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Modularity is a quantitative measure for characterizing the existence of a community structure in a net-
work. A network’s modularity depends on the chosen partitioning of the network into communities,
which makes finding the specific partition that leads to the maximum modularity a hard problem. In this
paper, we prove that deciding whether a graph with a given number of links, number of communities,

and modularity exists is NP-complete and subsequently propose a heuristic algorithm for generating
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graphs with a given modularity. Our graph generator allows constructing graphs with a given number
of links and different topological properties. The generator can be used in the broad field of modeling
and analyzing clustered social or organizational networks.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Community structure is observed in many real-world networks,
such as (online) social networks, where groups of friends of a cer-
tain person are often also friends of each other. For instance, one
group of friends could originate from the school community, an-
other from the sports community, and yet another group could
be living in the same neighborhood.

Community detection or characterizing the level of community
structure in a network is difficult. The modularity metric, initially
proposed by Newman and Girvan [1] to detect network communi-
ties, has attracted significant attention, e.g. see [2-4]. The maxi-
mum modularity expresses how clustered the network is and
gives the resulting partitioning into the corresponding clustered
communities. Modularity has its limitations in detecting commu-
nity structure, for instance communities smaller than a certain res-
olution limit may be undetectable [5], while larger sub-graphs may
be partitioned even if they are random graphs [6]. Additionally,
computing the maximum modularity of a given graph is an NP-
complete problem, as was proved by Brandes et al. [2]. Nonethe-
less, has remained a popular metric for representing community
structure and several heuristic algorithms for detecting maximum
modularity [7,4,8] have been proposed.

Ever since the seminal work of Erdés and Rényi [9] on modeling
and analyzing random graphs, various graph generators have been
proposed. Graph generators are predominantly used to mimic
existing networks, such that either a proper network abstraction
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can be analyzed or simply to test new algorithms and applications
when the actual network is too big or not completely known. Pop-
ular graph generators include the:

e Erd6s-Rényi random graph generator [9,10] that generates net-
works with a binomial degree distribution and where links exist
with a fixed probability p.

e Barabasi-Albert power-law graph generator [11] and its varia-
tions [12,13] that produce graphs with a power-law degree dis-
tribution. Power-law graphs are for instance used to reflect the
Internet AS topology [14].

e Watts and Strogatz small-world graph generator [15], which
was proposed to generate networks with high clustering coeffi-
cient and small diameter.

However, the proposed models produce graphs with low modu-
larity, thus failing to match the strong community structure of so-
cial networks. To date, there does not exist any generator that
produces graphs with a given number of communities and fixed
modularity. This paper aims to fill this gap by proposing such a gen-
erator. Artificially generated graphs with a required modularity
would offer the possibility to analyze community detection, infor-
mation spreading, or robustness properties on an appropriate scale.

We study the problem of finding a graph G with a given modu-
larity m, number L of links and number ¢ of communities. As it is
shown in the paper, the modularity m taken together with the
number of communities ¢ quantitatively shows community pres-
ence or absence. Our main contributions are:

(a) We prove that deciding whether a graph, with a modularity
m, number L of links, and partitioning into ¢ communities
exists, is NP-complete.
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(b) We analyze the influence of link rewiring strategies on the
modularity of a graph.

(c) We propose a novel graph generator that produces graphs
with a given number of communities and a modularity close
to that of a given modularity.

The paper is organized as follows. A short overview of the state-
of-the-art on modularity, community detection and related graph
generators is given in Section 2. The complexity of generating
graphs with a given modularity is discussed in Section 3. Section 4
analyzes the effect of link rewiring on the modularity of a graph.
Section 5 proposes a heuristic algorithm for generating network
structures with a given modularity and number of communities.
The properties of the generated graphs are discussed in Section 6.
We conclude in Section 7.

2. Related work

The modularity metric has been proposed by Newman and
Girvan [1] as a global metric for quantifying community existence
in networks. Subsequently, modularity has been explored as a metric
for community detection in graphs and networks [16,7,8,17,18]. A
thorough summary of the state-of-the-art in community detection
in general and modularity in particular has been provided by For-
tunato [19]. Brandes et al. [2] proved that finding the maximum
modularity is an NP-complete problem. In addition, they proposed
a linear programming (LP) technique for finding the maximum
modularity. A similar LP-based approach for modularity maximiza-
tion was proposed in [20]. In our previous work [21], we have
determined a tight bound and the properties of the maximum
modular graphs for a given number of links. An algorithm that
seeks for the local maxima, based on a greedy technique has been
given in [16]. Fast modularity based community detection algo-
rithms on very large networks have been proposed in [17,8,22].
Some weaknesses in modularity optimization have also been
determined, such as the incapability to detect communities smaller
than a resolution limit [5] or the breaking up of large random sub-
graphs into separate communities [6]. A spectral analysis of the
modularity as well as correlation with other metrics, such as
assortativity [23,24], has been conducted in [25].

