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Abstract

Many network topology measurements capture or sample only a partial view of the actual network

structure, which we call the underlying network. Sampling bias is a critical problem in the field of complex

networks ranging from biological networks, social networks and artificial networks like the Internet. This bias

phenomenon depends on both the sampling method of the measurements and the features of the underlying

networks. In RIPE NCC and the PlanetLab measurement architectures, the Internet is mapped as G∪mspt,

the union of shortest paths between each pair of a set M of m testboxes, or equivalently, m shortest path

trees. In this paper, we investigate this sampling method on a wide class of real-world complex networks

as well as on the weighted Erdös-Rényi random graphs. This general framework examines the effect of

the set of testboxes on G∪mspt. We establish the correlation between the subgraph GM of the underlying

network, i.e. the set M and the direct links between nodes of set M, and the sampled network G∪mspt.

Furthermore, we illustrate that in order to obtain an increasingly accurate view of a given network, a higher

than linear detection/measuring effort (the relative size m/N of set M) is needed, where N is the size of

the underlying network. Finally, when the relative size m/N of set M is small, we characterize the kind

of networks possessing small sampling bias, which provides insights on how to place the testboxes for good

network topology measurement.

Keywords: network sampling, sampling bias, shortest path tree, weighted and unweighted networks.

1 Introduction

Topologies of complex networks ranging from biological networks such as gene regulatory networks [1], metabolic
networks [2], artificial networks like the Internet, the WWW to social networks, e.g. paper citations, collabora-
tion networks etc. [3], have been accumulated by active investigation in recent years. However, many surveyed
networks to date are, in fact, subnets of the actual network, which we call the “underlying network”. For exam-
ple, only a subset of the molecular entities in a cell have been sampled in protein interaction, gene regulation
and metabolic networks. The topology of the Internet is inferred by aggregating paths, which reveals only a
part of the whole Internet. Thus, these identified networks are sampled networks of the underlying networks
according to different mapping or sampling methods.
In this work, we study the bias phenomenon of a sampling method that originated from the Internet.

The topology of the Internet has typically been measured by the union of sampling traceroutes [4], which are

approximately shortest paths. Mainly two sampling methods exist: (a) The topology is built from the union
of traceroutes from a small set of sources to a larger set of destinations as in the CAIDA skitter project [5].
The sampled map can be modeled as the union of the spanning trees rooted at the sources. (b) The traceroute
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measurements are carried out between each pair of a setM of m testboxes or testbeds. The sampled network,
denoted as G∪mspt, is the union of m shortest path trees SPTs, where each SPT is the union of shortest paths
from the root ∈ M to the other m − 1 testboxes ∈ M. Equivalently, G∪mspt is the union of shortest paths
between each node pair in the setM of m testboxes. The RIPE NCC [6] and the PlanetLab [7] measurement
architectures are examples of this type. The methodology in (a) has been argued and even proved to introduce
such intrinsic biases that statistical properties of the sampled topology may sharply differ from that of the

underlying graph (see e.g. [8, 9, 10]). While most related works on Internet exploration have been devoted to
the sampling method (a), we investigate the other sampling method (b). Although the number of destinations
may be limited to the number m of measurement boxes, the spurious effects in (a), where nodes and links closer
to the sources are more likely to be sampled than those surrounding the destinations, can be reduced.
With statistical and graph theory methodologies, we investigate this sampling method (m shortest path trees)

on a wide class of networks: the weighted Erdös-Rényi random graphs, which represent dense and homogeneous
networks, and the unweighted real-world complex networks which are generally sparse and inhomogeneous
graphs. Various underlying networks are investigated, because network sampling is a generic problem residing
in various disciplines and the actual underlying network topology is mostly uncertain. Here, we focus on

the sampling bias (the incompleteness of the network mapping) introduced purely by the sampling method.
Technical limitations in the topology measurements may also introduce significant sampling bias. For example,
the network measured by traceroute represents the interconnections of IP addresses. The bias in mapping the
router level Internet topology depends highly on the alias resolution technique, which maps IP addresses to the
corresponding routers [11]. Such specific technical concerns, which vary in the measuring of different complex
networks, are not explored in this paper.
The sampled network G∪mspt depends on the setM of m boxes as well as the underlying network. In this

work, we focus on the effect of the testboxes, in particular, 1) the subgraph GM of the underlying network,
consisting of the setM and the direct links between nodes of setM, and 2) the relative size m/N of setM,
where N is the size of the underlying network. With a given set of testboxes, the sampling bias varies for

different networks. The kind of networks with small sampling bias will also be briefly mentioned in this paper.
The main contributions of this study can be summarized as follows.

1. Introduction of a general framework for network sampling on both weighted and unweighted complex
networks.

2. Establishment of the correlation between the interconnections of setM, i.e. the subgraph GM, and the
sampled network G∪mspt.

3. Illustration of the detection/measuring effort (the relative size m/N of setM) to obtain an increasingly
accurate view of a given network.

