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Abstract. Identifying the fastest spreaders in epidemics on a network helps to ensure an efficient spreading.
By ranking the average spreading time for different spreaders, we show that the fastest spreader may change
with the effective infection rate of a SIS epidemic process, which means that the time-dependent influence
of a node is usually strongly coupled to the dynamic process and the underlying network. With increasing
effective infection rate, we illustrate that the fastest spreader changes from the node with the largest degree
to the node with the shortest flooding time. (The flooding time is the minimum time needed to reach all
other nodes if the process is reduced to a flooding process.) Furthermore, by taking the local topology
around the spreader and the average flooding time into account, we propose the spreading efficiency as
a metric to quantify the efficiency of a spreader and identify the fastest spreader, which is adaptive to
different infection rates in general networks.

1 Introduction

Identifying the most influential initial spreaders in a net-
work constitutes a basic endeavor in network science,
which helps to optimize the utility of resources and to
ensure an efficient diffusion [1]. Injecting information in
the fastest spreaders results in the most efficient spread-
ing performance. The knowledge of the fastest spreader
can be applied in direct marking [2] or idea spreading [3],
where the resources are limited to start the spreading with
a small number of spreaders.

Many topological metrics have been proposed to mea-
sure the influence of nodes in networks [4], such as degree,
betweenness, closeness [5], eigenvector centrality [6] and
the square eigenvector component [7]. Kitsak et al. [8]
suggest that coreness constitutes a better topological
descriptor to identify influential spreaders in epidemics
[8]. However, many nodes performing differently in a
spreading process may have the same k-core value. There-
fore, new metrics based on the existing centrality are
proposed to improve the identification of the influential
nodes by coreness [9,10]. Considering removing the nodes
causing the biggest drop in the energy function, Morone
and Makse [11] propose the metric of collective influ-
ence through optimal percolation, which performs well in
locally tree-like networks. Van Mieghem et al. [12] propose
that the best conduction node in a resistor network is the
minimizer of the diagonal elements of the pseudoinverse
matrix Q† of the weighted Laplacian matrix of the graph.

In the Susceptible-Infected-Removed (SIR) model [13],
Šikić et al. [14] show that the ranking of nodal influences is
sensitive to the spreading dynamics, which depends on the
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infection rate and the curing rate. Measured by the cumu-
lative infection probabilities of nodes, the degree centrality
can better identify influential spreaders when the spread-
ing rate is very small. However, the eigenvector centrality
performs better when the spreading rate is close to the epi-
demic threshold [15]. Holme [16] discovers similar results
and proposes an exact method to identify the best spread-
ers for influence maximization (the expected outbreak
size) in the SIR model, but the method is only tractable
in small graphs. In the Susceptible-Infected-Susceptible
(SIS) model, Qu et al. [17] unveil that the ranking of
nodal metastable infection probability also changes with
the effective infection rate.

The “influence” of the spreader in the SIS model is not
well defined. In this paper, we confine ourselves to the
spreading time Tm(i), defined as the time [18] when the
number of infected nodes in the metastable state is first
reached, started with one initially infected node i. The
spreading time of an epidemic process generally deter-
mines the preferred period to take immunization actions
to eradicate the spreading [19]. We investigate the average
spreading time E[Tm(i)] to identify the fastest spreader in
an SIS epidemic on a general network.

This paper is organized as follows. Section 2 introduces
the spreading time and shows that the average spreading
time depends on the topological metrics in an ER random
graph. Section 3 shows that the fastest spreader changes
with the dynamic process in SIS epidemics. Further, we
propose the spreading efficiency to identify the fastest
spreader. We show the performance in four artificial
and real networks in Section 4. Finally, we conclude our
results in Section 5.
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Fig. 1. The normalized topological metrics of the initial spreader i, e.g., the degree di, the betweenness bi, the closeness cli,
the coreness cri and the reciprocal of the diagonal element (Q†ii) of the pseudoinverse matrix Q†, versus the average spreading
time E[Tm(i)] in an connected ER random graph G0.4(30) with N = 30 nodes and link density p = 0.4. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

2 The spreading time in epidemics on
networks

We concentrate on the Markovian SIS epidemics [20] on
networks, where both the curing and infection processes
are Poisson processes. In the SIS epidemics model on a
network G with N nodes and L links, the ratio between
the infection rate β and the curing rate δ is called the
effective infection rate τ = β/δ. The SIS model features
a phase transition [21] around the epidemic threshold τc.
Viruses with an effective infection rate τ above the epi-
demic threshold τc can infect a sizable portion of the
population and stay for a long time in the network. A first-
order mean-field approximation of the epidemic threshold

τ
(1)
c = 1/λ1, where λ1 is the spectral radius of the adja-

cency matrix A of the network G, was shown to be a
lower bound for the epidemic threshold [20]. We denote

by x = τ/τ
(1)
c the normalized effective infection rate.

