA on a graph with N = 6 nodes,

whose curing rate matrix equals S = diag
(

δ̃1, δ̃1, δ̃1, δ̃2, δ̃2, δ̃3

)

for

some curing rates δ̃1, δ̃2, δ̃3. Furthermore, suppose that the infection
rate matrix B is symmetric and given by the graph in Fig. 2 as

B =















β11 0 0 0 β15 β16

0 0 β23 β24 β25 β26

0 β23 0 β34 0 β36

0 β24 β43 0 β45 0
β15 β25 0 β45 0 0
β16 β26 β36 0 0 0















.

Suppose that, for some degrees dpl > 0, the infection rates βij sat-
isfy: β11 = β23 = d11; β15 = β34 = d12 and β24 = β25 = d12/2; β16

= β26 = β36 = d13; and β45 = d22. Then, the infection rate matrix B
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becomes

B =















d11 0 0 0 d12 d13

0 0 d11 d12/2 d12/2 d13

0 d11 0 d12 0 d13

0 d12/2 d12 0 d22 0
d12 d12/2 0 d22 0 0
d13 d13 d13 0 0 0















. (17)

Thus, matrix B has the equitable partition π = {N1,N2,N3} with the
cells N1 = {1, 2, 3}, N2 = {4, 5} and N3 = {6}. The quotient matrix
equals

Bπ =





d11 d12 d13

d12 d22 0
d13 0 0



 .

For the partition π , the reduced-size viral state can be chosen
[but, for instance, vπ (t) = (v2(t), v5(t), v6(t))

T is possible as well] as
vπ (t) = (v1(t), v4(t), v6(t))

T. Theorem 1 states that the vector vπ (t)
= (v1(t), v4(t), v6(t))

T evolves as

dvπ (t)

dt
= −Sπvπ (t) + diag (u3 − vπ (t)) Bπvπ (t),

with the 3× 3 reduced-size curing rate matrix Sπ = diag
(

δ̃1, δ̃2, δ̃3

)

.

Furthermore, Corollary 1 states that the viral state v(t) has the proper
orthogonal decomposition

v(t) =
√

3vπ
1 (t)y1 +

√
2vπ

2 (t)y2 + vπ
3 (t)y3,

with the agitation modes

y1 =
1
√

3

(

1 1 1 0 0 0
)T

,

y2 =
1
√

2

(

0 0 0 1 1 0
)T

,

y3 =
(

0 0 0 0 0 1
)T

.

III. EXACT CLUSTERING

Theorem 1 and Corollary 1 only give an incomplete answer to
Problem 1: if the infection rate matrix B has an equitable partition
π , then there exists an invariant set V . But are there invariant sets V ,
even if matrix B does not have an equitable partition π?

We denote the orthogonal complement of the viral state set V by

V⊥ =
{

w ∈ R
N|wTv = 0, ∀v ∈ V

}

.

The dimension of the set V equals m. Thus, the dimension of the
orthogonal complement V⊥ equals N−m. Since the orthogonal
complement V⊥ is a subspace, there is a set of N−m orthonormal

FIG. 2. Graph with a partition of the node set. A graph with N = 6 nodes
and the partition π = {N1,N2,N3}, whose cells are given by N1 = {1, 2, 3},
N2 = {4, 5}, and N3 = {6}. For unit link weights, i.e., βij = 1 for all nodes i, j,
the partition π is not equitable. If the link weights βij satisfy (23), as in Example
2, then the partition π is equitable.

basis vectors ym+1, . . . , yN such that

V⊥ = span{ym+1, . . . , yN}. (18)

The direct sum of two subspaces S1,S2 ⊆ RN is defined as the
subspace

S1 ⊕ S2 = {s1 + s2|s1 ∈ S1, s2 ∈ S2} . (19)

Thus, the Euclidean space is the direct sum RN = V ⊕ V⊥ of the two
subspaces V ,V⊥.

We rely on four assumptions to solve Problem 1.
Assumption 1. For every viral state v ∈ V , we require that

diag (δ1, . . . , δN) v ∈ V .
Suppose that the curing rates are homogeneous, i.e., δi

= δ for all nodes i. Then, Assumption 1 is satisfied since
diag (δ1, . . . , δN) v = δv ∈ V for every viral state v ∈ V . More gen-
erally, Assumption 1 states that the viral state set V is an invari-
ant subspace of the curing rate matrix diag (δ1, . . . , δN). Intuitively
speaking, the curing rates δ1, . . . , δN are “set in accordance to” the
clustering given by the viral state set V , such as in Example 2.

Assumption 2. There is a viral state v ∈ V whose entries
satisfy vi > 0 for every node i = 1, . . . , N.

If R0 > 1 and matrix B is irreducible, then25 there is a unique
steady state v∞ with positive components v∞,i > 0. Since every viral
state v converges to the steady state v∞, the steady state v∞ is the ele-
ment of the invariant set V . Hence, Assumption 2 is always satisfied
if R0 > 1, provided matrix B is irreducible.

Assumption 3. The curing rates are positive and the infection
rates are non-negative, i.e., δi > 0 and βij ≥ 0 for all nodes i, j.

Assumption 3 is rather technical since only non-negative cur-
ing rates and infection rates have a physical meaning.

Assumption 4. The infection rate matrix B is symmetric and
irreducible.

Assumption 4 holds if and only if the infection rate matrix B
corresponds to a connected undirected graph.59 Under Assumption
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4, matrix B is diagonalizable56 as

B = X&XT. (20)

Here, we denote the N× N diagonal matrix & = diag(λ1, . . . , λN)
whose diagonal entries are given by the real eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λN, and the columns of the N× N matrix X = (x1, . . . , xN) are
given by the corresponding eigenvectors xi.

Lemma 1 states that the invariant set V and the orthogonal
complement V⊥ are spanned by eigenvectors of the infection rate
matrix B as follows:

Lemma 1. Suppose that Assumptions 1 and 4 hold, and con-
sider an invariant set V = span{y1, . . . , ym} of NIMFA (2) and
the orthogonal complement V⊥ = span{ym+1, . . . , yN}. Then, there
is some permutation φ, i.e., a bijective mapping from the node
set {1, . . . , N} to itself, such that V = span{xφ(1), . . . , xφ(m)} and
V⊥ = span{xφ(m+1), . . . , xφ(N)}, where xφ(1), . . . , xφ(N) denotes an
orthonormal set of eigenvectors of the infection rate matrix B to the
eigenvalues λφ(1), . . . , λφ(N).

Proof. Appendix A. !

We denote the span of the vectors xφ(l) of the subspace
V , which correspond to a non-zero eigenvalue λφ(l) )= 0 as V )=0

= span
{

xφ(l)

∣

∣

∣
l = 1, . . . , m, λφ(l) )= 0

}

. Let the number of non-zero

eigenvalues be denoted by m1. Without loss of generality, we
assume that, after the permutation φ, the first m1 eigenvalues
λφ(1), . . . , λφ(m1) are non-zero. Hence, the subspace V )=0 equals

V )=0 = span
{

xφ(l)

∣

∣

∣
l = 1, . . . , m1

}

. (21)

Analogously to (21), we define the span of the vectors xφ(l) of the
subspace V , which correspond to a zero eigenvalue λφ(l) = 0 as

V0 = span
{

xφ(l)

∣

∣

∣
l = 1, . . . , m, λφ(l) = 0

}

= span
{

xφ(l)

∣

∣

∣
l = m1 + 1, . . . , m

}

.

Thus, the subspace V is equal to the direct sum

V = V )=0 ⊕ V0. (22)

We emphasize that span
{

y1, . . . , ym

}

= span
{

xφ(1), . . . , xφ(m)

}

does
not imply that yl = xφ(k) for some k, l. An immediate consequence
of Lemma 1 is that the infection rate matrix B can be decomposed as
follows:

Lemma 2. Suppose that Assumptions 1 and 4 hold, and con-
sider an invariant set V = span{y1, . . . , ym} of NIMFA (2) and the
orthogonal complement V⊥ = span{ym+1, . . . , yN}. Then, the infec-
tion rate matrix B is decomposable as B = BV + BV⊥ , where

BV =
(

y1 · · · ym

)

B̃V







yT
1
...

yT
m







and

BV⊥ =
(

ym+1 · · · yN

)

B̃V⊥







yT
m+1
...

yT
N







for some m×m matrix B̃V and (N−m)× (N−m) matrix B̃V⊥ .
Proof. Appendix B. !

Lemma 2 shows that the sets V and V⊥ are invariant subspaces
of matrix B. In particular, the viral state dynamics on the invariant
set V are the same for all infection rate matrices B(1), B(2) with the
same submatrix B(1)

V = B(2)
V but different submatrices B(1)

V⊥
)= B(2)

V⊥
.

Example 3. Suppose that Assumptions 1 and 4 hold. For some
degrees d11, d12, d22 and some scalar ξ , consider the infection rate
matrix

B =





d11 + ξ d11 − ξ d12

d11 − ξ d11 + ξ d12

d12 d12 d22



 .

Thus, matrix B has the equitable partition π = {N1,N2}, where
N1 = {1, 2} and N2 = {3}, and the scalar ξ specifies the difference
of the infection rate β12 = d11 − ξ between nodes 1 and 2 and the
self-infection rates β11 = β22 = d11 + ξ . The quotient matrix is given
by

Bπ =
(

d11 d12

d12 d22

)

.

Corollary 1 states that the subspace V = span{y1, y2} is an invari-
ant set of NIMFA (2), where the agitation modes are equal to y1

= 1√
2
(1, 1, 0)T and y2 = (0, 0, 1)T. The orthogonal complement fol-

lows as V⊥ = span{y3}, where y3 = 1√
2
(1,−1, 0)T. Furthermore,

Lemma 2 states that the infection rate matrix can be decomposed as
B = BV + BV⊥ , where

BV =
(

y1 y2

)

(

2d11

√
2d12√

2d12 d22

)(

yT
1

yT
2

)

=





d11 d11 d12

d11 d11 d12

d12 d12 d22





and

BV⊥ = 2ξy3y
T
3 =





ξ −ξ 0
−ξ ξ 0
0 0 0



 .

The eigenvectors xφ(1), xφ(2) are equal to a linear combination of the
agitation modes y1, y2, and the third eigenvector equals xφ(3) = y3.

Theorem 2 states our main result as follows:
Theorem 2. Suppose that Assumptions 1–4 hold. Then, any

invariant set V = span
{

y1, . . . , ym

}

of NIMFA (2) is equal to
the direct sum V = V )=0 ⊕ V0 of two subspaces V )=0,V0. Here, the
orthonormal basis vectors y1, . . . , ym1 , where m1 ≤ m, of the subspace
V )=0 = span

{

y1, . . . , ym1

}

are given by

(yl)i =

{

1√
|Nl|

if i ∈ Nl,

0 if i )∈ Nl

(23)

for some equitable partition π =
{

N1, . . . ,Nm1

}

of the infection
rate matrix B. If m1 = m, then the subspace V0 is empty. Other-

wise, if m1 < m, then V0 = span
{

xφ(l)

∣

∣

∣
l = m1 + 1, . . . , m

}

for some

eigenvectors xφ(l) of the infection rate matrix B belonging to the
eigenvalue 0.

