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Abstract. The performances of two important cell loss priority mechanisms (CLPM) in shared buffers with N servers, Partial
Buffer Sharing (N-PBS) and Push-Out Buffer (V-POB), are compared. Each arriving flow i is guided to a shared queue of size
K where it is served by the corresponding i-th server. Further, these flows are Poissonean, independent of each other and con-
sist of a uniformly distributed mix of high (H) and low (L) priorities. Subject to the required cell loss ratios for both priorities,
clr{ and clry, we determine the maximum allowable traffic intensity A_,, for each incoming traffic flow as a function of the
global priority mix in the buffer of size K. For an arbitrary CLPM, the maximum allowable load is achieved in the symmetri-
cal traffic situation where all N links carry the same load. Only when N > 1, the N-POB scheme is found to be superior in per-
formance to N-PBS over the whole priority mix range and for realistic cell loss ratio requirements. Moreover, the difference in
performance between N-POB and N-PBS increases with increasing N, but decreases with increasing K. Finally, a methodology
based on buffer size scaling has enabled the computation of the performance of the N-POB.

1. INTRODUCTION

Literature abounds in suggestions to tackle the con-
nection admission control (CAC) problem in ATM
switches. A smaller number of articles concentrates on
priority management (1).

The majority of these discuss a particular priority
scheme and then proceed to evaluate the performance of
the priority algorithm in a single buffer (2, 5, 12, 13, 18,
19, 21, 22, 23, 28, 30, 33] or in a shared buffer [6, 16, 17,
20, 24, 31]. Generally one finds that the introduction of
priorities enhances the number of customers that can be
served adequately at the expense of increased complexity
of the control algorithm. However, relatively few (e.g.
[19, 22]) succeed in determining or proposing a concrete
CAC-algorithm that is optimal given a certain priority
scheme. Of course, there are different aims for optimiza-
tion. Recently, Cidon et al. [7, 8] have presented a study
on optimal buffer sharing trying to minimize the cell loss
ratio of high priority traffic. The main purpose of this
work is to optimize the overall traffic load in shared buf-
fers. Most ATM switching fabrics [9, 32] possess shared
buffers for different links because of efficiency reasons as
demonstrated elsewhere [34]. As the performance of
shared buffers can be further boosted by priority manage-
ment schemes, it is worthwhile to investigate the combi-
nation of a shared buffer and a cell loss priority manage-

(') For a more detailed literature overview, we refer to [25, 26].
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ment scheme to achieve overall traffic load maximization.

Among buffer CLPM protocols [18, 19, 22], the Push-
Out Buffer (POB) and the Partial Buffer Sharing (PBS)
are the most well-known. In a POB, the push-out mecha-
nism acts only if the buffer is completely filled and a
high priority cell arrives. If there are low priority cells in
the buffer, the arriving high priority cell pushes the low
priority cell nearest (2) to the server out, all cells behind
the pushed-out low priority cell ripple through over one
position towards the server, and the arriving high priority
cell takes its place at the tail of the queue in order to pre-
serve cell sequence integrity. A PBS mechanism is some-
what simpler: if the buffer occupancy is below a thresh-
old 7, both low and high priority cells are allowed to
enter, otherwise only high priority cells are accepted until
complete buffer occupation.

In this article, we focus on a shared buffer with N
incoming Poisson flows as drawn in Fig. 1. Each Poisson
flow i has a priority mix o; =Prob [cell of flow i has high
priority H] and a traffic intensity A, independent of flow ;.
The second assumption is further coined as inter-link or
inter-flow independence. All servers are deterministic

(%) This push-out mode is coined FIFO push-out. Other types are LIFO
and Random push-out where the first and an arbitrary low priority cell
are pushed out respectively. Of these types, the FIFO POB has the best
performance. The types are discussed in [25, 26]. In the sequel, the
results computed are those of the Random push-out (R-POB) discipline
because the performance of R-POB approximates the FIFO-POB very
well but has for a single server (N = 1) a state space that is only quadrat-
ic in K, whereas that of the FIFO-POB is exponential in K [25, 26].
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Fig. 1 - A sketch of the shared buffer of size K. The dashed open
boxes represent the logical output queues for the different N links.

with service time equal to one time slot. The priority
mechanism operates on the shared buffer as a whole and
is unable to distinguish between cells of different flows.
But, since the i-th server only processes cells of flow i,
the present shared buffer system is not work conservative
[22] because it violates the basic property that no servers
should be idle as long as the buffer is not empty.

The performance of N-POB and N-PBS (N refers to
the number of servers) is compared in a discrete-time
analysis. The performance measure is the maximum
allowable load per link A_,, in the shared buffer (sha)
subject to the couple (3) (clrh,.;. clry,.n) of cell loss
ratio requirements for low and high priorities in the
shared buffer. Hence, the analysis has been limited to
the cell loss ratio as quality of service (QOS) measure
and delay requirements are not considered.

In current standards, the QoS commitments on the
Cell Loss Ratio for high and low priority cells is ATM
Transfer Capability (ATC) dependent (cfr. ITU-T Rec.
1.371, Geneva, May 1996). For the Deterministic Bit
Rate ATC, a CLR commitment needs to be specified
regardless of the CLP bit, whereas for the Statistical Bit
Rate ATC (configurations 2 and 3), the QoS commit-
ment on the cell loss ratio of the CLP = 1 cell flow (low
priorities) is unspecified. Nevertheless, in the latter
case, it could be a network operator policy to provide a
QoS commitment for the CLP = 1 cell flow in order to
differentiate his service from other network operators.
This motivates the practical importance of the underly-
ing study with two cell loss ratio requirements.