4. Characterization of networks bearing small sampling bias when m/N is small and the corresponding
proposal of testbox placement for good network topology measurements.

2 Modeling the sampling process of large networks

Assuming that traceroutes used in RIPE NCC and the PlanetLab are shortest paths, the sampled topology is
then the union G∪mspt of shortest paths between each pair of a small group of m¿ N nodes, while the number

of nodes in the underlying graph N is much larger. Whenm = N , the graph G∪mspt becomes G∪spt, the union of
all shortest paths between any node pair. G∪spt is thus the maximal measurable or observable part of a network
by traceroute measurements [12]. It is also regarded as the "transport overlay network" [13]. In the Internet,
for example, all the traffic is carried along the overlay G∪spt, a fraction of the links in the underlying network.
An example to represent the relation between the sampled overlay network G∪mspt, the overlay network G∪spt
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Figure 1: The relation between the sampled overlay network, the overlay network and the underlying graph.

and the underlying graph (or substrate) is shown in Figure 1. The robustness of networks, e.g. the persistence
of epidemics [14] and the vulnerability to node failures and attacks [15] are depending on structural properties
of G∪spt. Hence, the sampling bias refers to the difference between the sampled overlay G∪mspt and the overlay
network G∪spt. We show in Section 4 that the sampling bias can be quantitatively characterized by

E[Lmspt]
E[Lo]

,
where Lmspt and Lo are the number of links in G∪mspt and G∪spt. When the underlying graph is unweighted
networks, the overlay network is equal to the underlying graph G∪spt = G(N,L), because each link (i, j) in
G(N,L) is the shortest path between node i and j.

2.1 Substrates: networks to be sampled

We consider two classes of substrates: the weighted Erdös-Rényi random graph Gp(N) and real-world complex
networks that are unweighted.
The Erdös-Rényi random graphs Gp(N) can be generated from a set of N nodes by randomly assigning a link

with probability p to each pair of nodes. Besides their analytic tractability, the Erdös-Rényi random graphs [16]
have also served as idealized structures for peer-to-peer networks [17], ad-hoc networks [18], gene networks and
ecosystems [19]. Other network models, such as power law graphs [20], which are random graphs specified by a

power law degree distribution Pr[D = i] = ci−τ , are usually sparse. The sampling via G∪mspt of a sparse network
is the same no matter whether this network is weighted or not, because paths between any node pair are likely
unique. Hence, in the class of the weighted networks, we consider the Erdös-Rényi random graph Gp(N), which
is dense. We assign to each link an i.i.d. uniform link weight within [0, 1]. A link weight may represent e.g. the
delay, the distance, the monetary cost, etc. Apart from being attractive in a theoretical analysis, the uniform
distribution on [0, 1] is the underlying distribution to generate an arbitrary other distribution and is especially
interesting for computer simulations. Hence, this distribution appears most often in network simulations and
deserves — for this reason alone perhaps — to be studied. Furthermore, the shortest path problem is mainly
sensitive to the smaller link weights, especially in a dense network. Statistical properties of the shortest paths

remain asymptotically the same when the network is equipped with i.i.d. regular1 link weights [21], e.g. uniform
or exponential distributed link weights, which may capture the link weight features in many real networks. Thus,
the uniform distribution is much less restrictive than it appears at the first glance. All the links are assumed
undirected.

1A regular link weight distribution Fw(x) = Pr[w ≤ x] has a Taylor series epansion around x = 0, Fw(x) = fw(0)x + O(x2),
since Fw(0) = 0 and F 0w(0) = fw(0) exists. A regular link weight distribution is thus linear around zero.
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We also consider the unweighted real-world networks which represent the topology of various complex sys-
tems. Some of these networks possess a power law degree distribution, a feature that is claimed in many complex
networks. Most of the data sets we have used are available publicly. They are complex networks from a wide
range of systems in nature and society:

• the Gnutella [22] snapshots (Crawl2) retrieved from firewire.com;

• the air transportation network representing the world wide airport connections, documented at the Bureau
of Transportation Statistics (http://www.bts.gov) database, and the connection between United States

airports [23];

• the Western States Power Grid of the United States[24];

• the coauthorship network [25] between scientists posting preprints on the High-Energy Theory E-Print
Archive between Jan 1, 1995 and December 31, 1999;

• the citation network [26] created using the Web of Science database: Kohonen [27];

• the coauthorship network [28] of scientists working on network theory and experiment;

• the network representing soccer players association to Dutch soccer team [29];

• the adjacency network [28] of common adjectives and nouns in the novel David Copperfield by Charles
Dickens.

A network is connected if there exists a path between each pair of nodes. We consider only the networks
formed by the largest connected component of our real-world networks.

