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Abstract—Due to their importance to society, communication
networks should be built and operated to withstand failures.
However, cost considerations make network providers less in-
clined to take robustness measures against failures that are un-
likely to manifest, like several failures coinciding simultaneously
in different geographic regions of their network.

Considering networks embedded in a two-dimensional plane,
we study the problem of finding a critical region - a part of
the network that can be enclosed by a given elementary figure
of predetermined size - whose destruction would lead to the
highest network disruption. We determine that only a polynomial,
in the input, number of non-trivial positions for such a figure
need to be considered and propose a corresponding polynomial-
time algorithm. In addition, we consider region-aware network
augmentation to decrease the impact of a regional failure. We
subsequently address the region-disjoint paths problem, which
asks for two paths with minimum total weight between a source
(s) and a destination (d) that cannot both be cut by a single
regional failure of diameter D (unless that failure includes s or
d). We prove that deciding whether region-disjoint paths exist is
NP-hard and propose a heuristic region-disjoint paths algorithm.

Index Terms—Survivability, Geographical failures, Critical
regions, Region-disjoint paths, Network augmentation.

I. INTRODUCTION

L INK AND NODE FAILURES in vital infrastructures,
such as the Internet, power grids or mobile networks may

be caused unintentionally, for instance due to (aged) equipment
failure, power failure, natural disasters, or intentionally, for ex-
ample by terrorist attacks or cyber criminals [1]. The category
of multiple network failures at several geographic locations
occurring in a short time interval is less likely to take place.

Increasing the robustness of a network usually requires
installing redundant resources or over-provisioning, which is
very costly. Thus, in general, network providers are only
inclined to take preventive robustness measures for events
that have a realistic chance of occurring, such as a single,
rather than multiple, regional failure. If a network is robust,
in terms of connectivity, survivability algorithms are needed
to exploit this robustness by quickly rerouting traffic affected
by a network failure. The single link- or node-failure scenario
has been most studied or assumed by the research community
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and various link- or node-disjoint paths algorithms have been
devised to find two disjoint paths, where one backup path
takes over when the other primary path fails (e.g., see [2],
[3]). Currently, the fast reroute mechanism, specified in [4]
and extended in [5], aims to improve the performance of
standard network protocols such as OSPF by pre-determining
the alternative (backup) paths. Moreover, the mechanism has
already been implemented by several vendors, which shows
the need for efficient disjoint-paths algorithms. Typically,
attacks or natural disasters often affect a geographical area.
For instance, devastations from the 2012 catastrophic hurricane
“Sandy” in the US stretched from the East Coast to the Lake
Area [6]. Such failure areas cannot always be sufficiently accu-
rately approximated by circular shapes, as often considered in
papers on regional failures (e.g., [7]), and require considering
other two-dimensional figures, such as ellipses and various
polygons.
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Fig. 1: An example of two region-disjoint paths that cannot
both be cut by the failure of a single region with diameter D.
The problem holds for any figure with diameter D.

This paper considers the context of a single regional failure
by investigating two main problems. We start with the problem
of finding a critical region in the network identified by a
predetermined two-dimensional figure whose failure (of the
nodes inside that region) would be most disruptive to the
network. The second problem under consideration assumes
demands for protected connections arrive in an on-line fashion
and asks for two region-disjoint paths, between source s and
destination d, with a minimum total weight, such that each
intermediate node (between s and d) from the first path is on
a distance greater than the diameter of a given figure from
every intermediate node in the second path. In this case, no
single regional failure can destroy both paths unless that failure
affects s and d (Fig. 1).

Our main contributions can be summarized as follows:

• We prove that only a polynomial number of figure
positions (for ellipses and general polygons) need to be
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considered for finding a critical region and propose a
corresponding polynomial-time algorithm;

• We consider network augmentation for improving the
robustness against regional failures;

• We prove that the decision variant of the region-disjoint
paths problem is NP-hard and propose a polynomial-time
heuristic for the region-disjoint paths problem;

• We determine the impact of a critical region failure in
real-world networks for different figures of equal area
and evaluate our heuristic path selection algorithm.

This paper is structured as follows. An overview of related
work is given in Section II. Our formal model and problem
statement are defined in Section III. In Section IV we reduce
the, in principle, infinite size of the search space of possible
locations for the figures to a search space of polynomial size
and provide an accompanying algorithm for detecting critical
regions. Furthermore, we discuss network augmentation to
make the network more resilient against the failure of a
region. The NP-hardness of the region-disjoint paths problem
is proved and, subsequently, a heuristic is proposed in Sec-
tion V. Section VI identifies the critical regions and evaluates
the proposed algorithms in real-world networks. Concluding
remarks are given in Section VII.

II. RELATED WORK

The level to which connectivity can be maintained un-
der failures has typically been used as the main metric to
characterize network robustness (see [3] for an overview),
for instance by finding a given number of nodes/links that
reduce connectivity most [8]. Much work on the robustness
of a network against geographical failures has been done by
Neumayer et al. [7], [9], [10] for a different failure model
than the one presented in this paper and only for circular and
line failures. While most papers confine to the circular failure
model, in this paper we consider ellipses and general polygons
that allow to better capture reality.

Previous work, e.g. on critical regions and region-disjoint
max-flow problems [7], [10], often assumes that the failure of a
region affects all nodes and links, even those links that are only
traversing and have no terminating nodes in that region. While
this may correspond to a realistic scenario in the case of an
earthquake, it may be too restrictive for countries not on a fault
line or for other scenarios, e.g. for wireless, sensor or radio
networks, floods, etc. In the model considered in this paper,
we consider that the failure of a region disrupts all nodes and
their attached links inside that region, but not any traversing
links. For a different problem, the same failure model has
been used in [11]. Agarwal et al. [12], [13] propose exact
and approximation algorithms for a probabilistic geographical
failure model that affects a “network component” (e.g., a node,
link or lightpath), inversely-proportional to the distance from
a point in the network. They also give an overview of the
related computational geometry literature. Contrary to their
model, in our model the shape and size of the failure figure are
predefined. Moreover, not only the failure figure center matters
in our model, but also how the predefined figure is positioned
(rotated) along that center. Banerjee et al. [14] have taken a

different application domain, namely that of distributed file
storage in a network, in which data resiliency is provided to
regional failures.

The problem of finding link- or node-disjoint paths in a
network between two nodes has been widely explored under
different scenarios, e.g. see [2], [3], [15]–[20]. Suurballe [15]
proposed a polynomial-time algorithm to find k node- or
link-disjoint paths with minimum total weight (i.e., the min-
sum objective). Subsequently, an optimized algorithm was
proposed by Suurballe and Tarjan [16] to find 2 link- or
node-disjoint paths from a source to all other nodes. Finding
disjoint paths for other objective functions has been studied
in [17], [21], [22]. Contrary to the min-sum objective, these
objectives typically lead to NP-hard problems. Sen et al. [23]
have studied a related decision variant of the region-disjoint
paths problem. In this paper we study finding the optimal pair
of region-disjoint paths.

III. MODEL AND PROBLEM STATEMENT

We start with a presentation of our network model and the
problems considered.
Model: We represent a network as a weighted (directed or
undirected) graph G(N ,L) in a plane consisting of a set N
of N nodes and a set L of L links. Each node i ∈ N has
two-dimensional coordinates (xi, yi). The Euclidean distance
between two nodes u and v is denoted by d(u, v). The weight
of a link (i, j) ∈ L is denoted by w(i, j). The link weight in a
communication network may represent different properties, for
instance its capacity, delay, length, cost, or failure probability.