The spreading time Tm(i) of the Markovian SIS pro-
cess resembles a lognormal-like distribution with deep tails
[18]. The average spreading time E[Tm(i)] approximates
the average hitting time when the average fraction y∞ of
infected nodes in the metastable state is reached. Phys-
ically, the spreading time Tm(i) describes the spreading
velocity in the early stage of the spreading process, which
depends on the local topology around the initial spreader
i. The analytic expression of the spreading time in a gen-
eral graph is hard to derive in closed form [19]. Due to
the limitation of the analytical methods, an event-driven
simulator SSIS for the SIS spreading process based on
the Gillespie algorithm is implemented to determine the
spreading time [18].

A faster initial spreader speeds up the spreading in the
outbreak period and leads to a shorter average spreading
time, which measures the efficiency of the spreader. We

can identify the fastest nodes by ranking the average
spreading time. We first show the effect of the topolog-
ical properties of the spreader i on the average spreading
time E[Tm(i)] in a SIS epidemics on an Erdős-Rényi (ER)
random network. Figure 1 shows the normalized topolog-
ical metrics of node i versus the average spreading time
E[Tm(i)], which demonstrates that the average spread-
ing time E[Tm(i)] depends on the topological properties
of initial spreader i. Specifically, the degree and the close-
ness of the initial spreader seem to have a similar behavior
as the average spreading time in the ER random graph,
while the betweenness of the initial spreader has a weaker
correlation with the average spreading time. The recip-

rocal of the diagonal element (Q†ii) of the pseudoinverse
matrix Q† also performs well in ranking the fastest spread-
ers and behaves similarly as the degree in the ER random
graph [12]. Figure 1 illustrates that the nodes with the
same coreness may occupy a large proportion of the net-
work so that the fastest spreader cannot be identified well
by their coreness.

3 The fastest spreader in SIS epidemics

In this section, we further investigate the fastest spreader
in the SIS epidemics. The change of the fastest spreader
with the effective infection rate τ is presented in an exem-
plified barbell-like graph. Then, we propose a new metric
to identify the fastest spreader.

3.1 Change of the fastest spreader with τ in a
barbell-like graph

We generate an asymmetric barbell-like graphG20 where a
path graph L2 connects an ER random graphG0.5(10) and
a star graph K1,7, as shown in Figure 2. The barbell-like
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Fig. 2. The probability that the nodes is infected at the spreading time for different normalized effective infection rate x = τ/τc.
Node 9 is the initially infected spreader. The darkness of the nodes represents the probability. The results is based on 105

realizations.

Fig. 3. Illustration of the changing of the fastest spreader with different τ . The size of the nodes represents the degree, and the
darker node represents the faster spreader. The orange node is the fastest initial spreader.

graph helps us to trace the fastest spreader if the effective
infection rate τ changes. Figure 2 illustrates the proba-
bility that the nodes is infected at the spreading time.
Figure 2 shows that the infected nodes are usually local-
ized around the initial spreader at the spreading time, e.g.,
the viruses seldom reach node 14 for a small normalized
effective infection rate x = 4.

Figure 3 exemplifies that the fastest spreader changes
with the effective infection rate τ in G20. The fastest
spreader changes dramatically from the highest degree
node to the lowest degree node with increasing effective
infection rate τ . Specifically, we observe three different
cases in Figure 3. If the effective infection rate τ is rela-
tively small, the fastest spreader tends to be located in
the dense part (the ER random subgraph) of the net-
work. With the increasing the effective infection rate τ , the
fastest spreader transits to nodes with a larger closeness
in the path subgraph. At last, the process approximates
a flooding process if the effective infection rate τ is large

enough. Since the average time to infect all nodes in the
star subgraph is larger than that in the ER random sub-
graph,1 the fastest spreader should be closer to the star
subgraph.