2.2 The overlay network G∪spt on top of the weighted Erdös-Rényi random graph
Gp(N)

A uniform recursive tree URT grows from its root and at each stage a new node is attached uniformly to one
of the existing nodes. The overlay network G∪spt is also the union of shortest path trees2 SPTs rooted at each
node. In [30], a URT is shown to be asymptotically the SPT in the Erdös-Rényi random graph Gp(N) with link
density p above the disconnectivity threshold pc ∼ logN

N and with regular link weight distribution, e.g. uniform

or exponential distribution. We first review an interesting result about the degree DG∪spt of an arbitrary node
in the overlay G∪spt, which is derived from the URT modeling.

Theorem 1 For large N , the degree distribution in the overlay G∪spt on top of the Erdös-Rényi random graph
Gp(N) with link density p above the disconnectivity threshold pc and equipped with i.i.d. regular link weights is

Pr[DG∪spt = k] =
(−1)N−1−kS(k)N−1

(N − 1)! (1)

where S(k)N is the Stirling number of the first kind [31].

Proof: See [12]. ¤
If a link in the underlying graph belongs to the overlay network G∪spt, it is said to be detected or observed

in the overlay network.

2The shortest path tree is the union of shortest paths from the root to all the other nodes in the network.

4



Theorem 2 In the Erdös-Rényi random graph Gp(N) with link density p above the disconnectivity threshold
pc, large N and equipped with i.i.d. regular link weights, the probability of a link to be detected in the overlay
G∪spt is equal to

Pr[P ∗i→j = i→ j] = Pr[HN = 1] =
1

N − 1

N−1X
n=1

1

n
(2)

where P ∗i→j is the shortest path between i and j and HN is the hopcount of a shortest path.

Proof: Any link i → j with link weight w(i → j) in the G∪spt must be the shortest path between i and j

because a link in the G∪spt must belong to a shortest path and a subsection of a shortest path is also a shortest
path. Reversed, if a link i → j is the shortest path between i and j, it must belong to the G∪spt, because
the G∪spt is the union of shortest paths between all possible source and destination pairs. Therefore, the event

that a link i→ j is observed in the G∪spt is equivalent to the event {P ∗i→j = i→ j} that the link i→ j is the
shortest path P ∗i→j between i and j. Hence, Pr[P

∗
i→j = i→ j] is also the probability that a link can be detected

in the overlay G∪spt.
The event {P ∗i→j = i → j} is equal to the event {HN = 1} that the hopcount of the shortest path is 1.

Hence, Pr[P ∗i→j = i → j] = Pr[HN = 1] and Pr[HN = 1] = 1
N−1

PN−1
n=1

1
n has been derived in [21, Section

16.6.3]. ¤
The average number of links in G∪spt, or the average observable links via G∪spt is

E [Lo] =
N(N − 1)

2
Pr[P ∗i→j = i→ j] =

N

2

N−1X
n=1

1

n
' N

2
(lnN + γ) (3)

where γ = 0.57721... is the Euler constant.

3 Effect of GM on the sampled overlay G∪mspt

Recall that a network is mapped as G∪mspt, the union of shortest paths between each pair of a set M of m
testboxes. The overlay network G∪spt is the union of the shortest paths between all node pairs. We examine
first the effect of GM on the sampled overlay G∪mspt when the underlying network or substrate is a weighted
Erdös-Rényi random graph. As shown in Figure 2, the subgraph GM of a underlying network G(N,L) is the
set M and the direct links between nodes of set M. The maximal observable part of the subgraph GM is
the overlay network G∪spt upon GM. It is now denoted as G∪spt(m) to include the number of nodes in the
overlay network and G∪spt(m) ⊂ GM. The sampled overlay G∪mspt and the overlay G∪spt(N) are constructed
based on the shortest paths computed in the underlying network G(N,L) while the overlay G∪spt(m) on the
subgraph GM is based on the shortest path computation in the subgraph GM. Similar to the overlay G∪spt(m),

the sampled network G∪mspt is also the union of shortest path between each node pair of the setM, however,
upon the underlying network G(N,L) instead of upon the subgraph GM. We now examine the similarity or
difference between G∪spt(m) and G∪mspt.
Each simulation on Erdös-Rényi random graphs consists of 104 iterations. Within each iteration, a set

M of m = 40 nodes is uniformly chosen out of the generated substrate G0.6(200) and an i.i.d. uniform link
weight is assigned to each link. Shortest paths are computed by the Dijkstra’s algorithm [32]. We construct
three networks (a) the sampled overlay G∪mspt and (b) the overlay G∪spt(N) on top of the underlying graph
G(N,L) and (c) the overlay G∪spt(m) on the subgraph GM. The degree distributions of these three networks
are displayed in Figure 3. We denote DM as the degree of setM in the sampled overlay G∪mspt. The degree
distribution of DM is much closer to the degree distribution of the overlay G∪spt(m) on top of GM than that of

the overlay G∪spt(N). Beside the setM, the other nodes in the sampled overlay G∪mspt belong to set I. The
degree distribution DI of set I performs even worse to represent the overlay G∪spt(N) as compared to setM.
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msptG∪
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( )sptG N∪
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Figure 2: Sketch of the sampled overlay G∪mspt and the overlay G∪spt(N) on top of the underlying graph
G(N,L) and the overlay G∪spt(m) on the subgraph GM.