O(xj ,yj)

critical region

(0,0) x

y

Fig. 2: Critical region.

We define the critical region C(F , X) as the region covered
by the position of the figure F in the two-dimensional plane
for which the removal of all nodes in that area, and the
links incident to them, leads to a maximum deterioration in
a certain network metric X . The network metric X could for
instance represent the number of affected nodes, the average
shortest path length, the number of connected node pairs, or
some service function like packet loss or average delay. Fig. 2
presents an example of a network for which a critical region is
identified. There might be multiple critical regions that affect
the metric X to the same degree.

To characterize the position of a figure, we should determine
its center O(xj , yj) and orientation ϕ, which is the angle (0 ≤
ϕ ≤ 2π) between the x-axis and an axis of symmetry in the
figure as shown in Fig. 3.
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We will consider several figures as shown in Fig. 3,
namely the circle FC (O(xj , yj), r) with radius r, the ellipse
FE (O(xj , yj), ϕ, a, b) with semi-axes lengths a and b, the
rectangle FR (O(xj , yj), ϕ, a, b) with side lengths a and b,
and general polygons FP . In the remainder, we use the
term dimensions to refer to radii or sides. We also denote
by D the diameter of an arbitrary two-dimensional figure,
which is the maximum distance between two points within
the figure. In particular, the diameters of FC (O(xj , yj), r),
FE (O(xj , yj), ϕ, a, b), FR (O(xj , yj), ϕ, a, b) and FP are 2r,
2 max{a, b},

√
a2 + b2, and the largest diagonal, respectively.

For a given arbitrary two-dimensional shape, two sets of
nodes A and B are region disjoint if each node a ∈ A is
on a distance greater than the diameter of the figure from
every node in B. Two paths are region disjoint if the set of
intermediate nodes in the first path is region disjoint with the
set of intermediate nodes in the second path. In some cases, the
first hop from s may lie within the region of s, in which case
no region-disjoint paths could exist. In that case we consider
the region of s (and similarly d) and its incoming or outgoing
links as a single source node attached to those incoming and
outgoing links. We can now define our two main problems.
Critical region problem: For a given network G(N ,L)
embedded in a plane, find a critical region C(F , X) with
respect to network metric X and two-dimensional figure
Ffig (O(xj , yj), ϕ, dim), where dim is the vector of dimen-
sions that defines Ffig , fig ∈ {C, E ,S,P}.
Region-disjoint paths problem: Given a network G(N ,L)
with positive link weights and the diameter of an arbitrary
two-dimensional figure, find two region-disjoint paths from s
to d, with a minimum total weight as reflected by the sum of
the link weights in the two paths.

O(xj ,yj )
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Fig. 3: (a) circle FC (O(xj , yj), r); (b) el-
lipse FE (O(xj , yj), ϕ, a, b); and (c) rectangle
FR (O(xj , yj), ϕ, a, b).

IV. CRITICAL REGION DETECTION AND MITIGATION

We first demonstrate that finding critical regions of a given
two-dimensional figure is solvable in polynomial time for the
ellipse and any polygon.

A. Theoretical basis

In this section, we use three kinds of geometric transforma-
tions defined in Definition 1.

Definition 1: Translation of a figure is the motion in par-
allel to a given line (e.g., the x-axis in Fig. 4). Rotation of
a figure ([24]) along a given node assures that the distance

between a point on the perimeter of the figure and that node
remains the same (Fig. 4). Finally, we define sliding along
two nodes as moving the position of the figure such that these
two nodes still lie on the perimeter of the figure. The sliding
differs for different figures as visualized in Fig. 5.
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Fig. 4: Translation and Rotation, illustrated for the ellipse.
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Fig. 5: Sliding through A and B for: (a) an ellipse; (b) a
rectangle if A and B lie on perpendicular sides; (c) a rectangle
if A and B lie on parallel sides; and (d) a rectangle if A and
B lie on a same side.

Theorem 1: For any polygon or ellipse, if there exists a
two-dimensional figure that covers a set of nodes S, then that
same set S can also be covered by the same type of figure
that is characterized by and passes through 3 nodes.

Proof: We start from an arbitrary two-dimensional figure
F . We will consider four positions for this figure, denoted -
for ease of notation - by F (i), for i = 0, 1, 2, 3, with F (0) the
initial position of the figure in which it covers all the points
in S. If there is no node that lies on the perimeter of F (0),
then one can translate F (0) parallel to the x-axis until (at
least) one node A ∈ S hits the perimeter as exemplified in
Fig. 4. We denote the position of this figure by F (1), which
still contains all the nodes in S. If A is the only node in S on
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the perimeter of F (1), we rotate, either clock-wise or counter-
clock-wise until (at least) one node B ∈ S, different from A,
hits the perimeter as shown in Fig. 4. Denoting the position
of this figure by F (2), one can slide F (2) until at least one
more node C ∈ S lies on the perimeter. Sliding is illustrated
in Fig. 5 for an ellipse and a rectangle. The resulting position
F (3) contains all nodes in S and is characterized by 3 nodes.

For the following Theorem 2, we use the term “collinear”
and introduce the term “quasi collinear.” A set of nodes is
collinear if and only if a single line can pass through all those
nodes (Fig. 6c). Three nodes are quasi collinear if and only if
two nodes can lie on a same side and the third on a parallel
side (Fig. 6d) or the three nodes can lie on three different
parallel sides (Fig. 6e).

Theorem 2: The positions of ellipses and polygons can be
uniquely characterized by three nodes, unless the nodes are
collinear or quasi collinear for the polygon.

Proof: The proof relies on figure equations from analytic
geometry [24] and appropriate case analysis and can be
found in Appendix A. Crucial possibilities for a polygon are
visualized in Figs. 6a and 6b.
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2º

A(xA,yA)
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C(xC,yC)
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Fig. 6: (a) All three nodes belong to different sides of the
polygon; (b) Two nodes lie on the same side and one node
is on a different side; (c) two crucial positions for collinear
nodes, shown on a rectangle; (d) two crucial positions for a
rectangle for quasi-collinear nodes on 2 parallel sides, shown
on a rectangle and (e) crucial positions for a polygon for quasi-
collinear nodes on 3 parallel sides.

In Theorem 2 collinear or quasi-collinear nodes for poly-
gons were excluded. In our algorithm these exceptions will
however also be examined. If a figure covers some set of
collinear nodes and at least one node that is not collinear
to them, this case will be examined by a figure through the
non-collinear node and two other nodes. If there is a set of
collinear nodes (even with cardinality greater than 3) that
could be covered by some position, but no other non-collinear
node can form a figure with them, then it suffices to consider
two crucial positions: one of the two “end nodes” lies in a
corner of the figure and all the other nodes are positioned on
a single side (Fig. 6c). Similarly, for quasi-collinear nodes,

in both cases of two nodes on the same side or all three on
different sides, a constant number of crucial positions have to
be examined: those where an “end node” is in the corner of
a polygon (Figs. 6d and 6e). These cases are also considered
in our algorithm.

B. Polynomial-time algorithm for detecting critical regions

The algorithm, named FINDCRITICALREGION, is formal-
ized in Algorithm 1. Routine RELAXCRITICAL (Algorithm 2)
is used to calculate the change in network metric X and to
update the set of critical regions C.

