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Abstract. Existing link attack strategies in networks differ in the im-
portance or robustness metric, that quantifies the effect of a link removal
upon the network’s vulnerability. In this paper, we investigate the role
of the effective resistance matrix in the removal of links on a graph and
compare this removal strategy with other state-of-the-art attack strate-
gies over synthetic networks. The results of the analysis show that the
effective resistance and the link-betweenness strategies behave similarly
and are more harmful than the degree based strategies when evaluating
robustness with different performance measures.
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1 Introduction

Several critical infrastructure, such as the transportation and telecommunication
systems, the electric power grids, as well the Internet and the World-Wide-Web,
are modeled with networks since this representation allows to specify how the
components of a system are interconnected to the other components through
links, and to understand many real-world phenomena. An important aspect to
study is the capability of a system to withstand attacks. Network robustness [18]
is interpreted as a measure of the network response to perturbations or chal-
lenges (such as failures or external attacks) imposed on the network. Currently,
however, there does not exist an agreed framework that defines and quantifies
network robustness for any network and any dynamic process or service on that
network.

Since the seventies, Frank and Firsh [10] analyzed when a network can be
considered to survive an attack. They introduced a number of criteria based on
the connectivity of a graph. In particular, the ”connectivity” of a graph should
obey that (1) all the components can communicate with one another, (2) the
shortest path between each pair of nodes is no longer than a specified length,
(3) the size of the largest connected component is above a specified threshold.
Several measures based on these concepts have been proposed since then. Albert
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et al. [2] studied the robustness of scale-free and random networks by evaluating
the fragmentation of networks when an increasing fraction of nodes/links is re-
moved. They computed the diameter D of a network, that is the number of links
(or hops) in the longest shortest path in the graph, the fraction of nodes con-
tained in the largest connected component, and the average size of the isolated
clusters. Other measures of robustness are based on graph spectra. Fielder [9]
introduced as metric of graph connectedness the algebraic connectivity, i.e. the
second smallest eigenvalue of the Laplacian matrix of a graph. He showed that
the larger the algebraic connectivity, the more difficult it is to cut the graph in
components. Wu et al. [21] proposed the natural connectivity, which considers
the number of closed walks of all possible lengths, where the length equals the
sum of the link weights over the path in a graph. A closed walk is defined as
an alternating sequence of nodes and links such that the first and the last node
are the same [16]. Ellens et al. [7] proposed the effective graph resistance RG of
a graph G as a new measure of robustness based on concepts from the field of
electric circuits. The effective graph resistance RG also measures the closeness
of two nodes i and j and the communication capability in a graph [11].

Intuitively, robustness is related to the redundancy of paths between nodes
[21]. Abbas and Egerstedt [1] experimented that the existence of multiple paths
between nodes means that these nodes are highly interconnected, thus they
are resilient to node or link failures, because if one path is destroyed, the two
nodes can continue to communicate through an alternative route. In addition,
shorter paths are preferable over longer ones, since the former correspond to an
augmented level of connectivity due to lower delay time in communication and
shorter paths are less affected by failures. The effective graph resistance takes
into account both these aspects, thus it can be considered as a reliable measure
of robustness. A thorough study of the effective graph resistance RG to evaluate
the robustness of both synthetic and real-world networks has been presented by
Wang et al. [20] and Cetinay et al. [3]. Different strategies to determine which link
should be added to a graph, or which link should be protected in the graph, i.e.
should not be removed, to improve the effective graph resistance are proposed.

To identify the important links, whose attack/removal would cause a severe
network damage, in this paper, we investigate the effective resistance matrix Ω,
whose mean over all its elements equals the effective graph resistance, as shown
in equation (5) below. Through a real-world networking scenario, we show that
the effective resistance matrix provides a ranking of the links to be removed cor-
responding to increasing values of RG. Then, we compare this effective resistance
based attack strategy with other classical link removal strategies and evaluate
their consequences on the network robustness. Specifically, we compare the dif-
ferent attack strategies on synthetic networks by evaluating several robustness
measures.