The restriction to Poisson flows entails that the arriving
flows consist of many separate connections, none of them
significantly bursty nor dominant in bandwidth. Although
recent work [1, 3, 11, 14, 15] has shown that broadband
traffic is self-similar in nature, the use of the Poisson pro-
cess is motivated by several arguments. In order to handle
arbitrary traffic profiles, many ATM switches incorporate
spacers or shapers to smooth the traffic and to maximize
link load efficiency. In these cases, Poisson’s law is justi-
fied for engineering purposes. Further, the complexity

(%) In the sequel, a* denotes that a is given or fixed.
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and number of parameters of the queueing analysis with
priority schemes in shared buffers virtually rule out arri-
val processes other than GI-processes if we are to end up
with tractable and hence numerical and interpretable
results. Finally, our work on priority mechanisms in sin-
gle queues [25, 26] reveals that Markov Modulated arri-
val processes exhibit a performance curve for POB and
PBS (A, versus &) similar in shape to that of a Poisson
process.

The outline is as follows. First, general considerations
about CLPM are discussed. Then, the maximum allow-
able link load in a shared buffer under the POB and PBS
priority management schemes in a symmetrical traffic sit-
uation is compared as a function of N and K. The proofs
of important results and the state equations for a shared
buffer with PBS are given in the appendix.

2. GENERAL RESULTS FOR CLPM
2.1. Framework

By virtue of the slotted nature of ATM, we concentrate
on discrete-time systems where the servers work determin-
istically. The time unit, further called a time slot, equals the
time needed to serve precisely one cell. If 1, denotes the
fraction of served i priorities per time slot, we have

Ha =ty + Hy =1 (1)

where the subscripts refer to the aggregate (A), the low pri-
ority cells (L) and the high priority cells (H) respectively.

If o denotes the probability that an arriving cell has
high priority, the mean number of arrivals per time slot
equals

2”,4 = Z"H b A’L (2)

where Ay = a A, and 4; = (1 - @) A,. Defining the traf-
fic intensity as usual by p = A/u, we observe that for a
deterministic server holds that 4, = p,.

Since the system has a finite capacity of K queueing
positions with an additional one for the server, in gener-
al cell loss will probably occur. We denote the cell loss
ratio clr as the mean number of cells lost per time slot
over the mean number of arrived cells of that type.
Again the total number of lost cells consists of both pri-
orities. From this fact we deduce a useful relation (4),

2 3)
clry (@) =(1-a)clr, (a)+aclry (a) (a=l—""]
A
(%) An alternative relation of the same nature is
Ay (1=clry) =(1-g[0]) p,
where g[0] is the probability that the buffer is empty.
ETT



The last relation, known as the conservation law,
explicitly expresses the dependence on ¢. In addition,
since we can write the aggregate cell loss ratio as a
weighted mean, clry = (A, clr, + Ay clryg)/ (A, + Ag), we
immediately find that clry (o) < clry (@) < clrp (@)
assuming that clry (@) < clr; (@).

The cell loss ratio of the aggregate cell stream, clr;,, in
the corresponding system without priority management is
exactly described by the loss probability of that corre-
sponding G/D/1/K system. Formally, fixing all other traf-
fic descriptors independent of the load p,, we have

el = fe By )

where fi (x) is an increasing, continuous and positive
function of x bounded by 0 < fi (x) < 1 and non-increas-
ing in K. A priority mechanism can never lower the
aggregate cell loss, hence we have

C??;,‘ <clry (@) (5

and alternatively, for a same aggregate cell loss ratio
requirement clry = clr, (@) = clry

Pazplo) 6)
2.2. Formal solution

We are now in a position to treat the problem in more
detail: Given a priority management protocol, determine
the maximal traffic intensity p, subjected to the user’s
cell loss ratio requirements (clry, clry) such that clr; (o) <
clr{ and clry (@) < clrg < clr;. The latter inequality
means that clr; should be sufficiently smaller than clr} in
order for the priority scheme to have impact.

Since fg (x) is monotonously increasing, the inverse
fupction exists which justifies to rewrite (4) as p A= fx
(clr). Further, the inverse function g-! (x) of an increasing
function g(x) is increasing. Using (6), we have p (@) < fi'
(clry). Hence, the maximum allowable load p,, (@) is
found where clr, () is maximal. Specifically, from (3)
and the requirements on the cell loss ratios, we have

clry (0) < (1 =) clr] + aclry (7
offering an upper bound for the maximal allowable load
Prmax (@) S fi' [(1 = @) clr] + ecclry) (8)

Since the right hand side of (7) is decreasing in & due
to the fact that clry < clr/, so is (8). The upper bound
(8) does not depend on the management protocol and
indicates that for every value of e € [0, 1] both require-
ments, clr; () = clr] and clry (@) = clry < clr; are met.
2.3. Shared buffers

A flow (or link) dependent CLPM scheme leads to a
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multi-dimensional, non-linear optimization problem of an
overwhelming complexity. In the present shared buffer
(5) (Fig.1), we confine ourselves to a CLPM mechanism
acting upon the shared buffer as a whole without distin-
guishing between the different input flows. This implies
that the individual sets {clry, clrj;} are replaced by one
collective cell loss ratio requirement (clry, g, clrg,)
where we have chosen clr,.,, = min (cli,) and clrg,, =
min (clry, ;). The aggregate priority mix in the shared
buffer is o= 1/A ¥, & A, where A = 3, 4 is the total
offered load. The purpose is to maximize the total
throughput A over all N servers. For a single buffer, the
clr requirement uniquely determines the maximum over-
all throughput, but in a shared buffer, it is perfectly pos-
sible that the clr requirement can be satisfied in a number
of different ways. Among these, we choose the one that
maximizes the total offered load A = XY, A,

The basic symmetry property, the equal balancing
principle, proved in Appendix A.2 reads.

Property 1 In a shared buffer with inter-flow indepen-
dent arrivals and a flow independent CLPM scheme,
the aggregate load A, subject to the constraints that
Clrga.y <l and clrg,, < clrg,,, is maximal in case
of equal individual loads A, = A AND equal priority
mixes o; = ¢. This maximum is unique.

Suppose that N — 1 input flows are sending traffic
each with priority mix @; = & and at the same maxi-
mum allowable load 4, = 4_,, (") = A" obtained when
all N links carry symmetrical traffic subject to the same
set of clr requirements (clr},;, clry, ). How the maxi-
mum allowable load A, on the N-th link varies as a
function of @, is estimated by the following property.