In Figure 4, the crossings of the average spreading time
E[Tm(i)] with the effective infection rate τ for different
initial spreaders demonstrate that not only the fastest
spreader but also the ranking of spreaders is not fixed
for different effective infection rates τ . Therefore, we con-
clude that the fastest initial spreader in SIS model, only
inferred by its location in the underlying graph of the
network, cannot be determined. Our finding implies that

1 The average time to infect all nodes [22] in an ER random

graph Gp(N) is estimated to be 1
β

∑N−1
n=1

1
np(N−n) ∼ 2 log(N−1)

βN
.

The average time to infect all nodes in a star graph K1,N from
the center is estimated to be the maximum of N exponentially
distributed random variables with mean 1/β, which approximates∑N
n=1

1
βn

∼ logN
β

.
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Fig. 4. The average spreading time E[Tm(i)] as a function of
the normalized effective infection rate x in G20, started from
node 9, 11 and 12, in the barbell-like graph G20. (For inter-
pretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

time-dependent “importance or centrality”of a node is
usually strongly coupled to the dynamic process and the
underlying graph itself.

3.2 A heuristic topological metric for the fastest
spreader

In this section, we discuss the topological property of the
fastest spreader throughout the increase of the effective
infection rate τ , i.e., τ ↓ τc, τ > τc and very large τ .

3.2.1 Case: τ ↓ τc
Invoking the infection probability vector V (t) =
(v1(t), v2(t), . . . , vN (t))T , we approximate the spreading
dynamics in the early stage of the spreading [23] and
obtain

dV (t)

dt
≈ βAV (t)− δIV (t). (1)

The average fraction y(t, τ) of infected nodes at the
spreading time tm with τ obeys that

y(tm, τ) =
1

N
uTV (tm) ≈ 1

N
uT e(βA−δI)tmV (0), (2)

where uT = (1, 1, . . . , 1). If the effective infection rate

τ = β
δ approaches the first order mean-field approxima-

tion of the epidemic threshold τ
(1)
c = 1

λ1
, only a very

small proportion y(tm, τ) of nodes will be infected in the
metastable state. The spreading time tm, defined as the
the first hitting time when Ny(tm, τ) nodes are infected
in the Markovian SIS process without extinction [18], is
finite. Figure 4 also exemplifies that the average spreading

time is relatively small if τ ↓ τ (1)c . The matrix (βA− δI)tm
in (2) is dominated by the largest eigenvalue δ(τλ1−1)tm,

which tends to be 0 if the effective infection rate τ ↓ τ (1)c

(by Perron-Frobenius Theorem [5]). Simplified, invoking
the degree vector d = Au and V (0) = ei, we arrive at

lim
τ↓τ(1)

c

y(tm, τ) ≈ 1

N
uT (I + (βA− δI)tm)V (0)

≈ 1

N

(
uT + (βdT − δuT )tm

)
V (0)

=
1

N
(1− tmδ + tmβdi) . (3)

Relation (3) exhibits that the degree of the spreader
dominates the spreading time tm for the unaltered rates β,
δ and their corresponding y(tm) = y∞. This result is dif-
ferent from the result that the eigenvector of the adjacent
matrix A belonging to the largest eigenvalue determines
the infection probability vector in the metastable state [5].
We here exemplify an extreme case: if the effective infec-
tion rate τ approaches τc, and there is only one infected
node in the metastable stable, i.e., y(tm) = 1

N , the spread-
ing time tm equals the minimum time when any one of the
neighbors of the spreader i is infected. Then, the average
spreading time E[Tm] is the minimum of the di exponen-
tial distributed random variables with a mean 1/β, where
di is the degree of the spreader i. Thus, the average spread-
ing time follows E[Tm] = 1

βdi
, which is determined by the

degree of the initial spreader.

3.2.2 Case: increasing τ

We then investigate the case for the increasing effective
infection rate τ . Inspired by the illustration in Section 3.1,
we postulate that the fastest spreader depends on the
local topology around itself, i.e., the number of nodes and
the connectivity of nodes around the spreader. We first
consider the number of nodes around the initial spreader
and regard that the efficiency of the initial spreader is
related to the expansion [5] of the subgraph centered at
the spreader. Specifically, assuming that the hop count h
is the farthest distance from the initial spreader i that the
viruses can reach before the spreading time, the expansion
of the subgraph is the number of nodes |Ci(h)| within h
hops from the initial spreader i.