This paper is organized as follows. Section 2 defines the effective resistance
matrix and its properties. Section 3 illustrates the strategies of link attack/removal.
Section 4 lists the robustness measures analyzed in the comparative analysis.
Section 5 describes a case study of the effective resistance based attack on an
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Internet backbone and the comparative analysis with other attack strategies on
synthetic networks. Finally, Section 6 concludes the paper.

2 Preliminaries

Following the notation in [16], we consider an undirected graph G, where N is
a set of N nodes and L is the set of L links. The adjacency matrix A of G is
an N × N symmetric matrix with elements aij = 1, if there is a link between
node i and j, otherwise aij = 0. Let ∆ = diag(di) be the N ×N diagonal degree

matrix, where di =
∑N
j=1 aij , the Laplacian matrix Q of the graph G is defined

as the N ×N symmetric matrix Q = ∆−A, with elements

qij =

di if i = j
−1 if the link (i, j) ∈ L
0 otherwise

(1)

The Laplacian Q is a real, semi-definite symmetric matrix, whose real eigen-
values µ1 ≥ µ2 · · · ≥ µN−1 ≥ µN = 0. We denote by zk the eigenvector of the
Laplacian belonging to eigenvalue µk. The zero eigenvalue of any Laplacian is
an important characteristic that follows from the fact that each row sum (or
column sum) is zero, which implies that the eigenvector zN = u, where u is
the all-one vector. Like any symmetric matrix, the Laplacian possesses an eigen-
decomposition Q = ZMZT , where Z is the N ×N orthogonal matrix with the
eigenvectors z1, z2, . . . , zN in the columns and M = diag(µ1, µ2, . . . , µN ).

If the graph G is connected, then Q has a unique smallest eigenvalue µN = 0,
while the remaining N − 1 are all positive. When the graph G contains m dis-
connected components, then the multiplicity of the zero eigenvalue is m, which
means that µN = µN−1 = · · · = µN−m−1 = 0. Since any Laplacian Q possesses
a zero eigenvalue, the rank of Q is at most N − 1 and det Q = 0, implying
that the inverse matrix does not exist. However, the Moore-Penrose pseudoin-
verse of Q, denoted as Q†, exists, is unique, and can act similarly as the in-
verse matrix with interesting properties. In particular, for any connected graph,
the eigen-decomposition of the pseudoinverse is Q† = ZM†ZT , where M† =

diag
(

1
µ1
, 1
µ2
, . . . , 0

)
. Even if Q is sparse, all elements in Q† are non-zero [15].

More properties of the pseudoinverse Q† are deduced in [17].

Given an undirected and connected graph G, we can associate an electric
network to G by assigning with each link (i, j) ∈ L a positive link weights
wij equal to the conductance, i.e. the inverse of the electrical resistance rij of
a resistor, so that wij = 1

rij
. The associated electric network thus possesses

a weighted adjacency matrix and a weighed Laplacian, from which the basic
voltage-current relations between any pair of nodes can be deduced as explained
in [17]. More precisely, the effective resistance ωij between any pair of nodes i
and j in the associated electric network is defined as the voltage between i and
j when a unit current is injected at node i, which leaves the electric network at
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node j. The N×N effective resistance matrix Ω has as elements ωij the effective
resistance between each node pair i and j.

The effective resistance ωij is upper bounded by the shortest path distance
in a graph [16]: graphs with low diameter have also low effective graph resistance
RG. Moreover, the commute time Cij between two nodes i and j, i.e. the expected
number of steps in a random walk starting from the node i to visit the node j
and then return to i, is Cij = 2L̃ωij or, in matrix notation C = 2L̃Ω, where

L̃ = 1
2u

T Ãu is the sum of all the link weights in the weighted3 adjacency matrix

Ã, or simply the number L of links in an unweighted graph [4]. It has also
been shown [6, 13] that the square root

√
ωij of the effective resistance is an

Euclidean metric. More precisely, the effective resistance matrix Ω is a distance
matrix, in which a triple of elements is non-negative, ωii = 0, and obeys the
triangle inequality, ωij ≤ ωik + ωkj .