Property 2 Since the symmetrical traffic situation cor-
responds to a global maximum (property 1), we have
+(N-1a" X

HaA

_aN’lN
Ay +(N -
(@)2Ay+(N-1) X

9

N s (10)
from which an upperbound for Ay is found as

ay Ay +(N-1)a" &
Ay +(N-1D)A

ANSNAW{ }-(N—I)l’ (11)

This upper bound only requires knowledge of the
symmetrical traffic situation through A_,. (@). An
investigation of this upper bound has led to the proposal
of a safe CAC-rule covering the whole a-range: the
maximum allowable load Ay should be the minimum of
(11) and A, (00).

(%) In absense of a priority mechanism, for each independent Poisson
flow arriving at the shared buffer holds that clr, = clr,, as demon-
strated in Appendix A.l, property 3.
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In view of its importance, we will further confine our-
selves to the symmetrical traffic situation. Indeed, from
the viewpoint of overall optimality or maximum aggregate
throughput, a network operator should connect the links to
switches to achieve a traffic loading as symmetrical as
possible and even in the case of slight deviations from this
symmetry, property 2 demonstrates how to handle this
asymmetrical case. Highly asymmetrical cases occur due
to inefficient network design or in inadequate load balanc-
ing strategies. Furthermore, since asymmetrical cases are
characterized by a larger set of parameters than the sym-
metrical case, the development of a simple, efficient and
real-time CAC is believed to be quite unfeasible.

3. COMPUTATION OF THE PERFORMANCES
3.1. The single server POB

For small o, the aggregate cell loss ratio will be mainly
determined by clr; (@) since there are hardly any high pri-
ority cells. Moreover, since generally clrg << clr], we
have from the conservation law (3) approximately that
clry (&) = clr] (1 - ¢). Invoking (8), we conclude that the
maximal allowable load is dominated by the clr; require-
ment. In this region, the cell loss ratio requirement for the
low priority cell is precisely met (clr; (@) = clrj), while
for the high priority cells clry (0) < clrg.

Increasing « or the average number of high priority
cells causes clry (o) to increase until clry (@) = clry. At
this point, denoted as ¢, both cell loss ratio require-
ments are precisely met (and this point is unique as fol-
lows by a continuity argument).

The situation is more complex for high values of o.
From the definition of the priority mix « and the fact that
the traffic intensity for the aggregate p, = A, since we
have a deterministic server, the following inequality holds

(@) () _ pa()
(4 o 14

12)

pala)

because A (o) is increasing in ¢ Invoking the character-
istic property of a deterministic server (1), we can write

_Py(@uy(@) _pyla)y,
= g = [1 #L(a)]

(13)

pala)

For sufficienly high e, 4, () follows from (13). The
problem is how to determine the service rate y; () for
the low priority cells. For values of & just exceeding o,
the load will be limited by the high priority requirement
such that clry (o) = clrgy while clr; (@) < clr;. However,
since clry; << clr;, we find that clr; () still dominates the
aggregate cell loss ratio clr, (). When a > ¢, the loss in
low priority cells will be substantially due to the push-out
mechanism leading to clr; (@) = clry,, (@). The calcula-
tion of the push-out probability is exceedingly complicat-
ed and we believe it is only possible through solving the
transition probability matrix.

We have investigated two types of POB: a conven-
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tional FIFO POB (as studied by Kréner er al. in contin-
uous time [19]) and a R POB [25, 26]. The delimiter
refers to the service discipline. Thus, R (random) means
that all cells available have equal probability to be
served as opposed to FIFO where invariably the cell in
the position nearest to the server (or with longest wait-
ing time) is removed from the queue. Clearly, the R
POB does not obey the sequence integrity. However, as
the cell loss ratio only weakly depends on the sequence
order, the maximum allowable load of the R POB is
expected to closely approach that of the FIFO POB,
provided the cell loss ratio requirements are sufficiently
stringent (clr* < 0.1). Indeed, for both POB types the
comparison in the maximum allowable load A, (@)
versus o shows [25, 26] that both priority management
systems exhibit very similar performances for A_,,.

3.2. A fitting formula for the single server R POB

Since A, (@) of a R POB in the [0, ¢] interval is suf-
ficiently close approximated by (8), our objective is to
find an estimate in [, 1] accurate to within 1%.

Suppose for the moment that the value of ¢, is
known. We found that the data of the maximum allow-
able load determined via iterating on the matrix solution
of the R POB to obey the cell loss ratio requirement, is
well fitted by

P
s (14)
(a+p)’

Introducing the additional information

’Imax [a)=pl +

Amax (D) =f' (clryp)
Amax (0) =f [(1 = @) clr} + oy clrf})

the eq. (14) can be specified as

1 1

: ‘lmax (l) [ -

]‘max ((I) = }';

; T |+
(a+p) (ak"'P}'J
(15)
l 1

‘;"max (ak )l: -

(1+p)" (a+p)’ ﬂ

where P=1/(1 + p)?> - 1/(04 + p)>. An elegant approxima-
tion for f5 ] (x) in a discrete-time M/D/1/K is given in [34].

The proposed fit (15) is a kind of weighted mean
between &= ¢ and o = 1 with weight function (o + p)-2.
Apart from @, the only unknown is p for which we found
0.5 < p < 1. The result is not very sensitive to variations
in p (in contrast to o;) when aiming at an accuracy of 1%.
The remainder is therefore devoted to the study of o;.

