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Predicting higher-order dynamics with unknown
hypergraph topology
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Abstract—Predicting future dynamics on networks is chal-
lenging, especially when the complete and accurate network
topology is difficult to obtain in real-world scenarios. Moreover,
the higher-order interactions among nodes, which have been
found in a wide range of systems in recent years, such as the
nets connecting multiple modules in circuits, further complicate
accurate prediction of dynamics on hypergraphs. In this work, we
proposed a two-step method called the topology-agnostic higher-
order dynamics prediction (TaHiP) algorithm. The observations
of nodal states of the target hypergraph are used to train a
surrogate matrix, which is then employed in the dynamical
equation to predict future nodal states in the same hypergraph,
given the initial nodal states. TaHiP outperforms three latest
Transformer-based prediction models in different real-world
hypergraphs. Furthermore, experiments in synthetic and real-
world hypergraphs show that the prediction error of the TaHiP
algorithm increases with mean hyperedge size of the hypergraph,
and could be reduced if the hyperedge size distribution of the
hypergraph is known.

Index Terms—Nonlinear system, dynamics on networks, pre-
dicting higher-order dynamics, contagion, hypergraph.

I. INTRODUCTION

The study of dynamical processes in networked systems is
fundamental in complexity science [1], [2]. Examples include
the cascading failures in power systems [3], the propagation
diseases in complex networks [4] and synchronization in
coupled oscillator networks [5], [6]. The dynamical processes
on networks are determined by two independent parts: the
topological structure of the network and the fundamental
physical rule that governs the system. A significant amount
of research [7]–[10] is dedicated to investigating the influence
of the network structure on dynamical processes, assuming
prior knowledge of the network topology.

One of the crucial challenges in the study of dynamical
processes is the prediction of future dynamics on networks,
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such as predicting cascading failures in power grids [11] and
predicting the spread of an infectious disease on a human
contact network. In a network of N nodes, we denote the nodal
state of node i at time t by xi(t). The adjacency matrix of the
network is denoted as A with elements Aij , where Aij = 1 if
nodes i and j are connected, otherwise Aij = 0. The intricate
interplay between network structure and physical rules that
govern the system could be captured in the following equation,
which characterizes a general class of dynamical process on
networks [12]–[14]

dxi(t)

dt
= f (xi(t)) +

N∑
j=1

Aijg (xi(t), xj(t)) , (1)

where f(xi) represents the internal dynamics of node i, and
the interaction between node i and any other node j de-
pends on the adjacency matrix A and the interaction function
g(xi(t), xj(t)). For certain complex systems, the underlying
functions f and g in (1) are unknown. Additionally, the
majority of real-world network topologies is complicated, and
a sufficiently accurate network reconstruction is a difficult task
[15]. These factors further complicate the accurate prediction
of complex system dynamics.

In system where the dynamics has been modeled by (1),
it appears intuitive to first infer the topology of the network
and then predict the dynamics based on the inferred topology.
However, recent research [16] has demonstrated that a general
class of autonomous dynamics without any control, including
the Lotka–Volterra model of population dynamics [17], the
susceptible–infected–susceptible model of epidemic spreading
[4] and the Kuramoto model of synchronization phenomena
[18] could be accurately predicted with the observations of
dynamics on an unknown network while the functions f and
g in the governing (1) are known. This prediction was achieved
by a surrogate network, which was derived by fitting past
observations of nodal states to the dynamical process. Coun-
terintuitively, despite the significant divergence between the
surrogate topology and the network topology, the prediction
remained accurate. This method relied on a powerful tool
for discovering low-dimensional structures in dynamics, the
proper orthogonal decomposition (POD) [19] and applied to
static networks.

The aforementioned study assumed that dynamic processes
are on networks with pairwise interactions. Recent studies
[20]–[24] have indicated that pairwise interactions may in-
adequately capture the intricate dependencies among nodes in
certain systems, and the existence of higher-order interactions
has been proved to profoundly influence the dynamics of
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networked systems, from the cascading failure problem in
power systems [25], diffusion [26] and synchronization [27],
to social processes [28]. To capture higher-order interactions
among nodes, more advanced mathematical structures, such
as hypergraphs and simplicial complexes [20] were developed
(See detailed definition of hypergraph in Section II-A). In the
field of circuits, higher-order structures were used to construct
topological insulators [29], [30]. The multiple modules in
a circuit netlist can be represented as a hypergraph, where
the nodes correspond to the modules and the hyperedges
correspond to the interconnections among modules, and the
hypergraph model has been used in the circuit partitioning
problem [31]–[33], which is one of the central problems in
very large scale integration circuit (VLSI) system design.
However, the prediction of dynamics on hypergraphs has not
been fully studied. Whether the prediction of higher-order
dynamics is similar to the prediction of network dynamics,
which can be carried out without network topology [16], is a
question deserving extensive research.