Proof. Appendix C. !

The Euclidean space RN is always an invariant set of NIMFA.
For V = RN and V0 = ∅, the equitable partition π in Theorem 2
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becomes trivial, i.e., π = {N1, . . . ,NN} with exactly one node in
every cell Nl. On the other hand, if there is an invariant set V

of dimension m < N, then Theorem 2 implies that matrix B is
equitable with m1 ≤ m cells.

If V0 = ∅, then Theorem 2 essentially reverts Corollary 1. Thus,
every equitable partition π corresponds to an invariant set V0, and
vice versa. In other words, the macroscopic structure of equitable par-
titions π and the low-rank dynamics of invariant sets V are two sides
of the same coin. If V0 = ∅, then the dynamics on the invariant set
V = V )=0 are given by the reduced-size NIMFA system (16) with
m = m1 equations.

If V0 )= ∅, then Theorem 2 is more general than the inversion
of Corollary 1. Theorem 2 states that the invariant set of NIMFA
is equal to the direct sum V = V )=0 ⊕ V0, where the subspace V )=0

corresponds to an equitable partition π of the infection rate matrix,
and the subspace V0 is a subset of the kernel of matrix B. If V0 )= ∅,
then the dynamics on the invariant set V = V )=0 ⊕ V0 are described
by the m > m1 differential equation (9).

The curing rates δi satisfy Assumption 1 if there are some
scalars δ̃1, . . . , δ̃m1 such that δi = δ̃l for all nodes i in cell Nl, where
l = 1, . . . , m1. However, Assumption 1 allows for more general cur-
ing rates. With Lemma 2 and Theorem 2, the infection rate matrix B
can be constructed from specifying the agitation modes yl, such that
V = span{y1, . . . , ym} is an invariant set of NIMFA (2):

Example 4. Consider NIMFA (2) on a network of N = 5
nodes and the subspaces V )=0 = span{y1, y2}, V0 = span{y3}, where
the agitation modes equal

y1 =
1
√

3

(

1 1 1 0 0
)T

,

y2 =
1
√

2

(

0 0 0 1 1
)T

,

y3 =
1
√

6

(

1 −2 1 0 0
)T

.

Furthermore, let y4, y5 be two vectors, with yT
4 y5 = 0 and yT

4 y4

= yT
5 y5 = 1, which are orthogonal to the agitation modes y1, y2, y3.

With Lemma 2, define the infection rate matrix as

B =
(

y1 y2

)

B̃V )=0

(

yT
1

yT
2

)

+
(

y4 y5

)

B̃V⊥

(

yT
4

yT
5

)

,

where the symmetric 2× 2 matrices B̃V )=0 , B̃V⊥ are chosen such that
matrix B is irreducible and contains only non-negative elements. Fur-
thermore, consider the curing rate matrix S = diag(δ̃1, δ̃2, δ̃1, δ̃3, δ̃3)

for some curing rates δ̃1, δ̃2, δ̃3 > 0. Then, Assumptions 1–4 are sat-
isfied, and Theorem 2 states that the subspace V = V )=0 ⊕ V0 is an
invariant set of NIMFA (2). (An alternative choice for the curing
rate matrix is S = diag(δ̃1, δ̃1, δ̃1, δ̃2, δ̃2), which also satisfies Assump-
tion 1.)

In Ref. 42, we derived the solution of NIMFA model (2)
around the epidemic threshold R0 = 1. More precisely, under mild
assumptions, we derived the approximation vapx(t) = c(t)v∞ with
an explicit, closed-form expression for the scalar function c(t). If
the initial viral state satisfies ‖v(0)‖2 ≤ σ̃ (R0 − 1)2 for some con-
stant σ̃ as R0 ↓ 1, then it holds that ‖v(t)− vapx(t)‖2 ≤ σ (R0 − 1)2

FIG. 3. Viral dynamics around the epidemic threshold R0 = 1. An illustration of
the uniform convergence results in Theorem 3 of Ref. 42 for a network with N = 2
nodes. The black curve shows the trajectory of the 2× 1 viral state vector v(t)
as time t evolves. The blue line shows the steady state v∞. The red curve depicts
the trajectory closed-form approximation vapx(t) = c(t)v∞, which is in the sub-
space span{v∞} at every time t. If the initial viral state v(0) is positive and in

the disk of radius σ̃ (R0 − 1)2 for some constant σ̃ , then the approximation error

‖v(t)− vapx(t)‖2 is bounded by σ (R0 − 1)2 for some constant σ at every time t
as R0 ↓ 1.

at every time t for some constant σ as R0 ↓ 1. Hence, the viral state
v(t) converges to the approximation vapx(t) uniformly in time t.
Remarkably, since vapx = c(t)v∞, the viral state v(t) lies in the one-
dimensional subspace V = span{v∞} when R0 ↓ 1, for an arbitrarily
large and heterogeneous contact network. Figure 3 illustrates the
uniform convergence result in [Theorem 3 in Ref. 42].

As illustrated by Fig. 3, the viral state v(t) converges to the one-
dimensional dynamics vapx(t) as R0 ↓ 1. Are there networks for which
the approximation vapx(t) is exact, for any basic reproduction number
R0 > 1? The infection rate matrix B is regular if

N
∑

k=1

βik =
N
∑

k=1

βjk (24)

for all nodes i, j. From Theorem 2, we obtain the following:
Corollary 2. Suppose that Assumptions 1–4 hold and con-

sider that R0 > 1. Then, there is an m = 1 dimensional invariant
set V = span{y1} of NIMFA (2) if and only if V0 = ∅, the agita-
tion mode equals either y1 = v∞/‖v∞‖2 or y1 = −v∞/‖v∞‖2 and
the infection rate matrix B is regular. Furthermore, the approxima-
tion vapx(t) = c(t)v∞ is exact if and only if matrix B is regular and
v(0) = c(0)v∞ for some scalar c(0).

Proof. Appendix D. !

A. Decomposition of the viral dynamics

Suppose the infection rate matrix B has an equitable partition
π and the infection rates βij are the same between all nodes i, j in
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any two cells (if matrix B is decomposable as B = BV + BV⊥ as in
Lemma 2, then the infection rates βij are the same between all nodes
i, j in any two cells if and only if BV⊥ = 0). Then, we can decompose
the dynamics of the viral state v(t) as follows:

Theorem 3. Consider NIMFA (2) on a symmetric N× N
infection rate matrix B with an equitable partition π = {N1, . . . ,Nr}.
Furthermore, suppose that the curing rates δi are the same for all
nodes i in any cell Nl, and that the infection rates βij are the same for
all nodes i in any cellNl and all nodes j in any cellNp. Denote the sub-
space V )=0 = span{y1, . . . , yr}, with the basis vectors yl defined in (23),
and denote the kernel of matrix B by ker(B) = span{yr+1, . . . , yN}. At
every time t ≥ 0, consider the viral state decomposition

v(t) = ṽ(t) + vker(t),

where the projection of the viral state v(t) on the subspace V )=0 equals

ṽ(t) =
r
∑

l=1

(

yT
l v(t)

)

yl,

and the projection of the viral state v(t) on the kernel ker(B) equals

vker(t) =
N
∑

l=r+1

(

yT
l v(t)

)

yl.

Furthermore, denote the r× 1 reduced-size projection ṽπ (t)

=
(

ṽπ
i1
(t), . . . , ṽπ

ir
(t)
)T

, where il denotes an arbitrary node in cell Nl.
Then, the reduced-size projection ṽπ (t) evolves, independently of the
projection vker(t), as

dṽπ (t)

dt
= −Sπ ṽπ (t) + diag

(

ur − ṽπ (t)
)

Bπ ṽπ (t), (25)

with the quotient matrix Bπ and matrix Sπ given by (15), and the
projection vker(t) obeys

dvker(t)

dt
= −

(

S + diag
(

Bṽ(t)
))

vker(t). (26)

Proof. Appendix E. !

In Theorem 3, the set V0 is equal to the kernel ker(B), which
is equivalent to V⊥ = ∅ and assuming the same infection rates βij

between all nodes i, j in any two cells. In contrast to Theorem 1,
we do not consider that the initial state satisfies vi(0) = vj(0) for all
nodes i, j in the same cell Nl.

With the definition of the agitation mode yl in (23), the viral
state average in cell Nl follows from the projection of the viral state
v(t) on the vector yl as

1

|Nl|

∑

i∈Nl

vi(t) =
1
√

|Nl|
yT

l v(t)

for every cell l = 1, . . . , r. Furthermore, the subspace V )=0 is spanned
by the vectors y1,. . . , yr. Hence, the dynamics of the projection ṽ(t)
on the subspace V )=0 describes the evolution of viral state averages
of every cell Nl, which is described by r differential equation (25)
on the quotient graph Bπ . Since the steady state v∞,i of every node
i in the same cell Nl is the same,5,33 it holds that v∞ ∈ V )=0, which
implies that vker(t)→ 0 as t→∞. Furthermore, from Theorem 1,
it follows that, if vker(0) = 0, then vker(t) = 0 at every time t. Thus,

the evolution of the projection vker(t) describes the convergence of
the viral states vi(t) to the respective cell-averages. By (25), Theorem
3 implies that the viral state cell-averages evolve independently of the
dynamics on the kernel ker(B). Schaub et al.45 obtained an analogous
result for linear dynamics on networks.

If we can derive the closed-form expression for the projection
ṽ(t) by solving (25), then the dynamics vker(t) follow by the lin-
ear time-varying system (26). Furthermore, the reduced-size steady

state vπ
∞ =

(

ṽπ
∞,i1

, . . . , ṽπ
∞,ir

)T
is an equilibrium of (25). Thus, if

ṽ(t) = v∞, then the dynamics of the projection vker(t) obey the linear
time-invariant (LTI) system

dvker(t)

dt
= −

(

S + diag (Bv∞)
)

vker(t).

Thus, the affine subspace
{

v∞ + vker

∣

∣

∣
vker ∈ ker(B)

}

is an invariant

set of NIMFA, on which the viral dynamics are linear.
Loosely speaking, Theorem 3 shows that a crucial challenge for

solving NIMFA on graphs with equitable partitions is the dynam-
ics of the projection ṽ(t), since solving the set of nonlinear Eq. (25)
seems more difficult than solving the linear time-varying system
(26) for a given ṽ(t). For a complete graph, the solution ṽ(t) to set
of nonlinear equation (25) is one-dimensional and can be stated in
the closed form.53 Thus, we obtain the solution of NIMFA on the
complete graph, for arbitrary initial viral states v(0), as follows:

Theorem 4. Consider NIMFA (2) on the complete graph,
whose infection rates equal βij = β > 0 for all nodes i, j = 1, . . . , N.
Suppose the curing rates satisfy δi = δ for all nodes i. Then, for any
initial viral state v(0) ∈ [0, 1]N, the solution of NIMFA (2) equals

v(t) = c1(t)y1 + c2(t)vker(0),

with the agitation mode y1 = u/
√

N, and the N× 1 vector vker(0)
given by

vker(0) =
(

I− y1y
T
1

)

v(0).