We further investigate the resemblance in degree distribution between DM and the overlay G∪spt(m) on the
subgraph GM over more Erdös-Rényi random graphs: G0.2(400) and G0.2(800) with different size m of the set

M. Figure 4 illustrates that the set M in the sampled overlay G∪mspt and the overlay G∪spt(m) upon GM

possess almost the same degree distribution. The degree distribution of the overlay G∪spt(m = 10, 20, 50) upon

GM is calculated based on Theorem 1, using Pr[DG∪spt(m) = k] =
(−1)m−1−kS(k)m−1

(m−1)! . It seems that Pr [DM = k] =

Pr[DG∪spt(m) = k]. The degree distribution of the set M in the sampled overlay G∪mspt is independent of
the size N of the underlying network: the set M follows a same degree distribution in G∪mspt(N = 400),
G∪mspt(N = 800) and G∪mspt(N = m) = G∪spt(m). Hence, we claim the following conjecture:

Conjecture 3 Consider the sampled overlay graph G∪mspt on top of an Erdös-Rényi random graph Gp(N) with

link density p above the disconnectivity threshold pc and equipped with i.i.d. regular link weights. The degree
distribution of DM of set M in the sampled overlay graph G∪mspt is independent of the size N of the network
and

Pr [DM = k] = Pr[DG∪spt(m) = k] =
(−1)m−1−kS(k)m−1

(m− 1)!

As presented in Appendix A, two extreme cases Pr [DM = 1] and Pr [DM = m− 1] can be proved. The
Conjecture 3 states that the degree distribution of the set M is independent of the size of the underlying
topology, but only of the number m of measurement nodes in M. This "intermediate node invariant" degree

property could be used, in principle, to reduce or infer G(N,L) and the link weight structure. In other words,
if the so measured G∪spt(m) statistically has the same degree distribution as the setM of G∪mspt, the network
is possibly homogeneous and equipped with i.i.d. regular link weights.
On top of a dense homogeneous network equipped with i.i.d. regular link weights, the setM of the sampled

overlay network well reflects the local overlay G∪spt(m) on top of a subgraph GM in the degree distribution,
although m ¿ N . It seems that the testboxes, i.e. the subgraph GM (or, equivalently, G∪spt(m) upon the
subgraph GM) do effect the sampled overlay G∪mspt in the degree distribution of set M. The Erdös-Rényi
random graph is homogenous and so is the subgraph GM. Hence, the resemblance in degree distribution
between DM and the overlay G∪spt(m) may originate from the fact that both G∪spt(m) and G∪mspt take into
account the union of m(m− 1)/2 shortest paths.
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Figure 3: Degree distribution of (a) the sampled overlay G∪mspt upon G0.6(200) (b) overlay G∪spt(N) upon
G0.6(200) and (c) overlay G∪spt(m) upon the subgraph GM, where m = 40.

In a real-world unweighted network, the overlay network G∪spt(N) is equal to the substrate G(N,L) and
the overlay network G∪spt(m) on top of subgraph GM is GM itself. For unweighted networks, we have

GM = G∪spt(m) ⊂ G∪mspt ⊂ G∪spt(N) = G(N,L)

where G∪spt(m) ⊂ G∪mspt is due to the fact that any link (i, j) in an unweighted graph is the shortest path
between its end nodes i and j. The structure of G∪mspt varies between GM and the substrate G(N,L). Hence,

the subgraph GM is correlated with the sampled network G∪mspt, in the sense that GM = G∪spt(m) ⊂ G∪mspt.
As a larger proportion of the substrate is observed, the sampled overlayG∪mspt resembles the underlying network
G∪spt(N) = G(N,L) more.

4 Effect of the relative size m/N of the testboxes on the sampling
bias

In this section, we first explain why E[Lmspt]/E[Lo] quantifies the sampling bias well. Then, we investigate the
effect of the relative size m/N of the testboxes on the sampling bias. Given the ratio m/N , the sampling bias
differs for various networks depending on their topologies. We will briefly discuss which type of network tends
to possess small sampling bias.