In this work, the prediction of higher-order dynamics on
hypergraphs refers to the prediction of future nodal states of
a hypergraph. In fact, the temporal evolution of a nodal state
is also a time series. From this perspective, the prediction of
higher-order dynamics on hypergraphs is a multivariate time
series forecasting problem, where each variate is the state of a
node in the hypergraph. In recent years, various deep learning
models [34]–[37] have been developed to solve the time-
series forecasting problem. Most of them are categorized as
data-driven methods [38], as they rely exclusively on training
datasets as input to predict other datasets, disregarding the
underlying processes that generate the time series. However,
when specific knowledge about the generation of the time
series is available (e.g., the governing equations of a dynamical
system), a question arises consequently: how can such prior
knowledge be integrated into the prediction method?

The approach proposed in [39] was an attempt to imple-
ment this idea. This approach extended the method in [16]
to hypergraphs, but only applied to limited-size synthetic
hypergraphs with 100 nodes, consisting of size-2 and size-
3 hyperedges. Due to the space complexity of O(2n), the
scalability of this method was severely constrained for larger
networks. However, hyperedges that contain more than 3 nodes
are abundantly present in real-world hypergraphs, and most of
the hypergraphs contain far more than 100 nodes (see Table I
for structural features of real-world hypergraphs). Therefore,
it remains a challenge to predict the future states of nodes in
real-world hypergraphs with unknown topological structures,
where hyperedges of any orders may exist.

In this work, we propose a novel method, called Topology-
agnostic Higher-order Dynamics Prediction (TaHiP) algo-
rithm, to predict the dynamics of a contagion processes [40]
on general hypergraphs, including real-world hypergraphs and
synthetic hypergraphs with different structural features. The
main contributions of this work can be summarized as follows:

• Unlike most of the purely data-driven deep learning
models, the proposed TaHiP algorithm incorporates the
governing equation of dynamical process and predict the
future states of nodes (with the form of time-series)

on an hypergraph with unknown structure. In various
real-world hypergraphs, TaHiP greatly outperforms three
latest data-driven time-series forecasting methods used as
baselines [35]–[37]. Furthermore, TaHiP needs less data
input (an N × 1 initial state vector) to predict than the
baseline methods, and its single-layer structure leads to
less training time and less storage space than the multi-
layer baseline models.

• Specifically, as the topological structure of the hyper-
graph is unknown, we constructed a surrogate matrix
to replace the unknown incidence matrix. We embedded
the elements of the surrogate matrix of a hypergraph
in exponential forms into the governing equation of the
system. The elements in this matrix is then continuously
optimized using the node state observation data of the
target hypergraph. Finally, the optimised surrogate matrix
is used to predict future states of nodes of the hypergraph.

• Following the definition of hyperdegree, we define the
predicted hyperdegree of node based on the optimized
surrogate matrix generated by TaHiP. We calculate the
Pearson correlation coefficients between metrics includ-
ing he hyperdegree (HD), the predicted hyperdegree
(PHD), the higher-order H-index (HOH) and the higher-
order PageRank (HOP), and find that PHD is highly
correlated with HD and HOP when the prediction is
accurate.

The rest of the paper is organized as follows. Section II gives
the problem statement and introduces the proposed TaHiP
algorithm. Section III first reports a few structural features
of the adopted hypergraphs, and then shows the performances
of TaHiP on real-world hypergraphs, which are compared with
other prediction methods. Section IV analyses the relation
between the surrogate matrix obtained by TaHiP and the
hypergraph topology. Finally, Section V concludes the paper
and stipulates future directions.