The functions c1(t) and c2(t) follow explicitly as:

1. If δ )= βN, then the scalar function c1(t) equals

c1(t) =
w

2β
√

N

(

1 + tanh
(w

2
t + ϒ1(0)

))

, (27)

with the viral slope w = βN− δ and the constant

ϒ1(0) = arctanh

(

2
β
√

N

w
yT

1 v(0)− 1

)

,

and the scalar function c2(t) equals

c2(t) = ϒ2(0)e
−,t sech

(w

2
t + ϒ1(0)

)

, (28)

with the constants , = w/2 + δ and

ϒ2(0) =
vT

ker(0)v(0)

‖vker(0)‖22
cosh (ϒ1(0)) . (29)
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2. If δ = βN, then the scalar function c1(t) equals

c1(t) =
√

N

(

δt +
√

N

yT
1 v(0)

)−1

(30)

and the scalar function c2(t) obeys

c2(t) = ϒ̃2(0)e
−δt

(

δt +
√

N

yT
1 v(0)

)− βN
δ

,

where the constant ϒ̃2(0) is given by

ϒ̃2(0) =
vT

ker(0)v(0)

‖vker(0)‖22

( √
N

yT
1 v(0)

)

βN
δ

.

Proof. Appendix F. !

Figure 4 illustrates the closed-form solution of NIMFA for
complete graphs, as given by Theorem 4. In Figs. 4(a) and 4(b),
even though the viral state average ṽ(t) is monotonically increas-
ing, the viral state v1(t) = ṽ1(t) + vker,1(t) is decreasing until t ≈ 1,

which is due to the dynamics of the projection vker(t) on the kernel
ker(B).

Theorem 4 implies that Conjecture 1 in Ref. 42 is wrong. More
specifically, Theorem 4 shows that, at least for the complete graph
and general initial states v(0), the viral state v(t) does not converge
to the approximation vapx(t) with respect to the L2-norm as R0 ↓ 1.
[In Fig. 3, the initial viral state v(0) was not general, since ‖v(0)‖2 ≤
σ̃ (R0 − 1)2 as R0 ↓ 1.]

IV. APPROXIMATE CLUSTERING

As shown by Theorem 2, equitable partitions and low-
dimensional viral state dynamics in NIMFA are equivalent. Many
networks possess some macroscopic structure, which may resemble
an equitable partition, but which is not precisely an equitable parti-
tion. Is it possible to reduce the number of NIMFA equations, if the
network has an “almost” equitable partition?

For two N× 1 vectors x, y, x ≥ y denotes that xi ≥ yi for all
entries i = 1, . . . , N. Theorem 5 shows that NIMFA (2) on any net-
work can be bounded by increasing or decreasing the spreading rates
βij,δi as follows:

(a) (b)

(c) (d)

FIG. 4. Closed-form solution of NIMFA on the complete graph. The solution of NIMFA (1) for a complete graph with N = 3 nodes and homogeneous spreading rates. The first
and second rows correspond to a basic reproduction number of R0 = 1.3 and R0 = 1, respectively. As stated by Theorem 3, the viral state satisfies v(t) = ṽ(t) + vker(t),
where ṽ(t) and vker(t) denote the projection of the viral state v(t) on the subspace V )=0 and the kernel ker(B), respectively. (a) and (c) The viral state vi(t) vs time t for every
node i. (b) and (d) The projections ṽ(t) and vker(t), which follow from Theorem 4 as ṽi(t) = c1(t)v∞,i and vker,i(t) = c2(t) (y2)i for all nodes i, where the scalar functions
c1(t) and c2(t) are given by the closed-form expressions (27) and (28), respectively. Since the steady state v∞,i is the same for every node i in the complete graph, it holds
that ṽi(t) = ṽj(t) for all nodes i, j.
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Theorem 5. Consider two NIMFA systems with respective pos-
itive curing rates δi and δ̃i, non-negative infection rates βij and β̃ij,
and viral states vi(t) and ṽi(t). Suppose that the initial viral state
vi(0),ṽi(0) are in [0, 1] for all nodes i and that matrices B and B̃, with
elements βij and β̃ij, respectively, are irreducible. Then, if δ̃i ≤ δi and

β̃ij ≥ βij for all nodes i, j, ṽ(0) ≥ v(0) implies that ṽ(t) ≥ v(t) at every
time t.

Proof. Appendix G. !

We emphasize that Theorem 5 does not assume symmetric
infection rate matrices B, B̃. Building upon Theorem 5, we aim to
bound the viral state v(t) of any network at every time t by the viral
state of networks with equitable partitions. In the following, we con-
sider a partition π = {N1, . . . ,Nr} of the node set N = {1, . . . , N}
of an arbitrary network. We stress that π can be any, not necessar-
ily equitable, partition. We define the minimum dmin,pl of the sum of
infection rates from cell Nl to Np as

dmin,pl = min
i∈Np

∑

k∈Nl

βik (31)

and the maximum dmax,pl as

dmax,pl = max
i∈Np

∑

k∈Nl

βik. (32)

Furthermore, we denote the r× r matrices Bmin and Bmax, whose ele-
ments are given by dmin,pl and dmax,pl, respectively. Analogously, we
define the minimum δmin,l of the curing rates in cell Nl as

δmin,l = min
i∈Nl

δi

and the maximum δmax,l as

δmax,l = max
i∈Nl

δi. (33)

We combine Theorems 1 and 5 to obtain the following:
Theorem 6. Suppose that Assumptions 3 and 4 hold. At every

time t, consider the r× 1 reduced-size lower bound vlb,l(t) and r× 1
upper bound vub,l(t), which evolve as

dvlb(t)

dt
= − diag

(

δmax,1, . . . , δmax,r

)

vlb(t)

+ diag (ur − vlb(t)) Bminvlb(t) (34)

and

dvub(t)

dt
= − diag

(

δmin,1, . . . , δmin,r

)

vub(t)

+ diag (ur − vub(t)) Bmaxvub(t).

Then, if the initial states satisfy vlb,l(0) ≤ vi(0) ≤ vub,l(0) for all nodes
i in any cell Nl, the viral state vi(t) of all nodes i in any cell Nl is
bounded by

vlb,l(t) ≤ vi(t) ≤ vub,l(t) ∀t ≥ 0. (35)

Proof. Appendix H. !

Theorem 6 states that the N× 1 viral state v(t) on any network
is bounded by the r× 1 viral states vlb(t), vub(t) on networks with
equitable partitions and r cells. Reducing the N-dimensional viral

state dynamics to r-dimensional dynamics comes at the cost of an
approximate description by the bounds in (35). If the partition π
is equitable, then it holds that dmin,pl = dmax,pl, and the bounds in
Theorem 6 can be replaced by the exact statement in Theorem 1.

Similarly to the lower bound and upper bound of the degrees
in (31) and (32), respectively, we define the average degree from cell
Nl to Np for any partition π as

d̄pl =
1

∣

∣

∣
Np

∣

∣

∣

∑

i∈Np

∑

k∈Nl

βik.

Then, we define the r× r reduced-size infection rate matrix B̄, which
consists of the elements d̄pl. Furthermore, we define the average
curing rate of any cell Nl as

δ̄l =
1
∣

∣

∣
Nl

∣

∣

∣

∑

i∈Nl

δi.

Then, we approximate the viral state by vi(t) ≈ v̄l(t) for all nodes
i in any cell Nl. Here, the r× 1 reduced-size viral state vector v̄(t)
evolves as

dv̄(t)

dt
= − diag

(

δ̄1, . . . , δ̄r

)

v̄(t) + diag (ur − v̄(t)) B̄v̄(t), (36)

and, for all cells Nl, the initial state equals

v̄l(0) =
1
∣

∣

∣
Nl

∣

∣

∣

∑

i∈Nl

vl(0).

If matrix B has an equitable partition π and the rates δi, βij are the
same between all nodes i, j in any two cells as in Theorem 3, then
the approximation v̄(t) coincides with the projection ṽ(t) of the viral
state v(t) on the subspace V )=0.

To illustrate the accuracy of the bounds in Theorem 6 and
the reduced-size viral state v̄(t) for networks without equitable par-
titions, we consider the Stochastic Blockmodel (SBM), originally
introduced by Holland et al.20 We consider a network with N = 1000
nodes and a partition π with r = 5 cells N1,. . . , N5. The cells are
of size |N1| = 400, |N2| = 250, |N3| = 200, |N4| = 100, and |N5|
= 50. With a probability of 0.7, there are no links between two cells
Np, Nl, i.e., βij = βji = 0 for all nodes i ∈ Np and j ∈ Nl. Otherwise,
with a probability of 0.3, we denote the mean of the links between
the cells Np, Nl by β̄pl = β̄lp, which is set to a uniform random num-
ber in [0.1, 0.2]. Then, the infection rate βij = βji for all nodes i ∈ Np

and j ∈ Nl is set to a random number [β̄pl, β̄pl(1 + σrel)], where we
vary the relative variance σrel for different scenarios in the numer-
ical evaluation. If σrel = 0, then the partition π is equitable. The
larger the variance σrel, the “less equitable” the partition π . For every
node i, the curing rate δi is set to a uniform random number in
[1, 1 + σrel], and the initial viral state vi(0) is set to a uniform random
number in [0.01, 0.01(1 + σrel)]. Hence, if the variance σrel = 0, then
it holds that vlb,l(t) = vlb,l(t) = vi(t) for every node i in any cell Nl.
Last, the curing rates are decreased to δi ← cδi, where the scalar c is
chosen such that the basic reproduction number (4) equals R0 = 3.
To obtain the viral state v(t), we discretize NIMFA (1) with a suf-
ficiently small sampling time, see27,34,40 for a detailed analysis of the
resulting discrete-time NIMFA model.
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Figure 5 illustrates the accuracy of the bounds vlb,l(t), vub,l(t)
in Theorem 6 and the approximation accuracy of v̄(t) in (36) for
the largest cell N1 and the smallest cell N5. For both σrel = 0.25 and
σrel = 0.5, the approximation v̄l(t) is close to the exact average viral
state in cell Nl,

vavg,l(t) =
1
∣

∣

∣
Nl

∣

∣

∣

∑

i∈Nl

vl(t).