For a fixed ratio 8 = clrg/clr; but variable K, we
observed that log oy = A/K + B. On the other hand, for a
fixed buffer size K, we found that log ¢ is linear in
logp for both high and low asymptotic values. In practi-
cal applications, fis often smaller than 10-3 and the low
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asymptotic regime is adequate for use. After rather
extensive fitting this regime can properly (to about 1%
accuracy) be modelled as

a, =107 [cf;{)ﬁ B* (16)

3.3. The N-POB

The performance of the N-POB is computed via sim-
ulation since the state space rapidly becomes intractably
large, even for the random push-out discipline which
has the smallest state space of the considered push-out
strategies [25, 26]. The number of states in the N-POB
system with random push-out equals (Kz"j'\,ZN ), e.g. if
N = 4 and K = 32, the number of states is 61 523 748.
Just as for the single POB, the N-POB curves consist of
two regions with opposite curvature joining at the point
o, (Fig. 2). In the lower-region [0, o] the low priority
clr requirement is dominating: all & € [0, ¢4] have pre-
cisely clr; (@) = clr} while clry (@) < clry. In the upper-
region [a, 1] the converse holds: all @ € [¢, 1] have
precisely clry (&) = clrfy while clr, (o) < clr}.

Fortunately, the results (Fig. 2) illustrate that the maxi-
mum allowable load A,,, behaves similarly for various N.
This similarity is not too unexpected. The global arriving
process is a sum of Poisson arrivals and, hence, also
Poissonean. Further, the priority mechanism operates on
the buffer as a whole. These aspects lead to an operation
equal to that in a single server. Thus, the only difference
with a single server are the multiple servers. But, since
the traffic situation is symmetrical so that each server
behaves, on average, identically, we cannot expect large
discrepancies in the priority mechanism either.

Since the single server case N = 1 can be computed
precisely [19, 25, 26], the observation implies that the
multi-server case can be derived from the single server
case. Indeed, the two extreme values of o correspond to
either completely low or high priority traffic for which
the maximum allowable load can be calculated [10, 29,
34] and hence, the downwards shift A(c) from the sin-
gle server POB-curve to the N-POB for a=0and o= 1
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Fig. 2 - A comparison of the performance between the POB and PBS
(with optimized threshold) for different N = 1,2,3,4,6,8. Each curve is
computed for 100 values of a. The buffer size is K = 15 and the clr
requirements are clr; = 10-2 and ¢l = 10+

Vol. 9, No.3 May-June 1998

is known. Assuming a linear interpolation for all e € [0,
1] based on the two known extremes, A(a) = o A(1) +
(1 - &) A(0), this yields the approximate performance of
the N-POB. This technique is applied in section 4.3 for
large K and more stringent cell loss ratio requirements
than shown in Fig. 2. '

3.4. The N-PBS
3.4.1. EXACT METHOD

The steady state probabilities of the N-PBS are com-
puted by solving the linear system & = w M, where 7 is
the vector with the state probabilities and M the matrix
with the transition probabilities (Appendix B.1). The
number of states needed to complete% describe the N-
PBS system of buffer size X is (Kﬁ ). Although this
number is smaller than the number of states for the corre-
sponding N-POB system (K 2"}\,2‘\(). it quickly grows too
large for the system to be solved in a reasonable time, e.g.
for K= 15 and N = 4, the number of states is 3876.

Fortunately, the number of states can be reduced con-
siderably for a symmetrical traffic situation where 4, = A
and ¢; = « for all links i. States with the same probability
can be grouped together into one state (). The number of
states to describe the system then can be reduced to

LKN | | KI(N-1)|-0, |KI2]-0y., K-oy
1
n=0

=n TN-1=TN-2 TN=TN-2

where

i-l
0;=2n 25iSN

k=1

E.g. if K =15 and N = 4 the number of states is only

295. This is a substantial saving compared to the gener-
al solution. The formulas for the elements of the transi-
tion matrix' M can be found in Appendix B.2. A similar
method was already used by Monterosso and Pattavina
in [27] to study interconnection networks. They consid-
ered geometrically distributed cell arrivals and condi-
tional serving of the cells in the buffer.

3.4.2. APPROXIMATE METHODS

As demonstrated above, the number of states in the
exact system description increases so dramatically that
it is useful only for small size (both K and N) systems.
For more realistic values of K and N, several authors [4,
24, 27] have proposed approximate methods with a
reduced number of states for problems similar to the N-
PBS. All these methods assume symmetric traffic. We
have used the bidimensional method proposed by

(®) E.g. for a buffer shared by two links with equal load and priority
mix, the probability that there is one cell in the buffer for link 1 and
two cells for link 2, is equal to the probability that there are two cells
in the buffer for link 1 and one cell for link 2.
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Bianchi and Turner in [4]. Each state corresponds to a
number of cells in the buffer and a number of active
servers. The formulas used to construct the transition
matrix M for Poisson arrivals and deterministic servers
have been derived in Appendix B.3.

The number of states for this approximate method is

L (N -DN
2

For K = 15 and N = 4 we merely have 51 states. This is
a considerable reduction compared to the general method.
But this approximate method, too, possesses a non-struc-
tured matrix preventing the use of dedicated, fast algebra-
ic solution algorithms. For N = 1 the approximate method
is exact and for N > 1 it provides quite a tight upper
bound for the cell loss ratio. In Fig. 3 the exact maximum
allowable loads are compared with those computed with
the approximate method. The agreement is good and,
moreover, the approximate method leads to safe-side val-
ues for the maximum allowable load due to the overesti-
mation of the cell loss ratios.

+(K-N)N

T T T T 1 T
- -0 -- Approximation
—a— Exact
K=15¢lr = 104 a::lr,'4 =100

0.70
065 f

Maximum Allowable Link Load

0.0 02 0.4 0.6 0.8 1.0

Fig. 3 - A comparison of the exact performance and the bidimensional
approximation for N-PBS with different links N with optimized thresh-
old. The buffer size is K = 15 and the clr requirements are clr; = 10~
and clry = 10710,

3.4.3. THE OPTIMIZED THRESHOLD

Compared to POB, a PBS-scheme has an additional
parameter, the threshold T, which needs to be optimized
to render the maximum allowable load.

