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Abstract—Mean-field deterministic epidemic models have been
successful in uncovering several important dynamic properties of
stochastic epidemic spreading processes over complex networks.
In particular, individual-based epidemic models isolate the impact
of the network topology on spreading dynamics. In this paper, the
existing models are generalized to develop a class of models that
includes the spreading process in multilayer complex networks.
We provide a detailed description of the stochastic process at the
agent level where the agents interact through different layers, each
represented by a graph. The set of differential equations that de-
scribes the time evolution of the state occupancy probabilities has
an exponentially growing state-space size in terms of the number
of the agents. Based on a mean-field type approximation, we de-
veloped a set of nonlinear differential equations that has linearly
growing state-space size. We find that the latter system, referred to
as the generalized epidemic mean-field (GEMF)model, has a simple
structure characterized by the elements of the adjacency matrices
of the network layers and the Laplacian matrices of the transi-
tion rate graphs. Finally, we present several examples of epidemic
models, including spreading of virus and information in computer
networks and spreading ofmultiple pathogens in a host population.

Index Terms—Complex networks, epidemic spreading, general-
ized epidemic mean-field (GEMF) model, Markov process, mean
field theory.

I. INTRODUCTION

E PIDEMICS are critical phenomena, not only from a bi-
ological viewpoint, as infectious diseases, but also from

a technological viewpoint, as malware propagation. Clearly,
epidemics can produce huge damage, and so the development
of accurate and effective models for epidemics is imperative.
First, epidemic modeling has a long history in biological
systems, and recently, such modeling has attracted substantial
attention in modeling propagation phenomena in communica-
tion networks [1]–[3]. Epidemic spreading, like many other
processes (see, e.g., [4]–[6]) on complex networks, can be
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modeled as a network of coupled stochastic agents. The popu-
lation-based or network-based epidemic models (cf., [7]–[9])
extended to individual-based epidemic models [10]–[14]. A
common approach of existing individual-based models is
to consider Markovian interacting agents (i.e., dynamics of
the agents satisfy the Markov property [15], [16]), while the
interaction is represented by a generic graph. This approach
avoids random network models (e.g., Erdös–Réyni [17],
Barábasi–Albert [18], etc.), which may fail to properly repre-
sent engineered networks [19].
The study of the dynamic behavior of epidemic spreading

processes on graphs is very challenging, even for simple
scenarios, due to the stochastic nature of this behavior. For
example, the system governing state occupancy probabili-
ties has an exponentially growing space size in terms of the
number of the agents. Therefore, the problem becomes soon
intractable as the number of agents increases. Fortunately,
through a mean-field closure approximation approach, the size
of the governing equations reduces dramatically although at
the expense of exactness. Mean-field epidemic models have
been very successful in finding several interesting results for
individual-based epidemic spreading processes. For example,
researchers have shown that the epidemic threshold in the
Susceptible-Infected-Susceptible (SIS) model is actually the
inverse of the spectral radius of the adjacency matrix of the
contact graph [10], [12].
In most existing individual-based epidemic models, the in-

teraction is driven by a single graph. However, studying epi-
demics in communication networks and cyber-physical systems
requires a more elaborate description of the interaction. Sev-
eral researchers from computer science, communication, net-
working, and control communities are working on describing
this complex interaction by using multiple interconnected net-
works [20]–[22]. Ultimately, the study of the spreading of epi-
demics in interconnected networks is a major challenge of com-
plex networks [23]–[27].
In this paper, we provide a novel and generalized formulation

of the epidemic spreading problem and a modeling solution. We
consider a spreading process among a group of agents that can
be in different compartments and where the agents interact
through a multilayer network, which is explained in detail in
Section IV. We follow a rigorous methodology to develop a
general epidemic spreading model. The modeling starts with
a simple agent-level description of the underlying stochastic
process. The exact Markov equations, which describe the
time evolution of the state occupancy probabilities, are linear
differential equations, however, with exponentially growing
state-space size in terms of the number of agents. Through a
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mean-field type approximation, the state space dramatically
reduces. The approximate system is a set of nonlinear ordinary
differential equations that we call the generalized epidemic
mean-field (GEMF) model. We apply GEMF to interesting
problems, such as: 1) the spread of infection in a population
where the infection spreads through a contact network while
agents respond to the spreading by learning about the existence
of the infection through information dissemination networks,
and 2) the bi-spreading of two types of interacting viruses in
a host population demanding different transmission routes for
the infection propagation.
The contribution of this paper is twofold. First, we propose