The accuracy of the bounds vlb,l(t), vub,l(t) on any viral state vi(t) in
cellNl decreases when the variance σrel is increased. Nonetheless, the
bounds vlb,l(t), vub,l(t) are reasonably accurate for both σrel = 0.25
and σrel = 0.5.

A. Clustering for epidemics on real-world networks

Approximating the viral state dynamics by m < N equations
requires the specification of a partition π of the nodes. In some cases,
this partition is given a priori, as in the experiments in Fig. 5, where
the node partition π was chosen corresponding to the SBM blocks.

In contrast, for real-world networks, it is more challenging to deter-
mine an appropriate clustering and, hence, to obtain an accurate
description of the viral state dynamics by m < N equations.

1. Bethe clustering

We consider a two-step approach to reduce NIMFA to
m = r < N equations. First, we obtain a partition π of the nodes
by the Bethe spectral clustering algorithm,43 which makes use of
the Bethe Hessian H± = (davg − 1)I ± davgB + D, with the aver-
age degree davg and the degree matrix D = diag(d1, . . . , dN). When
matrix B has an (approximate) SBM structure, the negative eigen-
values of H± have corresponding eigenvectors, which are (approx-
imately) piecewise constant on the blocks of B. The spectral clus-
tering algorithm partitions the nodes of B based on a k-means
clustering of the negative eigenvector entries of H±. Second, we
evaluate the accuracy of reduced-size viral state v̄(t) in (36) by the

(a) (b)

(c) (d)

FIG. 5. Low-dimensional approximation
of the viral state dynamics. For a stochas-
tic blockmodel network with N = 1000
nodes and r = 5 cells, the accuracy of the
approximation v̄l(t) and the tightness of
the bounds vlb,l(t), vub,l(t) are depicted.
The reduced-size viral states v̄(t),vlb(t)
and vub(t) are equal to the linear combi-
nation of m = r = 5 agitation modes yl ,
each of which corresponds to one cell. (a)
and (b) The first row corresponds to the
relative variance σrel = 0.25. (c) and (d)
The second row corresponds to the rel-
ative variance σrel = 0.5. (a) and (c) The
left column corresponds to the largest cell
N1. (b) and (d) The right column corre-
sponds to the smallest cell N5. The viral
state vi(t) of every node i in the respec-
tive cellNl is within the shaded gray area.
(a) Cell N1 and relative variance σrel =
0.25. (b) Cell N5 and relative variance
σrel = 0.25. (c) Cell N1 and relative vari-
ance σrel = 0.5. (d) Cell N5 and relative
variance σrel = 0.5.
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(a) (b) (c)

FIG. 6. Low-dimensional approximation of epidemics on real-world networks. The error εavg of the reduced-size viral state v̄(t), in (36), for partitions obtained by Bethe
clustering and random partitions. The accuracy is evaluated for three real-world networks: (a) American football network; (b) primary school network; (c) train bombing
network.

deviation of the prevalence,

εavg =
n
∑

k=1

∣

∣

∣

∣

∣

1

N

N
∑

i=1

vi

(

k.t
)

−
1

N

r
∑

l=1

|Nl| v̄l

(

k.t
)

∣

∣

∣

∣

∣

. (37)

Here, .t denotes the sampling time, k is the discrete time, and the
number of observations n is chosen such that the viral state v(n.t)
practically converged to the steady state v∞.

We applied the Bethe clustering algorithm to three real-world
networks, which were accessed through:24 the American football

(a) (b) (c)

(d) (e) (f)

FIG. 7. Low-dimensional bounds of epidemics on real-world networks. The errors of the low-dimensional bounds vlb,l(t) and vub,l(t), stated by Theorem 6, for partitions
obtained by Bethe clustering and random partitions. The subplots in the first and second row show the errors εub and εlb of the upper bound vub,l(t) and the lower bound
vub,l(t), respectively. The accuracy is evaluated for three real-world networks: (a) and (d) American football network; (b) and (e) primary school network; (c) and (f) train
bombing network.
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(a)

(b)

FIG. 8. Clustering NIMFA for the cholera outbreak in London, 1854. The blue
curves show the daily cholera deaths in London, gathered by Snow.49 The red

curve shows the change y[k]− y[k − 1] in the prevalence y[k] =
∑N

i=1 vi [k] of
the NIMFA epidemic model vs day k. The NIMFA parameters were set in accor-
dance to Paré et al.34 The brown curve shows the prevalence ȳ[k] =

∑r
l=1 v̄r [k] of

the reduced-size NIMFAmodel with: (a) r = 3 clusters, for which the cellN1 is not
further partitioned (s = 1); (b) r = 6 clusters, for which the cellN1 is partitioned
into s = 4 clusters.

network16 with N = 115 nodes and L = 613 links, for which r = 10
clusters were detected; the primary school contact network (day 1)50

with N = 236 nodes and L = 5899 links, resulting in r = 8 clusters;
and the train bombing network18 with N = 64 nodes, L = 243 links,
and r = 3 identified clusters. For all networks, we considered homo-
geneous spreading rates βij, δi, which were set such that the basic
reproduction number equals R0 = 3. The initial viral state was set
to vi(.t) = 1/N for every node i. To evaluate the accuracy of the
Bethe clustering approach, we additionally considered a collection
of random partitions, which are obtained by randomly permuting
the nodes in the partition π of the Bethe clustering.

Figure 6 shows that, for the football and the school network,
which have a clear community structure, the Bethe spectral cluster-
ing approach results in significantly more accurate low-dimensional
viral dynamics v̄(t) than for random partitions. For the train net-
work, which does not possess a clear community structure, there is
a smaller advantage of Bethe clustering. Thus, our results indicate
that if the network has an underlying community structure, then
spectral clustering may be used to find an accurate low-dimensional
approximation of the viral state dynamics.

Furthermore, for any partition π of the nodes, there are low-
dimensional bounds vlb,l(t), vub,l(t) of the viral state dynamics, as
stated by Theorem 6. We define the errors εub and εlb of the bounds
vub,l(t) and vlb,l(t) analogously to (37). Figure 7 demonstrates that the
partition of the nodes by the Bethe clustering algorithm results in
significantly more accurate lower bounds vlb,l(t) than those obtained

from random partitions and somewhat more accurate upper bounds
vub,l(t).

2. Cholera outbreak in London

We evaluate the NIMFA clustering method for the London
cholera outbreak in 1854. By mapping the cholera deaths to indi-
vidual households, Snow49 argued that the spread of cholera was
due to infected water of the Broad Street Pump, which was accessed
by the majority of households. The dataset of Snow consists of
N = 251 nodes. The nodes i = 1, . . . , 250 correspond to households,
and node i = 251 refers to the Broad Street Pump. Furthermore,
the household i = 208 is a workhouse, whose residents had an own
well and did not use the Broad Street Pump much. We follow the
approach by Paré et al. [Matrix A(3) in Ref. 34] and set the elements
of the 251× 251 infection rate matrix B to

βij =



















1 if i = j,

1/10 if j = 251, i = 208,

1 if j = 251, i )= 208,

0 otherwise.

(38)

Thus, every household i )= 208 is connected to the Broad Street
Pump j = 251 with infection rate βi,251 = 1, except for the ware-
house i = 208 whose limited access to the pump is considered by
the lower infection rate β208,251 = 1/10. Furthermore, every house-
hold i has a unit-weight self-infection rate βii = 1, which accounts
for the interaction of members within the same household. The cur-
ing rates δi are determined based on the fraction of cholera deaths in
household i. For more details on the data and modeling approach,
we refer to Ref. 34.

We define the partition π = {N1,N2,N3} with the cells
N1 = {1, . . . , 207, 209, . . . , 250}, N2 = {208} and N3 = {251}. For
all cells l, p = 1, 2, 3, the sum of the infection rates

∑

k∈Nl
βik and

∑

k∈Nl
βki is the same for all nodes i ∈ Np. Hence, the partition

π of the asymmetric matrix B is inward equitable and outward
equitable,33 and the NIMFA viral dynamics could be reduced sim-
ilarly to Theorem 1, which considered symmetric matrices B, pro-
vided the curing rates satisfy δi = δj for all nodes i, j in any cell Nl.
However, the curing rates δi are not the same for all nodes i ∈ N1.
Hence, Assumption 1 does not hold, and an exact reduction of the
N = 251 NIMFA equations to r = 3 clusters is not possible.

Instead, we aim to approximate the N = 251 NIMFA equa-
tions by the reduced-size r× 1 viral state v̄(t) in (36). Since the
curing rates δi are not the same for all nodes i ∈ N1, we fur-
ther partition the nodes in cluster N1. More precisely, we obtain
a partition N11,N12, . . . ,N1s of the cluster N1 such that δi ≈ δj

for all nodes i, j ∈ N1l, where l = 1, . . . , s. We obtain the s clusters
N11, . . . ,N1s by the Matlab command kmeans applied to the cur-
ing rates δi, where i ∈ N1. Thus, in total, there are s + 2 clusters
N11, . . . ,N1s,N2,N3. We vary the number of subclusters from s = 1
to s = 4.

Figure 8 shows that the full-size NIMFA model with N = 251
nodes accurately captures the empirical data on the cholera deaths,
as already reported by Ref. 34. Here, v[k] = v(k.t) and v̄[k]
= v̄(k.t) denote the full-size and reduced-size viral states, respec-
tively, at day k, and the discrete time step .t equals one day.
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Figure 8(a) shows that clustering the nodes only based on the
equitable partition π = {N1,N2,N3} of matrix B in (38) yields a rea-
sonably accurate, reduced-size approximation of NIMFA with only
r = 3 differential equations. The difference of reduced-size NIMFA
to full-size NIMFA in Fig. 8(a) is due to the different curing rates δi

for nodes i ∈ N1. In Fig. 8(b) cellN1 is further partitioned into s = 4
cells N11, . . . ,N14, based on the curing rates δi. Then, the difference
of reduced-size NIMFA to full-size NIMFA is negligible. Hence, we
can describe the cholera outbreak in London by the interaction of
r = 6 clusters, given by the reduced-size system (36).

V. CONCLUSIONS

In this work, we focused on reducing NIMFA on a network
with N nodes to only m+ N differential equations. We believe
that the geometric clustering approach outlined in this work can be
applied to other dynamics on networks, particularly to general epi-
demic models39,44 and the class of dynamics in Refs. 4, 26, 41, 51.
Our contribution is composed of three parts. In the first part, we
showed that the viral dynamics evolve on an m-dimensional sub-
space V if and only if the contact network has an equitable partition
with m1 ≤ m cells. Thus, low-dimensional viral state dynamics and
the macroscopic structure of equitable partitions are equivalent.