4.1 Characterizing the sampling bias by E[Lmspt]/E[Lo]

The sampling bias refers to the difference between the sampled overlay G∪mspt and the overlay network G∪spt.
The relation G∪mspt ⊂ G∪spt(N) holds for both weighted Erdös-Rényi random graphs and unweighted networks.
Hence, the ratio of the average number of links in the G∪mspt and G∪spt, E[Lmspt]/E[Lo] can reasonably well
characterize3 the sampling bias of a network, where E[Lo] = L in case the network is unweighted.
First, Figure 7 in Appendix B shows that the probability distribution of the normalized number of links

L∗mspt =
Lmspt−E[Lmspt]

σ[Lmspt]
and the normalized number of nodes N∗mspt =

Nmspt−E[Nmspt]
σ[Nmspt]

in G∪mspt are both

3E[Lmspt]/E[Lo] is a statistical property which takes into account different realizations of the set M selection as well as the
link weight assignment.
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Figure 4: Degree distribution DM (Nmspt) of setM.

close to the Gaussian distribution N(0, 1). Moreover, their average and standard deviation, which determine
the distribution, follow σ(Lmspt) ¿ E[Lmspt] and σ(Nmspt) ¿ E[Nmspt] as illustrated in Figure 8 and 9 in
Appendix B. Hence, the random variables Lmspt and Nmspt are close to their mean E[Lmspt] and E[Nmspt],

which are thus the appropriate quantities to be studied.
Furthermore, we investigate the sampling bias viaE[Lmspt]/E[Lo] instead of the number of nodesE[Nmspt]/N .

The relation between E[Nmspt] and E[Lmspt] follows from the basic law of the degree:

mX
j=1

dj∈M +

NmsptX
j=m+1

dj∈I = 2Lmspt

Taking the expectation yields

m ·E[DM] +E[

NmsptX
j=m+1

dj∈I ] = 2E[Lmspt]

Assume that Nmspt and dj∈I are only weakly dependent such that we may apply Wald’s identity [21, Chapter
1],

2E[Lmspt] ' m ·E[DM] + (E[Nmspt]−m) ·E[DI (Nmspt)]

or
E[Lmspt] '

1

2
E[DI (Nmspt)] ·E[Nmspt] +

m

2
(E[DM]−E[DI (Nmspt)]) (4)

Under the assumption of weak dependence between Nmspt and dj∈I , a linear relation exists between E[Lmspt]

and E[Nmspt] with slope equal to E[DI (Nmspt)]/2, where E[DI (Nmspt)] is a function of m. For example, we
consider the substrate G0.2(800) equipped with i.i.d. uniformly distributed link weights. The left and right sides
of (4) are shown to be almost the same in the table below, which justifies the weak dependency assumption.

m 10 20 30 40 50 60 100 300

left side of (4) 124.4 308.3 479.6 630.6 762.6 881.4 1242.6 2111.7

right side of (4) 124.6 308.6 479.6 630.6 763.4 881.1 1244 2117.2
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4.2 Sampling of the weighted Erdös-Rényi random graph

The average number of links in the SPT rooted at a source to m uniformly chosen nodes in the complete graph
KN , or approximately in Gp(N), with uniform link weights is given in [21, Chapter 17],

gN (m) =
mN

N −m

NX
k=m+1

1

k
' mN

N −m
log

N

m
(5)

Hence, the number of links in each of the m SPTs of G∪mspt is, on average, equal to gN (m−1). The maximum
number of links that can be detected in case m = N via G∪spt is E [Lo] given by (3). Since Lmspt is not
decreasing in m, we have that

gN (m− 1) ≤ E[Lmspt] ≤ E [Lo]

and
E[Lmspt] ≤ m · gN (m− 1)

Hence, for large N ,
(m− 1)N
N −m+ 1

log
N

m− 1 ≤ E[Lmspt] ≤
N

2
(γ + lnN)

The ratio E[Lmspt]/E[Lo] quantifies the sampling bias, while the ratio E[Lmspt]/(m · gN (m − 1)) reflects the
extent of overlap between these m SPTs. As shown in Figure 5, for the substrate G0.2(800) and m = 60,
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 N = 800
 -0.56+1.57m0.23

 N = 400
 -0.77+1.79m0.21

 N = 200
 -1.02+2.03m0.19

 N = 100
 -1.73+2.74m0.15

 N = 50
 -5.49+6.50m0.07

N=800, m=60

Figure 5: The ratio E[Lmspt]/E[Lo] and the power exponent β in the corresponding curve fitting
E[Lmspt]/E[Lo] = a+ bmβ , where the substrate is G0.2(N).

30% of links in G∪spt have already been observed. For m = 120, about 40% links are discovered. Indeed,
for any network, the larger m is, the smaller the sampling bias is, because limm→N G∪mspt = G∪spt(N). For
N = 800, the ratio E[Lmspt]/E[Lo] = O(mβ) with β ≈ 0.23, which implies that "the discovering rate of new
links" decreases with m. In other words, to obtain an increasingly accurate view of the network, a higher
detection/measuring effort is needed, in fact, much higher than proportional. Since E[Lmspt]/E[Lo] = O(mβ),
we found via simulation that the exponent β increases with N . When A = m

N → 0, the shortest paths between
nodes of setM seldom overlap,

E[Lmspt] '
µ
m

2

¶
E[HN ] =

A2N2

2
E[HN ]

Using (3) and [21, Section 16.3], we have

E[Lmspt]

E[Lo]
'

A2N2

2 E[HN ]
N(N−1)

2 po
'

A2N2

2 (lnN + γ)
N
2 (lnN + γ)

= A2N
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Figure 6: The average proportion of links E[Lmspt]/L discovered via G∪mspt as a funtion of the relative size
m/N of setM.

where γ = 0.57721.. and po is the link density of the overlay G∪spt. Hence, for a small m/N , large networks tend
to have a small sampling bias or large E[Lmspt]/E[Lo]. Moreover, a sparse overlay network characterized by a
small po tends to have a small sampling bias, as observed in real-world complex network sampling in Section
4.3.