Orman et al. [26] have made a qualitative comparison of com-
munity detection algorithms and surveyed the models for generat-
ing graphs with community structure. The model presented by
Girvan and Newman [27] generates a network consisting of a small
number of Erdés-Rényi graphs [9] that are weakly connected. Few
other models with a larger number of communities have been pro-
posed that lead to more realistic (e.g., power-law) degree distribu-
tions [28,29]. Finally, models that produce weighted and
undirected graphs with community overlap have been proposed
by Lancichinetti and Fortunato [30].

Unlike previous work, we first prove the NP-completeness of
deciding whether a graph with a given modularity, number of links
and number of communities exists. To the best of our knowledge,
our generator is the first in producing graphs with a given modu-
larity, number of links and number of communities. Moreover,
our generator returns the number of links per community, leaving
space for leveraging other structural properties per community,
such as the degree distribution.

3. Complexity of modular graph generation

For a certain partitioning of a network G of N nodes into ¢ com-
munities, modularity has been defined by Newman and Girvan [1]
as a function of the graph’s adjacency matrix values a; and its node
degrees d; fori,j=1,2,...,N as

% ZN:XN: (au

) 1 {ije the same community} (1 )
i=1 j=1

where we follow the notation introduced in [31].

By considering the cumulative degree D,, which is the sum of all
the nodal degrees in community C;; the total number L, of links
within C;; and the number Liy.; of links that connect nodes in dif-
ferent communities, the original form for the modularity (1) can be
modified [25] into

_ 1 L 1% chiDck ’
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We use the term inter-community links to refer to links that connect
nodes in different communities and the term intra-community links
for those links, where both end-points reside in the same commu-
nity. For each community C; (i=1,...,c), the number of inter-
community links, where exactly one node is in C;, is denoted as
LS, and the number of intra-community links within C; as L.
Because, from a degree perspective, all inter-community links in
C; are counted twice, we have

D¢, = 2L + 15

out

Over all possible partitions of G, the partitioning that leads to high-
est modularity m is of general interest. Based on (2), an immediate
conclusion is that maximum modularity is achieved by minimizing
the number L;,.; of links that connect nodes in different communi-
ties, while keeping the cumulative degrees of the communities as
equal as possible.

In order to gain more control over modularity-based community
structure (and its weaknesses as exposed in [5,6]), we consider the
modularity m and the number of communities ¢ as joint indicators
for the community existence in a graph. For a fixed number c of com-
munities, a rough upper bound for the modularity is (1 —1). The
modularity value should therefore be interpreted based on the num-
ber of communities. For instance, for ¢ =2, a modularity value
m = 0.48 would constitute a “highly clustered” network, while the
same value for ¢ = 5 could be interpreted as “medium clustered”.
Theoretically, m < 1 and the asymptotic value of 1 is only achieved
for an infinite number of fully isolated communities. However, we
are interested in modularity maximization in connected networks.

We proceed to formalize the problem of graph construction
with a given modularity. Using the fact that >°; D¢, = 2L, we
transform (2) into

ZDZ 4cL(L — Linger —mL)

(o

We consider two variants of the graph generation problem, namely
one where Ly, is fixed, and the other in which it is not.

Problem 1. Find a graph G with a given total number L of links and
corresponding partitioning into ¢ communities, where the com-
munities are connected by Li,, links, for which the modularity of
the generated graph equals m, i.e.

2 4cL(L—Liprer—mL)

G~ 7/¢c\
i=1 +1

2
D¢, =2L5 + 1S

out
C
ZDC’. =2L
ZLout = 2Linter
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Problem 1 is equivalent to

Problem 1*. For given L, ¢, Liye; and m, find a non-negative inte-
ger vector Lc = {L9 LS } of 2c elements in total, such that
C

»~out [ .
n i=1

¢ 2
G G __ AcL(L—Lipter—mL
E :(2Lin +L0ut) A I 1ML

i=1 +1
2
c
C;
E Lo{n = 2Linte1'
i=1

c
ZL,(;: =L- Linter
i=1

Relaxing the requirement for L to be an integer valued vector re-
sults in a convex quadratically constrained program, which can be

out

2 oo
solved in polynomial time (i.e., Y7, (ZLE; + LS ) = LIPLc, with P

a 2c¢ x 2c¢ matrix consisting of the sub-matrix H ” along the

diagonal and O for the other elements. Since P is positive semi-
definite, the quadratic constraint is convex).