In the second part, we focused on equitable partitions π with
the same spreading rates βij and δi for all nodes i, j in the same
cell Nl. We considered the decomposition of the viral state v(t)
= vker(t) + ṽ(t) into two parts: the term ṽ(t) describes the viral state
average in every cell Nl; and the term vker(t) equals the projection
of the viral state v(t) onto the kernel of the infection rate matrix B.
By showing that the term ṽ(t) evolves independently from the pro-
jection vker(t) and the projection vker(t) obeys a linear time-varying
system, we derived the solution of the NIMFA differential equations
on the complete graph for arbitrary initial conditions v(0).

Strictly speaking, most contact networks do not have an equi-
table partition, and an exact reduction of the number of NIMFA
equations is not possible. In the third part, we considered arbitrary
contact networks with a (not necessarily equitable) partition of the
nodes into m cells. For any partition of the nodes, we derived bounds
and approximations of the NIMFA epidemics with only m differen-
tial equations. The “more equitable” the partition, the more accurate
the approximation. Thus, finding (almost) equitable partitions is
crucial for reducing an epidemic outbreak in a large population to
the interaction of only few groups of individuals.
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APPENDIX A: PROOF OF LEMMA 1

Let w denote a vector in the orthogonal complement V⊥ of the
invariant set V . Hence, it must hold that wTv(t) = 0 for every time

t ≥ 0 if v(0) ∈ V , which is equivalent to both wTv(0) = 0 and

d(wTv(t))

dt
= 0 ∀v(t) ∈ V , w ∈ V⊥. (A1)

We replace the notation v(t) ∈ V by v ∈ V . Then, we obtain from
NIMFA equation (2) that (A1) is equivalent to

wT
(

−Sv + diag(u− v)Bv
)

= 0 ∀v ∈ V , w ∈ V⊥.

Under Assumption 1, it holds that Sv ∈ V . Hence, the vector w ∈ V⊥

is orthogonal to the vector Sv, which yields that

wT diag(u− v)Bv = 0.

Since diag(u) is the identity matrix, we obtain that

wTBv = wT diag(v)Bv. (A2)

Since the invariant set V is a subspace of RN, v ∈ V implies that γ v ∈
V for any scalar γ ∈ R. For the vector γ v, where we consider γ > 0,
it follows from (A2) that

γ wTBv = γ 2wT diag(v)Bv,

which is equivalent to

wTBv = γ wT diag(v)Bv.

Thus, we obtain with (A2) for every scalar γ > 0 that

wT diag(v)Bv = γ wT diag(v)Bv,

which implies that

wT diag(v)Bv = 0. (A3)

Then, from (A2), it follows that

wTBv = 0

for all vectors w ∈ V⊥, v ∈ V . The vector Bv is orthogonal to all
vectors w ∈ V⊥, only if Bv ∈ V . Thus, the set V is an invari-
ant subspace15 of the infection rate matrix B. The sets of vectors
y1, . . . , ym and ym+1, . . . , yN span the invariant set V and the orthog-
onal complement V⊥, respectively [see (6) and (18)]. Thus, we can
express the symmetric matrix B as

B =
(

y1 · · · yN

)

(

M1 M12

0 M2

)







yT
1
...

yT
N






(A4)

for some m×m symmetric matrix M1 and some (N−m)
× (N−m) symmetric matrix M2. The m× (N−m) matrix M12

describes the mapping from the subspace V⊥ to the subspace V .
Since matrix B is symmetric, it holds that M12 = 0, and (A4)
becomes

B =
(

y1 · · · yN

)

(

M1 0
0 M2

)







yT
1
...

yT
N






.

Furthermore, since matrix B is diagonalizable as (33), matrices M1

and M2 are diagonalizable (Exercise 24, Sec. 5.4 in Ref. 15). Thus,
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there is some orthogonal m×m matrix C1 and some orthogonal
(N−m)× (N−m) matrix C2 such that

B =
(

y1 · · · yN

)

(

C1 0
0 C2

)(

&1 0
0 &2

)(

CT
1 0

0 CT
2

)







yT
1
...

yT
N






.

(A5)

where the m×m diagonal matrix &1 and the (N−m)× (N−m)
diagonal matrix &2 contain the eigenvalues of B. In contrast to the
N× N matrix & in (20), the diagonal entries of matrices &1 and &2

may not be ordered with respect to their magnitude. Hence, there
is some permutation φ : {1, . . . , N}→ {1, . . . , N} of the eigenvalues
λ1, . . . , λN such that

&1 = diag
(

λφ(1), . . . , λφ(m)

)

and

&2 = diag
(

λφ(m+1), . . . , λφ(N)

)

.

We define the N×m matrix EV and the N× (N−m) matrix EV⊥

as

EV =
(

y1 · · · ym

)

C1

and

EV⊥ =
(

yN−m · · · yN

)

C2.

Since matrices C1 and C2 are nonsingular, the columns of matrices
EV and EV⊥ span the subspaces V and V⊥, respectively. We obtain
that

B =
(

EV EV⊥
)

diag
(

λφ(1), . . . , λφ(N)

)

(

ET
V

ET
V⊥

)

.

Thus, matrices EV and EV⊥ are equal to

EV =
(

xφ(1) · · · xφ(m)

)

(A6)

and

EV⊥ =
(

xφ(N−m) · · · xφ(N)

)

,

where the columns xφ(1), . . . , xφ(N) are eigenvectors to the eigenval-
ues λφ(1), . . . , λφ(N) of matrix B, which completes the proof.

APPENDIX B: PROOF OF LEMMA 2

From (A5), it follows that

B =
(

y1 · · · ym

)

C1&1C
T
1







yT
1
...

yT
m






+
(

ym+1 · · · yN

)

C2&2C
T
2

×







yT
m+1
...

yT
N






.

We complete the proof by identifying the m×m matrix
B̃V = C1&1CT

1 and the (N−m)× (N−m) matrix B̃V⊥ = C2&2CT
2 .

APPENDIX C: PROOF OF THEOREM 2

The proof of Theorem 2 is based on four lemmas. First, Lemma
3 relates the product diag(w)v to the subspaces V )=0 and V⊥:

Lemma 3. For all vectors v ∈ V )=0 and w ∈ V⊥, it holds that
diag(w)v ∈ V⊥.

Proof. Since wT diag(v) = (w1v1, . . . , wNvN) = vT diag(w), we
obtain from (A3) that

vT diag(w)Bv = 0.

Equivalently, by taking the transpose, it holds that

vTB diag(w)v = 0. (C1)

The invariant set V is given by the span of some orthogonal vec-
tors y1, . . . , ym. By Lemma 1, it holds thatV = span{xφ(1), . . . , xφ(m)},
where xφ(l) is an eigenvector of matrix B to the eigenvalue λφ(l) for
some permutation φ. Thus, every vector v ∈ V can be written as

v =
(

xφ(1) · · · xφ(m)

)

z (C2)

for some m× 1 vector z = (z1, . . . , zm)T, and the subspace V equals

V =
{

(

xφ(1) · · · xφ(m)

)

z
∣

∣

∣
z ∈ R

m
}

.

With (C2), we can rewrite (C1) as

zT&1







xT
φ(1)
...

xT
φ(m)






diag(w)

(

xφ(1) · · · xφ(m)

)

z = 0, (C3)

with the m×m diagonal matrix &1 = diag(λφ(1), . . . , λφ(m)). The
quadratic form (C3) equals zero for all vectors cz ∈ Rm if and only if

&1







xT
φ(1)
...

xT
φ(m)






diag(w)

(

xφ(1) · · · xφ(m)

)

= 0,

which implies, with (C2), that

&1







xT
φ(1)
...

xT
φ(m)






diag(w)v = 0

for all vectors v ∈ V . Componentwise, we obtain that

λφ(l)x
T
φ(l) diag(w)v = 0 (C4)

for all rows l = 1, . . . , m and all vectors v ∈ V . Equation (C4) is
satisfied if and only if λφ(l) = 0 or xT

φ(l) diag(w)v = 0 for all rows
l = 1, . . . , m. The subspace V0 contains the vectors xφ(l) for
which λφ(l) = 0, and the subspace V⊥ contains the vectors
xφ(m+1), . . . , xφ(N) which are orthogonal to the vectors xφ(1), . . . , xφ(m).
Thus, the vector diag(w)v must be element of the subspaces V0 or
V⊥, or the vector diag(w)v must be equal to the sum of two vectors
in the subspaces V0 and V . Hence, with the direct sum (19), we can
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reformulate (C4) as

diag(w)v ∈ V⊥ ⊕ V0 (C5)

for all vectors v ∈ V . We define the N×m1 matrix EV )=0 as

EV )=0 =
(

xφ(1) · · · xφ(m1)

)

and the N× (m−m1) matrix EV0 as

EV0 =
(

xφ(m1+1) · · · xφ(m)

)

.

Thus, the definition of matrix EV in (A6) implies that EV

=
(

EV )=0 EV0

)

, and matrix diag(w) can be written as

diag(w) =
(

EV )=0 EV0 EV⊥
)





M11 M12 M13

M21 M22 M23

M31 M32 M33









ET
V )=0

ET
V0

ET
V⊥





for some matrices Mij, where i, j = 1, 2, 3, whose dimensions fol-
low from the dimension of matrices EV )=0 , EV0 , and EV⊥ . Matrices
M11 and M12 describe the mapping of matrix diag(w) from the sub-
spaces V )=0 and V0, respectively, to the subspace V )=0. From (C5),
we obtain that M11 = 0 and M12 = 0. Furthermore, since matrix
diag(w) is symmetric, it holds that M21 = MT

12 = 0. Hence, to satisfy
(C5), matrix diag(w) must be equal to

diag(w) =
(

EV )=0 EV0 EV⊥
)





0 0 M13

0 M22 M23

M31 M32 M33











ET
V )=0

ET
V0

ET
V⊥






,

which implies for all vectors v ∈ V )=0 that diag(w)v ∈ V⊥. !

Lemma 3 states that for all vectors v ∈ V )=0 and w ∈ V⊥, there
must be some vector w̃ ∈ V⊥ such that

diag(w)v = w̃. (C6)

We aim to find all subspaces V )=0 and V⊥ whose elements v and w, w̃,
respectively, satisfy (C6). From Lemma 1, it follows that a basis of
the N−m dimensional subspace V⊥ is given by the columns of the
matrix

EV⊥ =







(

xφ(m+1)

)

1
· · ·

(

xφ(N)

)

1
...

. . .
...

(

xφ(m+1)

)

N
· · ·

(

xφ(N)

)

N






. (C7)

For every matrix, the column rank equals the row rank. Since the
columns of matrix EV⊥ are linearly independent, there are N−m
linearly independent rows of matrix EV⊥ . Without loss of generality
(otherwise, consider a permutation of the rows, which is equivalent
to a relabeling of the nodes), we assume that the first N−m rows of
matrix EV⊥ are linearly independent. Hence, the first N−m rows
span the Euclidean space RN−m,

span

















(

xφ(m+1)

)

1
...

(

xφ(N)

)

1






,







(

xφ(m+1)

)

2
...