From the voltage-current relation derived in [17], the effective resistance ma-
trix Ω can be derived [13],[16, p. 205-207] as

Ω = ζuT + uζT − 2Q† (2)

where the vector
ζ =

(
Q†11, Q

†
22, . . . , Q

†
NN

)
(3)

contains the diagonal elements of the pseudo-inverse matrix Q† of the weighted
Laplacian Q̃. In particular, the effective resistance between node a and b equals

ωab = (ea − eb)T Q† (ea − eb) = Q†aa +Q†bb − 2Q†ab (4)

where ek is the basic vector with the m-th component equal to (ek)m = δmk and
δmk is the Kronecker-delta: δmk = 1 if m = k, otherwise δmk = 0. The weighted
effective graph resistance R̃G is defined as the sum of the effective resistances
between all possible pairs of nodes in the graph G,

R̃G =

N∑
i=1

N∑
j=i+1

ωij =
1

2
uTΩu (5)

When introducing (2) in (5) and using the spectral decompositionQ† = ZM†ZT ,
the effective graph resistance also equals [16, p. 207]

RG = N

N−1∑
k=1

1

µk
(6)

Finally, we mention interesting recent insight, deduced from the pseudoin-
verse of the Laplacian. Each undirected graph G, possibly weighted, can be
represented by a simplex on N nodes4 in the N −1-dimensional Euclidean space

3 Weighted graph matrices are denoted by a tilde.
4 In the topology domain, we speak about a graph consisting of nodes and links, while

in the geometric space, a node corresponds to a point or node and the links in the
simplex connect nodes.
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[5]. We can associate a simplex to the Laplacian Q and an inverse simplex to
its pseudoinverse Q†. The squared distance between two nodes i and j in the
inverse simplex is equal to the effective resistance ωij .

3 Motivation of our link attack strategy

Earlier in [17] and [3], nodes have been removed in a graph according to their
rank in the ζ vector in (3). This strategy of removing the lowest diagonal element
in the pseudoinverse of the Laplacian was found, in over 100 real-world networks,
to be the second best, very near though, to the removal of nodes according to
highest node-betweenness. Here, we focus on removing links in the graph by the
following strategy.

Let ωik be the minimum element of the matrix Ω. If the element aik of the
adjacency matrix A is not zero, i.e. there is a link between node i and node k,
then it means that the link (i, k) has the minimum resistance. This implies that
a high flow of communication (in telecom networks) or current (in power grids)
or traffic (in road networks), etc. can traverse that link.

While there exist several robustness definitions, here, we consider a network
as ”robust” if it has a high transport capability and hence, a low effective graph
resistance RG. The removal of the link with minimum effective resistance is
expected to have a serious impact, because a considerable network flow will try
to propagate over a link with low effective resistance. The removal of the link with
minimum effective resistance may increase the effective graph resistance RG most
and hence, degrade the network robustness most. Let A ◦ Ω be the Hadamard
product between the adjacency matrix A of the graph and the corresponding
effective resistance matrix Ω, with (A ◦Ω)ij = aijωij . The ordering of the links
of A with respect to increasing elements of A ◦Ω gives the sequence of links to
be removed in our link attack/removal strategy.

An interesting open question is the relation between node and link removal
strategies. In particular, removing nodes in the line5 graph l (G) of the graph G
corresponds to removing links in the graph G. Hence, a node removing strategy
amounts to a link removal strategy in the line graph. However, for our strategy,
the relation between the Laplacian of the line graph and the graph itself is not
obvious, which does not allow us to immediately map the performance of a node
removal strategy to the performance of a link removal strategy.