Algorithm 1: FINDCRITICALREGION

input : the network G(N ,L), figure F , metric X
output: critical region(s) C, metric after a failure minVal

1 C ← ∅;
2 minVal←∞;
3 foreach node triple {A,B,C} ⊆ N do
4 if (F 6= ellipse and {A,B,C} are collinear/“quasi”

collinear) then
5 Q← positions for F such that one node of A, B

or C is in the corner;
6 else
7 Q← all positions for F through A, B and C;

8 foreach q ∈ Q do
9 G′ ← G(N ,L);

10 foreach N ∈ N do
11 if N ∈ q then G′ ← G′ −N ; ;

12 RELAXCRITICAL(G′, X, q,minVal, C);

13 foreach isolated node pair {A,B} ⊆ N do
14 G′ ← G′ −A; G′ ← G′ −B;
15 RELAXCRITICAL(G′, X, q,minVal, C);

16 foreach isolated node A ∈ N do
17 G′ ← G′ −A;
18 RELAXCRITICAL(G′, X, q,minVal, C);

Algorithm 2: RELAXCRITICAL

input : modified network G′, the network metric X ,
region considered q, current minimum minVal,
critical region(s) C.

output: current minimum minVal, critical region(s) C.

1 Y ← CALCULATEMETRIC(G′,X );
2 if Y < minVal then /* new critical region */

3 C ← q; minVal← Y ;

4 else if Y = minVal then /* another critical region */

5 C ← C ∪ q;

For an M -polygon, a polygon containing M sides, the
complexity of all the possibilities through 3 fixed nodes
together with finding the end-points requires O(M4) time.
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According to Theorem 2, at most three points are needed to
define a given figure and finding the centers and the orienta-
tions of an ellipse or examining all possibilities for the sides
(i.e., finding the corners of a general M -polygon) requires
time complexity of O(1) and O(M4), respectively (lines 4-7
in FINDCRITICALREGION). There are

(
N
3

)
triples of nodes

and for each triple one needs to consider all possible figures
through this triple (lines 3-12 in FINDCRITICALREGION). In
a case of a polygon, if a node triple is collinear or quasi
collinear, there are infinitely many positions. Fortunately, even
in those cases, the number of positions to be examined is
constant. If a certain node pair (or isolated node) cannot form
a figure with any of the other nodes, then the algorithm for crit-
ical region detection considers a figure arbitrarily positioned
through these nodes (lines 13-18 in FINDCRITICALREGION).

The worst-case time complexity of this part is O(N3) for an
ellipse and O(N3M4) for an M -polygon. Checking whether
some of the other nodes lie inside a positioned figure can be
done in at most O(N) time. The complexity of determining
the change in the value of a metric after the failure of a
considered region and the nodes inside is denoted by O(C).
The total complexity therefore accumulates to O(N4·C) for an
ellipse and O(N4M4 ·C) for an M -polygon in the worst case.
General two-dimensional figures can be approximated with
arbitrary accuracy by a polygon which is: (i) circumscribed
(upper bound) or (ii) inscribed (lower bound).

1) Improved algorithm for circular critical regions: For a
circle, there are

(
N
2

)
possible pairs that form at most two

circles. Consequently, an algorithm that considers all possible
circles and checks which nodes are inside to find the critical
region(s) will have a worst-case complexity of O(N3 · C).
A more efficient algorithm can be designed, when, instead
of fixing two nodes, we fix one node A to be the origin
in a 2D plane. A center of potential critical region through

.
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.
O (4)
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Fig. 7: (a) Definitions of left(B) and right(B) and (b)
examination of the potential critical regions.

A and another node will lie on the circumference of the
circle with center in A. There are at most 2 circles that pass
through both A and B. Their centers lie in the (possible)
intersection(s) of the circles with centers in A and B (in
Fig. 7a). Let us denote by left(B) and right(B) the central
angles between those centers and the positive x axes as shown
in Fig. 7a. Further, we sort all the angles in {left(B)|B ∈
N\{A}}∪{right(B)|B ∈ N\{A}}. Now, using those angles,
we iterate through this list, which physically means rotating

the centers of the potential critical regions (see Fig. 7b). Here,
the most important point is that, when moving from one
position to the other, exactly one node will leave or enter
the critical region. Therefore, all the nodes covered by the
circle in the previous iteration remain, except (i) a new node
associated to the new circle will enter the circle; or (ii) a node
associated to the circle in the previous iteration will leave the
circle. Node A can be chosen in N ways, while the sorting of
the geographically close v neighbors takes O(v log v) time,
and the angle calculation takes O(v) time, which gives a
time complexity of O(Nv log v). Iterating through each pair
of geographically close nodes (knowing which nodes are
covered), gives a time complexity of O(Nv · C). Hence, the
total time complexity is O(N · v log v + N · v · C). Because
O(v) ≤ O(N), we obtain (N2 logN + N2 · C) in the worst
case. When we update the nodes that belong to the critical
circle, we do not need to calculate the metric X from scratch
as only one node is going in or out from the considered
circle. Hence, dynamically computing X [25] would make the
algorithm even more efficient. We also remark that the “ideal
symmetry” of the circle is used, which is not applicable for
other figures.

C. Region-critical network augmentation

In order to make the network more robust, we can augment
the network by adding k links, preferably of minimum total
weight. Since augmenting a network to increase node- or
link-connectivity is NP-complete for weighted networks [26]
or even APX-hard [27] for certain metrics, our network
augmentation problem is also NP-complete for various metrics
X . By examining all possible combinations of k links, we
could choose the best combination of links to be added
or an Integer Linear Programming (ILP) formulation could
be used as exemplified in Appendix B. Depending on the
computational resources at hand, running-time or memory
constraints may still restrict the usability of the ILP. In those
cases a heuristic with tunable complexity is desirable, for
which we propose an efficient greedy augmentation technique.
Since a network provider may add links over time, we will
consider adding k links either one at a time, multiple at a
time, or all instantaneously. The set of eligible links to be
added could be reduced based on for instance cost or distance
constraints. Each time one or multiple links are added, all
possibilities (from the set of eligible links) are considered,
after which the best one (in terms of critical region reduction)
is chosen. We will demonstrate that a fast greedy approach
that, out of all the available links, only adds that one link
which realizes the greatest reduction in network degradation
after failure of the critical region, and when iterated k times,
is close to adding k links at once. There might be multiple
available links that equally reduce the network vulnerability,
in which case, if possible, we choose the link that does not
connect to any other critical region1. The complexity of the
greedy augmentation strategy is O(k · LḠ · C), where O(C)
is the time complexity of finding the network metric change

1In our simulations we take w(u, v) = d(u, v). If different weights are
used, one could break ties by choosing the link with lower weight.
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after a link addition and LḠ reflects the number of links in
the complement graph Ḡ of the original network. For multiple
links at a time, the complexity grows quickly.