(

xφ(N)

)

2






, . . . ,







(

xφ(m+1)

)

N−m
...

(

xφ(N)

)

N−m

















= R
N−m. (C8)

Thus, for all vectors w ∈ V⊥ and v ∈ V )=0, there is a vector w̃ ∈ V⊥

whose first N−m entries satisfy (C6), i.e.,

w̃i = wivi, i = 1, . . . , N−m. (C9)

The last m entries of the vector w̃ ∈ V⊥ are determined by the first
(N−m) entries of the vector w, as shown by Lemma 4. (Lemma 4
is not a novel contribution, but we include Lemma 4 for complete-
ness.)

Lemma 4. Suppose that the first N−m rows of matrix EV⊥

are linearly independent. Then, there are some (N−m)× 1 vectors
χN−m, . . . , χN such that the last m entries of any vector w ∈ V⊥ follow
from the first (N−m) entries as

wi = χT
i







w1

...
wN−m






, i = N−m + 1, . . . , N.

Proof. With the definition of matrix EV⊥ in (C7), every vector
w ∈ V⊥ can be written as

w =
(

xφ(m+1) · · · xφ(N)

)







zm+1

...
zN






(C10)

for some scalars zm+1, . . . , zN ∈ R. Thus, the first N−m entries of
the vector w follow as







w1

...
wN−m






= M







zm+1

...
zN






, (C11)

where the (N−m)× (N−m) matrix M equals the first N−m rows
of matrix EV⊥ ,

M =







(

xφ(m+1)

)

1
· · ·

(

xφ(N)

)

1
...

. . .
...

(

xφ(m+1)

)

N−m
· · ·

(

xφ(N)

)

N−m






.

By assumption, the first N−m rows of matrix EV⊥ are linearly
independent. Hence, matrix M is nonsingular, and the scalars
zm+1, . . . , zN follow from (C11) as







zm+1

...
zN






= M−1







w1

...
wN−m






.
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Thus, we obtain the last m entries of the vector w with (C10) as






wN−m+1

...
wN






=







(

xφ(m+1)

)

N−m+1
· · ·

(

xφ(N)

)

N−m+1
...

. . .
...

(

xφ(m+1)

)

N
· · ·

(

xφ(N)

)

N













zm+1

...
zN







=







(

xφ(m+1)

)

N−m+1
· · ·

(

xφ(N)

)

N−m+1
...

. . .
...

(

xφ(m+1)

)

N
· · ·

(

xφ(N)

)

N






M−1

×







w1

...
wN−m






.

To complete the proof, we define the vectors χN−m+1, . . . , χN as






χT
N−m+1

...
χT

N






=







(

xφ(m+1)

)

N−m+1
· · ·

(

xφ(N)

)

N−m+1
...

. . .
...

(

xφ(m+1)

)

N
· · ·

(

xφ(N)

)

N






M−1.

!

We combine Lemma 4 and (C9), which yields for the last
(N−m) entries of the vector w̃ ∈ V⊥ that

w̃i =
N−m
∑

j=1

χijw̃j

=
N−m
∑

j=1

χijwjvj,

where i = N−m + 1, . . . , N. Furthermore, (C6) states that w̃i

= viwi. Thus, it must hold that

wivi =
N−m
∑

j=1

χijwjvj

for the entries i = N−m + 1, . . . , N. Since the vector w is the ele-
ment of the subspace V⊥, we apply Lemma 4 again and obtain
that





N−m
∑

j=1

χijwj



 vi =
N−m
∑

j=1

χijwjvj.

Thus, for all entries i = N−m + 1, . . . , N, it must hold that

N−m
∑

j=1

χijwj(vi − vj) = 0 (C12)

for all vectors w ∈ V⊥ and v ∈ V )=0. Since the first N−m rows of
matrix EV⊥ are linearly independent [see (C8)], it follows that (C12)
must be satisfied for all scalars w1,. . . , wN−m in R. Hence, for all
vectors v ∈ V )=0, it must hold that χij(vi − vj) = 0 for all indices
j = 1, . . . , N−m, which is equivalent to χij = 0 or vj = vi. Thus,
the non-zero entries of the vectors χi indicate which nodes j have
the same viral state as node i.

Example 5. Consider a network of N = 5 nodes with an
invariant set V of dimension m = 3. Furthermore, consider that V0

= ∅, which implies with (22) that V = V )=0. Thus, there are N−m
= 2 vectors χ4 and χ5. Suppose that the vectors χ4 and χ5 are equal
to χ4 = (χ41, 0)

T and χ5 = (0, χ52)
T, where χ41, χ52 )= 0. Then, (C12)

implies that v1 = v4 and v2 = v5 for every viral state v ∈ V . Hence,
the subspace V = span{y1, y2, y3} is given by the basis vectors

y1 =
1
√

2











1
0
0
1
0











, y2 =
1
√

2











0
1
0
0
1











, y3 =











0
0
1
0
0











.

For l = 1, 2, 3, the eigenvector xφ(l) of the infection rate matrix B
equals a linear combination of the basis vectors y1, y2, y3.

From (C12), we can determine disjoint subsets N1,N2, . . . of
the set of all nodesN = {1, . . . , N} as follows: if two nodes i, j are the
elements of the same subset Nl ⊆ N , then the viral states are equal,
vi = vj, for every viral state v ∈ V )=0. If a subset contains only one
node, Nl = {i}, then the viral state can be arbitrary vi ∈ R, indepen-
dently of the viral state vj of other nodes j )= i. Every subset defines
a basis vector yl of the subspace V )=0 as

(

yl

)

i
=

{

1√
|Nl|

if i ∈ Nl,

0 if i )∈ Nl.
(C13)

Then, the subspace V )=0 equals the span of the vectors yl of all subsets
Nl. Since the dimension of the subspace V )=0 is m1, there must be
m1 subsets N1, . . . ,Nm1 . Every node i is the element of at most one

subset Nl. Hence, the vectors yl, yl̃ are orthogonal for l )= l̃.
Furthermore, some nodes i might not be the element of any

subset N1, . . . ,Nm1 , which would imply that (yl)i = 0 for all basis
vectors yl of V )=0. We define the subset Nm1+1, whose elements are
the nodes i that are not in any other subset N1, . . . ,Nm1 . As shown
by Lemma 5, the set Nm1+1 is empty.

Lemma 5. Under Assumptions 1–4, it holds that Nm1+1 = ∅.
Proof. Under Assumption 2, there is a viral state vector v ∈ V

with positive entries. The positive viral state vector v satisfies

v =
m1
∑

l=1

zlyl +
m
∑

l=m1+1

zlyl (C14)

for some scalars z1, . . . , zm ∈ R. We denote the projection of the
viral state v onto the subspace V0 as

vker =
m
∑

l=m1+1

zlyl.

Every basis vector yl of the subspace V )=0 satisfies (yl)i = 0 for all
nodes i ∈ Nm1+1. Thus, we obtain with (C14) that

(vker)i = vi > 0 (C15)

for all nodes i ∈ Nm1+1. Any vector ṽ ∈ V )=0 is orthogonal to the
vector vker ∈ V0. Hence, it holds that

N
∑

i=1

(

ṽ
)

i
(vker)i = 0.
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We split the sum

m1
∑

l=1

∑

i∈Nl

(

ṽ
)

i
(vker)i +

∑

i∈Nm1+1

(

ṽ
)

i
(vker)i = 0.

Since
(

ṽ
)

i
= 0 for all nodes i ∈ Nm1+1, we obtain that

m1
∑

l=1

∑

i∈Nl

(

ṽ
)

i
(vker)i = 0 ∀ṽ ∈ V )=0. (C16)

Furthermore, we define the N× 1 vector ua with the entries

(ua)i =

{

1 if i )∈ Nm1+1,

0 if i ∈ Nm1+1.

From the definition of the basis vectors yl in (C13), it follows that
the vector ua equals

ua =
m1
∑

l=1

√

|Nl|yl.

Thus, vector ua is the element of V )=0. Since the vector vker is in the
kernel of matrix B, it holds that Bvker = 0, which implies that

uT
a Bvker = 0. (C17)

We decompose the vector vker as vker = vker,a + vker,b, where the first
addend equals

(

vker,a

)

i
=

{

(vker)i if i )∈ Nm1+1,

0 if i ∈ Nm1+1,

and the second addend equals

(

vker,b

)

i
=

{

0 if i )∈ Nm1+1

(vker)i if i ∈ Nm1+1.
(C18)

Then, (C17) becomes

uT
a Bvker,a + uT

a Bvker,b = 0.

Since ua ∈ V )=0 and V )=0 is an invariant subspace of matrix B, it
holds that Bua ∈ V )=0. Thus, (C16) implies that uT

a Bvker,a = 0, and
we obtain that

uT
a Bvker,b = 0,

which is equivalent to

m1
∑

l=1

∑

i∈Nl

N
∑

j=1

βij

(

vker,b

)

j
= 0.

With the definition of the vector vker,b in (C18), we obtain that

m1
∑

l=1

∑

i∈Nl

∑

j∈Nm1+1

βij (vker)j = 0. (C19)

As stated by (C15), the entries (vker)j are positive for all nodes
j ∈ Nm1+1. Furthermore, the infection rates βij are non-negative
under Assumption 3. Hence, (C19) is satisfied only if βij = 0 for all
nodes j ∈ Nm1+1 and i ∈ Nl for all subsets l = 1, . . . , m1. In other

words, the nodes in Nm1+1 are not connected to any nodes in
N1, . . . ,Nm1 , which contradicts the irreducibility of matrix B under
Assumption 4. Hence, it must hold that Nm1+1 = ∅. !

Since Nm1+1 = ∅, it holds that N1 ∪ · · · ∪Nm1 = N . Hence,
the disjoint subsets N1,. . . , Nm1 define a partition of the set of all
nodes N = {1, . . . , N}. To complete the proof of Theorem 2, we
must show that the subsets N1,. . . , Nm1 are an equitable partition
of the infection rate matrix B. Hence, we must show that the sum of
the infection rates βij,

∑

j∈Nl

βij, (C20)

is the same for all nodes i ∈ Np and all cells l, p = 1, . . . , m1. Lemma
1 states that

V )=0 = span
{

y1, . . . , ym1

}

= span
{

xφ(1), . . . , xφ(m1)

}

.

Thus, there must be some nonsingular m1 ×m1 matrix H such that
(

xφ(1) · · · xφ(m1)

)

=
(

y1 · · · ym1

)

H. (C21)

Since the set eigenvectors xi and the set of vectors yl are orthonor-
mal, matrix H is orthogonal (since xT

i xj = 1 if i = j and xT
i xj = 0

if i )= j and analogously for the vectors yi, yj, it follows from xT
i xj

= yT
i HTHyj that matrix H is orthogonal). The eigendecomposition

of matrix B reads

B =
(

xφ(1) · · · xφ(m1)

)

diag
(

λφ(1), . . . , λφ(m1)

)







xT
φ(1)
...

xT
φ(m1)







+
(

xφ(m1+1) · · · xφ(m)

)

diag
(

λφ(m1+1), . . . , λφ(m)

)







xT
φ(m1+1)

...
xT

φ(m)







+
(

xφ(m+1) · · · xφ(N)

)

diag
(

λφ(m+1), . . . , λφ(N)

)







xT
φ(m+1)

...
xT

φ(N)






.