II. TOPOLOGY-AGNOSTIC HIGHER-ORDER DYNAMICS
PREDICTION

A. Problem statement

A hypergrpah H = (V, E) is defined as a set of nodes
V = {vi} and a set of hyperedges E = {ej}, with N = |V|
being the number of nodes and E = |E| being the number
of hyperedges. We denote Ei as the set of hyperedges that
contain the node i, and the cardinality of a hyperedge ej as
|ej |. Formally, the incidence matrix B ∈ RN×E of hypergraph
H can be denoted as

Bij =

{
1, if vi ∈ ej

0. if vi /∈ ej
(2)

By its definition, each column in the incidence matrix B
represents a hyperedge in the corresponding hypergraph, and
each row in B shows the specific hyperedges to which a node
belongs. We refer to Appendix A and [41] for more properties
of the incidence matrix.

In this work, we adopt a contagion process on hypergraphs
in [40] as our target dynamics to be predicted. In this process,
the nodal state xi(t) represents the probability of an individual
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to be active at time t. The contagion process can be written
as the form of (3) in Section I, with the self-dynamics of
node i being f(xi(t)) = −δxi(t), in which δ denotes the
curing rate of an individual, and the interaction function
g(xi(t), xj(t)) = β (1− xi(t))

∑
ej∈Ei

∏
vk∈ej
k ̸=i

xk(t) is the

product of the probability that node i is inactive and the other
nodes in the hyperedge ej are active times a contact rate, β.
Hence, we have

dxi(t)

dt
= −δxi(t) + β (1− xi(t))

∑
ej∈Ei

∏
vk∈ej
k ̸=i

xk(t) . (3)

For a hypergraph H with unknown topology consisting
of N nodes, we are given an initial nodal state vector
x(0) = [x1(0), x2(0), · · · , xN (0)]T ∈ RN following a specific
distribution and the observed nodal state matrix for training

Xtrain = [x(0),x(1), · · · ,x(T − 1)] ∈ RN×T , (4)

which describes a contagion process on this hypergraph, with
x(0) being the initial value. In matrix Xtrain, each column
x(t) ∈ RN stores the states of all the nodes observed at time
t, with the total number of time steps being T .

To test the accuracy of the prediction algorithm, we obtained
another nodal state vector x′(0) by sampling from the same
distribution as x(0), and then construct Xtest ∈ RN×T by
generating a contagion process on the same hypergraph H
with x′(0) as the initial value

Xtest = [x′(0),x′(1), · · · ,x′(T − 1)] ∈ RN×T . (5)

The prediction algorithm is supposed to output a matrix

Xpred = [x′(0),xp(1), · · · ,xp(T − 1)] ∈ RN×T , (6)

given the initial nodal state vector x′(0), which is the same
as Xtest. Finally, the accuracy of the prediction algorithm is
measured by different metrics computing the error between
Xtest and Xpred. We refer to Fig. 1 for more details of the
generation of the aforementioned datasets.

B. Iterative equation of the contagion process

The equation (3) of the contagion process defines the influ-
ence of other nodes on node i by first calculating the product
of the states of other nodes that share the same hyperedge
as node i. Then, the resulting products are summed based on
the hyperedge to which node i belongs. However, (3) must be
transformed to a general form of x(t + 1) = F (x(t), B) to
compute the observed nodal state matrix Xtrain of a contagion
process, so that given the nodal state vector x(t) ∈ RN at any
time t and the incidence matrix B, the nodal state vector at
next time step, x(t+ 1) can be directly calculated.

First, we approximate the derivative dxi(t)
dt in (3) by a

difference quotient,

xi(t+ 1)− xi(t)

∆t
= −δxi(t)+β (1− xi(t))

∑
ej∈Ei

∏
vk∈ej
k ̸=i

xk(t) ,

(7)

where ∆t denotes the time interval. (7) can be rewritten as

xi(t+1) = (1−δ∆t)xi(t)+∆tβ(1−xi(t))
∑
ej∈Ei

∏
vk∈ej
k ̸=i

xk(t) .

(8)
To transform (8) to the form of x(t + 1) = F (x(t), B),

the term
∑

ej∈Ei

∏
vk∈ej
k ̸=i

xk(t) that describes the influence of

other nodes on node i must be simplified to a general term
that applies to any node in the hypergraph, regardless of its
location.