4.3 Sampling of the real-world complex networks

On top of each real-world network mentioned in Section 2.1, we increase the size of the setM from m
N = 5% to

m
N = 35% with a step size of 5%. Given m

N , each simulation consists of 40 realizations
4 of the random selection

of setM. The average proportion of links E[Lmspt]/L discovered in the corresponding sampled overlay G∪mspt

is plotted as a function of m
N in Figure 6. Similar to the weighted Erdös-Rényi random graph, to obtain an

increasingly accurate view of the network, a higher than linear detection/measuring effort m/N is needed5.
With a given proportionm/N of uniformly distributed testboxes in a network, the sampling bias E[Lmspt]/L

depends purely on the topology of the network. We compare the topology features of each real-world complex
network in Table 1 to see which kind of network tends to possess a small sampling bias. We computed the
following topological metrics for each network, which are considered relevant in the networking literature [33]:

• The number of nodes N and links L.

• Average degree E[D] = 2L/N and link density p = L

(N2 )
.

• The average hopcount (in number of links) and the largest hopcount hmax of the shortest paths between
all node pairs. The latter hmax is also referred to as the diameter of a graph. Actually, we assign
independently to each link a unit link weight plus a small uniform random variable within [− 1

N , 1N ], such

that a unique shortest path is found between each node pair.

• The clustering coefficient of a node cG(v) characterizes the density of connections in the environment of a
node v and is defined as the ratio of the number of links y connecting the dv > 1 neighbors of v over the total

420 or 10 iterations are carried out for large networks with N > 3000.
5This holds for the most examined networks except for networks with a high link density, such as the Dutch soccer and food

web networks. Most complex networks are considered to be sparse.

10



possible dv(dv−1)
2 , thus cG(v) =

2y
dv(dv−1) . The clustering coefficient C(G) of a graph is the average of the

clustering coefficient of nodes whose degree is larger than 1, given as C(G) = 1
N−|N (1)|

X
v∈N−N (1)

cG(v),

where N is the set of all nodes and N (1) is the set of degree 1 nodes.

Table 1 N L C E[HN ] hmax E[D] p

Power grid 4941 6594 0.11 18.99 46 2.67 0.00054

Gnutella Crawl2 1568 1906 0.04 6.10 21 2.43 0.0016

Web of Science Citations(koh) 3704 12673 0.30 3.67 12 6.84 0.0018

Science coauthorship network 379 914 0.80 6.03 17 4.82 0.0128

Air Transportation 2179 31326 0.59 3.02 8 28.75 0.0132

Word adjacencies 112 425 0.19 2.51 5 7.59 0.068

Dutch soccer 685 10310 0.75 4.45 11 30.10 0.044

Food web(Florida) 128 2075 0.33 1.76 3 32.42 0.26

Table 1 presents the topological metrics of the real complex networks, in the decreasing order of their
corresponding E[Lmspt]/L at m/N = 5% as shown in Figure 6. Recall that a larger proportion E[Lmspt]/L of
the substrates observed via G∪mspt implies a lower sampling bias. Figure 6 and Table 1 show that a network
tends to have a small sampling bias if its link density p is low and the average hopcount E[HN ] is large, especially
for small m/N . Indeed, when A = m

N → 0, the shortest paths between the setM seldom overlap and

E[Lmspt]

L
'

A2N2

2 E[HN ]
N(N−1)

2 p
' A2E[HN ]

p
(6)

In fact, for any m, the proportion of observed links E[Lmspt]
L can be upper bounded by (6). When m is larger,

the shortest paths between setM overlap more, and E[Lmspt]
L is far smaller than its upper bound (6). Therefore,

the sampling bias of these networks may have a different order for large m/N . No clear correlation between the

sampling bias and other metrics have been found.
In summary, in both the weighted Erdös-Rényi random graph and unweighted real-world networks, to obtain

an increasingly accurate view of the network, a higher than linear detection/measuring effort m/N is needed.
When m/N is small, the sampling bias depends purely on the average hopcount E[HN ] and the link density of
p (or po) of an unweighted network (or of the overlay G∪spt upon a weighted network). Indeed, a larger average
hopcount E[HN ] and a small p or po imply a small sampling bias. For small m/N , the sampling bias of the
weighted Erdös-Rényi random graph is positively correlated with N.