Considering the number of connected pairs as our metric X ,
we demonstrate the link addition strategy in a simple network
in Fig. 8a for when only one link needs to be added. The
distances between nodes are d(1, 2) = d(2, 3) = d(3, 4) = 3
and the diameter of the failure D = 2. The network is
connected, therefore the initial number of connected pairs is
6. As there is no figure with diameter 2 that passes through
two nodes, we detect two critical regions, around nodes 2
and 3, whose single failure results in only one connected
pair. There are three possibilities for a link addition: (1, 3),
(2, 4) and (1,4). If we add a link between nodes 1 and 3 to
protect against the critical region around node 2, the number
of connected pairs would not be decreased as the failure of
the critical region around node 3 would lead to only nodes 1
and 2 to be connected, but the number of critical regions is
reduced. The same applies to adding the link (2, 4). If we add
the link (1, 4) that is not connected to any critical region then
we always have three connected pairs after any single critical
region failure as shown in Fig. 8b.

1

2 4

3

3 3 3

(a)

1

2 4

3

(b)

Fig. 8: Example of the network augmentation technique.

V. REGION-DISJOINT PATHS PROBLEM

We show that deciding whether region-disjoint paths exist
is NP-hard. Consequently, the region-disjoint paths problem
(defined in Section III) is hard (to approximate) as well2.

Subsequently, we propose a polynomial-time heuristic for
the optimal version of the problem.

A. Complexity of the problem

We provide a polynomial time reduction for the 3SAT
problem3, which is known to be NP-complete [28]. We use
a graph structure called lobe [29] to construct a graph from
a 3SAT problem and on which finding two region-disjoint
paths would provide a solution to that 3SAT problem. We will
assume undirected networks, although directed links could also
have been used.

Theorem 3: Establishing whether two region-disjoint paths
exist is NP-hard.

Proof: The proof can be found in Appendix C.

2The problem may be polynomially solvable for certain instances, e.g., if
all the nodes in the network are pairwise on a distance greater than D, which
could be checked in O(N2) time. In this case, a polynomial-time algorithm
for finding node-disjoint paths [2], [16] gives a solution.

33SAT is a formula satisfiability problem, with an input logical expression
C1 ∧C2 ∧ . . . Cm, where Ci are logical clauses of 3 variables (in auxiliary
or negated forms) connected by ∨, which asks whether it is possible to assign
boolean values to the variables so that the formula evaluates to TRUE.

B. Heuristic region-disjoint paths algorithm

Since the region-disjoint paths problem cannot be solved or
approximated in polynomial time, unless P=NP, we consider
a polynomial-time heuristic, named REGIONDISJOINTPATHS.

Algorithm 3: REGIONDISJOINTPATHS

input : Network G, diameter D, source s, destination d
output: Region-disjoint paths P1 and P2

1 Find node-disjoint paths P1 and P2 between s and d, if
exists; otherwise Exit; Find the set of critical pairs K;

2 Initialize the set of “unavailable” nodes Q ← ∅;
3 Divide all the nodes in the network (except s and d) into

two disjoint sets S1 and S2 in the following way:
i ∈ S1 if i is the closest to some node in P1 \ {s,d} or
i ∈ S2 if i is the closest to some node in P2 \ {s,d};

4 If the set K = ∅ then stop, region-disjoint paths are
found. Otherwise, find the node k ∈ (P1 ∪ P2) \ Q that
appears in most of the critical pairs in K (if many the
one with a minimum resulting total weight of P1 and
P2); if such k does not exist then stop, region-disjoint
paths are not found.

5 k ∈ Pj , where j ∈ {1, 2}. Find the shortest path Px
through nodes in Sj that both do not appear in Q and in
a pair in K, between the first predecessor a and the first
successor b of k in Pj that do not appear in Q and in a
pair in K; Q ← Q∪ {k};

6 If Px does not exist: Go to Line 4;
7 Update Pj such that it consists of: the existing part in Pj

from s to a, Px and the current part from b to d in Pj ;
8 Update K, S1 and S2 based on P1 and P2;

REGIONDISJOINTPATHS starts by finding two node-disjoint
paths P1 and P2 with minimum total weight, e.g. by using the
Suurballe-Tarjan algorithm [16], if possible, otherwise there
are no region-disjoint paths and the algorithm terminates. We
denote by critical pairs K the set of pairs of nodes, such that
one is in the path P1 and the other is in P2 on a distance not
greater than D. Then, the algorithm partitions the nodes in the
network into two sets S1 and S2. A node belongs to the set S1

if it is closest (in distance) to a node in P1 \ {s, d}, otherwise
the node belongs to S2, which means that these nodes are
closer to P2. We initialize a set of “unavailable” nodes to an
empty set (Q in Algorithm 3). The algorithm finds a node
k that appears in most of the pairs in K, but is not in the
set of “unavailable” nodes. Further, if k ∈ S1 (k ∈ S2), the
algorithm makes a local improvement by finding the shortest
path through the nodes in S1 (in S2) that do not appear in Q
and in a pair in K, between the first predecessor a of k in
P1 (in P2) and the first successor b of k in P1 (in P2) that
both do not appear in Q and in a pair in K. The updated path
P1 (or P2) comprises the current part from s to a, the newly
determined shortest path from a to b and the current part from
b to d. REGIONDISJOINTPATHS iterates by searching back
for a new k that appears in most of the pairs in K, but is not
in the “unavailable” nodes, and updates S1 and S2. If there
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are multiple nodes that appear in most of the pairs in K, it
chooses one such that the resulting total weight of P1 and P2

is minimal. The pseudo-code of REGIONDISJOINTPATHS is
given in Algorithm 3.

REGIONDISJOINTPATHS always terminates, since each
node can be picked for removal at most once. The complexity
of REGIONDISJOINTPATHS can be determined as follows.
Finding node-disjoint paths with a minimum total weight [16]
requires a complexity [30] of O(L + N log2N). The shortest
path in S1 or S2 (after a node k is picked) can be found in
O(L + N log2N). The updates of the sets K, S1 and S2 all
require a worst-case complexity of O(N2) as O(N) nodes
may change in one of the paths, whose distances to the nodes
in the second path have to be compared. The number of nodes
that appear in pairs in the set K is O(N), which reflects the
number of iterations. Consequently, the total worst-case time-
complexity of REGIONDISJOINTPATHS is O(N3).
Correctness proof for REGIONDISJOINTPATHS. Although the
two paths might not be optimal, if the algorithm manages to
find two paths then those paths are region-disjoint. Indeed,
critical pairs set K being empty ensures that all the interme-
diate nodes from different paths are on a distance greater than
D. If K 6= ∅ the algorithm either continues with its “main
iteration” or it outputs that region-disjoint paths are not found
(ensured by line 4 in REGIONDISJOINTPATHS). Although the
intermediate nodes of the two paths are on sufficient distance
from each other, their be close or cross in some parts. �

For comparison purposes, we also deploy a naive algorithm,
named DOUBLEDIJKSTRA that uses two iterations of the
Dijkstra shortest path algorithm [31]. The first iteration finds
the shortest path between s and d. Subsequently, all nodes
within a distance D from at least one node in the first
path different from s and d are removed. Finally, the second
path is found by running Dijkstra’s algorithm in the pruned
network. Since two Dijkstra algorithm iterations are used, the
complexity of DOUBLEDIJKSTRA is O(L+N log2N).