The maximum allowable load is plotted in Fig. 4 for
N =1 link, a buffer size K = 15 and fixed positions of
the threshold. Similarly to the POB, two different
regimes are observed: the flat decreasing, concave
curves represent regions where the low priority cell loss
ratio requirement clr; is determinant, whereas the
hyperbole-like curves correspond to a region dominated
by the high priority cell loss ratio requirement ciry,. The
desired maximum allowable load is the maximum enve-
lope of all these curves and is clearly a concatenation of
regions alternatingly dominated by the high and low
priority cell loss ratio requirement. Due to the discrete
settings of 7, the maximum allowable load under PBS
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Fig. 4 - The influence of the threshold T on the maximum allowable
load in a 1-PBS for K = 15, N = 1 and the cir requirements (10, 10-10).

features a stepwise shape. The longer the buffer size K,
the more integer values of T are available, resulting in a
smoother maximum allowable curve.

4. PARTIAL BUFFER SHARING VERSUS PUSH-OUT
BUFFER

In this section, we compare the maximum allowable
load per link A versus priority mix o for both N-PBS
and N-POB systems.

4.1. Varying the number of links N

Fig. 2 illustrates some noteworthy aspects. First, for
high values of & and low N, the performance of N-PBS is
slightly better than that of a N-POB. This is more pro-
nounced in larger buffers [25, 26]. Second, for increasing
N, the performance of N-PBS tends to deteriorate with
respect to the N-POB. Finally, we observe that the shape
of the N-PBS changes with N in that the “wobbles” shift
to lower a, when N increases. This effect is averse since
it excludes that the multi-server PBS can be derived from
the (much simpler) single server one as was the case for
the N-POB. Hence, the computation of the maximum
allowable load for large K and N can only be found suffi-
ciently accurate via the proposed approximate method.

4.2. Varying the cell loss ratio requirements

When comparing the performance of a N-PBS and
N-POB for an identical low priority cell loss ratio
requirement clrj as a function of a varying high priority
cell loss ratio requirement clry (Fig. 5), the N-POB
scheme clearly excels the N-PBS, especially in the low
priority range & < ;. We point out that in the high pri-
ority range & > @, the PBS-scheme with threshold opti-
mization can outweigh the performance of the POB-
scheme (especially in single queues [25, 26]).

In Fig. 6, the optimized threshold versus o as a func-
tion of the high priority cell loss ratio requirement clry
is shown. As expected, the optimized threshold T
decreases to lower values with more stringent clry,.
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Fig. 5 - A comparison in performance between the 4-POB and 4-PBS
(with optimized threshold) for different high priority cell loss ratio
requirements, {10-3, 10-4, 10-5, 10-6, 10-8, 10-10}. The buffer size
is K = 15 and the low priority cell loss ratio requirements is clr; = 10-2.
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Fig. 6 - The corresponding optimized threshold in the 4-PBS for the
setting of previous Fig. 5.

4.3. Varying the buffer size K

The performance of the N-POB has been approximated
via scaling as explained in section 3.3, while for the N-
PBS the bidimensional method is used. As illustrated in
Fig. 7, for small buffer sizes, the N-POB obviously out-
weighs the N-PBS in performance. For larger buffer sizes,
the differences become smaller. However, since the maxi-
mal gain A, (0) — A, (1) due to priority management
tends to zero for K — oo, the efficiency of a priority
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Fig. 7 - The performance of the 4-POB (dotted line) and 4-PBS (full
line) for different buffer sizes K but with the same cell loss ratio
requirements (10—, 10-19).
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mechanism diminishes. Thus, for large buffers, a CLPM
cannot be justified.

Fig. 8 shows the normalized optimal threshold 77/K. As
only integer values of T are possible, the curves for small
K clearly exhibit plateaus. This confinement is respon-
sible for the poorer performance of N-PBS compared to
N-POB in small buffers. For large buffers, the discrete-
ness of T ceases to be the limiting factor. Another feature
in Fig. 8 is the discontinuity at &c= 0, where the optimized
threshold T precisely equals K because there are no high
priorities. But, for an arbitrarily small portion of high pri-
ority cells (& > 0), the optimized threshold 7" can never
equal K because the stringent high priority cell loss ratio
requirement (with clrj; < clry) forces the PBS to reserve at
least one buffer position for only high priority cells.
Finally, we mention that the behaviour of the normalized
optimal threshold for N = 4 links is very similar to that for
a single N = 1 link for which we refer to [25, 26].
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Fig. 8 - The normalized optimal threshold 7/K in the 4-PBS versus o
with cell loss ratio requirements (10, 10-19).

5. CONCLUSIONS

For Poisson arrivals, the symmetrical traffic situation is
proved to result in optimal loading irrespective of the
CLPM. The performances of two cell loss priority mecha-
nisms in a shared buffer, N-POB and the N-PBS, are
compared. We found that the N-POB is superior to the N-
PBS for small K and sufficiently large N. For large buf-
fers, the difference in performance between N-POB and
N-PBS diminishes, as expected because the efficiency of
a CLPM mechanism vanishes with increasing buffer sizes
K. In addition, for large buffer sizes K and large N, we
have shown that the maximum allowable load for the N-
POB is easier to compute than for the corresponding N-
PBS due to scaling in K and N. The lack of similarity in
the performance curves of the N-PBS prevents simple
scaling rules and, unfortunately, requires the solution of a
large linear set in high precision.

Lastly, when the number of links N increases, the N-
POB always performs better than the N-PBS over the
whole priority mix region ¢ and for realistic cell loss
ratio requirements.



APPENDIX A
Properties of a shared buffer

A.l. No priorities

Property 3 If each link carries Poissonean traffic
that is inter-link independent then it holds for each link
i leaving the shared buffer that clr; = clrg,.

Proof:

- First we note that clr = (number of cells lost/num-
ber of arriving cells),, where the average is over
all time slots.

- Since the arrivals are Poissonean and inter-link
independent, the arrivals are independent of the buf-
fer occupation. Only if the shared buffer is entirely
occupied, we have cell losses. In that case, any cell
that arrives is lost. On average, we expect a cell
arriving on link 7 with probability A,. Hence, the cell
losses are proportional to A; implying that the cell
loss ratio clr; is independent of i. Thus, all Poisson
flows experience the same cell loss ratio.

In fact, this property 3 is a corollary of the PASTA
property [35].