5 Conclusions

In this paper, we study a network sampling method originated from the Internet, namely G∪mspt the union of
m shortest path trees, or equivalently, the union of shortest paths between each pair of a set M of m testboxes.

The analysis covers a wide class of networks, ranging from real-world unweighted complex networks to weighted
Erdös-Rényi random graphs.
The interconnections of setM, i.e. the subgraph GM, are correlated with the sampled network G∪mspt as

follows: When the underlying network is a real-world unweighted network G(N,L), GM is a subgraph of the
sampled overlay G∪mspt. Surprisingly, when the underlying network is an Erdös-Rényi random graph equipped
with i.i.d. regular link weights, the set M in the sampled overlay graph G∪mspt follows the same degree
distribution as the overlay G∪spt(m) upon GM. The degree distribution of DM of the set M in the sampled
overlay graph G∪mspt is independent of the size N of the network.
To obtain an increasingly accurate view of a given network, a higher detection/measuring effort (the size m

of setM) is needed, in fact, higher than proportional.
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When m/N is small, as in RIPE NCC and the PlanetLab measurement where the number m of testboxes
(hundreds) is much smaller the number of routers in the Internet (hundreds of thousands), the sampling bias
tends to be small if the average hopcount E[HN ] is large and the link density p, or link density po of the overlay
network G∪spt, is small. Hence, a large number of testboxes randomly placed far from each other is preferable
for good network topology measurements. Furthermore, the sampled overlay network consists of a large number,
m, of shortest paths that either start or end at each testbox. Links connected to the testboxes are more likely to

be sampled than the other links. Hence, placing testboxes at hubs (nodes with a high degree in the underlying
network) may contribute to a small sampling bias. In the sampled overlay G∪mspt, the set of m textboxes tend
to possess a higher average degree than the other (intermediate) nodes, if the underlying network is dense6, as
observed in Figure 3.
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A Proof of extreme cases of conjecture 3

To simplify the proof, instead of DM, we use DN (m) to denote the degree of set M in the overlay G∪mspt,
where N is the number of nodes in the underlying graph and m is the number of testboxes.

A.1 Proof of the Corollary for k = 1

Firstly, we prove the conjecture for Pr[DN (m) = 1]. Van der Hofstad et al. [34] have shown that pn (i) = n−i
ni

is the probability that the paths from the root to i uniformly chosen nodes that may include the root in a URT
of size n share a common link. If one of the i nodes equals the root, there is no link in common because there

is no path from the root to itself. Denote by ANo Root the event that the paths from the root to m uniformly
chosen nodes that do not include the root in a URT of size n share a common link and by ARoot the event that
the paths from the root to m uniformly chosen nodes that may include the root in a URT of size n share a
common link. The probability that the root is one of the m nodes is Pr [root] = m

n . Then

Pr [ANo Root ] = Pr [ARoot |No root] =
Pr [ARoot ∩ {No root}]

Pr [No root]

If one of the m nodes is the root, there is no link in common. That event is not included in ARoot, which means
that

Pr [ARoot ∩ {No root}] = Pr [ARoot ] = pn (m)

and that

Pr [ANo Root ] =
pn (m)

1− m
n

=
n−m
n·m
1− m

n

=
1

m
= p∗n (m)

Finally, we arrive at p∗n (m), the probability that the paths from the root to m uniformly chosen nodes that do
not include the root in a URT of size n share a common link. If these paths share a link, then the number of
links connected to the root and traversed by these paths must be one. Therefore, the probability Pr[D = 1] of
the setM in a underlying graph with N nodes is

Pr[DN (m) = 1] = p∗N (m− 1) =
1

m− 1

In the URT with m nodes, according to (1) the probability Pr[DG∪spt = 1] =
1

m−1 , which explain the match
of the first node in Figure 4. ¤

A.2 Proof of the Corollary for k = m− 1
The extreme case Pr [DN (m) = m− 1] is proved by using the URTs separation theorem [21, Theorem 16.2.1]
and considering Figure 18.3 in [21]. A URT of size N can be separated in a URT T1 of size k and a URT T2

of size N − k that incorporates the root (see Figure 18.3 in [21, Theorem 16.2.1]). The maximum degree of the
root is achieved in two cases: (a) there is precisely 1 node ofM in T1 and m− 2 in T2 or (b) there is none in
T1 and all m− 1 are in T2. If there is more than 1 node ofM in T1, the degree of the root DN (m) is smaller
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than m− 1, because we need to have m− 1 separate clusters attached to the root that each contain precisely
one node ofM. Thus,

Pr [DN (m) = m− 1] =
N−1X
k=1

Pr [DN−k (m− 1) = m− 2]
¡
k
1

¢¡
N−k−1
m−2

¢¡
N−1
m−1

¢ Pr [T1 = k] +

+
N−1X
k=1

Pr [DN−k (m) = m− 1]
¡
k
0

¢¡
N−k−1
m−1

¢¡
N−1
m−1

¢ Pr [T1 = k]

because the number of ways to distribute m− 1 nodes over N − 1 places that are different from the root such
that there is 1 of the m in T1 and the other m− 2 in T2 is