The incidence matrix B allows to compute the product of
nodal states of any hyperedge ej in the hypergraph as

∏
vk∈ej

xk(t) =

N∏
k=1

x
Bkj

k (t) . (9)

If Bkj = 0, implying that node vk is not in hyperedge ej ,
then we have x

Bkj

k (t) = x0
k(t) = 1, which will not affect the

product in (9). If Bkj = 1 and node k is in hyperedge ej ,
then x

Bkj

k (t) = x1
k(t) = xk(t), which will be included in the

product. Applying (9) to all the hyperedges yields a vector

eTprod = [

N∏
k=1

xBk1

k (t),

N∏
k=1

xBk2

k (t), · · · ,
N∏

k=1

xBkE

k (t)] ∈ R1×E .

(10)
We denote the sum of products of nodal states within all

the hyperedges that node vk belongs to as

sk =
∑

ej∈Ek

N∏
k=1

x
Bkj

k (t) , (11)

and the vector consisting of s(i) of all the nodes

sT = [s1, s2, · · · , sN ] ∈ R1×N , (12)

which can be written in matrix form as

s = Beprod . (13)

Moreover, the state of node i itself need to be eliminated
from the product, and we obtain the general term that describes
the influence of other nodes on any node i∑

ej∈Ei

∏
vk∈ej
k ̸=i

xk(t) =
1

xi(t)
si =

1

xi(t)
(Beprod)i , (14)

where (Beprod)i denotes the ith element of the vector Beprod.
(14) is then substituted back into (8)

xi(t+1) = (1−δ∆t)xi(t)+∆tβ
1− xi(t)

xi(t)
(Beprod)i , (15)

and written in matrix form as

x(t+ 1) = (1− δ∆t)x(t) + ∆tβ
1− x(t)

x(t)
Beprod . (16)

Equation (16) transforms (8) to the general form of

x(t+ 1) = F (x(t), B) , (17)

which leads to an immediate calculation of the nodal state
vector x(t+1) given x(t) and the incidence matrix B. We refer
to (16) as the iterative equation of contagion process, which
will be repeatedly used in the generation of the observed data
and the prediction algorithm.
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Fig. 1: TaHiP architecture. (a) Datasets generation. The training dataset Xtrain and the test dataset Xtest were obtained by
applying function F defined in (17) to the corresponding initial vector x(0) and x′(0) recursively with the incidence matrix B.
(b) Training. We first conducted one-step inference with the current surrogate matrix by x̃k = F (xk−1, B̂), and then updated
the elements of B̂ according to the constructed loss. (c) Prediction. Applying function F defined in (17) to the initial vector
x′(0) recursively with the optimised surrogate matrix B̂ gave the final prediction matrix Xpred.

C. TaHiP algorithm

As the topology of the target hypergraph is unknown, we
aim to find a surrogate matrix B̂ to replace the incidence ma-
trix of the hypergraph. The surrogate matrix can be substituted
into (16) along with any initial nodal state vector to generate
predictions for future states of nodes in the hypergraph. The
framework of TaHiP algorithm is illustrated in Fig. 1. The
algorithm consists of three steps:

1) Initialization of the surrogate matrix B̂.
To initialize the surrogate matrix B̂ ∈ RN×E from
a zero matrix, we first generate a set, esample =
{|e1|, |e2|, · · · , |eE |} by sampling from a Poisson dis-
tribution with a fixed parameter λ, f(n;λ) = Pr[X =

n] = λne−λ

n! . Then, for the jth column of the surrogate
matrix, we randomly select |ej | elements to be replaced
by 1. After performing this operation for all columns,
we obtain an initialized binary matrix B̂0. The choice
of other distributions for initialization will be discussed
in Section III-D.

2) Training, with the optimization of the surrogate
matrix B̂.
The optimization of the surrogate matrix is the core
of the proposed algorithm. As is shown in the left of
Fig. 1, the matrix Xtrain ∈ RN×T obtained by the
observation of nodal states in the unknown hypergraph

is the input of the algorithm. For each training epoch,
a submatrix Xsample ∈ RN×k is randomly sampled
from Xtrain, consisting of k consecutive nodal state
vectors. Here, k is referred to as the random window
length. For each vector in the first k − 1 vectors in
Xsample, namely, x1,x2, · · · ,xk−1, we apply Eq. (16)
with the current surrogate matrix B̂, resulting in vectors
x̃2, x̃3, · · · , x̃k. Then, we use the MSE (mean square
error) loss to measure the discrepancy between the
prediction x̃k and the ground truth xk. The loss of each
vector pair, denoted as MSE(xi, x̃i), is gathered to get
the overall objective loss

∑k
i=2 MSE(xi, x̃i), which

is used for the backward process. The elements in B̂
will be updated in the end of each training epoch by
B̂ij(updated) = B̂ij + α ∗ (∂Loss/∂B̂)ij , in which α
denotes the learning rate. We used the Adam algorithm
[42] as the optimizer. The maximum number of epochs
is set as 1000 to assure the convergence of loss. We
have tested the impact of k have on the prediction
performance. The results showed that different values of
k had no significant effect on the performance of TaHiP.
Therefore, we set k as 100 to get an acceptable time of
training. We refer to Appendix B for the convergence
analysis of TaHiP, and Appendix C for the complexity
analysis.