a general epidemic-like spreading Markov model with multi-
compartment agent dynamics and a multilayer interaction net-
work. Second, we propose GEMF as a generalized epidemic
mean-field model suitable for a large class of individual-based
spreading scenarios. GEMF is rigorously derived from an agent-
level description of the spreading process and is elegantly ex-
pressed [see (26)] in terms of the adjacency matrix of each net-
work layer and of the Laplacian of the transition rate diagrams.
In GEMF, there is no approximation of the network topology;
the only approximation is a mean-field type approximation of
the dynamics of the agents. The impact of this approximation is
a function of the network topologies and epidemic parameters.
For complete development, we have also explicitly derived the
exact Markov equations in the Appendix.
The rest of the paper is organized as follows. Motivations for

developing GEMF are provided in Section II through examples,
and Section III offers the basic definitions for the spreading
problem. In Section IV, the agent-level Markov description
of the spreading process is provided, and GEMF is developed
in Section V. The paper concludes in Section VI by applying
GEMF to some existing and novel spreading scenarios.

II. MOTIVATING EXAMPLES

In this section, first we review some of the existing indi-
vidual-based epidemic models, and at the end, we discuss what
generalizations are important to develop a general class of epi-
demic models.

A. SIS Individual-Based Model
In the SIS model (cf., [11]–[13]), each agent can be either

“susceptible” or “infected.” Hence, the number of compart-
ments, denoted by , in the SIS model is . A susceptible
agent can become infected if it is surrounded by infected agents.
The infection process of an agent with one infected neighbor is
a Poisson process with transition rate . The infection processes
are stochastically independent of each other. Therefore, for
a susceptible agent with more than one infected agent in its
neighborhood, the transition rate is the infection rate times
the number of the infected agents. The neighborhood of each
agent is determined by a graph , which represents the contact
network. In addition to the infection process, there also exists a
curing process. An infected agent becomes susceptible with a
curing rate . A schematic for the SIS model is shown in Fig. 1.

B. SAIS Spreading Model
The Susceptible-Alert-Infected-Susceptible (SAIS) model

was developed in [28] to incorporate agent reactions to the
spread of the virus. In the SAIS spreading model, each agent

Fig. 1. Schematic of a contact network along with the agent-level stochastic
transition diagram for agent according to the SIS epidemic spreading model
(explained in Section II-A). The parameters and denote the infection rate
and curing rate, respectively. is number of the neighbors of agent that
are infected at time .

Fig. 2. As in Fig. 1, the SAIS epidemic is sketched (see Section II-B) on a
contact network . In addition to the infection rate and the curing rate ,
parameters and denote the alerted infection rate and the alerting rate, re-
spectively. is the number of neighbors of agent that are infected at time .

can be either “susceptible,” “infected,” or “alert.” Hence, the
number of compartments in the SAIS model is . The
curing process in SAIS is the same as the curing process in the
SIS model and is characterized by curing rate . The infection
process of a susceptible agent is also similar to that of the SIS
model, which is determined by infection rate and contact
graph . However, in the SAIS model, a susceptible agent can
become alert if it senses infected agents in its neighborhood.
In the SAIS model, the alerting transition rate is times the
number of infected agents. An alert agent can also become
infected by the process similar to the infection process of a
susceptible agent. However, the infection rate for alert agents
is lower due to increased security for computer networks or
better hygiene in the human population. The alert infection
rate is denoted by . Fig. 2 is a schematic for the SAIS
spreading model.

C. Generalization of Epidemic Models

The SIS and SAISmodels are good examples of how a simple
compartmental model at the node level along with a network
topology can lead to very rich and complex dynamics. While
following the structure and underlying assumptions of these ex-
isting epidemic models, we propose to develop a generalized in-
dividual-based spreading model where: 1) the node model has



DARABI SAHNEH et al.: GEMF MODEL FOR SPREADING PROCESSES OVER MULTILAYER COMPLEX NETWORKS 1611

Fig. 3. Network layers describe the different types of interactions among
agents in GEMF. The vertical dotted lines emphasize that all graphs have the
same nodes, but the edges are different.

multiple compartments; and 2) the network topology has mul-
tiple layers. Both generalizations are important. For example,
many epidemic models can be created by adding new com-
partments to the basic SIS or SIR epidemic models. Also, for
applications in cyber-social and cyber-physical systems, more
network layers need to be taken into account (see Fig. 3). For
example, in the SAIS model, the agents can observe the infec-
tion status of their neighbors in the contact network. However,
a more realistic scenario is that agents learn about the infec-
tion status of other agents through an infection information dis-
semination network, represented by , which can be very
different from the contact network. We can also take into ac-
count an alert information dissemination network among the
agents, represented by . Through this network, agents can
become alert if some of their neighbors (determined by )
are alert. In this case, the network topology has three layers.
In Section VI-C, we develop an SAIS model with information
dissemination.
Multilayer epidemic modeling can also have applications

in biological networks. Consider the scenario where two
pathogens are spreading through the host population. Infec-
tion by one pathogen can effectively influence the infection
process by the other pathogen. Since the infection transmission
routes may be different, the contact networks for each virus
can potentially be separate from each other. In Section VI-D,
we develop an individual-based SIS bi-spreading model with
separate contact networks for each pathogen.
The GEMF class of models developed in this paper allows not

only an arbitrary number of compartments, but also accounts for
multiple network layers.