Problem 2. Find a graph G with a given number of links L, a

corresponding partitioning into ¢ communities, and a given
modularity m, such that192

Cc C

ACLLinger + <<2> + 1) > D = 4cL*(1—m)
i=1

D¢, = 2L} + LS

out
> D¢ =2L
i=1

c

C;
g Loht = 2Linter
i=1

Problem 2 is equivalent to

Problem 2*. For given L, ¢, and m, find a non-negative integer
vector L = {Lﬁi, LG f of 2c¢ elements in total, such that
(o

out
~C ¢ - G L6 )2 2
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i (205 +16) = 2L
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Problem 2* is the problem of main interest in this paper and in
the remainder we refer to it as the Modular Graph Existence (MGE)
problem. A solution to the MGE problem does not constitute a
graph, but gives the number of links inside and between commu-
nities. Based on this information, various instantiations of graphs
might be possible. We will now prove that the MGE problem is
NP-complete, even for a fixed partitioning ¢ = 2 into two commu-
nities. We start with the following Lemma 1.

Lemma 1. For x < {\fCJ ,x? = C(modB) is equivalent to x*> + By = C.

Proof. Let us assume that x is a solution of x> = C(modB), then the
pair (x,y = %(2 is a solution of x? + By = C, since x*> = Bk + C for
some k € N and thus x? + By = Bk + C + B<=E=C = C. On the other
hand, assuming that (x,y) is a solution of x*> + By = C and taking
modulo B on both sides, using (By)modB =0, we arrive at

x> = C(modB), hence x is a solution. [

Lemma 1 shows that finding a solution to the quadratic
Diophantine equation x?> + By = C is as hard as finding a solution
to x> = C(modB). This problem has been shown to be NP-complete

by Manders and Adleman [32] even for few known factors of B, for
instance with B an even number.! Hence, the quadratic Diophantine
problem x? + By = C is NP-complete.

Theorem 1. The MGE problem, i.e. deciding whether a graph, with
modularity m, number L of links, and a partitioning into ¢ =2
communities, exists, is NP-complete.

Proof. Given c =2 and L, a solution to the MGE problem returns
two integer numbers, namely L' and LS}, (where L2 = L — L' — LS},
and L$?, = LS!,). Based on (2), it can be verified in polynomial time
whether those numbers indeed lead to a modularity m, and hence
the problem is in the class NP.? To prove that the MGE problem is
also NP-hard,> we demonstrate how solving the modular graph
existence problem would present a solution to the NP-complete
quadratic Diophantine problem, which asks whether an x € N exists
for which x*> + By = C holds with B, C € N and B even. We proceed in
two steps. First we translate, in polynomial time, the quadratic
Diophantine problem into an MGE problem and subsequently
demonstrate how a solution to that MGE problem can be translated
back, in polynomial time, to a solution of the quadratic Diophantine
problem.

1. Diophantine to MGE. Let us assume that we are looking for a
solution (x,y) to x2 4 By = C with B even, where the implicit fac-
tor of 2 does not affect the hardness of the problem. This prob-
lem translates to deciding whether a graph G exists with L =2
links and with modularity m =3 —-5. If indeed a solution
(x,y) exists, then a solution to MGE also exists where commu-
nity C; contains =%* links and community C, contains 4=
links, and where both communities are connected via y links.
Indeed, based on the expression in (2), such a solution has L
links and a modularity

B 1 y 1 L-y+x L—y—x2
71_3_/__4)(271_x2+2Ly71_x2+By71_£
2 L ogrt 20 22 20 2% 2 217

2. MGE to Diophantine. Let us assume that the constraints of the
MGE problem are satisfied, namely

2 2
AL(LS, + L) +2 < (205 +L6) " + (2L + L) >
=8L*(1-m)
(205 +150) + (205 +1G,) =21

Going back to the notation of D¢, = 2L + LS

o 1=1,2, and setting
y =15, =12 we have

out — Tout
4L(y +y) +2(D¢, +D¢,) = 8L*(1 —m)
De, +Dc, = 2L

With D¢, = 2L — D¢,, where we choose D¢, > Dc,, we obtain
8Ly +2(Df, + (2L —D¢,)*) = 8L*(1 — m)

or

(D¢, — L)* + 2Ly = [* — 2ml?

! In the same paper [32], Manders and Adleman have also proved that finding a
solution to the general quadratic Diophantine equation Ax? + By = C is NP-complete.

2 NP (non-deterministic polynomial time) refers to a class of problems whose
solution correctness can be verified in polynomial time [33].