Since the region-disjoint paths problem is NP-hard, we
resort to an Integer Linear Program (ILP) to find the exact
solution. For each link (i, j) ∈ L, we define two variables
xij , yij ∈ {0, 1}. If a link (i, j) is on path P1 then xij = 1,
otherwise xij = 0 and if a link (i, j) is on path P2 then
yij = 1, otherwise yij = 0. The distances d(i, j) between the
nodes can be calculated beforehand in polynomial time. The
0-1 ILP formulation is as follows:

min
∑

(i,j)∈L
w(i, j) · (xij + yij)

s.t. (1)
∑
j∈N

(xij − xji) =

 1, if i ≡ s
−1, if i ≡ d
0, otherwise

(2)
∑
j∈N

(yij − yji) =

 1, if i ≡ s
−1, if i ≡ d
0, otherwise

(3) xij + ykl ≤ 1, if (d(i, k)≤ D, i /∈M, k /∈M) or
(d(i, l)≤ D, i /∈M, l /∈M) or
(d(j, k)≤ D, j /∈M, k /∈M) or
(d(j, l)≤ D, j /∈M, l /∈M), where M = {s, d}

(4) xsd + ysd ≤ 1
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Fig. 9: Italian backbone network: (a) node-disjoint and region-
disjoint paths; and (b) the critical regions (possibly multiple)
for the number of disconnected pairs - the area of each figure
(circle, ellipse, square, rectangle and triangle) is the same
16895 km2.
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Fig. 10: For 5 figures (circle, ellipse, square, rectangle and
triangle), the critical regions (possibly multiple) as a function
of the number of disconnected pairs. The area of each figure
per map is the same: (a) 300021 km2 and (b) 27907 km2.
The stretched ellipse (rectangle) has one semi-axis (side) nine
times longer than the other.
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(b) ITALY.
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(c) EUROPE.
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(d) ARPANET.
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(e) ITALY.
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Fig. 11: The number of disconnected pairs (a), (b), (c) and the average shortest path length (d), (e), (f), with r in km, for: circle
with radius r, ellipse with semi-axes a = 3r, b = r/3, square with sides a = r

√
π, rectangle with sides a = 3r

√
π, b = r

√
π/3

and equilateral triangle with sides a = 2r
√
π

4√3
. For the same r, the areas of the figures are equal in each network.

The objective function represents the total weight of the
region-disjoint paths. The equality conditions (1) and (2) are
“conservation rules” and ensure that for all the nodes (different
from s and d) in both P1 and P2, the number of incoming
and outgoing links is the same. For the source node s, there
is exactly one outgoing link for both P1 and P2, while for
the destination node d there is exactly one incoming link for
both P1 and P2. Condition (3) gives the region-disjointness
constraint, preserving two nodes different from s and d, one in
link (i, j) ∈ P1 and one in link (k, l) ∈ P2 to be on a distance
at most D. If there is a direct link from s to d, condition (4)
states that link will be used by at most one path. Condition
(4) is not a sub-case of (3).

C. An example of region-disjoint paths
In Fig. 9a, two region-disjoint paths between Turin and

Palermo are depicted for the Italian main backbone network.
The (undisplayed) weights in the network are the geographical
distances between the nodes. The two node-disjoint paths of
minimum total weight (which traverse through Turin-Rome-
Naples-Palermo and Turin-Cagliari-Palermo) are depicted in
solid lines. However, these paths cannot protect against a
failure of a circular region with diameter D = 6000. RE-
GIONDISJOINTPATHS returns region-disjoint paths such that
one of the paths is the same as in the initial node-disjoint paths,
but the other path differs (Turin-Bologna-Naples-Palermo,
shown with dashed lines). Moreover, the ILP confirms that this
solution is exact. DOUBLEDIJKSTRA could not find a solution.

VI. EVALUATION STUDY

In this section, we conduct simulations to study (i) how
certain metrics are affected after the failure of a critical region;
(ii) the effect of network augmentation and (iii) the accuracy
and running time of our REGIONDISJOINTPATHS algorithm.

A. Used data
In the evaluation, we use three real-world network data sets:

the infrastructure of the ARPANET network [32] (in Fig. 10a),
which is often used as a benchmark topology, the Italian main
backbone network (in Fig. 9b) and the main backbone fiber
connections in Europe [33] (in Fig. 10b). We refer to these
networks as: ARPANET, ITALY, and EUROPE, respectively.
Through longitude and latitude information, the geographical
distances between the nodes can be derived. The properties of
the used networks are given in Table I.

TABLE I: Real networks used in the evaluation.

Networks N L Description
ARPANET 20 32 first packet switching network [32]

ITALY 32 62 main fiber connections in Italy
EUROPE 108 151 main fiber connections in Europe [33]

B. Effect of critical regions
We consider five figures namely: the circle, stretched ellipse,

square, stretched rectangle and equilateral triangle and three
networks (see Table I), for which we detect critical regions.
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(a) ARPANET.
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(b) ITALY.
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(c) EUROPE.

Fig. 12: The number of disconnected pairs and the average shortest path length (inset) as a function of the distance variable r,
which reflects the diameter of failure D. Ten links were added to each of the modified networks. The number of disconnected
pairs in the original network is 0. To reflect a realistic scenario, only links between nodes that are on a distance no more than
half the maximum distance between two nodes are added.
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(a) ARPANET (r = 3672).
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(b) ITALY (r = 3152).
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(c) EUROPE (r = 10185).

Fig. 13: The number of disconnected pairs and the average shortest path length (inset) as a function of the number of added
links, with a fixed value of r representing the diameter of failure D. The number of disconnected pairs in the original network
is 0. All added links are constrained to be no longer than half the maximum distance between two nodes.

In ARPANET, the most critical square and circular regions
are those covering the west and east coast, while the most
critical stretched figures are located in central USA, because
the nodes centered there link the US coasts. In ITALY, the
most critical regions are positioned in the northern part of the
country; however, the stretched figures touch a part of central
Italy. For EUROPE, for a relatively small size of the figure,
the most critical regions are situated near London (Figs. 9b
and 10).

For the same networks, we have also examined the change
in two network metrics after the failure of a critical region,
namely: (1) the number of disconnected pairs4 and (2) the
average shortest path length for the five different figures. The
distance control variable (r) is used, such that for a given r the
areas of different figures are the same. Fig. 11 shows that for
both metrics the network is not affected equally for different
figures. Generally, for the number of disconnected pairs the
most critical region is more disruptive for the equilateral

4A related metric, called average two-terminal reliability A2TR has been
used in [7], which is a normalization of the number of connected pairs divided
by the maximum possible. Consequently, A2TR=1− number of disconnected pairs(

N
2

) .

triangle and the stretched ones (ellipse and rectangle) than
for the circle and the square (Figs. 11a, 11b and 11c).

In particular, for the average shortest path length in
ARPANET (Fig. 11d), where there are distant nodes and the
most dense areas in terms of nodes are not central, the most
critical region is more disruptive for the equilateral triangle
and the stretched figures (ellipse and rectangle), than for the
circle and the square. The same holds for the number of
disconnected pairs (Fig. 11a). Somewhat similar behavior is
noticed for ITALY (Fig. 11e). On the other hand, for the
average shortest path length in EUROPE (Fig. 11f), where
there is a very dense region (United Kingdom), apart from
the equilateral triangle, the square and the circle are more
disruptive than the stretched figures. When extremely large
regions are considered, the metric values for different figures
become more similar as most of the nodes in the networks are
affected in all cases.

C. Evaluation of region-critical network augmentation

We examine the effect of our network augmentation strategy
on the number of disconnected pairs (i.e., the number of
connected pairs of the original network minus the number
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(c) EUROPE.

Fig. 14: Success rates. All pairs of nodes are requests. Distance variable (r) reflects the failure diameter D.
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(b) ITALY.