Property 4 In a shared buffer with inter-link inde-
pendent arrivals, the aggregate load A, subject to the
constraint that clry, < clry,, is maximal if the individu-
al link loads are equal whence A; = A.

Proof:

- The demonstration relies on symmetry. Indeed (7),
we have

drsha =f(l], Zn,. S A’N; K) Ef({)l,}, K) =

J ({4} an permutations’ K) (A.1)

- The maximization of A limited by (A.1) leads to a
Lagrange function,

L=A+E[F(A); K) — clra]

with Lagrange multiplier &. The optimal solution

obeys the set
9L _,,e9f _ <i<
82.,-_”53/1,.- (1<i<N)

IL .
a—€=f({z,.};x)-czrsh, <0

The first N equations indicate that 9f/d4; = —1/§
while symmetry (A.1) implies that df/dA; = 0f/0A;
for all i and j. Hence, A, = 4 obeys these equations.
The last equation or (A.1) will specify A. It is readi-
ly verified that this solution is indeed a maximum.

A.2. With priorities
Proof of the equal balancing principle (property 1):

- Again the demonstation relies on symmetry prop-
erties. Since the priority scheme operates on the
shared buffer as a whole, the link address i cannot
be distinguished. Hence, we can write

dﬂm;;_ =f1 (A, & K)) (A.3)
with A=3 A and a=1/A Y, o; A,

- The maximization of A with respect to A, limited
by (A.2, A.3) leads to a Lagrange function,

(A4)

Sl (A, &5 K) = clrg,, ]

where & and { are Lagrange multipliers (8). The
optimal solution obeys the set

%:I+§%§%+§ %%
g%g_ZJ,g %%:0 (1<i<N)

.‘;%=fﬁ (A K) = clrpyy <O

%:_& (A,:K)=clrg,.; <O

The first N equations can be rewritten as

I+§f_3‘~-}—ti +¢ %+

oA (A.5)
a fy af |ai—a _ s
[‘:aa K da | A =4 )
Multiplying the i-th eq. (A.5) by 4, and summing
over all i yields

(A.6)

Al:l+§%'£5~ +¢ %‘%—]:0

Combining (A.6) with (A.5) gives

(7) It is assumed that the cell loss ratio is completely determined by the
average arrival rates or first moments A, In this sense, the equal balanc-
ing principle is more generally applicable than just to Poisson arrivals.
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(#) Notice that we have chosen in L the equality sign for the con-
straints for simplicity. Since f, (A, & K) and f (A, o; K) are increas-
ing in A, the optimal solution will be the lowest upper bound.
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{gafﬁ +¢' af.{. ]ai—a =0 (A.?)

dax da | A

Two cases can be distinguished. In case all ¢; = @,
the N eq. (A.5) reduce to

afH afL e AR
gaA s oA ! (A8
d fy Ify _ A9
‘:_aa +& g K (A.9)

where x is a real number. In case not all ¢; are
equal, the N eq. (A.5) reduce to

gﬂ +C ai:._l

A.10
dA dA ( :

g0 L p 0N g (A.11)

Ja da

In any case, the N equations reduce to a set that
does not depend on the link address i. Hence, all A,
should be equal. Again, the nature of the problem
indicates that this solution 4, = A AND ¢; = & is
indeed a maximum.

Before proving the uniqueness of the symmetrical
solution, we need additional results based on the conser-
vation law (3). The average cell stream consists of high
and low priorities,

A=Ag+A,

with Ay = XN, & A, and A, = ¥, (1 - @) A;. The cell loss
ratio may be written analogously to that for a single buffer,

C[rsm (a) = Cfrshaﬂ (a) + (l - a]' Cb'sha;l, ((Z]' (A.IZ)
where a = Ay/A.

Since the cell loss ratio increases for increasing loads,
we have

IClrpan S0 (A.13)
aA a=const

%“&i >0 (A.14)
aA a=const

The variation of ¢lry,, 5 (¢) with respect to & at con-
stant load A is

9clrpgp >0 (A.15)
aa A=const

AL 570 (A.16)
aa A=const

because (0 clry, )/ (0@) = (3 clry, ;)/(0Ay) dA/d o =
(0 clrga.)/(0Ag) A > 0 and similar arguments lead to
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(A.16). The latter can also be obtained by differentiat-
ing (A.12) with respect to ¢ at constant A. Indeed,
because (3 clry,)/(d @) | p- const = 0, We find

adrsha:!.

adrsha;h.
da

5 +(1-a)

A=const A=const

(A.17)
Clrga.y (@) = clrgy 4 (02) >0

Property 5 The maximum obtained in property 1 (the
equal balancing principle) with individual link loads A, =
AAND equal priority mixes o; = ¢ is unique.

Proof:

- The Lagrange function L (A.4) can be interpreted
as a constrained total throughput. This interpreta-
tion requires that both & and { are negative. For, if
the incoming loads A; are such that the cell loss
ratio is exceeded, the constrained total load must
be smaller than the incoming total load A. A simi-
lar argument holds for the opposite case.

- The variation of L (A.4) with respect to ¢; at con-
stant A is

OL _|p9fu ¢ 20 |2

da, [é da ¢ éa]A
Now, if clry,.; > clrj, . the constrained total load L
is strictly decreasing with ¢, because (dL)/(d¢;) =
(OL)/(9Ay) (OA)/(0) (0a)/(00;) = ¢; (AL)/(OAy)
and (3L)/(dAy) < 0 since clry,; > clry,y. But, in
case not all ¢; are equal, an optimized solution leads
to (dL)/(dcy) = 0 on (A.11) for all ¢;. This contra-
dicts the previous argumentation and shows that a
maximum solution cannot have all ¢; different.