3 NP-hard problems refer to a class of problems that are “at least as hard as the
hardest problems in NP,” and it is generally believed that they cannot be solved in
polynomial time. NP-hard problems that themselves are in NP are called NP-complete
[33].
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From our initial Diophantine to MGE translation we have that
B=2L and C =I?—2mIL? thus the solution to x2 + By = C is ob-
tained from a solution to the corresponding MGE problem as
X=D¢, —L andy = L&, with C; the largest community. O

out’

In our proof, we have relied on quantifying the number of links in
and between communities that would lead to a given modularity
and we have not relied on a possible graph realization. Although
the difference is subtle, since the Diophantine problem depends
on numbers, our reliance on link numbers instead of real links in
a graph is crucial. Numbers can be stored in binary representation
and therefore only grow logarithmically in the size of the input,
while real links in a graph cannot be represented in binary notation
(and are often represented via an adjacency matrix).

Within a community C;, several (sub)-graph structures can be

devised that obey the required number Lﬁ; of links in the solution
vector Lc = {L-C" LS } . to the MGE problem. The denser (in
1= (o

in’ ~out

terms of the average degree E[D]) this community graph is, the bet-
ter it actually reflects a community, and the less likely it becomes
that another partitioning would result in a higher modularity.

4. Changing the modularity via link rewiring

We identify three link rewiring steps, referred to as transforma-
tions, to change a graph’s modularity.

Transformation 1. The modularity m of a graph G (partitioned
into communities C;) increases by replacing an inter-community
link between C; and C; with an intra-community link in C; or (;
(in Fig. 1).

The difference Am; in modularity between G and the resulting
graph G’ after having rewired is

2L +D¢; — D¢, - 1
2r
The derivation of Am; has been placed in Appendix A. Because the

sum of all degrees equals twice the number of links, we have

D¢, < 2L and D¢; > 1. Therefore,

2L+1-2L-1
2r

The reverse operation, which decreases the modularity, is also pos-

sible: provided that we assure that a rewiring does not disconnect

the graph.

Transformation 2. If there are two communities C; and Cj, such
that D¢, — D¢, > 2, then the modularity can be increased by moving
an intra-community link from C; to C; (in Fig. 2).

In this case, the number of inter-community links remains the
same, while D, is increased by 2 and D, decreased by 2. The dif-
ference Am, in modularity, as derived in Appendix A, after this
transformation is

Am1(G,Dci7ch) =

ATTH(G,DQ,DQ) > 0

D¢, —Dg -2
T

Amz(G,DC”DCl) = 0

Fig. 1. Replacing an inter-community link between C; and C; with an intra-
community link in C; (Transformation 1).

Fig. 2. Replacing an intra-community link in C; with an intra-community link in C;
(Transformation 2).

Transformation 2 demonstrates that the modularity of G increases
by making the cumulative degrees D¢, of all the communities as
close as possible.

Transformation 3. The modularity of a graph G increases by
replacing an inter-community link between C; and C; with an
intra-community link in a third community Cy, if 2L + D¢, + ch >
2D¢, + 3 (in Fig. 3).

As demonstrated in Appendix A, the difference between the
modularity of G and the resulting graph G’ is

2L + D¢, + D¢, - 2D¢, -3
5 >
2L
Transformation 3 is in fact obtained by consecutively applying
Transformations 1 and 2.
In our proposed graph generator TMGG, explained in Section 5,
we start with an initial graph and subsequently apply the transfor-
mations until we reach the desired modularity. We propose to start

with the connected graph (determined in our previous work [21])
of L links and ¢ communities that has maximum modularity

Am3(G,Dc;,D¢;, Dc,) = 0

1 _
1 c-1 | 2% =0
- r(c—2r)
mmax—‘l*E*T* 212 ! 1<r<5J
(c—r)(2r—c)
ar L%J <r<c-— 1

where r = Lmodc.

5. Tunable modularity graph generator

Let us denote by community graph the abstraction where a node
reflects one community and a link connects two nodes from differ-
ent communities. In this section, we propose the Tunable Modular-
ity Graph Generator (TMGG) algorithm that generates graphs with
a given modularity m and number c of partitions. Our generator
starts by generating a graph of maximum attainable modularity
for a given m and c in Inmauze. The initial community graph is a
tree with no more than 1 link between two communities. We

LTS 7 — '~

Fig. 3. Replacing an inter-community link between C; and C; with an intra-
community link in a third community Cy (Transformation 3).
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subsequently use Transformations 1 and 2 (in RepLACEINTERNALEXTER-
NAL and SHIFTINTERNAL, respectively) to increase/decrease the modu-
larity towards the desired modularity m.