With (C21), and since the eigenvalues λφ(l) = 0 for l = m1 +
1, . . . , m, we obtain that

B =
(

y1 · · · ym1

)

H diag
(

λφ(1), . . . , λφ(m1)

)

HT







yT
1
...

yT
m1







+
(

xφ(m+1) · · · xφ(N)

)

diag
(

λφ(m+1), . . . , λφ(N)

)







xT
φ(m+1)

...
xT

φ(N)






.

(C22)

Consider two nodes i ∈ Np and a subset Nl for some l = 1, . . . , m1.
Since

(yl)j =

{

1√
|Nl|

if j ∈ Nl,

0 if j )∈ Nl,
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we can express sum (C20) as
∑

j∈Nl

βij =
√

|Nl|
(

βi1 · · · βiN

)

yl.

Thus, with the N× 1 basic vector ei, it holds that
∑

j∈Nl

βij =
√

|Nl|eT
i Byl.

From the orthogonality of the vectors y1, . . . , ym1 and from xT
φ(k)yl

= 0 for k = m + 1, . . . , N, we obtain with (C22) that
∑

j∈Nl

βij =
√

|Nl|eT
i

(

y1 · · · ym1

)

H diag

(

λφ(1), . . . , λφ(m1)

)

HTem1×1,l, (C23)

where the lth entry of the m1 × 1 vector em1×1,l equals one, and the
other entries of em1×1,l equal zero. Since node i is the element of
exactly one subset Np, it holds that

eT
i

(

y1 · · · ym1

)

=
1

√

|Np|
ẽT

m1×1,p.

Then, (C23) becomes
∑

j∈Nl

βij = dil,

where

dil =
√

|Nl|
√

|Np|
eT

m1×1,pH diag
(

λφ(1), . . . , λφ(m1)

)

HTem1×1,l

is the same for all nodes i ∈ Np, which completes the proof.

APPENDIX D: PROOF OF COROLLARY 2

Since R0 > 1, the viral state v(t) converges to a positive steady
state v∞ as t→∞. Thus, the steady state v∞ must be the element of
the m = 1 dimensional invariant set V = span{y1}, which implies
that v∞ = c̃y1 for some scalar c. Hence, the unit-length agitation
mode equals either y1 = v∞/‖v∞‖2 or y1 = −v∞/‖v∞‖2. With-
out loss of generality, assume that y1 = v∞/‖v∞‖2. Then, under
Assumption 4, matrix B is connected, which implies that By1 )= 0
since the vector y1 is positive. Thus, the subspace V0 must be empty.

To prove Corollary 2, we must show two directions. “If” direc-
tion: Suppose the infection rate matrix B is regular. Then, the viral
state v∞,i is the same for all nodes i, and v(0) ∈ V implies that
vi(0) = vj(0) for all nodes i, j. Since matrix B is regular and the ini-
tial viral state vi(0) is the same for every node i, the approximation
vapx(t) = c(t)v∞ is exact.42,53 Since v(t) = c(t)v∞ at every time t, the
invariant set V = span{y1} is indeed a one-dimensional invariant set
of NIMFA.

“Only if” direction: Suppose the one-dimensional subspace
V = span{y1} is an invariant set of NIMFA. Then, Theorem 2 yields
that the infection rate matrix B has the equitable partition π = {N1},
where the cell N1 = {1, . . . , N} contains all nodes. Thus, (14) yields,

that there exists some degree d11, which satisfies

d11 =
∑

k∈N1

βik

=
N
∑

k=1

βik

for all nodes i. Thus, we obtain with definition (24) that matrix B is
regular.

APPENDIX E: PROOF OF THEOREM 3

By assumption, the infection rates βi,j are the same for all nodes
i in any cell Nl and all nodes j in any cell Np. Thus, with the
definition of the vectors y1,. . . , yr in (23), the symmetric infection
rate matrix equals

B =
(

y1 · · · yr

)

B̃V )=0







yT
1
...

yT
r






(E1)

for some symmetric r× r matrix B̃V )=0 . Since the kernel ker(B)
is the orthogonal complement of the subspace V )=0, it holds that
RN = V )=0 ⊕ ker(B). Thus, any viral state vector v(t) ∈ [0, 1]N can be
decomposed as v(t) = ṽ(t) + vker(t), where ṽ(t) ∈ V )=0 and vker(t) ∈
ker(B). With the decomposition v(t) = ṽ(t) + vker(t), NIMFA (2)
becomes

dv(t)

dt
= −S

(

ṽ(t) + vker(t)
)

+ diag
(

u− ṽ(t)− vker(t)
)

B
(

ṽ(t) + vker(t)
)

= −Sṽ(t)− Svker(t) + diag
(

u− ṽ(t)− vker(t)
)

Bṽ(t),

where the second equality follows from Bvker(t) = 0. Further rear-
rangement yields that

dv(t)

dt
= (B− S) ṽ(t)− diag

(

ṽ(t)
)

Bṽ(t)− Svker(t)

− diag (vker(t)) Bṽ(t). (E2)

We decompose the derivative dv(t)/dt into two addends, by
making use of two lemmas as follows:

Lemma 6. Suppose that the assumptions in Theorem 3 hold
true. Then, if ṽ ∈ V )=0, the vector

Bṽ− Sṽ− diag
(

ṽ
)

Bṽ (E3)

is the element of V )=0.
Proof. We consider the three addends of the vector (E3) sep-

arately. First, (E1) shows that the addend Bṽ is the element of V )=0

if ṽ ∈ V )=0. Second, we consider the addend Sṽ. By assumption, the
curing rates δi are the same for all nodes i in the same cell Nl. Thus,
we obtain from the definition of the agitation modes yl in (23) that

Syl = δiyl (E4)

for l = 1, . . . , r, where i denotes an arbitrary node in cell Nl. Since
the agitation modes y1,. . . , yr span the subspace V )=0, (E4) implies
that Sṽ if ṽ ∈ V )=0.
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Third, we consider the addend diag
(

ṽ
)

Bṽ. Since ṽ ∈ V )=0, it
holds that

ṽ =
r
∑

l=1

(

yT
l ṽ
)

yl.

Similarly, since Bṽ ∈ V )=0, it holds that

Bṽ =
r
∑

l=1

(

yT
l Bṽ

)

yl. (E5)

Thus, we obtain that

diag
(

ṽ
)

Bṽ =
r
∑

l=1

r
∑

p=1

(

yT
l ṽ
)

(

yT
p Bṽ

)

diag(yl)yp. (E6)

From the definition of the vectors yl in (23), it follows that

diag
(

yl

)

yp =

{

y2
l if l = p,

0 if l )= p,

where the N× 1 vector y2
l =

(

(yl)
2
1, . . . , (yl)

2
N

)T
denotes the

Hadamard product of the vector yl with itself. Thus, (E6) becomes

diag
(

ṽ
)

Bṽ =
r
∑

l=1

(

yT
l ṽ
) (

yT
l Bṽ

)

y2
l . (E7)

With (23), the Hadamard product y2
l equals

(yl)
2
i =

{

1
|Nl| if i ∈ Nl,

0 if i )∈ Nl,

which implies that (yl)
2 = yl/

√
|Nl| and yields with (E7) that

diag
(

ṽ
)

Bṽ =
r
∑

l=1

(

yT
l ṽ
) (

yT
l Bṽ

)

√
|Nl|

yl.

Thus, the vector diag
(

ṽ
)

Bṽ is a linear combination of the vectors
y1,. . . , yr, which implies that diag

(

ṽ
)

BṽV )=0. Hence, we have shown
that all three addends of the vector (E3) are in V )=0, which completes
the proof. !

Lemma 7. Suppose that the assumptions in Theorem 3 hold
true. Then, if ṽ ∈ V )=0 and vker ∈ ker(B), the vector

Svker + diag (vker) Bṽ (E8)

is the element of ker(B).
Proof. The kernel ker(B) is the orthogonal complement of the

subspace V )=0. Thus, the vector (E8) is the element of ker(B) if Svker

is orthogonal to every basis vector y1,. . . , yr of the subspace V )=0. We
show separately that both addends of the vector (E8) are orthogonal
to every vector y1,. . . , yr. First, for any l = 1, . . . , r, we obtain for the
first addend in (E8) that

yT
l Svker =

(

Syl

)T
vker,

since matrix S is symmetric. With (E4), we obtain for an arbitrary
node i ∈ Nl that

yT
l Svker = δiy

T
l vker = 0.

Thus, the addend Svker is the element of ker(B).

Second, for any l = 1, . . . , r, we obtain for the second addend
in (E8) with (E5) that

yT
l diag (vker) Bṽ =

r
∑

q=1

(

yT
l Bṽ

)

yT
l diag (vker) yq

=
r
∑

q=1

(

yT
q Bṽ

)

vT
kerdiag

(

yl

)

yq.

Analogous steps as in the proof of Lemma 6 yield that

yT
l diag (vker) Bṽ =

(

yT
l Bṽ

)

√
|Nl|

vT
keryl.

Thus, by the orthogonality of the vectors vker and yl,

yT
l diag (vker) Bṽ = 0,

which completes the proof. !

With Lemmas 6 and 7, we obtain from (E2) that

dv(t)

dt
=

dṽ(t)

dt
+

dvker(t)

dt
,

where
dṽ(t)

dt
= −Sṽ(t) + diag

(

u− ṽ(t)
)

Bṽ(t)

and
dvker(t)

dt
= −Svker(t)− diag (vker(t)) Bṽ(t),

which completes the proof, since

diag (vker(t)) Bṽ(t) = diag
(

Bṽ(t)
)

vker(t).

APPENDIX F: PROOF OF THEOREM 4

Since the spreading rates are homogeneous, βij = β and δi = δ
for all nodes i, j, the infection rate matrix equals

B = βuuT, (F1)

and the curing rate matrix equals

S = δI. (F2)

Thus, with r = 1 cell N1 = {1, . . . , N}, Theorem 3 yields that the
viral state v(t) can be decomposed as v(t) = ṽ(t) + vker(t). We prove
Theorem 4 in two steps. First, we show that the projection ṽ(t) equals
c1(t)v∞ at every time t. Second, we prove that the projection vker(t)
equals c2(t)y2 at every time t.