3) Prediction with the surrogate matrix B̂.
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We start with the initial nodal state vector x′(0), which
follows the same distribution as the initial nodal state
vector x(0) of Xtrain. The predicted nodal state matrix
Xpred ∈ RN×E is obtained by iterating (16) with the op-
timized surrogate matrix B̂ and the initial value of x′(0)
for T times. Meanwhile, the matrix Xtest ∈ RN×E used
as the ground truth is obtained by iterating (16) with
the incidence matrix B of the hypergraph and the initial
value of x′(0) for T times. Finally, we calculate the MSE
and MAE (mean absolute error) between the matrix
Xtest and the matrix Xpred as metrics, to evaluate the
performance of the proposed TaHiP algorithm.

The pseudocode of optimization of the surrogate matrix is
provided in Algorithm 1.

Algorithm 1 Training part of TaHiP.

Input:
B̂0 ∈ RN×E : the initialized surrogate matrix;
Xtrain ∈ RN×T : the observed nodal state matrix for
training;
M : training epochs;
α: learning rate;
F : the function for iteration, defined in Eq.(16) and
Eq.(17).

Output:
B̂ ∈ RN×E : the optimized surrogate matrix.

1: while m ≤M do
2: Xsample ←randomly select N × k submatrix from

Xtrain;
3: q ← 1;
4: Loss← 0;
5: while q ≤ k − 1 do
6: x̃q+1 ← F (xq, B̂)
7: Loss← Loss+MSE(x̃q+1,xq+1)
8: q ← q + 1
9: Backward with Loss, update elements in B̂ by

B̂ij(updated) = B̂ij +α∗ (∂Loss/∂B̂)ij using Adam
optimizer

10: m← m+ 1
11: end while
12: end while

There are a few remarks worth emphasizing. The initialized
surrogate matrix B̂0 is binary. Thus, it can be regarded as
an incidence matrix of a random unweighted hypergraph.
However, during the optimization process, the elements of
B̂0 will be updated according to the calculated gradients,
leading to a real matrix B̂, which no longer corresponds to
the topology of any hypergraph as an incidence matrix.

In the definition of incidence matrix (2), a hyperedge
is modelled by a vector consisting of binary elements that
determine whether a node is in the hyperedge. We consider
this way of representing as a discrete form of modeling high-
order interactions between nodes. In a more general sense,
the intensity of interactions between nodes should be more
precisely described with real numbers, including negative val-
ues. Therefore, the proposed TaHiP algorithm does not impose
any constraint on the elements of the surrogate matrix. This

setting distinguishes the TaHiP algorithm from existing studies
on hypergraph structure inference [43]–[45] or hyperedge
prediction [46]–[48]. We do not focus on the topology of the
target hypergraph, but on constructing a surrogate matrix that
can be used for predicting dynamics in the hypergraph.

III. EXPERIMENTS AND RESULTS

A. Structural features of real-world hypergraphs

The 6 real-world hypergraphs in this work are derived
from empirical data from various domains, and were collected
by the author of [49]. The contact-high-school and contact-
primary-school datasets are hypergraphs of groups of people in
contact at a high/primary school. The email-Enron and email-
Eu datasets are hypergraphs of sets of email addresses on
emails. The senate-bills and house-bills datasets are hyper-
graphs modelling bill cosponsorship in the US House/Senate
of Representatives. For each hypergraph, we report a diverse
range of structural properties such as number of nodes, hyper-
edges and their sizes, as detailed in Table I. The definitions
of some features are listed below.