- Finally, we will show that it is possible for the
only maximum (all 4, = A AND ¢; = @) to obey
that { and & are negative. First, the condition
(dL)/(9e;) < 0 in (A.18) implies that k¥ < 0 on
(A.9). Further, let us denote det = (dfy)/(dA\)
@f)/(30) — (3f,)/(OA) (3f,)/(c) and on (A.13,
A.14, A.15, A.16) we find that der < 0. Then,
solving (A.8) and (A.9) for £ and { leads to

Oy, Ofu
_"9A T a
det
of, . Ofr
i T
det

Demanding that { < 0 and £ <0 leads to the
inequalities

9 fu 2fL
_da _ . da
9fu 9fr
dA dA

(A.18)

¢

E=-



Again, using (A.13, A.14, A.15. A.16), we readily
verify that xis bounded by a negative and a positive
number. These bounds are compatible with the con-
dition that x < 0, hence, we can always find such a x.

APPENDIX B
State equations for N-PBS

B.1. Exact solution - general method

In this method a vector v/ of length N corresponds to
each state 7;:

vi= (v, v, ..., v)

Each entry vl’ denotes the number of cells in the buffer
for link i at the end of the service time. The number of
cells in the buffer at the beginning of the next service
cycle is stored in the vector v/1+ where w/'* = max (/1 - 1,
0),i=1 ... N. The following notation will be used:

N

N N
A=Z;"~f- Ay =Za.- Ais Ap =2(1_ai‘))‘i’
i=1

i=1 i=1
N N
- J1+ — J=
Nc1+_zvf ' Ncl_zvr'
i=1 i=1

and the Poisson arrival law is written as P (A, i) = Ai/i! e4,
The transition probability to go from a state 7; to a state
T, can now be computed. The number of cells in a logical

P
queue cannot decrease going from v/!* to /2, therefore

Mjlﬁ.=0" if 3 IL,i€e {1, 2‘,N} :v;!:{‘{“

1) when N, < K:
a)when N, ,<Tand N, <T. _
All arriving cells are admitted in the buffer. No
cells are discarded. Using the vectors v/1+ and
vi2, we know exactly how many cells have to
arrive on every link. Invoking the indepen-

dence of arrivals between different links yields '

the transition probability
N + 3
M‘”.Jz = H P{AI" vfz s VI"H)
i=1

b)when N, 2Tand N, 2T.
Only the arriving high priority cells are stored
in the buffer. All low priority cells are discard-
ed. As before, the transition probability is

M

2l
12 P(aila"vi -V )

—-

1]
—

c)whenN, , <TandN,2T.
This is the hardest case. N, — N, cells have
to be stored in the buffer. All the arriving cells
are accepted until the threshold T is reached
and above T only high priority cells are admit-

ted. The number of cells of link i to be stored
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is m; = w7 — v/'*. Of these m; cells, k; cells are
stored in buffer positions lower than T. The
remaining number of high priority cells will be
denoted by n; = m; — k;. Further, the set {k;} is
confined by XV k;=T—-N,,.

To compute the transition probability two
functions are introduced. The function f;(.)
computes the probability that among the first
T — N_,, cells there are k; cells of link 1, k,
cells of link 2, ..., ky cells of link N. Defining
Np=T-N_,, the function f; (.) is

fi(k]skz,--.,kN_I)=

0 ifky <0orky>my
N-2
[NT][NT_kI] Ny- Yk
[ G e B
1 2 kN—l (Bl]

& &) )

ifO<ky <my

withky=T-N,,, - X! k..

Suppose now that after the first N cells, still
[ — Ny cells arrive at the buffer. The function
f>(.) computes the probability that among
these | — Ny cells there are exactly n, high
priority cells for link 1, n, for link 2, ... The
other I - N, + N_,, cells are low priority cells

and are discarded.
i (Rgessismpsd) =
N-1
l—NT I—NT—HI ” l_NT_an %
n ) p=1
ny
(sh)(@h)" (k)" @2
A A LA
Nl 1-N_, +N_,,
Z(l—ap]lp
p=1
A
With these definitions the transition probabil-
ity from state j, to state j, equals
Mj ;= ZP(A,I) X
;=Nr1-Nr|+
By my My_y
Z Z Z ﬁ(k,,kz,...,k,\.-_;)- (B3
k=0ky=0 ky_ =0
f;! (ﬂpﬂg.---,nN_l.nN.l)}
ETT
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2)when N, =K
a)when N, <T.
Before computing this transition probability,
two new functions are introduced. The function
f3(.) is the probability that having ! arriving
cells, at least K — T high priority cells arrive,
after the first T— N, cells. One may verify that

cl+

AN, K. T)=

- {K—ET‘J‘l(l - NTJ[A_H)P (ﬂ)I—Nr‘P
p=0 P A A
where Np=T-N_,,.
The function f;(.) computes the probability
that among the stored K — T high priority
cells, there are exactly n, cells for link 1, n,

for link 2,...:

fi (n],nz.....nN)=

(K—T][K—T—nl}u K-T-'S'n, %

nl nz i=]
fn_y

The transition probability from state j, to state
J reads

M; =

S P(AJ) x[ > - 3£ (b bavn-cibien)

[=K-N,, k=0 ky_,=0
£ (NG K T) £y ()]

b) when N, 2 T.

Here, we only have to consider the high prior-
ity cells. Of these high priority cells only the
first K — N, cells will enter the buffer. The
other cells are discarded when the buffer is full.
In those first K — N, cells we have to find
exactly m; = v/* - v‘[.'Y+ cells for each link (i =
1,..., N). The transition probability is thus:

M1 j2 = 3 P(Au))- [[K_Nm]'

=E=Ni, my

N-1
[K~Nc.,,-m1] K-Ny,—2Xm | (B4
-

mn;
my

(32T (5 (o522
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B.2. Exact solution - symmetrical traffic

In this appendix, the formulas used to construct the
transition matrix for the N-PBS are derived employing the
vector method proposed by Monterosso and Pattavina
[27]. The traffic is assumed to be symmetrical: A = A, and
o=@y i=1,..., N. The following definitions are used:

For this method each state 7; again corresponds with
a vector

vi=W,v, ..., W)

but with the additional constraint that v <v, < ... Swy.