1. Projection on the subspace V )=0

With the reduced-size curing rate matrix Sπ = δ and the quo-
tient matrix Bπ = Nβ , Theorem 1 yields that the projection on the
subspace V )=0 satisfies ṽ(t) = vπ (t)u. Evolution (16) of the reduced-
size, scalar viral state vπ (t) becomes

dvπ (t)

dt
= −δvπ (t) + (1− vπ (t)) Nβvπ (t). (F3)

We consider two cases for the value of the spreading parameters β
and δ.
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1. If δ )= βN, then the solution of (F3) equals53

vπ (t) =
vπ
∞

2

(

1 + tanh
(w

2
t + ϒ1(0)

))

,

with the reduced-size steady state vπ
∞ = 1− δ

βN
, the viral slope

w = βN− δ, and the constant

ϒ1(0) = arctanh

(

2
v(0)

vπ
∞
− 1

)

.

Thus, the projection ṽ(t) = vπ (t)u is equal to c1(t)y1 at every
time t.

2. If δ = βN, then the differential equation (F3) reduces to

dvπ (t)

dt
= −δ (vπ (t))2 ,

whose solution equals

vπ (t) =
(

δt +
1

vπ (0)

)−1

.

With vπ (0) = yT
1 v(0)/

√
N, we arrive at the closed-form expres-

sion (30) for the function c1(t).

2. Projection on the kernel ker(B)

With (F1) and (F2), Theorem 3 yields that the projection vker(t)
obeys

dvker(t)

dt
= −

(

δI + β diag
(

uuTṽ(t)
))

vker(t).

Since ṽ(t) = c1(t)y1 and (y1)i = 1/
√

N for all nodes i, we obtain that

dvker(t)

dt
= −

(

δI + β
√

Nc1(t)I
)

vker(t)

= −
(

δ + β
√

Nc1(t)
)

vker(t). (F4)

For any initial condition vker(0) ∈ ker(B), the right side of (F4) is
in the one-dimensional subspace span{vker(0)}. Thus, the projec-
tion vker(t) obeys vker(t) = c2(t)vker(0). We solve (F4) in two steps.
First, we compute the initial condition vker(0). Since v(0) = vker(0)
+ c1(0)y1, the initial condition vker(0) is obtained as

vker(0) = v(0)− c1(0)y1

= v(0)−
(

yT
1 v(0)

)

y1.

Hence, it follows that

vker(0) =
(

I− y1y
T
1

)

v(0).

Second, using vker(t) = c2(t)vker(0), we project (F4) on the initial
condition vker(0) to obtain that the scalar function c2(t) obeys the
linear differential equation

dc2(t)

dt
= −δc2(t)− β

√
Nc1(t)c2(t). (F5)

Again, we consider two cases for the value of the spreading parame-
ters β and δ.

1. If δ )= βN, then we obtain with the function c1(t) given by (27)
that

dc2(t)

dt
= −δc2(t)−

w

2

(

1 + tanh
(w

2
t + ϒ1(0)

))

c2(t).

Hence, with the constant , = w/2 + δ, it follows that

log (c2(t)) = −
∫ t

0

(

, +
w

2
tanh

(w

2
ξ + ϒ1(0)

))

dξ .

The integral of the hyperbolic tangent equals to the logarithm of
the hyperbolic cosine,2

∫

tanh (ξ) dξ = log
(

cosh(ξ)
)

,

which yields that

log (c2(t)) = −,t−
w

2

2

w
log

(

cosh
(w

2
t + ϒ1(0)

))

+ K(0)

= −,t− log
(

cosh
(w

2
t + ϒ1(0)

))

+ K(0)

for some constant K(0), which is equivalent to

log (c2(t)) = −,t + log

(

cosh
(w

2
t + ϒ1(0)

)−1
)

+ K(0).

With the hyperbolic secant sech(x) = cosh (x)−1, we obtain that

c2(t) = ϒ2(0)e
−,t sech

(w

2
t + ϒ1(0)

)

, (F6)

where ϒ2(0) = exp(K(0)). At the initial time t = 0, (F6)
becomes

c2(0) = ϒ2(0) sech (ϒ1(0)) ,

and it holds that

c2(0) =
vT

ker(0)v(0)

‖vker(0)‖22
. (F7)

Thus, with sech(x) = cosh (x)−1, we obtain the constant ϒ2(0)
as (29), which completes the proof.

2. If δ = βN, then the function c1(t) is given by (30). Thus, the
differential equation (F5) for the function c2(t) becomes

dc2(t)

dt
= −δc2(t)− βN

(

δt +
√

N

yT
1 v(0)

)−1

c2(t).

Thus, it holds that

log (c2(t)) = −
∫ t

0
δ + βN

(

δξ +
√

N

yT
1 v(0)

)−1

dξ .

Since

∫

(

δξ +
√

N

yT
1 v(0)

)−1

dξ =
1

δ
log

(

δξ +
√

N

yT
1 v(0)

)

,
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we obtain for some constant K2(0) that

log (c2(t)) = −δt−
βN

δ
log

(

δt +
√

N

yT
1 v(0)

)

+ K2(0)

= −δt + log





(

δt +
√

N

yT
1 v(0)

)− βN
δ



+ K2(0).

Hence, the function c2(t) equals

c2(t) = ϒ̃2(0)e
−δt

(

δt +
√

N

yT
1 v(0)

)− βN
δ

,

where ϒ̃2(0) = eK2(0). At the initial time t = 0, we obtain that

c2(0) = ϒ̃2(0)

( √
N

yT
1 v(0)

)− βN
δ

.

Thus, it holds that

ϒ̃2(0) = c2(0)

( √
N

yT
1 v(0)

)

βN
δ

=
vT

ker(0)v(0)

‖vker(0)‖22

( √
N

yT
1 v(0)

)

βN
δ

,

where the second equality follows from (F7).

APPENDIX G: PROOF OF THEOREM 5

The viral state ṽi(t) evolves as

dṽi(t)

dt
= f̃NIMFA,i(ṽ(t)),

where we define, for every node i,

f̃NIMFA,i(ṽ(t)) = −δ̃iṽi(t) +
(

1− ṽi(t)
)

N
∑

j=1

β̃ijṽj(t). (G1)

Since β̃ij ≥ βij and δ̃i ≤ δi for all nodes i, we obtain an upper bound
on NIMFA (1) as

dvi(t)

dt
≤ −δ̃ivi(t) + (1− vi(t))

N
∑

j=1

β̃ijvj(t)

= f̃NIMFA,i(v(t)).

Since dvi(t)/dt ≤ f̃NIMFA,i(v(t)), we can apply the Kamke–Müller
condition21,30 (see also Ref. 22), if v ≤ ṽ and vi = ṽi implies that
f̃NIMFA,i(v) ≤ f̃NIMFA,i

(

ṽ
)

for all nodes i, then v(0) ≤ ṽ(0) implies that
v(t) ≤ ṽ(t) at every time t ≥ 0.

Thus, it remains to show that v ≤ ṽ and vi = ṽi implies that
f̃NIMFA,i(v) ≤ f̃NIMFA,i

(

ṽ
)

. From (G1), we obtain that

f̃NIMFA,i(v)− f̃NIMFA,i

(

ṽ
)

= −δ̃i

(

vi − ṽi

)

+ (1− vi)

N
∑

j=1

β̃ijvj

−
(

1− ṽi

)

N
∑

j=1

β̃ijṽj.

From vi = ṽi, it follows that

f̃NIMFA,i(v)− f̃NIMFA,i

(

ṽ
)

= (1− vi)

N
∑

j=1

β̃ijvj − (1− vi)

N
∑

j=1

β̃ijṽj,

which yields that

f̃NIMFA,i(v)− f̃NIMFA,i

(

ṽ
)

=
N
∑

j=1

β̃ij

(

vj − vivj − ṽj + viṽj

)

=
N
∑

j=1

β̃ij (1− vi)
(

vj − ṽj

)

.

Since
(

vj − ṽj

)

≤ 0, we obtain that f̃NIMFA,i(v) ≤ f̃NIMFA,i

(

ṽ
)

, which
completes the proof.

APPENDIX H: PROOF OF THEOREM 6

Here, we prove that vi(t) ≥ vlb,l(t) for all nodes i in any cell Nl.
The proof of vi(t) ≤ vub,l(t) follows analogously. First, we define the
curing rates δ̃max,i by

δ̃max,i = δmax,l

for all nodes i in any cell Np. Thus, (33) implies that δ̃max,i ≥ δi for
all nodes i = 1, . . . , N.

Lemma 8. For all nodes i, j, there are infection rates β̃ij, which

satisfy β̃ij ≤ βij and
∑

j∈Nl

β̃ij = dmin,pl (H1)

for all nodes i in any cell Np and all cells Nl.
Proof. With the definition of the lower bound dmin,pl in (31), we

obtain that (H1) is satisfied if
∑

j∈Nl

β̃ij = min
i∈Np

∑

k∈Nl

βik. (H2)

Denote the difference of the infection rates by εij = βij − β̃ij. Thus,
β̃ij ≤ βij and β̃ij ≥ 0 hold if and only if 0 ≤ εij ≤ βij. We obtain from
(H2) that the differences εij must satisfy

∑

j∈Nl

βij −
∑

j∈Nl

εij = min
i∈Np

∑

k∈Nl

βik,

which yields that
∑

j∈Nl

εij =
∑

j∈Nl

βij −min
i∈Np

∑

k∈Nl

βik. (H3)
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To complete the proof, we must show that there exist some εij ∈
[0, βij] that solve (H3). Since

∑

j∈Nl

βij ≥ min
i∈Np

∑

k∈Nl

βik

and βij ≥ 0, the right side of (H3) is some value in [0,
∑

j∈Nl
βij].

Since the feasible values of the infection rate differences εij are in the
interval [0, βij], the left side of (H3) may attain an arbitrary value in
[0,
∑

j∈Nl
βij]. Thus, there are some infection rate differences εij ∈

[0, βij] that solve (H3), which completes the proof. !

Lemma 8 states the existence of an N× N matrix B̃min whose
elements β̃min,ij satisfy β̃ij ≤ βij and (H1). Thus, π is an equitable
partition of matrix B̃min. We define the N× 1 viral state ṽlb(t) as

dṽlb(t)

dt
= − diag

(

δ̃max,1, . . . , δ̃max,N

)

ṽlb(t)

+ diag
(

u− ṽlb(t)
)

B̃minṽlb(t), (H4)

with the initial viral state

ṽlb,i(0) = min
j∈Np

vj(0)

for all nodes i in any cell Np. Since ṽlb,i(0) ≤ vi(0), δ̃max,i ≥ δi and
β̃min,ij ≤ βij for all nodes i, j, Theorem 5 yields that ṽlb,i(t) ≤ vi(t) for
every node i at every time t. Furthermore, Theorem 1 yields that
the N-dimensional dynamics of the viral state ṽlb(t) in (H4) can
be reduced to the r-dimensional dynamics of the reduced-size viral
state vlb(t) in (34), which completes the proof.
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