III. DEFINITIONS

The network consists of interacting agents, each of which
can be in one of states (compartments). The stochastic tran-
sitions of an agent not only depend on its own state, but also on
the states of the other agents. The group of agents is assumed
to be jointly Markovian, i.e., the collective system is a Markov
process. The state of the collective system, which we refer to

as the network state, is actually the joint state of all the agents’
states. Assuming that all the agents can take values among
compartments, the size of the network state space is . In
Section III-A, the agent state and network state are precisely
defined.

A. Agent State and Network Markov State
One of the generalizations of GEMF concerns the com-

partment set, where each agent can be in one compart-
ment in the set . For ex-
ample, in the SIS model for epidemic spread, and

‘ ’, ‘ ’ . From now on, without loss
of generality, each compartment is labeled with a number from
1 to . The agent state of agent at time is
if the agent is in compartment at time . Here, is the th
standard unit vector in the Euclidean space, i.e., all entries
of are zero except for the th entry, which is equal to one

(1)

The definition illustrates that each entry of
is a Bernoulli random variable. Therefore, the expected value of

is in fact the compartment occupancy probability vector,
i.e.,

(2)

The above property is very important in future developments,
particularly in (14), (17), and (24)–(26).
There are other possibilities for defining the node state .

For example, one might define if node is in
compartment . By this definition, takes values from 0 to

. This definition is particularly useful if . In this
case, is a binary random variable. Van Mieghem et al. [12]
used this definition for the SIS N-Intertwined model.
As stated, the dynamics of an individual agent depend on the

states of the other agents. Therefore, the state of a single agent
is not enough to describe the evolution of the agent state. In-
stead, the joint state of all the agents follows a Markov process.
Therefore, the network state at time , denoted by , is the
joint state of all the agents defined as [29]

(3)

where is the Kronecker product.
By (3), is an random vector with exactly one

element equal to one and the rest equal to zero. Therefore, the
expected value of is the joint probability distribution func-
tion of the network state. For example, for the SIS model, the
first element of the expectation of is the probability that
all the agents are simultaneously susceptible.
One could define the network state as an vector

. However, in this case, the expectation
of will only provide the marginal probability distribution
of the node states. As Section V-A shows, the information about
marginal probabilities at a given time is not enough to describe
the evolution of the marginal probabilities, and the joint proba-
bility distribution is required. Hence, we adopt definition (3) for
the network state.
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B. Multilayer Network Topology
The other generalization in GEMF concerns the topology.

In most epidemic models, the interaction among the agents
is represented by the contact network. However, as discussed
in Section II-C, the types of interaction can be different in a
complex network. For our modeling purpose, we represent the
topology by layers of graphs , where is the set
of nodes denoting the agents, and is the set of edges that
represent the interaction between each pair of individuals in the
th layer. These graphs have the same nodes, but the edges can
be different. The adjacency matrix corresponding to graph
is denoted by . If agent can influence agent
in the layer , otherwise . In Section IV-A.2,
we define precisely what “influence” implies in our model. A
representation of the network layering structure is depicted in
Fig. 3.

IV. AGENT-LEVEL DESCRIPTION OF THE MARKOV
SPREADING PROCESS

The network state follows a continuous-time Markov
process. Knowing that the network is in state at time ,
what is the network state at time ? In a net-
work of interacting agents, this question can be very compli-
cated. Instead, a more direct approach is to describe the agent
state given the network state at time . The
spreading process is fully described if the probability to record
a transition from compartment to compartment for agent ,
conditioned on the network state , is known for all pos-
sible values of , and . Therefore, in this section, we focus
on deducing an expression for

, which will be used later to develop theGEMFmodel.
The challenge in deducing an expression for

is that too many possibilities exist for the
dependence of the transition of the individual agent
on the network state. Here are a few examples: the transition

happens completely independently from the states of
other agents; the transition happens if the number of
other agents in compartment are more than the number of
agents in compartment ; the transition happens if
agents 1 and 2 are both in compartment and the rate of the
transition is the logarithm of the number of agents in compart-
ment . All of these examples are legitimate so far. However,
we need to specify the transition possibilities properly to de-
velop a coherent and consistent epidemic spreading model.