Our objective is to evaluate and compare different measures of robustness of
a network when ”important” links are iteratively removed. Since several defini-
tions of link/node importance for network robustness have been defined so far
(for a spectral approach, see [19]), we compare our attack strategy of remov-
ing low effective resistance links with other link attack strategies defined below.
There are many methods measuring the importance of a link in terms of harmful

5 The line graph l (G) of the graph G (N,L) has as set of nodes the links of G and
two nodes in the line graph l (G) are adjacent if and only if they have, as links in G,
exactly one node of G in common [16].
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effects on the network when the link is removed. Here, we consider the following
strategies (at each step a link is removed according to these strategies):

– S1 (Semi-random): the link (i,j) to remove has i with maximum degree, while
its neighbor j is randomly chosen;

– S2 (Degree-product): nodes i and j of the removed link have the maximum
product of the degrees;

– S3 (Effective resistance): the link (i,j) to remove has the minimum effective
resistance on the Ω matrix initially computed.

– S4 (Link-betweenness): the link (i,j) to remove has the maximum link-betweenness.

4 Robustness Measures in Complex networks

To evaluate how robust a network is after a particular sequence of link are
removed, we adopt different performance measures:

– Link robustness index (Rl), proposed by Zeng and Liu [22], is defined as:

Rl =
1

L

L∑
P=1

S(P ) (7)

where L is the total number of links and S(P ) is the fraction of nodes of the
giant component in the network after removing P links. The more robust a
network is, the higher Rl is.

– Network diameter (D): the largest hopcount (i.e. the number of links in the
path) among all the shortest paths in the graph G. As observed in [2], the
smaller the diameter D, the higher the communication capability between
two nodes.

– Algebraic connectivity (AC): the second smallest eigenvalue of the Laplacian
matrix of a graph. The larger the algebraic connectivity, the more difficult
to cut the graph in components [9].

– Natural connectivity (NC): quantifies the redundancy of alternative routes
in the network by evaluating the weighted number of closed walks of all
lengths.

NC = ln

(
1

N

N∑
i=1

expλi

)
(8)

It can be regarded as an ”average exponential eigenvalue” of the adjacency
matrix A. The higher the NC value, the more robust the network, since the
connection between nodes is possible even if the network is damaged [21].

– Effective graph resistance (RG), defined in (5) and reviewed in Section 2,
is a graph metric that reflects the overall transport capability a graph: the
lower RG, the better the graph conducts traffic. The ”spectral” form of RG
is presented in equation (6).

– Randić Index (RI) is RI =
∑

(u,v)∈L

1
dudv

, where du is the degree of node u.

The lower RI , the more robust the network [14].
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5 Performance Evaluation

In this section, we present the results of our comparative analysis. We start
analyzing a small Internet Backbone and discuss the role of the effective resis-
tance matrix in identifying the important links to remove. Then, we perform
several experiments on larger synthetically generated networks to compare the
link removal strategy based on the effective resistance to the other strategies.

5.1 Case study: effective resistance on an Internet Backbone

Let us consider the network graph in Fig. 2 (the first on the left) selected
from the Internet Backbones available in the repository Internet Topology Zoo
(http://www.topology-zoo.org/). This graph has an effective graph resistance
value of RG = 75.418.

! !"#$$ !"#$$ ! ! ! ! ! ! ! !

!"#$$ ! ! ! ! ! ! ! ! ! !"#$$

!"#$$ ! ! ! ! ! ! ! ! !"#$$ !

! ! ! ! !"&)* ! !"&)* ! ! ! !

! ! ! !"&)* ! !"##% !"+&+ ! ! ! !

! ! ! ! !"##% ! ! ! !"##% ! !

! ! ! !"&)* !"+&+ ! ! !"##% ! ! !

! ! ! ! ! ! !"##% ! !"&*( ! !"#%*

! ! ! ! ! !"##% ! !"&*( ! !"#%* !

! ! !"#$$ ! ! ! ! ! !"#%* ! !"&%*

! !"#$$ ! ! ! ! ! !"#%* ! !"&%* !

Fig. 1. The Hadamard product A ◦ Ω between the effective resistance matrix Ω and
the adjacency matrix A for the Internet Backbone. The link with the lowest value of
effective resistance wij is the link (5,7) highlighted in green.