0 0.5 1 1.5 2

x 10
4

0

5

10

15
x 10

5

 r

R
un

ni
ng

 ti
m

e 
(m

s)

 

 

ILP (exact)
RegionDisjointPaths
DoubleDijkstra

0 1 2

x 104

0

50

100

 r

R
un

ni
ng

 ti
m

e 
(m

s)

(c) EUROPE.

Fig. 15: Average running times of the algorithms over all pairs of nodes. Distance variable (r) reflects the failure diameter D.

of remaining connected pairs) and the average shortest path
length of the connected pairs. In Fig. 12, we present the
numbers of disconnected pairs (main plot) and the average
shortest path lengths (inset) for (i) the original network (the
solid, black, horizontal line), (ii) the original network after
a critical region failure and (iii) the modified network after
failure of a critical region as a function of the diameter of
that region. The network augmentation strategy has added ten
links, one at a time. In order to reflect realistic scenario, each
of the added links is constrained to be no longer than half of
the maximum distance between two nodes. The results show a
substantial reduction in the number of disconnected pairs and
in the average shortest path lengths, as a result of the network
augmentation. The curve for the number of disconnected pairs
of the modified network approaches that of the original for
high values of the diameter, because most of the nodes are
then affected, leaving no effective protection.

On the other hand, in Fig. 13, we examine the effect on
the number of disconnected pairs and the average shortest
path length as a function of the number of added links when
added one at a time or in multiples. Again, added links are
shorter than half of the maximum distance. For small networks
(ARPANET in Fig. 13a and ITALY in Fig. 13b), only few
links are required to reduce the number of disconnected pairs
and further link additions would not have an effect as the
remaining disconnected pairs are attributed to nodes residing
inside a critical region (which therefore cannot be protected

against the failure of that region). For EUROPE (in Fig. 13c),
more links are required to reduce the number of disconnected
pairs. In all three networks, the average shortest path lengths
are shortened as more links are added, where a few added
links already realize a significant reduction. Moreover, there
are small differences, in general k times adding 1 link is faster
and quite close in performance to adding k links at once.

D. Evaluation of region-disjoint paths algorithms

The accuracy of REGIONDISJOINTPATHS is evaluated by
a comparison with the exact ILP solution and the naive
DOUBLEDIJKSTRA algorithm. For each network, the requests
consist of all the possible pairs of distinct nodes. Fig. 14
depicts the comparison of the heuristic algorithms and the
exact ILP shown by the success rates5 of the heuristic al-
gorithms. The results vary for different values of the distance
variable r = D/2, where D is the diameter of the failure, but
the algorithm REGIONDISJOINTPATHS correctly finds region-
disjoint paths in a significant number of cases. On the other
hand, DOUBLEDIJKSTRA has a much worse performance,
because greedily removing a first shortest path may jeopardize
finding a second path.

The average running times of the three algorithms over all
possible requests (pairs of nodes) are shown in Fig. 15. The
algorithms have been implemented in the same programming

5We define success rate of an algorithm as the quotient:
number of successful requests of the algorithm
number of successful requests of the exact ILP .
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language, using the same libraries and the simulations have
been conducted on the same machine6. Fig. 15 shows that
solving the ILP requires significant running time, orders
of magnitude greater than for the REGIONDISJOINTPATHS
and DOUBLEDIJKSTRA algorithms, which is unfeasible when
paths need to be computed on the fly for dynamically arriving
requests. The running times of REGIONDISJOINTPATHS and
DOUBLEDIJKSTRA do not differ much, while the improved
accuracy of REGIONDISJOINTPATHS clearly outweighs the
slight increase in time over the DOUBLEDIJKSTRA algorithm.

VII. CONCLUSION

This paper has considered two problems in relation to the
geographical embedding of a network: finding critical network
regions as a function of general polygons or ellipses and
finding two region-disjoint paths with a minimum total weight
such that they cannot both be cut by a single regional failure
with a given diameter, unless that failure affects the source
or the destination. Region-disjoint paths are needed to quickly
reroute traffic when a regional failure occurs.

First, we have proved that the number of potential locations
of critical regions that need to be examined is polynomially
bounded by the number of nodes N . Subsequently, we have
proposed a polynomial-time algorithm for finding the critical
regions for a generic network metric. We have used our
algorithm to study the critical regions in three real-world
networks by finding the critical regions for a certain figure size.
The results show that the equilateral triangle and the stretched
figures might be more disruptive than the “centralized” ones
when the number of disconnected pairs is chosen as measure
for criticality. However, in networks with very dense regions,
the circular and the square figures are more disruptive than
the stretched figures when the average shortest path length is
considered. We have also considered a region-aware network
augmentation to increase the network robustness to regional
failures. By applying our augmentation strategy to three real
networks, adding only a few links may already induce signif-
icant robustness gains.

We have discussed the hardness of the region-disjoint paths
problem and subsequently proposed an efficient polynomial-
time heuristic. The comparison with an exact exponential-time
algorithm shows that our proposed algorithm correctly finds
region-disjoint paths in most of the cases, while being orders
of magnitude faster than the exact algorithm.
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APPENDIX

A. Proof of Theorem 2
Let us denote the three considered nodes by A (xA, yA),

B (xB , yB) and C (xC , yC).

6Intel(R) Core 2 Duo T9600 - 2 × 2.80GHz, 4GB RAM memory; using
JAVA libraries: JUNG (http://jung.sourceforge.net/) for network representa-
tions and algorithms and lpsolve (http://lpsolve.sourceforge.net/) for the ILP.

1) Ellipse FE . The equation of an ellipse with semi-axes
lengths a and b, center O(xj , yj), orientation ϕ is given by

(x cos(ϕ)− y sin(ϕ)− xj)
2

a2
+

(x sin(ϕ) + y cos(ϕ)− yj)
2

b2
= 1 (1)

Having three nodes A, B and C that fulfill equation (1) leads
to a system of 3 equations with three unknowns: xj , yj and
ϕ. Subtracting equations (1) for A, B & A, C and expanding
in terms of xj and yj results in

2b2((xA − xm) cos(ϕ)− (yA − ym) sin(ϕ))xj

+ 2a2((xA − xm) sin(ϕ) + (yA − ym) cos(ϕ))yj

= b2[((xA − xm) cos(ϕ)− (yA − ym) sin(ϕ))×
((xA + xm) cos(ϕ)− (yA + ym) cos(ϕ))]

+ a2[((xA − xm) sin(ϕ) + (yA − ym) cos(ϕ))×
((xA + xm) sin(ϕ) + (yA + ym) cos(ϕ))] (2)

where m ∈ {B,C}. (2) forms a system of two equations with
two unknowns, treating ϕ as a constant. Finding the solutions
(e.g., by calculating determinants), we obtain

xj =
M3(cos (ϕ) , sin (ϕ))

K2(cos (ϕ) , sin (ϕ))
, yj =

N3(cos (ϕ) , sin (ϕ))