We then consider the connectivity of the nodes around
the initial spreader. An epidemic behaves like a continuous
time Markov branching process in the early stage [24]. For
a branching process, we obtain that the number of infected
nodes follows

Ny(t) ≈ uT eβAtV (0) ≤ eβλ1tNy(0) (4)

which implies that the lower bound of the time to infect
Ny(t) nodes around the initial spreader follows that t ≥
log(Ny(t))

βλ1
. Inspired by (4), we propose λi(h)

log |Ci(h)| as an indi-

cation of the connectivity of the local topology around the
spreader i for a fixed infection rate β, where λi(h) is the
largest eigenvalue of the subgraph within h hops around

the initial spreader i. A larger λi(h)
log |Ci(h)| implies a higher

connectivity that leads to a faster spreading in the local
network within h hops.
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Fig. 5. The Kendall rank correlation coefficient κ between the average spreading time E[Tm(i)] and the metrics: the degree di,
the spreading efficiency Ei and the reciprocal of the average flooding time φi in the barbell graph G20.

Table 1. The topological properties of the giant compo-
nent of the four experimental networks.

N L ρ λ1 CG ρD

Les Misérables 77 254 5 12.01 0.57 −0.17
SmallWCitation 233 994 4 20.96 0.56 −0.30
Barbell G20 20 39 7 6.14 0.33 −0.11
NetScience 379 914 17 10.38 0.74 −0.08

Considering the above two factors including the expan-
sion |Ci(h)| of the subgraph and the connectivity indi-

cation λi(h)
log |Ci(h)| within the subgraph, we propose the

spreading efficiency as a new metric to measure the effi-
ciency of the initial spreader in the SIS model. The
spreading efficiency of node i is defined as

Ei =
λi(h)

log |Ci(h)|
|Ci(h)|. (5)

In case that the sub-graph expansion |Ci(h)| of the initial
spreaders are the same, a larger sub-eigenvalue λi(h) leads
a higher spreading efficiency in the subgraph due to a
higher connectivity of nodes.

The hop count h describes the average farthest distance
of the infected nodes from the spreader at the spreading
time for the effective infection rate τ , which is difficult to
be determined precisely in a general network. Morone and
Makse [11] identify the influential spreaders by the Ball
(subgraph) centered at the spreader, where the optimal
radius of the Ball is 3 or 4.

The optimal hop h = f(τ) in our method is more flexi-
ble, which is a function of the effective infection rate τ . We
hereby proceed with an approximation. First, the average
fraction of infected nodes y∞ in the metastable state can
be estimated by the NIMFA approach for a determined
τ . The number NC of nodes in a branch process follows

NC ≈ µH+1−1
µ−1 , where H is the largest hop count from the

root and µ = E[D] − 1 is the mean degree minus 1 in
this graph [5]. In that case, we have the largest hop count

H ≈ log(NC(µ−1)+1)
log µ − 1 ≈ logNC

log µ if NC � µ. Invoking the

fact that a spreading process approximates a branching
process in the early stage, we can estimate the hop count
h in a sparse, large graph by

h =

[
logNy∞

logµ

]
. (6)

3.2.3 Case: large τ

With the increase of the effective infection rate τ and the
average fraction y∞ of infected nodes in the metastable
state, the nodes that need relatively more time to be
reached gradually dominate the spreading time. Thus, the
fastest spreader could be closer to the sparser subgraph of
the network. Finally, if the effective infection rate τ is large
enough, the SIS process is reduced to be a flooding pro-
cess [22]. The average flooding time E[TN (i)] of an initial
spreader i is the average minimum time for the virus to
reach all other nodes in a flooding process. Therefore, we
could regard the reciprocal of the average flooding time
φi = 1

E[TN (i)] determines the fastest spreader if τ is very

large.
Assuming that λ1(0) = 1 and |Ci(0)| = di, the spread-

ing efficiency in (5) with h < 1 follows the same rank as
the degree di. In summary, we simplify and propose the
overall metric “spreading efficiency” to identify the fastest
initial spreader in an SIS epidemics as

Ei =


λ1(h)|Ci(h)|
log |Ci(h)|

y∞ ≤ y∗∞

φi y∞ > y∗∞,

(7)

where y∗∞ is a prescribed parameter indicating that the
process approximates a flooding process if y∞ > y∗∞. We
set y∗∞ = 0.8 in the paper for the simulation.

https://epjb.epj.org/
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Fig. 6. The Kendall rank correlation coefficient κ between the average spreading time E[Tm(i)] and the metrics including degree
di, closeness cli, betweenness bi coreness cri and the spreading efficiency Ei in four networks.