Fig. 1 illustrates that link (5,7) is the most important link with minimum
ωij = 0.565, whose removal deteriorates the network robustness most.

In Table 1(a) we show a ranking of the links of the Internet Backbone in
increasing effective resistance ωij . We also report the resulting RG for each link
after its removal. We observe that the incremental removal of links from the
graph impacts the effective graph resistance. In particular, we observe that the
ranking of the links given by the Ω matrix corresponds to an optimal order of
removal of the links. Specifically, by first removing from the graph the link (5,7)
we obtain an effective graph resistance of 80.733. By subsequently removing from
the graph the link (8,9) the robustness of the graph further decrease achieving
90.256 until the removal of a link disconnects the graph, in which case RG =∞
(e.g. link (8,11)). In Fig. 2, we graphically show the subsequent link removals
from the Internet Backbone graph for this strategy.

We now check what happens if we iteratively recompute the Ω matrix after
each link removal and delete again the link with the lowest value wij . We observe
that at each step of link removal, the Ω matrix corresponding to the modified
graph changes providing a difference sequence of link removals. In Table 1(b), we
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Table 1. (a) Ranking of links based on the effective resistance and the resulting effec-
tive graph resistance after the removal of the link and (b) when recomputing Ω matrix
after each link removal.

Node i Node j wij R
−
G

5 7 0.567 80.733
8 9 0.613 90.256
10 11 0.621 110
4 5 0.641 220
4 7 0.641 7.125e+17
8 11 0.721 ∞
9 10 0.721 ∞
5 6 0.772 ∞
6 9 0.772 ∞
7 8 0.772 ∞
1 2 0.788 ∞
1 3 0.788 ∞
2 11 0.788 ∞
3 10 0.788 ∞

Node i Node j wij R
−
G

5 7 0.567 80.733
10 11 0.623 88.536
8 9 0.731 110
1 2 0.909 220
1 3 1 ∞
2 11 1 ∞
3 10 1 ∞
4 5 1 ∞
4 7 1 ∞
5 6 1 ∞
6 9 1 ∞
7 8 1 ∞
8 11 1 ∞
9 10 1 ∞

(a) (b)
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Fig. 2. Strategy S3 of subsequent removals on the Internet Backbone (the
first on the left) until the first network disconnection. From left to right:
(5,7),(8,9),(10,11),(4,5),(4,7).

show the ranking of the links resulting from this alternative strategy. We observe
that the two strategies, even having different link removals sequences, are similar
for the first three steps. However, the ordering obtained by recomputing the
effective resistance disconnects the network earlier and splits the network in two
pieces of almost the same size, while in the former case only node 4 is isolated
from the rest of the network.

5.2 Comparative analysis of different link removal strategies

We continue the analysis on the effective resistance by comparing the harm
caused by this strategy to other malicious attack strategies on links. The aim
is to understand which is the most destructive attack to links and which ”im-
portant link” definition of a particular strategy makes the network less robust
to subsequent link removals in decreasing order of ”importance”. To this end,
we studied the random synthetic networks proposed by Erdős and Rényi [8].
These networks are generated from an initial set of N = 128 unconnected nodes
subsequently connected between them at a random time with a fixed probability
pc. A threshold for the connectivity of these networks is pc ≈ ln(N)/N for large
N . Thus, if p > pc, an Erdős-Rényi graph is almost surely connected. In our
simulations, to be sure to obtain a connected graph, we set pc = 2 ln(N)/N .
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Fig. 3 reports the comparison between the effective resistance based link re-
moval strategy (S3) and other attack strategies over the Erdős-Rényi networks,
according to the different robustness measures, as a function of the fraction of
links p removed. Analyzing the average size of the largest connected compo-
nent (LCC), the most destructive strategy is the link-betweenness (S4), which
defines an important link as the link through which many paths traverse. Inter-
estingly, S3 behaves similarly to S4. For both strategies, the network remains
connected until the 46% of removed links, after that, the size of the LCC grad-
ually decreases. The strategies based on node degree, S1 (semi-random) and S2
(degree-product) maintain the network connected until the 80% of link removal
but, after that, the size of the LCC rapidly decreases causing a severe damaging
to the network. In fact, the obtained Rl values are 0.817, 0.813, 0.837 and 0.818
for S1, S2, S3, S4, respectively, while, for p ≤ 80% the Rl values are 0.995, 0.998,
0.958, 0.949, confirming the damage of the strategies as obtained by the LCC
size.