Algorithm 1: Initialize

input : Number L of links, number ¢ of communities
output: Max modularity mmax = max{m(L, c)}, initial
community graph C, initial internal link sums

1 rﬁLmOdC,kHL%J’mmax‘_l_é_%;
LS K, i« 2;

2
3 if“:' == 0 then
4 while / < c do
5 C :create a link (i — 1,1)
6 LLﬁw—k—l,i&i+1;
7 Mmax < Mmax — i
s elseif r <|5] then
9 while i < c —rdo
10 C :create alink (i — 1,1)
11 LEI‘ —k-1;
12 if i < r then
13 L C :create alink (i,c — i+ 1);
14 LCei Kk;
mn
15 i—i+1;
16 Lﬁl — K, Mmax < Mmax — r(;c;LZr)
17 else
18 while i < r do
19 C : create a link (i — 1,1)
20 Licn' «—k;
21 if i < c —rthen
22 C :create a link (i,c—i+ 1);
23 L Lgl’ — L;’ -1, Lﬁ"’*‘ —k;
24 i—i+1;
25 | Mmax <~ Mmax — %§

Procedure ReplacelnternalExternal (Transformation 1)

input : Number L of links, number ¢ of communities,
desired modularity m, the current modularity iy,
the current modularity change Amig,,, the current
state € {1, 2}, internal link sums {LC"}H c

i Ji=1,...s
1 find i and j, such that Am, (G, Dc,, Dc¢;) is minimum;
2 if meyy > mthen // in state 1

3 if state == 2 and Am\(G, Dc,, Dc;) > Amcy, then
return false;

4 | if L == 0 then break;

5 C: add 1 link between C; and C;

6 Ameye — Amy (G, DC,», DC,»)a Meyur < Meyr — Amigyr;
7 | Licn’ — Lg}j — 1, state «— 1;

8 else // in state 2

9 if state == 1 and Am,(G, D¢, Dc,) > Amg,r then

return false;
10 Amgye < Amy (G, Dc,, DC/-)’ Meyr < Meyr + Amgyr;
11 if 3! a link between C; and C; then break;
12 C: remove 1 link between C; and C; if C is still
connected; otherwise break;
13 Lifl’ — Lglf + 1, state < 2;

14 return true

Procedure Shiftinternal (Transformation 2)

input : Number L of links, number ¢ of communities,
desired modularity m, the current modularity mcyr,
the current modularity change Amyg,,, the current
state € {1,2}, internal link sums lL.C'}[zl c

in JI= L
1 find i and j, such that Am;(G, D¢,, DC/) is minimum;
2 if mgyy > mthen // in state 1
3 if state == 2 and Amy(G, Dc,, Dc;) > Amg,r then

return false;
4 Amgyr  Amy(G, D¢, DC,), Meur < Mour — AMgyr;
g C C
5 L.C'(—L.C'+1,L./<—L.’—1,state<—1;
mn mn mn mn

6 else // in state 2
7 if state == 1 and Am;(G, D¢, Dc;) > Amg,, then

return false;
8 Ameyr — Amy(G, D, D(?,)a Meyr < Mour + AmMmgyr;
C C
o | LS L8 1L « L7+ 1, state « 2;
mn mn n mn

10 return frue

We vary the order of using these transformations, resulting in
three generator variants:

o STARTREPLACING
© STARTSHIFTING
e Ranpom

All generator variants use INITIALIZE t0 construct a community
graph of maximum attainable modularity my.x for a given L and
c¢. Variant StartRepLacinG (lines 6-11 in TMGG) starts by applying
procedure RepLACEINTERNALEXTERNAL to the community graph to estab-
lish a modularity close to the interval [m — €, m + €]. If the obtained
modularity fluctuates twice around the interval [m — €, m + €] (ex-
plained in the next paragraph of this section), STARTREPLACING contin-
ues with the procedure SHIFTINTERNAL (lines 10-11 in TMGG). As soon
as the range [m — €,m + €] is met, the algorithm stops. Similarly,
the variant starTSHIFTING (lines 12-17 in TMGG) tries to obtain a
modularity in the interval [m — €, m + €], but with a reversed order
of the procedures as in StarTREPLACING. First, the procedure SHIFTINTER-
NAL is preferred over RepLACEINTERNALEXTERNAL. Finally, the last variant
Ranpom (lines 18-23 in algorithm TMGG) randomly chooses one of
the procedures RepLACEINTERNALEXTERNAL (With a certain probability p)
and sHiFTINTERNAL (With probability (1 — p)) until the value in the
interval [m — €, m + €] is achieved.