Before computing the transition probabilities, the
number of ways to move from the state j1 to a state ;2,
denoted by f (j1, j2), has to be known. Recalling the
definitions of the previous section, to compute the num-
ber of possible transitions, all the possible distributions
of N, — N, cells (N, is the number of cells after
serving) over N links are examined. Define N, = N, —
N,,,. the number of cells that have to arrive to induce a
transition from state j, to state j,. The number of pos-
sible transitions is then:

N_N.-o, N.-oy,
fULi2)=3% 3 - X F(rjLj2)
n=0 r,=0 . =0

where
i-1
;=21 i=2..N,

r=(nr..ry_yry), withry=N, -0y

and

1 ifv‘fz:ord(vj“d-r) and ry 20
Fir.jl.j2)=
0 ifvﬂ;tord(v-"“+r) and ry <0

The function ord(.) sorts the elements of a vector in
non-decreasing order.

Using this definition of £ (j1, j2), we are able to com-
pute the transition probabilities. Obviously, the transi-
tion probability is zero when N, < N,,,. The other tran-
sition probabilities are: '

1) when N, < K.

a)when N +<Tand N, <T.
All arriving cells are stored in the buffer.

M;,n=f(1,j2)-P(N AN,
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b)when N, , 2TandN,2T.
Only arriving high priority cells are stored in

the buffer.

M; o =f(1,j2)- P (N A4, N,)
c)when N, , <TandN,2T.
All arriving cells are stored until the buffer is
filled with T cells. Subsequently only high pri-
ority cells are stored. However, exactly N.— Ny
high priority cells still have to arrive to induce
the transition. A formula proposed by Kréner
et al. [19] is used. The resulting transition

probability is,

Mj j» = f(j1,j2) 3 P(NA,1)-

I=N,

I_NT N, -Ny I-N,
(NC_NTJG (lra)

with Ny =T - N,,.
2)when N, =K.
a)when N, <T

M; ;> = f(i1.2)

{ i P(N/LI){FKE_](I_"NTJ& (1-a)"”"*]}

I=N, k=1

An infinite number of cells might arrive.
However, the state j2 can only be reached if at
least K — T high priority cells arrive, after the
first Ny cells that are certainly stored in the
buffer.
b)when N, 2 T.

The state j2 can only be reached when at least
N, = K - N_,, high priority cells arrive. The
transition probability is thus:

Mj o = f(1.2) 2 P(NAg.l)=

I=N

€

f(jl,ﬂ){f - N‘Z_IP(N AHJ)]

=0
B.3. Approximate bidimensional method

The state equations for the N-PBS are approximated,
based on the bidimensional principle of Bianchi and
Turner [4] where each state corresponds with a vector v =
(s, ¢), with s denoting the number of cells in the buffer
and ¢ the number of active servers.

Before calculating the transition probabilities, prelimi-
nary results are needed. Let R (s, ¢,, a;, ¢,) denote the
probability that when there are initially s, cells in the buf-
fer for ¢, servers, ¢, cells are served and a, cells are stored
in the buffer, then the resulting number of active servers is
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¢,. Recall that our state is measured just before the cells in
the buffer are served. Due to the deterministic server disci-
pline, ¢, cells are always served, if the number of active
servers (being the number of non-empty queues) is ¢;.

To compute R (s, ¢, @y, c,), let ¢ denote the number of
active servers, when after ¢, cells are served. Introducing
the functions

§ (s}, ¢, ¢): The probability that having s, cells in the buf-
fer for ¢, servers before serving, there are still
c servers active after the serving of ¢, cells.
Of course, S (s, ¢}, ¢) =0 when ¢ > ¢,.

T (c, ay, c,): The probability that having ¢ active servers
after serving and a, arriving cells are stored
in the buffer, the number of active servers
is ¢,. From the definition it follows that
T (c, a;, ¢;) = 0 when ¢, < ¢ as the number
of active servers cannot decrease on arrival
of a, cells.

We obtain
R(Sl"—‘pal'cz)= ZS(SI'CI'CJ y T(C’QI'CZ)
=0

Bianchi and Turner [4] have demonstated that
5 —c -1
(8] c-1
G —c § -1
-1

T(c,a1,¢5) = %T(c,al -1,c,)+

S(s,.cl.c)=[

and

¢y —1
[1— = ]T(c,al—l,cz—l)

when ¢ < ¢; < ¢+ a while forc, =¢

T(c.a1,¢c)= (%Ja‘

With these definitions, the construction of the transition
matrix is as follows. In the state j, (j,) there are s, (s,) cells
in the buffer for ¢, (¢,) servers. In order to simplify the
formulas below, we write s7 = 5, — ¢, and N, = s, - s7.

The transition probability is zero when s, < s7. The
other transition probabilities are:

1) when s, < K

a)whensy<Tands,<T.
All arriving cells are stored in the buffer.

Juj']‘,: =R (s;,¢c;,N,¢y)-P(N A, N,
b) when s{ 2T and 5, 2 T.
Only arriving high priority cells are stored in
the buffer.
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M;l“m :R (.S‘l, Cl’ NL" C:) N P {N A'H‘ N{')
c)whensi<Tands,>T.
All arriving cells are stored until the buffer is
filled with T cells. Subsequently only high pri-
ority cells are stored.

oo

M;; j» = R(s1,¢1, N0 63) 2 P(NAD)-

]

I=N,
1- Nz N -N 1-N
a’ T (l-a) ¢
(NC_NT] ( )
with Ny =T - s7.
2) when s, = K.

a) whensf <T

MJ].,JZ = R(SI‘CI‘N{,“CZ).

> P(NA.!){I s xfl(‘-;\’r]ak (1_a)f—~f—k}

I=N, k=1

An infinite number of cells might arrive.
However, the state j2 can only be reached if at
least K — T high priority cells arrive, after the
first N cells that are certainly stored in the
buffer. The following definitions were used:
Npy=T-stand N,=K-s}.
b) whensf = T.

The state j2 can only be reached when at least
K — s} high priority cells arrive. The transition
probability is thus:

M2 = R(s1:0.N.03) X P(Nag,l)=
I=N,

=0

N.-1
R(sy.c;,Nocp)|1- ZP(NAHJ)]
with N, = K - s7.
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