A. Epidemic Spreading Process Modeling
The SIS model (see Section II-A) gives very good insights

into how to properly define the transition possibilities to de-
scribe an epidemic spreading process. In the SIS model, there
are two transitions. The curing process, which is basically the
transition from “infected” state to “susceptible,” occurs inde-
pendently of the states of other agents. Instead, the infection
process, which refers to transition from “susceptible” state to
“infected” state, happens through a different mechanism. A sus-
ceptible agent is in contact with some other agents, and during
the time interval , the susceptible agent receives the
infection from its infected neighbor with some probability. The
process of receiving the infection from one infected neighbor is
independent of the process of receiving the infection from an-
other neighbor. Indeed, all the infected neighbors compete to

infect the susceptible agent. The susceptible agent becomes in-
fected when one of the neighbors succeeds transmitting the in-
fection. Next, since the transitions in the SIS epidemicmodel are
very similar to the transitions in most existing epidemic models,
we impose a similar structure of independent competing pro-
cesses to the generalized spreading model.
Assumption 1: A transition for agent is the result

of several stochastically independent competing processes:
the process for agent that happens independently
of the states of other agents, and the process for
agent because of interaction with agent , for each

.
According to Assumption 1, the interaction of agent with

agent is stochastically independent of its interaction with
agent . Next, define the auxiliary counting process

corresponding to the interaction of agent with
agent . For convenience of notations, let correspond
to the transition for agent occurring independently of the states
of other agents. According to Assumption 1, conditioned on
the network state, these counting processes are stochastically
independent. The transition occurs in the time interval

if any of these counting processes records an event.
Therefore, can be
written as

(4)

Each of the counting processes is a Poisson process
with the rate , to be determined. Therefore

(5)

The sum of independent Poisson processes is also a Poisson
process with aggregate rate equal to the sum of the individual
rates (see [16, Theorem 7.3.4]). Therefore

(6)

The remaining part of this section is to determine
properly. For this end, we define notions of nodal and edge-
based transitions.
1) Nodal Transition: As discussed earlier in Section II-A,

the curing process in SIS model happens with rate regardless
of the infection status of other agents. Correspondingly, we call
a process that occurs independently of the states of other agents
a nodal transition. In general, for the nodal transition ,
we can consider a rate1 , which is actually the rate for
the counting process , i.e.,

(7)

1Here, is a nonnegative scalar that represents nodal transitions. It should
not be confused with the Kronecker delta symbol.
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2) Edge-Based Transition: In the SIS model, a susceptible
agent becomes infected with rate if it is in contact with in-
fected agent . Correspondingly, we call a process that occurs as
the result of interaction between a pair of agents an edge-based
transition. Edge-based transitions are different from nodal tran-
sitions because they depend on the states of other agents. For ex-
ample, in the SIS model, the infection process is an edge-based
transition, where the contact network graph determines the con-
tact among agents. However, as described in Section III-B, we
extend the concept of contact network to multilayer networks.
In our formulation, the interactions among agents consist of
graph layers. Corresponding to each layer , there is one influ-
encer compartment , i.e., transition can occur for
agent as the result that a neighbor in layer , i.e., , is
in . For example, in the SIS model, “infected” is the influencer
compartment for the contact network, i.e., . In general,
the transition from compartment to is characterized by the
transition rate for layer . Therefore, the edge-based
transition from to through interaction of agent with
agent is described by the rate

(8)

where is the indicator function.
It is possible that the influencer compartment of two distinct

layers is the same. For example, recall the extended SAISmodel
with three network layers proposed in Section II-C. For the con-
tact network and the infection information dissemination net-
work, “infected” is the influencer compartment. However, for
the alert information dissemination network, “alert” is the in-
fluencer compartment.
Assigning only one influencer compartment to a graph layer

allows the elegant development of the subsequent analysis.
However, a more general possibility is that a transition
occurs if a neighbor , i.e., , is in a subset of the com-
partments, say or . This case can be treated within the
same structure of GEMF, and if so, we can count the network
layer twice, i.e., we assume that the first time, the graph has
the influencer compartment , and the second time, the graph
has the influencer compartment . An example of this case is
in Section VI-D.

B. Transition Rate Graphs
To make the subsequent developments systematic, we pro-

pose to use transition rate graphs defined as follows. A nodal
transition rate graph is graph with nodes, where each node
represents a compartment. A directed link from to
represents the nodal transition weighted by the posi-
tive transition rate . Corresponding to the nodal tran-
sition rate graph, the adjacency matrices of the nodal transition
rates is

(9)

An edge-based transition rate graph, corresponding to the
network layer , is a graph with nodes where each node
represents a compartment. A directed link from to
represents the edge-based transition weighted by

the positive transition rate in network layer with
influencer compartment . Corresponding to the edge-based

Fig. 4. Transition rate graphs in the SIS model. (a) Nodal transition rate graph.
Nodes represent the two compartments “susceptible” and “infected.” Directed
link from to represents curing process (a nodal transition) weighted by the
curing rate . (b) Edge-based transition graph of the contact network layer
. Directed link from to represents the infection process (edge-based tran-

sition) weighted by the infection rate . For the contact network, the influ-
encer compartment is , i.e., “infected.”