For a very small value of €, a modularity in [m — €,m + €] may
not be found. The termination condition effectuates when in con-
secutive (link rewiring) transformations the modularity value
alternatively goes below and above the interval [m —€,m + €
(lines 3 and 9 in RepLACEINTERNALEXTERNAL; lines 3 and 7 in SHIFTINTER-
NAL; and line 25 in TMGG), without getting closer to that interval.
In the algorithm, this is reflected by the current modularity going
from state 1 (above m) to 2 (below m) or vice versa twice in a
row. Hence, TMGG either finds a modularity in the interval
[m — €, m+ €] (as it “converges” towards the interval) or it termi-
nates when no further improvements are observed in four consec-
utive transformations. All three variants STARTREPLACING, STARTSHIFTING
and Ranbom return the community graph, i.e., a family of graphs or
the topology between communities and the number of links within
each community. Based on the output, we are able to construct
arbitrary graphs with a given number of links for each community.
The topological differences of the resulting graphs are studied in
Section 6.
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Algorithm 2: TMGG

input : Number L of links, number ¢ of communities, desired modularity m, variant algVariant, probability p

C
[mmax, C, {Lin[ Yi=1
Meur <= Mmax;

if mcyr — € > m then return There is no graph with modularity in [m — €,m + €];

1

2

3

4 Amgy — +o0, state «— 0;
s switch algVariant do
6
7
8

case STARTREPLACING // try first Transformation 1 then 2
while |m, — m| > € and approachM == true do
L approachM « ReplaceInternalExternal (L,C,m,mcu,,Amcu,,state,{Lﬁ’}[:1 ,,,,, o)

9 approachM « true;
10 while |m, — m| > € and approachM == true do
11 L approachM « ShiftInternal (L,c,m,mCU,,Amcur,state,{Li’}~:1 _____ o)
12 case STARTSHIFTING // try first Transformation 2 then 1
13 while |mc,r — m| > € and approachM == true do
14 | approachM « ShiftInternal (L.C.Mmeur.Ameur.state (L }ior....c):
15 approachM « true;
16 while |mcyr — m| > € and approachM == true do
17 L approachM « ReplaceInternalExternal (L,c,m,mcur,Amcur,smte,{LiCn’ Yi=1...0)
18 case Ranpbom // choose randomly Transformation 1 or 2
19 while |m, — m| > € and approachM == true do
20 choose randomly 1) with probability p OR 2) with probability (1 — p):
21 1) approachM « ReplaceInternalExternal (L,c,m,mcur,Amcur,smte,{LS"}[=1,___,C);
2 2) approachM « ShiftInternal (L.C.m Moy Ameur,state (LS ... o);
23 if the procedure has changed then state «— 0; approachM « true;
24 otherwise break;

25 if approachM == false then return There is no graph with modularity in [m — €, m + €]

5.1. Algorithm complexity and accuracy

The algorithm variants approach the given value m with differ-
ent speed and accuracy. In the paper, we use the probability
p = 0.5 in the variant Ranpom, leading to an equal probability in
choosing between RepPLACEINTERNALEXTERNAL and SHIFTINTERNAL. For
p ~ 0, Ranoom would be closer to the StarTREPLACING variant, and
for p~ 1, Ranbom would be closer to the STARTSHIFTING variant.
Fig. 4 presents the speed in terms of number of iteration steps, at
which the three algorithm variants approach the requested modu-
larity m. One iteration step corresponds to a single modularity
change in the TMGG variants.

The variant StarTREPLACING reaches m in the smallest number of
iterations, which is expected because its modularity change
Am; =0(1/L) is Dbigger than the modularity change
Am, = O(1/L%) in starTSHIFTING. Regarding the time complexity, all
three variants start with Inmiauze, which “costs” O(c). If we denote
by mg.re the initial modularity obtained after INiTiALiZE, we obtain
the time complexity of STARTREPLACING as

O(StartReplacing) = % = O((Mstart — M — €)L)

Similarly, the time complexity of STARTSHIFTING is

_ Mggare —M — €

_ g2
0(1/2L2) = O((Mstare — M — €)L7)

O(StartShifting)

Moreover, because Am, < Am;, we have a better accuracy in
StARTSHIFTING. The variant Ranpom is in between StarRTSHIFTING and
STARTREPLACING, in terms of the approaching speed, the time-complexity
and the accuracy. The modularity of the produced graph, if one is
returned, differs from the desired modularity m by at most +€ in

all three variants. The smaller ¢, the higher the accuracy. Fig. 4 illus-
trates that both StarTREPLACING and Ranpom variants attain the modu-
larity m linearly, as opposed to a “non-linear” (Am, = O(1/L%))
decrease for the variant STARTSHIFTING.

6. Properties of the obtained graphs

The three algorithm variants generate community graphs with
different topological properties.