Figure 5 shows the Kendall rank correlation coefficient
κ between the average spreading time and the above
discussed metrics, including the degree, the spreading
efficiency in (5) and the reciprocal of the average flood-
ing time φi via Monte-Carlo estimation. If the effective
infection τ is close to the epidemics threshold τc ≈ 0.17,
the degree centrality could be a better metric. We then
observe that the best hop count h increases with the effec-
tive infection rate τ , and the spreading efficiency Ei with
the proposed hop count h in (6) can lead to the max-
imum correlation coefficient κ in a wide range of τ . At
last, the reciprocal of the average flooding time shows the
advantage when τ is large enough.

4 Numerical results

We evaluate the performance by identifying the rank-
ing of the fastest initial spreaders in four, artificial
and real, networks with different sizes and topologies:
co-appearances of characters in Les Misérables [25],
small world citation network (SmallWCitation) [26], the

artificial barbell network G20 and Co-authorship net-
work of scientists (Net-Science) [27]. Table 1 shows
some properties of the giant component of the four net-
works including the number of nodes N , the number of
links L, the diameter ρ, the largest eigenvalue λ1, the
clustering coefficient CG, the Pearson degree correlation
coefficient ρD.

We extract the giant component of the above network
and select 10 nodes randomly in each network. In each
implementation, only one of the selected nodes is infected
initially, and then the virus spreads in the network
according to the Markovian SIS model. After obtaining
the average spreading time via SSIS started from dif-
ferent initial spreaders, we compare the Kendall rank
correlation coefficients κ between the average spreading
time and some other metrics including degree, closeness,
betweenness, coreness and the proposed spreading effi-
ciency in (7). Physically, the identification of the fastest
spreaders in a flooding process is a 1-center problem
[28] in a graph, where the weights of links in the graph
are exponentially distributed random variables with
mean 1/β. Thus, we estimate the average flooding time
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E[TN (i)] by Monte-Carlo approach and the efficiency
shortest path algorithm [29].

Figure 6 shows the performance of the several central-
ity metrics for ranking the fastest initial spreader in four
networks. We observe that, in the networks with a small
diameter (e.g., Les Misérables and SmallW citation net-
work), the spreading efficiency performs similarly with the
coreness, both of which are better than other centrality
metrics. In addition, the spreading efficiency shows its
advantage over the coreness if the effective infection rate
τ is relatively large because the reciprocal of the average
flooding time determines the fastest spreader in that case.

However, the degree and coreness show the vulnera-
bility in the community networks with a large diameter
(e.g., Barbell and NetScience network). Meanwhile, the
closeness becomes a better metric, which considers the
average length of the path between the spreader and all
other nodes. Especially, in the Barbell G20, we observe
the changing of the performance of the centrality metrics
with the increasing effective infection rate τ . When τ is
small, the degree and the coreness perform better, but the
closeness and the betweenness become better if τ is large
enough, which further convinces us that a single existing
centrality metric fails to identify the fastest spreader in the
SIS model. The results suggest that, in the real world, the
viruses or information may spread more efficiency starting
from the spreader with a large degree within the commu-
nity for a small τ , but it is better to choose the spreader
with a high closeness for a large τ .

In summary, we can observe that the proposed spread-
ing efficiency performs better than the compared topo-
logical metrics in general, which is adaptive to different
topologies and different dynamic process. We find that the
accuracy of the spreading efficiency drops a little around
the effective infection rate corresponding to the transition
parameter y∗∞. We also expect a better transition method
and a better estimation of hop h = f(τ) that can improve
the performance.

5 Conclusion

We investigated the properties of the fastest initial
spreader with the shortest average spreading time in the
SIS model. We showed that the fastest spreader changes
from the node with the largest degree to the node with the
shortest flooding time for the increasing effective infection
rate, which implies that the fastest spreader is coupled
to not only the underlying graph but also the dynamic
process.

By considering the expansion and the largest eigen-
value of the subgraph around the spreader, we proposed
the spreading efficiency as a metric to rank the fastest
spreaders. The spreading efficiency depends on the effec-
tive infection rate τ , and reduces to the reciprocal of the
flooding time for a large τ . The simulation results on four
networks show that the spreading efficiency can better
rank the fastest spreaders than some existing topologi-
cal metrics including degree, closeness, betweenness, and
coreness, in different topologies and dynamic processes.
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