Fig. 5. Transition rate graphs in the SAIS model. (a) Nodal transition rate
graph. Nodes represent the three compartments “susceptible,” “infected,” and
“alert.” Directed link from to represents curing process (a nodal transition)
weighted by the curing rate . (b) Edge-based transition graph of the con-
tact network layer . Directed link from to represents the infection process
(edge-based transition) weighted by the infection rate . Directed link from
to represents the alerting process (edge-based transition) weighted by the

alerting rate . Directed link from to represents the alerted infection
process (edge-based transition) weighted by the alerted infection rate .
For the contact network, the influencer compartment is , i.e., “infected.”

transition rate graph, the adjacency matrices of the edge-based
transition rates are

(10)

For example, in both the SIS and SAIS models described in
Sections II-A and II-B, only the curing process is a nodal tran-
sition. The nodal transition rate graphs for the SIS and SAIS
models are shown in Figs. 4 and 5, respectively. The schematic
of the nodal transition rate graph in general is drawn in the
left-hand side of Fig. 6. In both the SIS and SAIS models, the
contact network is the only network layer. Therefore, they have
one edge-based transition rate graph. The edge-based transition
rate graphs for the SIS and SAIS models are shown in Figs. 4
and 5, respectively. The schematic of the transition rate graphs
in general is drawn in the right-hand side of Fig. 6.
In Section V [see (26)], the Laplacian matrices (see [30]) as-

sociated to the transition rate graphs appears in the expression
of GEMS.

C. Agent-Level Markov Description of the Spreading Process
In Section IV-A, we developed the expressions for the nodal

transition and edge-based transitions. Substituting (7) and (8)
into (6) yields

(11)
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Fig. 6. Transition rate graphs in GEMF. (a) Nodal transition rate graph. Nodes
represent compartments. Directed link represents nodal transition
weighted by the transition rate . (b) Edge-based transition graph

of network layer . Directed link represents the edge-based transition
weighted by the transition rate in network layer . The

inducer compartment of layer is .

for and , where

(12)

is the number of neighbors of agent in that are in the corre-
sponding influencer compartment .
Equation (11) provides an agent-level description of the

Markov process. It can be used directly for Monte Carlo nu-
merical simulation of the spreading process.

V. GENERALIZED EPIDEMIC MEAN-FIELD MODEL

The objective of this section is to derive the time evolution of
the state occupancy probabilities.

A. Exact Markov Differential Equation

In Section IV, the spreading model was described, and the
corresponding Markov process was derived in (11). The evo-
lution of the state occupancy probabilities associated with a
Markov process follows a set of differential equations known
as the Kolmogorov differential equations. The derivation of the
Kolmogorov differential equation of a Markov process is fairly
standard (see [16] and [31]) when the transition rates between
the states of the Markov process are known. However, the chal-
lenge here is that the network states are the actualMarkov states,
and instead of the transition rates between the network states,
we have the agent-level description of the transitions in (11).
Thus, in this section, we derive the differential equations di-
rectly from (11).
According to (11), the probability of remaining in the pre-

vious state is

(13)

Combining (2), (11), and (13) leads to

...

...

(14)

where , and
is a function of higher-order terms of satisfying the condition

(15)

where is the all ones vector with appropriate dimensions.
Next, we define the generalized transition matrices

and with the elements

(16)

According to definitions (16), the matrices and are ac-
tually the Laplacian matrices of transition rate graphs defined in
Section IV-B.
Using (14) and the definition (16), is

(17)

where is defined in (12). Computing the expected value
of each side of (17), we get

(18)

where and we have used the formula for
iterative expectation (see [32]) rule to
find . Moving the term in (18) to the left
side and dividing both sides by yields

(19)

Letting in (19), we obtain

(20)
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Furthermore, according to (12), the term in
(20) can be written as

(21)

The term in (21) is actually embedded in
. Therefore, the evolution of depends

on the term, which is the joint state of pairs
of nodes. This means that the marginal information about the
compartmental occupancy probabilities is not enough to fully
describe the time evolutions of the marginal probabilities. If
we continue to derive the evolution law for , it
turns out that the time derivative of depends
on terms of the form , which are the
joint states of triplets. This dependency of the evolution of ex-
pectation of -node groups upon expectation of -node
groups continues until reaches . As a result, any
system describing the evolution of the expected value of the
joint state of any group of nodes is not a closed system.
When , the expectation of the joint state of all nodes

, which according to definition (3)
is actually the expectation of the network state, satisfies a
differential equation of the form

(22)

where is the infinitesimal generator (see [16]
and [31]) of the underlying Markov process. The Kolmogorov
differential equation (22), which we refer to as the exactMarkov
model, is derived explicitly in the Appendix.
The exact Markov equation (22) fully describes the system.