0.85 : : ‘ ‘
max. modularity m - StartReplacing
- ©- Random (p=0.5)
0.8 é“"‘“m"um«uum - « = StartShifting H
"~ . .
Fotsege desired modularity m
“u““
“x&**
0.75 Py g
B~ N
Lj %Q S,
g GG ‘\'\
s 0.7 Q e %,
8q *,
x
S¢ \\‘
®o Xy
0.65F d
0 50 100 150 200 250 300 350

iteration step

Fig. 4. Approaching speed of algorithm variants, with L = 1000,c = 5,m = 0 : 655,
Mmax = 0: 804 and € =5 - 107>, One iteration step corresponds to a single modu-
larity change in the TMGG variants.
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(a) START REPLACING

(b) Ranpom (p =0.5)

(c) START SHIFTING

Fig. 5. Graphs returned by the three algorithm variants L = 1000,c = 5,m = 0.655 and € = 5-107°.

Table 1
Topological metrics of the three returned graphs L= 1000,c =5,m = 0.655 and
€=5-10".

Algorithm variant ~ E[D] C EH  pp Hn_q M K(%)
STARTREPLACING 588 0355 370 -0.06 0.041 987 84
Ranpom (p = 0.5) 5.67 0.167 4.00 -0.04 0.036 884 86
STARTSHIFTING 493 0.151 526 -0.01 =0 6.52 95
1
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Fig. 6. Clustering coefficient C as a function of the desired modularity value m for
the algorithm variants with L = 1000, c=5 and € = 5 - 107, Internally, the commu-
nities are constructed as random graphs.

6.1. Topological properties

The variant STArRTSHIFTING ends up with a community graph, with
a very small number of inter-community links. In most of the
cases, the community graph is a tree or very close to a tree. On

the other hand, there are just a few (usually only one) communities
with a very high number of links and all the other communities
have a similar number of links. Unlike STARTSHIFTING, the STARTREPLAC-
ING variant generates graphs with higher number of inter-
community links, but all the communities have a similar number
of intra-community links (communities with similar size). These
properties are exhibited in Fig. 5. When comparing the number
of inter-community links, the variant Ranbom (p = 0.5) is some-
where in between STARTSHIFTING and STARTREPLACING.

Table 1 shows the difference in topological metrics for the three
graphs produced by the three variants for given values of L,c,m
and e. The variant Ranoom (p = 0.5) has topological metrics’ values
that lie in between the corresponding values for StarTREPLACING and
STARTSHIFTING. In general, the variant STARTREPLACING (STARTSIFTING) pro-
duces graphs with the highest (lowest) average degree E[D]; the
highest (lowest) average clustering coefficient C; the lowest (high-
est) average hop-count E[H]; the highest (lowest) algebraic connec-
tivity py_,; the highest (lowest) spectral radius 2;; and the
smallest (largest) assortativity pp,.

We define the modularity quality coefficient K = ;' as a ratio
between the desired modularity m and the maximum modularity
Mmax Of the obtained graph (using Newman'’s algorithm [16], be-
cause as stated before, finding the mp. is also an NP-complete
problem [2]). Because my. is the maximum of a given graph with
an unknown number ¢ of communities, we have K € [0,1]. The
higher K, the more likely the original number ¢ of communities is
preserved. Table 1 (the last column) shows that the STARTSHIFTING
variant has produced the graph with the largest K due to the small
number of inter-community links and “higher link density”
within the communities, followed by Ranpom (p=0.5) and
STARTREPLACING.

In Fig. 6, we display the relation between the average clustering
coefficient and the desired modularity. The average clustering
coefficient reflects to what extent nodes tend to cluster together
and depends on the number of triangles in a graph. Fig. 6 shows
a linear relation between the modularity and the average cluster-
ing coefficient, where StarRTREPLACING produces the graphs with high-
est average clustering coefficient. The StArRTREPLACING produced
graphs have many inter-community links, which means there is
a higher probability of also having triangles spanning different
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(a) User-centric friendship network of the person X in Facebook.
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(b) TMGG modeled network.

Fig. 7. Real Facebook friendship and TMGG constructed networks.

communities than with StarTSHIFTING, which generates few inter-
community links.

6.2. Online social network modeling

To demonstrate that TMGG can indeed generate realistic com-
munity-structured networks we will make a comparison with a
real user-centric friendship network of a single person X in Face-
book* as displayed in Fig. 7(a). The nodes are Facebook friends
of X and a link exists between two nodes if the corresponding
two friends of X are also friends of each other. The visualization
shows a clear community structure. Using TMGG (variant STARTSHIF-
TING), we have generated a network, in Fig. 7(b), that has the
same modularity (m = 0.7), number of communities (c=5) and
number of links (L=1773) as the Facebook network of X.
The two networks have similar properties, such as similar average
nodal degree (E[D]=20) and clustering coefficient (C =0.68),
which supports our claim that TMGG can generate realistic
networks.