¡
k
1

¢¡
N−k−1
m−2

¢
and there are

¡
N−1
m−1

¢
ways to distribute

m − 1 nodes over N − 1 places. Further, the URTs separation theorem implies that Pr [T1 = k] = 1
N−1 . This

gives the recursion,

Pr [DN (m) = m− 1] =
1

(N − 1)
¡
N−1
m−1

¢ N−1X
k=1

½
kPr [DN−k (m− 1) = m− 2]

µ
N − k − 1
m− 2

¶
+Pr [DN−k (m) = m− 1]

µ
N − k − 1
m− 1

¶¾
=

1

(N − 1)
¡
N−1
m−1

¢ N−1X
q=m−1

½
(N − q) Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
+Pr [Dq (m) = m− 1]

µ
q − 1
m− 1

¶¾
where, in the last line, we have incorporated that Pr [Dq (m− 1) = m− 2] = 0 if q < m − 1. From (1), the

initial condition is Pr [Dm (m) = m− 1] = 1
(m−1)! .

Further,

(N − 1)
µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1] = (N − 1)

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶

+
N−1X

q=m−1

½
Pr [Dq (m) = m− 1]

µ
q − 1
m− 1

¶
− (q − 1)Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶¾
After substitution of N → N + 1 in the above and subtracting the above yields, for the left-hand side,

L = N

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]− (N − 1)

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

and the right-hand side

R = Q+

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

− (N − 1)
µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]
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with

Q = N
NX

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
− (N − 1)

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶

= N

"
NX

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
−

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶#

+
N−1X

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶

= N Pr [DN (m− 1) = m− 2]
µ
N − 1
m− 2

¶
+

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶
Simplified,

L&R = N

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]−N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

=

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

+
N−1X

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
Repeating the same procedure to remove the last remaining sum gives, for the left hand side,

L = (N + 1)

µ
N + 1

m− 1

¶
Pr [DN+2 (m) = m− 1]− (N + 1)

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]

−N
µ

N

m− 1

¶
Pr [DN+1 (m) = m− 1] +N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

= (N + 1)

µ
N + 1

m− 1

¶
Pr [DN+2 (m) = m− 1]− (2N + 1)

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]

+N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

The right hand side becomes,

R =

µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2]−

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

+
NX

q=m−1
Pr [Dq (m− 1) = m− 2]

µ
q − 1
m− 2

¶
−

N−1X
q=m−1

Pr [Dq (m− 1) = m− 2]
µ
q − 1
m− 2

¶
=

µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2]−

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

+

µ
N − 1
m− 2

¶
Pr [DN (m− 1) = m− 2]

=

µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2]

Combining both sides gives,µ
N

m− 2

¶
Pr [DN+1 (m− 1) = m− 2] = (N + 1)

µ
N + 1

m− 1

¶
Pr [DN+2 (m) = m− 1]

− (2N + 1)

µ
N

m− 1

¶
Pr [DN+1 (m) = m− 1]

+N

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]
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By defining

r [N,m] =

µ
N − 1
m− 1

¶
Pr [DN (m) = m− 1]

we arrive at the recursion,

r [N + 1,m− 1] = (N + 1) r [N + 2,m]− (2N + 1) r [N + 1,m] +Nr [N,m] (7)

with initial condition
r [m,m] =

1

(m− 1)!
What we claim is that Pr [DN (m) = m− 1] = Pr [Dm (m) = m− 1] for all N , which means that

r [N,m] =

µ
N − 1
m− 1

¶
Pr [Dm (m) = m− 1] =

µ
N − 1
m− 1

¶
r [m,m] =

µ
N − 1
m− 1

¶
r [m,m]

Introduced in (7) givesµ
N

m− 2

¶
r [m− 1,m− 1] = (N + 1)

µ
N + 1

m− 1

¶
r [m,m]− (2N + 1)

µ
N

m− 1

¶
r [m,m]

+N

µ
N − 1
m− 1

¶
r [m,m]

or µ
N

m− 2

¶
(m− 1) = (N + 1)

µ
N + 1

m− 1

¶
− (2N + 1)

µ
N

m− 1

¶
+N

µ
N − 1
m− 1

¶
The relation is, indeed, an identity. ¤

B Number of links and nodes in G∪mspt
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Figure 7: Probability distribution of the normalized number of links(left) L∗mspt and nodes(right) N
∗
mspt in

G∪mspt on top of G0.2(800) and m = 10, 20, ..., 60.
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Figure 8: Average and standard deviation of the number of links in G∪mspt on top of G0.2(800).
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Figure 9: The average and standard deviation of the number of nodes Nmspt in G∪mspt on top of G0.2(800).
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