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PACS 89.75.Hc – Networks and genealogical trees

Abstract – In previous modelling efforts to understand the spreading process on networks, each
node can infect its neighbors and cure spontaneously, and the curing is traditionally assumed to
occur uniformly over time. This traditional curing is not optimal in terms of the trade-off between
the effectiveness and cost. A pulse immunization/curing strategy is more efficient and broadly
applied to suppress the spreading process. We analyze the pulse curing strategy on networks with
the Susceptible-Infected (SI) process. We analytically compute the mean-field epidemic threshold
τ p

c of the pulse SI model and show that τ p
c = 1

λ1
ln 1

1−p
, where λ1 and p are the largest eigenvalue

of the adjacency matrix of the contact graph and the fraction of nodes covered by each curing,
respectively. These analytical results agree with simulations. Compared to the asynchronous
curing process in the extensively studied Markovian SIS process, we show that the pulse curing
strategy saves about 36.8%, i.e., p ≈ 0.632, of the number of curing operations invariant to the
network structure. Our results may help policymakers to design optimal containment strategies
and minimize the controlling cost.

Copyright c⃝ EPLA, 2019

Background. – Viral spreading processes cause
enormous losses of life. Due to the pandemic influenza A
H1N1, 18500 laboratory-confirmed deaths are reported,
while 284500 deaths are estimated during the period
from 2009/04 to 2010/08 [1]. Cyber-criminals earned
around $100 million per year by spreading an exploit
kit, Angler, in computer systems [2]. A recent study has
shown that false news spreads faster and more broadly
than true news online [3]. The suppression of spreading
processes is thus necessary in many circumstances, but
consumes resources, e.g., budget in disease control or
computational resources in detecting computer viruses.
Based on the data from the World Health Organization,
around 19.9 million children under the age of one still
cannot receive the basic diphtheria-tetanus-pertussis
(DTP3) vaccine and the coverage level of DTP3 for
infants is only about 85% in 2017. Cisco reported [2] that
83% of the Internet of Things devices are not patched to
be immunized against cyber-attacks.

Suppressing spreading requires a strategic design to bal-
ance between the cost and performance. A straightfor-
ward strategy is the uniform, asynchronous strategy: each
infected individual can be cured uniformly over time as
a Poisson process and, thus, the curing is asynchronous
among infected individuals. This strategy is weak in

preventing reinfections between direct neighbors because
a cured individual can still have an infected neighbor.
A pulse/synchronous strategy, where two direct neighbors
have a high probability to be cured at the same time, is
more efficient. The pulse strategy was first proposed to
control the epidemic of measles [4] by periodically and
synchronously vaccinating several age cohorts instead of
uniformly and asynchronously vaccinating each individual
at certain ages [5,6]. In 1995, India introduced the Na-
tional Immunization Days, which is a pulse strategy, to
control the spread of polio [7]. Compared to the uniform,
asynchronous strategy, the pulse strategy shows a better
performance [8].

Furthermore, spreading processes are also focal in net-
work science, because the underlying contact graph influ-
ences the spreading process non-trivially. For example,
the epidemic threshold, which is determined by the net-
work structure, of scale-free networks converges to zero
with the network size under the mean-field approxima-
tion [9–13]. The spreading processes studied on networks
are generally Markovian, which means that the infection
and curing events occur both uniformly over time [14].
As mentioned earlier, the pulse strategy reduces the re-
infections between neighboring nodes. If the curing oc-
curs for all nodes at the same time, then no reinfection
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happens and the disease is immediately eradicated. If the
curing only covers a fraction p of the whole population,
synchronous curing with the pulse strategy still eliminates
a substantial part of reinfections between neighbors and,
thus, leads to a better performance compared to a uniform,
asynchronous curing strategy. Thus, one may wonder how
efficient the pulse strategy is. The most reasonable way
to quantify the effectiveness of the pulse strategy lies in
assessing the reduction of the number of curing operations
by using the asynchronous strategy as a benchmark. In the
following, we consider the most basic spreading model on
networks, i.e., the Susceptible-Infected (SI) process, and
evaluate the pulse strategy performed on the SI model.
Here, we refer to the curing as a strategy, because we
are focusing on curing actions that can be performed in
synchronous/pulse or asynchronous manner by the pub-
lic health department or cybersecurity team. In contrast
and beyond our scope, individuals may be spontaneously
cured by the immune system during an epidemic outbreak,
which is essentially an asynchronous curing.