K2(cos (ϕ) , sin (ϕ))
(3)

where K2(cos (ϕ) , sin (ϕ)), M3(cos (ϕ) , sin (ϕ)) and
N3(cos (ϕ) , sin (ϕ)) are homogeneous polynomials in cos(ϕ)
and sin(ϕ) of degree 2, 3 and 3, respectively. Using (3) in
(1), for instance for node C, results in an equation for ϕ.
After expanding, we end up with a homogeneous polynomial
in cos(ϕ) and sin(ϕ) of degree 6. The resulting equation
consists of terms sini (ϕ) cos6−i (ϕ) for i = 0, 1, . . . , 6.
We take all the terms with i even on one side and all
the terms with i odd on the other. For the even terms:
sin2l (ϕ) cos6−2l (ϕ) =

(
1−cos(2ϕ)

2

)l (
1+cos(2ϕ)

2

)3−l
for

l = 0, 1, 2, 3 and for the odd terms sin2l+1 (ϕ) cos5−2l (ϕ) =
sin(2ϕ)

2

(
1−cos(2ϕ)

2

)l (
1+cos(2ϕ)

2

)2−l
for l = 0, 1, 2. Finally,

squaring both sides and using sin2 (2ϕ) = 1 − cos2 (2ϕ)
results in an equation of degree 6, solely in cos (2ϕ). The
last can be solved numerically. Because of the squaring, we
need to check whether the solution satisfies (1). Finally, we
obtain the solution via equation (3).
2) General polygon FP . We have two possibilities as
visualized in Figs. 6a and 6b.

(a) All three nodes belong to different sides of the polygon
(Fig. 6a). We extend two of the sides, such that they intersect
the third side or its extension in points X and Y . Let us denote
the coefficient of one of the sides (through A) as k. Because,
we know the (pairwise) angles between those three sides, we
can express the coefficients of the other two sides (lines) as
functions of k, namely ki = k−tanαi

1+k tanαi
for i = 1, 2. Further,

we can express the coordinates of X(x1, y1) and Y (x2, y2) as
functions of k. Because X is in the intersection of the lines
through A and B: k(x1 − xA) + yA = k1(x1 − xB) + yB ,

from which we obtain: x1 =
xBk

2+(yB−yA)k+xB+
yB−yA
tanα1

1+k2 . A
similar expression could be found for x2. Because the M -
polygon is known, the distance |XY | is also known, hence
we have an equation in k: (x1 − x2)2 + (y1 − y2)2 = (1 +
k2)(x1 − x2)2 = |XY |2, from which we obtain an equation
of degree at most 4: [(xB − xC)k2 + (yB − yC)k + xB −
xC + yB−yA

tanα1
+ yC−yA

tanα2
]2 = (1 + k2)|XY |2. Simpler equations
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are obtained for specific figures (e.g., quadratic for rectangle
and equilateral triangle [34]). The last equation can be solved
exactly in constant time and at most 4 solutions are possible,
which reflect different possible positions of the M -polygon.
For each determined k, we can immediately find X and Y
and the end-points of the sides of the three nodes. Thus, we
can obtain all the nodes (i.e. the position) of the M -polygon
in O(M) time.

(b) Two nodes lie on the same side and one node is on
a different side (Fig. 6b). We can exactly determine the side
(line) through the nodes on the same side. The angle between
this side and the side of the third node is also known, thus
we can find the line through the third node as well. Finally,
the intersection point X of the two sides or their extensions
is exactly known, hence we can determine all the nodes (i.e.
the position) of the M -polygon in O(M) time.

In general, we again have finitely many possibilities for
fixed 3 nodes, namely:

(
M
3

)
in (a); and

(
M
2

)
in (b). We remark

that analytical expressions for large M or specific polygons
might be very complex.

B. ILP of the optimal addition of (at most) k new links
We formulate an ILP for optimizing on the shortest path

between two dedicated nodes s and d. We start with the
following optimization program:

min
{

max
F

[ ∑
(i,j)∈L

w(i, j)(1− zij(F))xij

+
∑

(i,j)∈N 2\L
w(i, j)(1− zij(F))yij

]}
s.t.

(1)
∑
j∈N

(xij + yij

−xji − yji)(1− zij(F)) =

 1, if i ≡ s
−1, if i ≡ d
0, otherwise

for each position of F
(2)

∑
(i,j)∈N 2\L

yij ≤ k

(3) xij + yij ≤ 1, ∀(i, j) ∈ N 2

where the variables are xij ∈ {0, 1}, ∀(i, j) ∈ L for the links
that are present in the network and yij ∈ {0, 1}, ∀(i, j) ∈ N 2\
L for the links that the network is augmented with, otherwise
xij = yij = 0. Variables zij(F) = 1, if i or j from N are
covered by the position F of the figure, otherwise zij(F) = 0.
In a similar way as for the Critical region problem, there are
polynomially many, at most O(N3), candidates for F , hence
zij(F) could be determined/pre-processed in polynomial time
before the execution of the optimization problem. Condition
(1) ensures the flow conservation constraints, being aware that
nodes and links might be cut by F . Condition (2) ensures that
at most k links will be added from N 2 \ L.

The objective function reflects the shortest path between s
and d in the augmented network. The optimization program is
not an ILP, so we introduce an additional variable q to replace
the part after min in the objective function, which leads to the
following new objective

min q

with additional constraints
(4)

∑
(i,j)∈L

w(i, j)(1− zij(F))xij

+
∑

(i,j)∈N 2\L
w(i, j)(1− zij(F))yij ≤ q

for each position of F
Similarly, one can formulate an ILP for other metrics, like the
average shortest path in the network, where we should have
variables xsdij (and ysdij), which are 1, if and only if link
(i, j) belongs to the shortest path between s and d.

C. Proof of Theorem 3
We start with the graph construction.

Graph Construction. For a given 3SAT instance, we create
a lobe for each variable xi. Denoting by pi the number of
occurrences of variable xi (in an auxiliary form xi or as a
negation x̄i), the lobe of xi contains (6pi + 2) nodes: xi,
xi+1, uij , v

i
j , w

i
j , ū

i
j , v̄

i
j , w̄

i
j , for each j = 1, 2, . . . , pi. We con-

struct the links:
(
xi, u

i
1

)
,
(
xi, ū

i
1

)
,
(
vipi , xi+1

)
,
(
v̄ipi , xi+1

)
;

(uij , v
i
j), (vij , w

i
j), (wij , u

i
j+1), (ūij , v̄

i
j), (v̄ij , w̄

i
j), (w̄ij , ū

i
j+1)

for each j = 1, 2, . . . , pi. In Fig. 16, the lobe of variable xi is
depicted, which contains two parallel disjoint branches.
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Fig. 16: Lobe of xi.

All n lobes are connected in series (the i-th lobe is
connected to the (i+ 1)-th lobe), starting from x1 to xn.
Further, for each clause i of the 3SAT instance, we construct
two nodes yi and zi. A link (zi, yi+1) is established for
each i = 1, 2, . . . ,m − 1. Additionally, links (s, y1), (s, xn),
(zm, d) and (xn+1, d) are added. To relate the clauses with
the variables, we have the following: (i) if the k-th occurrence
of variable xi exists without negation in clause Cj , then links(
yj , u

i
k

)
and

(
vik, zj

)
are added; or (ii) if the k-th occurrence

of variable xi exists with a negation (x̄i) in clause Cj , then
links

(
yj , ū

i
k

)
and

(
v̄ik, zj

)
are added. The final graph is shown

in Fig. 17.
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2
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3x nx. . .

. . .

1 2 n

n1 2

U U U

DDD
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I1 I I2 n

. . . . . . . . .x1 dn+1xs

Fig. 17: Constructed graph.