Evaluating the variation of the network diameter as robustness index, strat-
egy S4 tends to maintain the highest diameter of the LCC until the 65% of link
removal. When the p value is between 0.65 and 0.84, S1 and S2 result in a diam-
eter of the LCC very high, meaning that the information flow among nodes is
difficult, especially around 0.8 when the network starts collapsing, as shown by
the size of the LCC. For p values around the 90% of removed links, S3 is even
more harmful than S4.

Regarding the algebraic connectivity, S3 and S4, having overall low connec-
tivity values, are the most destructive strategies. Notice that this figure uses a
logarithm scale for a better view.

Concerning the natural connectivity, we can observe that this measure is
higher for S4 compared to the other strategies. Thus the other strategies, in-
cluding the graph resistance-based S3, make the network less robust according
to this robustness index. Hence, even if the link removal according to S4 produces
the smallest LCC, compared to those of the other strategies, S4 still maintains
many alternative routes. This means that the connection between nodes remains
possible in spite of network damage. Only after the 80% of link removal we ob-
serve that the natural connectivity for S4 has values lower than for S3. Overall,
S1 and S2 have a lower and similar natural connectivity.

Looking at the effective graph resistance measured on the LCC, we find
that the edge-betweenness and the effective resistance based strategies behave
again similarly. In fact, they have the highest values of RG until the 65% of
removed links, resulting in the most harmful attack strategies. Only at the critical
threshold around the 80% of link removal, the node degree based strategies are
more harmful, showing a peak in the RG. As already observed, at this threshold
value the network starts collapsing, thus it is unable to spread the traffic within
the network.

For the Randić Index, the node degree based strategies are the most harmful
having the highest RI values. This is expected, since they remove the links where
one or both nodes have high degree, and hence, the RI index increases.
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Fig. 3. Results for the Erdős-Rényi networks.
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6 Conclusion

In this paper, we have focused on link attacks on networks by investigating
which link removal strategy has the worst consequences on network robustness.
Motivated by previous studies on the effective resistance matrix and attacks to
nodes [17] [3], here we have specifically investigated the role of this matrix in
identifying the links causing severe damages to the network. This matrix, in
fact, provides a ranking of the links based on their transport capability and
hence, a specific order of link removal. Comparing this strategy of link attacks
with other removal strategies over a pool of Erdős-Rényi networks in terms of
different robustness measures, we found that the strategy based on the effective
resistance, namely S3, is similar to the edge-betweenness based (S4). S3 and S4
are the most destructive, according to the measure evaluating size of the largest
connected component, the network diameter, the algebraic connectivity, and the
effective graph resistance. The two strategies S1 and S2, based on node degree,
almost always obtain the same results and are those making the networks less
robust when considering the natural connectivity and the Randić index.

The effective resistance strategy, as well as the other strategies, remove links
by ordering them at the beginning on the initial network. An alternative ap-
proach, as outlined in [12], consists in determining the link to remove by recom-
puting degrees, edge-betweenness and effective resistance at every removal step.
This approach, however, needs a much higher time-demanding computation. Fu-
ture work will investigate the strategies with recalculation and extend the study
on other network models, such as Watts-Strogatz and Bárabasi-Albert, to un-
derstand the differences with respect to Erdős-Rényi networks. Moreover, an
interesting research to pursue is to understand the relation between the Lapla-
cian of the line graph and the graph itself, in order to compare the performance
of node removal strategies to that of link removal strategies.
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