However, the above differential equation has states. There-
fore, for large values of , it is neither analytically nor computa-
tionally tractable. Section V-B shows that through a mean-field
type approximation, a differential equation with states can
be derived.

B. GEMF

One way to reduce the state-space size is to use closure
approximation techniques. As explained in Section V-A, expec-
tations of order depend on expectation of order . The
goal of closure techniques is to approximate the expectations
of order and express them in terms of expectations of
order less than or equal to . In this way, a new set of differen-
tial equations is obtained that is closed and has the state-space
size , which is polynomially growing by . The sim-
plest approximation is the mean-field type approximation [33].
In first-order mean-field models [12], the states of nodes are as-
sumed to be independent random variables. It is also possible
to consider higher-order mean-field approximations. Cator and
Van Mieghem [34] used a second-order mean-field approxima-
tion and found more accurate performance of the model. An-
other approach is called the moment closure technique, where
the joint states of triplets are assumed to have a specific distri-
bution (usually normal or lognormal) [11], [33]. In this way, the
joint expectation of triplets is expressed in terms of expectations
of pairs. Taylor et al. [33] have compared the performances of
different approximations.

In this paper, we use a first-order mean-field type approxima-
tion. Using this approximation, the joint expected values are ap-
proximated in terms of marginal expected values. Specifically,
the term in (21) is approximated by

(23)

This approximation assumes independence among the random
variables. Using the approximation (23), we can describe the
time evolution of the expected values through a set of ordinary
differential equations with states.
We can denote by , the expected value of at time ,

i.e.,

(24)

Substituting in (20),
from (21), (23), and (24), yields

(25)

Arranging the terms in (25) specifies our generalized epidemic
mean-field model GEMF

(26)

Having initially , the sum of the probabilities
is guaranteed to be 1 at any time. The reason is that, from (26),

does not change over time because

(27)

The last conclusion is for the fact that and ,
since indeed and are the graph Laplacians for which
is the eigenvector corresponding to a zero eigenvalue.
GEMF has a systematic procedure to develop different

spreading mean-field models. For any specific scenario, the
compartment set, the network layers, and their corresponding
influencer compartments should be identified, and the transi-
tion rate graphs should be drawn. Next, the individual-based
mean-field model of the spreading scenario is found by plug-
ging the matrices and , obtained from the transition rate
graphs, into GEMF (26).

C. Capabilities and Limitations of GEMF
GEMF can be used to describe a wide range of spreading

scenarios in a systematic way. In part, this is because in GEMF,
there is no approximation of the underlying networks. The
only approximation belongs to the mean-field-type approxima-
tion (23), and howmuch this results in deviation from exactness
is outside the scope of this paper. However, the available studies
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for the mean-field SIS model (see [35] and [36]) can shed some
light on this problem. Concerning the SIS model, extensive
numerical simulations have shown that for sparser graphs, the
mean-field model is less accurate, while for graphs with more
mixing, the mean-field model is closer to the exact process. For
a homogeneous mixing contact network, it has been proved that
the mean-field model is asymptotically exact, i.e., as .
Furthermore, the accuracy of the mean-field model very much
depends on the range of the epidemic parameters. For example,
in the SIS spreading process, the mean-field model is accurate
for large values of the infection rate for any graph, while for
infection rates close to the epidemic threshold, there is consid-
erable difference between the response of the mean-field model
and the exact model. Additionally, studies have shown that
mean-field SIS models fail to explain the existence of a stable,
disease-free, absorbing state [37].
If the initial states are seeded according to an uncorrected

distribution, i.e., at the initial time (23) is actually exact, then
the mean-field model performs fairly accurately during the early
stages of system response. The reason for this is that nodes are
poorly correlated at the early stage but become more and more
correlated as time goes on. Consequently, accuracy of the tran-
sient response of mean-field models has been reported in [38]
for the SIS spreading process. The steady-state solution of the
mean-field models is also important. For example, the steady-
state solution of SIS model belongs to the metastable state in
the SIS epidemic process [12]. If accuracy is of greater con-
cern, then higher-order closure techniques can be used. How-
ever, this will result in a much larger state-space size. Alterna-
tively, GEMF has the smallest state-space size to describe the
spreading process of the type considered in this paper. Any fur-
ther reduction of the state space essentially implies adopting ap-
proximation of the network structure.
One of the great benefits of the GEMF model is its analyt-

ical tractability. The SIS mean-field model suggests that the epi-
demic threshold is the inverse of the spectral radius of the con-
tact network [12]. Finding relationships between spectral prop-
erties of underlying network layers and the spreading process
is a problem of great interest. In particular, optimal design of
some network layers given other network layers is very im-
portant from a technological viewpoint. For example, Sahneh
and Scoglio [39] used a mean-field SAIS model to find optimal
topology of the information dissemination network given a con-
tact network to reduce the impact of an epidemic.