7. Conclusions

We have considered the problem of constructing graphs with
a given modularity and have proved that deciding whether such
a graph exists is NP-complete. Subsequently, we have proposed
a heuristic algorithm TMGG that generates graphs with a given
modularity and number of links. TMGG has three variants and
all start from a graph with maximum modularity [21] that is al-
tered via rewiring. Furthermore, we have analyzed the difference
in speed and accuracy of the three variations, and we have stud-
ied the topological properties of the graphs generated by them.
All three TMGG variants produce community graphs, i.e. a fam-
ily of graphs consisting of the topology between communities
and the number of links within each community. The commu-
nity graph presents ample flexibility to generate and fine-tune
the final graph towards other desired topological properties,

4 http://www.facebook.com.

such as nodal degree distribution, without affecting the
modularity.
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Appendix A. The derivations for the modularity changes

We consider the difference Am in modularity between the
graph G and the graph G/, obtained from G after a change in com-
munities C; and C;. Using the modularlty defigition (2), the differ-
ence is reflected in (D¢, — Dck) - (D’Cp - Dck) # 0, with p € {i,j}.
Hence, Am boils down to

Linter — L / 1 \?
A — —inte 5 inter LZ [ DCP —Dck (DCP —Dck) :|
p=1k=1

:M LZZ{(D/ D/ck> _(Dci_DCk)ZJr(D/Cf_DC")Z

(0000

:Lim%um acl? Z [(DC +D¢, 72Dck)(Dl Dc)
k=1

k1.
+ (DCj +D/Cj _ZDC") <DIC] —ch)}

1

2 (D’ ~De,— (D, —DC].)> (D’Ci +De, ~ (D, +ch)) (A1)
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A.1. Transformation 1

Here, Liyer = Liner — 1,0, =Dc, —1 and D¢ =Dg +1 as has
been discussed in Transformation 1. The expresswn (A 1) becomes

1

Am1 (G Dc 7DC ) L 4CL2

Z [(2D¢, —2Dc, + 1)

ksél,]

~ (2D~ 2D¢, - 1)]
41L2 (Dc, = D¢, = (D — D) +2)

x (D¢, + D¢, = (Dg; + Dej) +2)

1 2 <
1 a2 (P Do +1)

ki, j
2(2Dc, - 2D, +2)

- Acl?

1 ¢c-2 Dc,.chj+1
L 2d? (e~ DCJ+1>_T

1 ¢c-2+2

I~ ez (Pa—Dg+1)

1 2L—1—Dci+ch
‘I*E(DC*DCJ“) T

A.2. Transformation 2

Here, L ... = Linter, DC =D¢, —2 and DC = Dc + 2 as has been
discussed in Transformation 2. The expressmn (A 1) becomes

S kil [(Dc, + D, —2D¢,) (D, ~ D)
ki, j
+ (ch +Dg ~ 2Dck) (chj i DQ)]
1
" 4cl?
X (D,Ci + D¢, — (D’Cj + ch))

4cL2 Z [

k=1
k+#i,j

Amy(G,Dc;,D¢;) =

(D, - De, - (D, - D)

.= D, —1) = (Dg D, +1)]

44L2 (2D, ~2 2D - 2)

- ?kgl (Dq ~Dg - 2) + C% (Dq

k#i,j
C—2+2
cL?

~Dg - 2)

(Do, ~Dg -2) = Ll—z (Dc, ~ D¢, - 2)

A.3. Transformation 3

The difference Am in modularity between the graph G and the
graph G, obtained from G after a change in communities C;,C;
and C, (Transformation 3) is

Am3(G.Dg,,De,.De,) :%—é i [(De,+D¢, ~2D¢, ) (D, ~Dc,)
=1
pl;i, ik

+ (D¢, + D, 2D, ) (D ~Dg, )
n (Dck +D, - 2Dcp> (DL, D, )]
461L2 (D, - D¢, - (D - D)
x (D¢ +Dc, — (D, + D))
4 1L2 b))
x (D¢, +De,— (D¢, +Dq,))
(0000, -00)
x (D, +Dg, - (D, +Dc,))
:%+ﬁ pil (2D, —2D¢, 1)
p#ijk
n (ZDC] ~2D¢, - 1) ~2(2D¢, - 2D¢, + 2)}
1

4cl?
1

4l
11
ALy 3 (Dci+ch — 2D, —3)
p=1
p#ij.k
top (ZDC +2D¢, - 4D, —6)

1 2c-6+6
TR D, + D, —2Dc, - 3]

_ 2L+DC1 +ch — ZDCk -3
- 21

(DE, De, - (D¢,

(=1-2)(2D¢, —1—(2D¢, +2))

(-1-2) <2Dc], —1- (2D, +2)>
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