The model. – In the networked spreading process,
each node in the network is either infected or suscepti-
ble (healthy). Each infected node can infect each healthy
neighbor by a Poisson process with rate β. We assume
that each node is cured with rate δ. Thus, for the pulse
curing strategy, the curing happens every 1/δ time unit,
i.e., the nodes can only be synchronously cured at time k/δ
for k = 1, 2, . . . . The curing has a successful probability p
turning an infected node into a healthy one. Equivalently,
each node can be cured certainly, but only a fraction p
of nodes are randomly chosen to be cured. We define the
effective infection rate τ ! β/δ.

The difference between the above pulse curing SI
model and the extensively studied Markovian Susceptible-
Infected-Susceptible (SIS) model [15] is that each node in
the Markovian SIS model is cured by a Poisson process
with rate δ and p = 1, which represents an asynchronous
curing strategy. In the Markovian SIS process on net-
works, there exists an epidemic threshold [12,13] under the

N -intertwined mean-field approximation τ (1)
c = 1

λ1
where

λ1 is the largest eigenvalue of the adjacency matrix of the

network. If τ > τ (1)
c , then the process is in an endemic

phase in the steady state, but if τ < τ (1)
c , then the pro-

cess converges to the all-healthy state. In the pulse cur-
ing strategy, limited resources or some other complications
may lead to a partial coverage specified by a fraction p < 1.
If p = 1, then synchronous curing destroys the spreading
immediately. The average numbers of curing operations
in the asynchronous Poisson curing and the pulse curing
are δ and δp, respectively, for each node during one unit of
time. In the following, we analyze the pulse curing effect
on epidemic processes on networks under the mean-field
theory to derive the epidemic threshold. Our main find-
ing is that when p = 1 − 1/e ≈ 0.632, the pulse curing
is equally effective to the Poisson curing process with the
same curing rate δ.

Mathematical analysis. We represent the time t in the
form of t = k/δ + t∗, where t∗ ∈ [0, 1/δ). For t∗ ̸= 0, only
infection happens and the mean-field equation of node i is

dvi(k/δ + t∗)

dt∗
= β[1−vi(k/δ+t∗)]

N
∑

j=1

aijvj(k/δ+t∗), (1)

where vi(k/δ + t∗) is the probability that node i is in-
fected at time t = k/δ + t∗ and aij ∈ {0, 1} is the element
of the adjacency matrix of the network with N nodes. The
probability vi(k/δ + t∗) is discontinuous at t∗ = 0 for all
k when curing happens: limt∗→0 vi(k/δ + t∗) = vi(k/δ)
and limt∗→1/δ vi(k/δ + t∗) ̸= vi((k + 1)/δ). Equation (1)
is a mean-field approximation, because we omit the corre-
lation of the infection state between neighbors just as in
the Markovian SIS process [16]. Since the curing proba-
bility of each node at k/δ is p, the pulse curing process is
governed by the following equation:

vi

(

k + 1

δ

)

= (1 − p) lim
t∗→1/δ

vi

(

k

δ
+ t∗

)

. (2)

In our previous work [17], we introduced the bursty SIS
model, where the infection happens periodically with rate
β and the curing is a Poisson process. In the bursty SIS
model, the relationship between the infection probability
of each node at the start t∗ = 0 and the end t∗ → 1/β
of the same time interval is explicitly known as an ex-
ponentially decreasing function. In pulse curing, the re-
lationship between vi(k/δ) and limt∗→1/δ vi(k/δ + t∗) is
described by (1), which does not have an explicit solu-
tion for general networks1. However, since we only care
about the regime where vi(k/δ + t∗) → 0 to derive the
epidemic threshold, we can first linearize eq. (1) around
vi(k/δ + t∗) = 0 for all i and obtain

dv(k/δ + t∗)

dt∗
= βAv(k/δ + t∗), (3)

where the infection probability vector v(k/δ + t∗) !

[v1(k/δ + t∗), . . . , vN (k/δ + t∗)]T . The general solution
([14], p. 209) of (3) is v(k/δ + t∗) = eβAt∗

C, where
C = v(k/δ) is the initial value vector at t∗ = 0. Thus,
the solution of eq. (3) evaluated at t∗ → 1/δ is

lim
t∗→1/δ

v(k/δ + t∗) = eτAv(k/δ). (4)

Substituting (4) into the curing equation (2) yields

v

(

k + 1

δ

)

= (1 − p)eτAv

(

k

δ

)

. (5)

When the largest eigenvalue of (1 − p)eτA, which is
(1 − p)eτλ1 , is smaller than 1, eq. (5) shows that the in-
fection probability v(k

δ ) converges to zero in the long run.