VI. CASE STUDIES

In this section, we show that GEMF can reproduce the N-In-
tertwined SIS model [12] and the SIR model [14]. Furthermore,
the section develops an SAIS model with information dissem-
ination and a model for a scenario where two pathogens are
spreading in a host population.

A. SIS N-Intertwined Model

The SISmodel, explained in Section II-A, has number
of compartments. The epidemic parameters are the infection rate
and the curing rate . In this model, the interaction is only

through the contact graph, where “infected” is the influencer
compartment. Hence, and . The transition rate
graphs for the SIS model are shown in Fig. 4. The adjacency

matrices corresponding to the nodal and edge-based transition
rate graphs follow from Fig. 4

(28)

Therefore, GEMF (26) suggests the following set of differen-
tial equations:

(29)

for the evolution of the compartment probability vectors, where
the and matrices, corresponding to and , respec-
tively, are

(30)

We can denote the probabilities of being susceptible by
and being infected by , i.e., . Therefore, the
evolution of these probabilities according to GEMF is described
as

(31)

Since , the differential equation

(32)

is obtained for and , which is exactly the SIS
N-Intertwined model in [12].

B. SIR N-Intertwined Model
Youssef and Scoglio [14] developed the SIR N-Intertwined

model where each agent can be either “susceptible,” “infected,”
or “recovered.” Therefore, the number of compartments in this
model is . In this model, a susceptible agent can become
infected if it is surrounded by infected agents, and the infection
process is characterized by the infection rate . Furthermore, an
“infected” agent becomes “recovered” with rate . Unlike the
SIS model, a recovered agent does not become infected again
in the SIR model. Similar to SIS, there is only graph
layer and . The transition rate graphs, shown in Fig. 7,
illustrate that

(33)

Therefore, GEMF (26) suggests the following set of differen-
tial equations:

(34)
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Fig. 7. Transition rate graphs in the SIR model. (a) Nodal transition rate graph.
Nodes represent the three compartments “susceptible,” infected,” and “recov-
ered.” Directed link from to represents curing process (a nodal transition)
weighted by the curing rate . (b) Edge-based transition graph of the con-
tact network layer . Directed link from to represents the infection process
(edge-based transition) weighted by the infection rate . For the contact
network, the influencer compartment is , i.e., “infected.”

for the evolution of the compartment probability vectors, where
the matrices are

(35)

based on (33).
We can denote the probabilities of being susceptible, in-

fected, and recovered by , and , respectively; i.e.,
. The evolution of these probabilities are then

described as

(36)

Since , the differential equation

(37)

is obtained for and , which is exactly the SIRN-Intertwined
model in [14].

C. SAIS Model With Information Dissemination

Consider the SAIS model in Section II-C, and assume that
a susceptible agent becomes alert not only if there are infected
individuals in its neighborhood, but also if there are alert indi-
viduals in the neighborhood. Also, assume that the latter hap-
pens with rate . Moreover, assume that alert agents can go
back to susceptible state with an unalerting rate . The inter-
action is through the contact network , infection information

Fig. 8. Transition rate graphs in the SAIS model. (a) Nodal transition rate
graph. Nodes represent the three compartments “susceptible,” “infected,” and
“alert.” Directed link from to represents curing process weighted by the
curing rate . Directed link from to represents the unalerting process
weighted by the unalerting rate . (b) Edge-based transition graph of the
contact network layer . Directed link from to represents the infection
process (edge-based transition) weighted by the infection rate . Directed
link from to represents the alerted infection process (edge-based transition)
weighted by the alerted infection rate . For the contact network, the
influencer compartment is , i.e., “infected.” (c) Edge-based transition
graph of the infection information dissemination network layer ; directed
link from to represents the alerting process weighted by the alerting rate

, For the infection information dissemination network, the influencer
compartment is , i.e., “infected.” (d) Edge-based transition graph of the
alert information dissemination network layer ; directed link from to
represents the alerting process weighted by the alerting rate , For the

alert information dissemination network, the influencer compartment is ,
i.e., “alert.”

dissemination network , and the alert information dissemi-
nation network . For both the contact network and the in-
fection information dissemination network, “alert” is the influ-
encer compartment. For the alert information dissemination net-
work, “alert” is the influencer compartment. Hence, and

.
From Fig. 8

(38)

Therefore, GEMF (26) suggests the following set of differen-
tial equations:

(39)
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for the evolution of the compartment probability vectors, where
the matrices are

(40)

according to (38).
Sahneh and Scoglio [39] used a model very similar to (39),

where there are only two layers of graphs—namely, the con-
tact network and the infection information dissemination net-
work—to assess the effectiveness of the information networks
in reducing the impact of an epidemic. A novel information dis-
semination metric is introduced that measures the impact of in-
formation network on improving the resilience of the system
against epidemic spreading. The developed information dissem-
ination metric leads to an analytical solution for the optimal
topology of the information network to minimize the impact of
an epidemic.