The position of all the nodes in the Euclidean plane is
defined in the following way: (i) We set the nodes uij , v

i
j
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from the upper part of each lobe xi such that they are all
on a distance not greater than D from each other and they are
all on a distance greater than D from all the other nodes in
the constructed graph. We denote the union of these nodes

by Ui =
pi⋃
j=1

uij ∪
pi⋃
j=1

vij ; (ii) For the lower part of each

lobe xi, we set the nodes ūij , v̄
i
j , such that they are all on

a distance not greater than D from each other and they are
all on a distance greater than D from all the other nodes in
the constructed graph. We denote the union of these nodes

by Di =
pi⋃
j=1

ūij ∪
pi⋃
j=1

v̄ij ; (iii) Similarly, for a given i, we

position nodes xi, wij , w̄
i
j , such that they are all on a distance

not greater than D from each other and they are all on
a distance greater than D from all the other nodes in the
constructed graph. We denote the union of these nodes by

Ii = xi ∪
pi⋃
j=1

wij ∪
pi⋃
j=1

w̄ij ; (iv) Finally, all the nodes yi and

zi, i = 1, 2, . . . ,m are on a distance not greater than D from
each other and they are all on a distance greater than D from
all the other nodes in the constructed graph. We denote these

nodes by R =
m⋃
i=1

yi ∪
m⋃
i=1

zi. All the sets R,Ui,Di, Ii for

i = 1, 2, . . . , n are pair-wise region disjoint. The construction
of the graph can be done in polynomial time.

An example of the aforementioned construction of the
graph, for a 3SAT instance is given in Fig. 18. We will

1y
1z

lobe of x1 lobe of x2 lobe of x4

2y
2z

2x 3x

3y
4y

3z 4z

lobe of x3

s
x1

x4 d
x5

Fig. 18: Constructed graph that corresponds to (x1∨x2∨x3)∧
(x1 ∨ x̄3 ∨ x̄4) ∧ (x̄2 ∨ x̄3 ∨ x4) ∧ (x2 ∨ x3 ∨ x̄4).

demonstrate that we could solve any instance of the 3SAT
problem by solving the region-disjoint paths problem on a
graph obtained via the polynomial-time transformation of the
3SAT instance explained before.
3SAT to Region-disjoint paths. Let us assume there is an
assignment τ , such that all m clauses are satisfied. For each
clause Cj : (i) there exists a variable xi (in non-negated form)
such that τ(xi) = TRUE in which case we use links

(
yj , u

i
k

)
,(

uik, v
i
k

)
,
(
vik, zj

)
or (ii) there exists a variable x̄i in Cj , such

that τ(xi) = FALSE in which case we use links
(
yj , ū

i
k

)
,(

ūik, v̄
i
k

)
,
(
v̄ik, zj

)
for j = 1, 2, . . . ,m − 1. Together with

links (s, y1), (zm, d), (zj , yj+1) (j = 1, 2, . . . ,m − 1) they
form a path P1. In addition, there is another path P2 that
traverses through the lower part of xi’s lobe (Di) if τ(xi) =
TRUE or the upper part (Ui) if τ(xi) = FALSE, for each
i = 1, 2, . . . ,m. In this way, we have one path (P1) that passes
through R and parts of the lobes, but not through the lobes
parts in Ii and one path that traverses only through the other
branches of each lobe and all Ii. The paths are region-disjoint.
Region-disjoint paths to 3SAT. Let us assume there are two
region-disjoint paths P1 and P2. Both P1 and P2 cannot both
contain links that pass through R and

{(vij , wi
j), (w

i
j , u

i
j+1), (v̄ij , w̄

i
j), (w̄

i
j , ū

i
j+1)|j = 1, 2, . . . ,m− 1}

for each i = 1, 2, . . . , n, otherwise they would both pass
through Ii for some i. Hence, one path (P1 or P2) should only
contain links (uij , v

i
j) and (ūij , v̄

i
j) from the lobes and exactly

one should pass through (zi, yi+1) (because of the region R).
If there are two region-disjoint paths, one (e.g., P2) would
go to x1 and the other (e.g., P1) would go to y1 from s.
Because, P1 is already in R, P2 does not go through any of
the nodes in yi and zi in order to have region-disjoint paths.
Hence, P2 must continue through all of the lobes. Moreover,
P1 could pass through part of the lobes, but not in the parts
in Ii, so it can go “up” through one link (but not more) in
the lobe and then go “down” again through the nodes yi and
zi. If P1 uses links (s, y1), (zm, d), (zi, yi+1) we set τ(xi) =
TRUE, while if P1 uses links

(
yj , ū

i
k

)
,
(
ūik, v̄

i
k

)
,
(
v̄ik, zj

)
we

set τ(xi) = FALSE. Finally, by this truth assignment, all m
clauses become satisfied.
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of Niš, Serbia. Since July 2011, he has been working
as a software engineer in Facebook. He published
over 50 papers on chemical, combinatorial and spec-
tral graph theory and design of algorithms, and has
two patents regarding social networks. Aleksandar
won more than 20 medals and diplomas at interna-
tional competitions in mathematics and informatics
for high school and university students, most notably

silver medals on both International Mathematical Olympiad (IMO) and
International Olympiad of Informatics (IOI) in 2003. He was also the main
organizer and problem proposer for national competitions and IOI.

Jon Crowcroft (SM’95-F’04) received the B.S.
degree in physics from Trinity College, Cambridge
University, Cambridge, U.K., in 1979 and the M.Sc.
degree in computing and the Ph.D. degree from the
University College London (UCL), London, U.K., in
1981 and 1993, respectively.

He is a Marconi Professor of communication
systems with the Computer Laboratory, University
of Cambridge. He is a Fellow of Wolfson College,
Cambridge, U.K. Until the end of September 2001,
he was a Professor with the Department of Computer

Science, UCL. His research interests are communications and multimedia
systems, particularly Internet related.

Dr. Crowcroft is a Fellow of the ACM, the British Royal Society, the British
Computer Society, the Institute for Ethics and Emerging Technologies, and
the Royal Academy of Engineering.

Piet Van Mieghem received the Masters (magna
cum laude, 1987) and PhD (summa cum laude,
1991) degrees in electrical engineering from the
K.U. Leuven, Leuven, Belgium.

He is a Professor at the Delft University of
Technology and Chairman of the section Network
Architectures and Services (NAS) since 1998. His
main research interests lie in modeling and analysis
of complex networks and in new Internet-like archi-
tectures and algorithms for future communications
networks. Before joining Delft, he worked at the

Interuniversity Micro Electronic Center (IMEC) from 1987 to 1991. During
1993-1998, he was a member of the Alcatel Corporate Research Center in
Antwerp, Belgium. He was a visiting scientist at MIT (1992-1993) and a
visiting professor at UCLA (2005) and at Cornell University (2009). He
is the author of three books: Performance Analysis of Communications
Networks and Systems (Cambridge Univ. Press, 2006), Data Communications
Networking (Techne, 2006; 2nd ed., 2011), and Graph Spectra for Complex
Networks (Cambridge Univ. Press, 2011).

Prof. Van Mieghem currently serves on the editorial board of the OUP
Journal of Complex Networks, Computer Communications and the Journal
of Discrete Mathematics. He was member of the editorial board of the
IEEE/ACM Transactions on Networking (2008-2012) and the Journal Com-
puter Networks (2005-2006).