1Only for the regular graph when the initial condition of each
node is identical, there is an explicit solution for (1). One may
verify for the d-regular graph that vi(k/δ) = (1 − p) − e−dτ in the
long run. Let vi(k/δ) = 0 and the threshold is 1

d
ln 1

1−p
which is

consistent with (6).
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Fig. 1: The prevalence of the Markovian SIS model and the
pulse curing model obtained by averaging 105 simulated real-
izations. The simulation is performed on an N = 500 node net-
work generated by the Barabási-Albert model and an N = 500
node ER graph. The curing probability is set to be p = 0.632
for the pulse strategy.

Thus, for (1−p)eτλ1 = 1, we obtain the epidemic threshold

τp
c !

1

λ1
ln

1

1 − p
. (6)

If τ > τp
c , then the spreading can persist in the network,

which is the endemic phase. If τ < τp
c , then the spreading

disappears in the long run, which is the all-healthy phase.
The Markovian SIS process with a Poisson curing pro-

cess has a mean-field epidemic threshold 1
λ1

. When

ln 1
1−p = 1 or p = 1 − 1/e ≈ 0.632, the pulse curing is

equivalent to the Poisson curing process in the traditional
SIS model on any graph. Thus, to eliminate the spreading,
the pulse strategy only consumes 63.2% of the number of
curing operations of the asynchronous strategy, since the
curing rates δ of the two strategies are equal. In the next
section, two typical examples show that even above the
epidemic threshold, the two strategies are comparable, if
p = 0.632.

Simulations: above the epidemic threshold. In fig. 1,
we show the prevalence, which is the average fraction of
the infected nodes, of the Markovian SIS model and the
pulse curing model with p = 0.632, on a Barabási-Albert
(BA) graph [18] and an Erdős-Rényi (ER) graph. The
effective infection rates τ are above the epidemic thresh-
olds 1/λ1. The prevalence of the Markovian SIS model
is exactly centered in the middle of the prevalence gener-
ated by the pulse curing SI model. Figure 1 indicates that
the two curing processes are equivalent to some extent at
p = 0.632, even above the epidemic threshold.

The phase diagram and the parameter selection in
spreading control. Figure 2 shows the phase diagram
of the pulse curing strategy with the mean-field epidemic
threshold calculated by (6). For small coverage p, the
threshold τp

c increases slowly with p; While for large p,
there is an increased effectiveness of p in the pulse strategy.

0.3

0.2

0.1

0.0

 E
ff

ec
ti

v
e 

in
fe

ct
io

n
 r

at
e 

τ

1.00.80.60.40.20.0

Node curing coverage p

 The epidemic threshold 
          of the BA network

Endemic

All healthy

Fig. 2: The phase diagram of the BA network calculated by
eq. (6).

For a spreading process in the endemic phase, one can
tune both the curing rate δ and the curing coverage p to
move the process from the endemic phase to the all-
healthy phase. Figure 2 shows that there are many differ-
ent ways to achieve this. However, the optimal way is just
to increase the curing coverage p and to decrease the cur-
ing rate δ along the red curve. The argument is as follows.
From (6), we have that δ = λ1β/ ln[1/(1 − p)] and thus
δp = λ1βp/ ln[1/(1−p)], when τ = τp

c . The goal is to min-
imize the average number of curing operations δpN during
one time unit, which asks to minimize p/ ln[1/(1−p)]. One
may verify that p/ ln[1/(1−p)] is monotonically decreasing
with p in (0, 1) and thus increasing p along the red curve
in the phase diagram is the optimal way of choosing δ and
p to suppress spreading. The result is reasonable because
a large p can probably shut down the spreading within a
few curing pulses. In real scenarios, the coverage p may
be restricted and thus choosing the maximum possible p
and a corresponding δ is an option.

Conclusion. – We quantified the effect of the pulse
strategy for suppressing spreading processes on networks.
To achieve an equivalent effect, the pulse strategy con-
sumes 63.2% of the total number of curing operations,
required by the uniform and asynchronous strategy, e.g.,
a Poisson curing process. This reduction of cost does
not depend on the underlying contact graph in the mean-
field approximation. Our results may help the agencies,
e.g., disease control centers or computer security teams,
to make policies or allocate resources.
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