D. Multiple Interacting Pathogen Spreading

The problem of multiple pathogen spreading has recently at-
tracted substantial attention (see, e.g., [40]–[43]). Most models
consider a full-cross immunity between pathogens, i.e., a node
infected by one type of pathogen cannot be infected with any
other type of pathogen at the same time. Beutel et al. [42] con-
sidered the case where the pathogens also have an interacting
effect on each other and spread on the same contact network. In
the model introduced by Marceau et al. [43], pathogens do not
interact, but each pathogen has a separate contact network. In
the following, we apply GEMF to develop an individual-based
bi-spreading SIS model for epidemic spreading of multiple in-
teracting pathogens, very similar to [42], where each pathogen,
as in [43], has a different contact network.
Consider a spreading scenario where two pathogens and
are spreading among a host population. The contact network

for virus is , while spreads through . The transition
rates for the pathogens depend on each other. For example,
the infection process of a susceptible agent by pathogen has
different infection rate if it is already infected by versus
being susceptible to . In general, we assume the transition
rates are . . For example,
if an agent is infected by but is not infected by , then it
recovers by rate . On the other hand, if it is also infected by
, disease gets cured by rate . Similar arguments apply

for other rate terms.
For this spreading scenario, compartments can be

defined to model the problem. Agent is in compartment 1 if it
is susceptible to both and . It is 2 if it is susceptible to
but infected by . It is 3 if infected by and susceptible to .
Finally, it is 4 if it is infected by both and . The nodal and
edge-based transitions are shown in Fig. 9.

Fig. 9. Transition rate graphs in the bi-spreading SIS model. (a) Nodal tran-
sition rate graph. Nodes represent the four compartments “ ,” “ ,”
“ ,” and “ .” Directed links from to and from to

represent curing process for virus weighed with curing rates and
, respectively, and the directed links from to and from

to represents curing process for virus weighted by the curing rates
and , respectively. (b) Edge-based transition graph of the contact network
layer for virus . Directed link from to and from to

represents infection process for virus weighed with infection rates
and , respectively. For the contact network , the influencer compartment
is , i.e., and . (c) Edge-based transition graph of the con-
tact network layer for virus . Directed link from to and from

to represents infection process for virus weighed with infection
rates and , respectively. For the contact network , the influencer
compartment is , i.e., and .

It follows from Fig. 9

(41)

Therefore, GEMF (26) suggests the following set of differential
equations:

(42)

for the evolution of the compartment probability vectors

(43)

VII. CONCLUSION

Inspired by existing individual-based epidemic models, we
propose the generalized epidemic mean-field model. While
using the same common assumptions of most of the existing
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individual-based epidemic models, GEMF is capable of mod-
eling more complex scenarios with multiple compartment
and multiple network layers. The set of differential equations
that fully describes the time evolution of the compartment
occupancy probabilities has equations. Even though the
system is linear, it is both computationally and analytically
intractable, managed through a mean-field type approximation
by a set of nonlinear differential equations. The latter
system, referred to as GEMF, has a simple structure. It is
characterized by the Laplacian of the transition rate graphs and
the elements of the adjacency matrices of the network layers.
A systematic procedure for developing the model is proposed
that culminates in the GEMF governing equations (26). The
GEMF model is rigorous, allows analytical tractability, and
is simple to apply to many specific spreading processes, as
shown in the several examples presented in this paper. We
believe that the GEMF framework has the potential to allow
the development of many different and novel individual-based
epidemic models considering new compartments and multiple
complex interaction structures.

APPENDIX
DERIVATION OF EXACT MARKOV EQUATION

In this section, we explicitly derive the expression for in
(22). The idea is to derive the expression for as a
function of . For this, first we find the expression for the
conditional expectation . Then, the expres-
sion for is found by averaging out the conditional.
For small values of , we can assume that only one transition
happens at each time-step, i.e., starting at network state at time
, the network state can only go to a new state at time for
which only the state of a single node has been changed. Given
the network state , state of each agent
can be determined, and we have

(A.1)

Since only at most one single node can make a transition, the
conditional expected value of the network state at time is

(A.2)

where from (17), the expression for
is

(A.3)

Averaging all of the possible network states yields the ex-
pected value of the network state at time

(A.4)

Substituting for from (A.3),
is deduced to be

(A.5)

where

and is such that its th column is

(A.6)

By letting in (A.5), the time evolution of can
be fully described by

(A.7)

where is defined as

(A.8)

The differential equation (A.7) is the exact Markov equation.
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