Definition 1. Hyperdegree. For a node i in a hypergraph,
the set of all the hyperedges that contain node i is denoted
as Ei. The hyperdegree dH(i) of node i is defined as the
number of elements contained in Ei and can be calculated
by dH(i) =

∑E
j=1 Bij . Furthermore, ⟨dH⟩ denotes the mean

hyperdegree of all nodes in the hypergraph, given by ⟨dH⟩ =
1
N

∑N
i=1 dH(i).

Definition 2. Hyperedge Size. The hyperedge size |ej | =∑N
i=1 Bij is the number of nodes contained in the hyperedge

ej . Additionally, |ej |max is the maximum hyperedge size in
the hypergraph, ⟨|ej |⟩ denotes the mean hyperedge size with
⟨|ej |⟩ = 1

E

∑E
j=1 |ej |, and %|ej | = 2 is defined as the

ratio of the number of size-2 hyperedges to the number of
all hyperedges, which indicates the proportion of low-order
interactions among all interactions.

Definition 3. Hyperedge Density [50].The hyperedge den-
sity ρ is defined as the ratio of the number of hyperedges to
the number of nodes, i.e., ρ = E/N .

Table I shows that the selected real-world hypergraphs
exhibit differences not only in basic parameters such as
the number of nodes and hyperedges, but also in higher-
order structural features such as mean hyperdegree and mean
hyperedge size.

B. Experimental Settings

The observed nodal state matrix Xtrain is generated the
same way as Xtest, by iterating (16) with the incidence matrix
B of the hypergraph and the initial value of x(0) for T
times. The elements of all the initial nodal vectors (x(0) of
Xtrain, x′(0) of Xtest and Xpred) are sampled from a uniform
distribution U(0, 0.3), and the total number of time steps T
is set as 1500. The time interval ∆t is set as 0.001.

We fix the curing rate δ as 1 and adjust the contact rate β to
control the relative strength between the curing (deactivation)
process and the infection (activation) process. The contact
rate β directly affects the contagion process in the hyper-
graph, which can be quantitatively described by the temporal
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TABLE I: Structural features of 6 real-world hypergraphs

N E ⟨dH⟩ ρ |ej |max ⟨|ej |⟩ %|ej | = 2
contact-high-school 327 7818 55.63 23.91 5 2.3 0.703

contact-primary-school 242 12799 127.0 52.89 5 2.4 0.61
email-Enron 148 1512 30.74 10.22 18 3 0.535

email-Eu 998 25027 85.31 25.08 25 2.33 0.510
senate-bills 294 21721 731.8 73.88 99 9.90 0.151
house-bills 1494 54933 814.3 36.77 399 22.1 0.139

Fig. 2: Nodal states of contagion process with β = 0.1 and
δ = 1 in hypergraph contact-high-school. Each grey curve
is the temporal evolution of a nodal state, and the red curve
shows the change of mean nodal state xi(t) over time.

evolution of the mean nodal state xi(t) = 1
N

∑N
i=1 xi(t).

A larger β enables all nodes in the hypergraph to reach
different steady states more quickly, while a smaller β may
hinder the contagion process, with the mean node state xi(t)
monotonically decreasing over time. We set β for each real-
world hypergraph in Table II to ensure that xi(t) reaches a
steady state in time [T/2, T ].

TABLE II: Contact rate β set for each real-world hypergraph

hypergraph β
contact-high-school 0.1

contact-primary-school 0.05
email-Enron 0.25

email-Eu 0.05
senate-bills 0.075
house-bills 0.2

To illustrate, we plot the contagion process with β = 0.1 in
hypergraph contact-high-school in Fig. 2.

We use two metrics, namely, MSE and MAE to measure the
performance of the TaHiP algorithm. Specifically, we compute
the error between the matrix Xtest and the matrix Xpred by

MSE(Xtest, Xpred) =∑N
i=1

∑T
j=1(Xtest(i, j)−Xpred(i, j))2

N × T
,

(18)

MAE(Xtest, Xpred) =
1

N × T

N∑
i=1

T∑
j=1

|Xtest(i, j)−Xpred| .

(19)

C. Comparing the performance of TaHiP with other prediction
methods

1) Comparing with network dynamics prediction method:
In recent years, an increasing body of research from var-
ious domains have supported the existence of higher-order
interactions in different systems. On the one hand, there is
evidence [51], [52] suggesting the modelling of higher-order
interactions might in some cases be redundant, and may be
fully described by combination of pairwise interactions. In
the contagion process on hypergraphs studied in this work, is
it necessary to explicitly model the higher-order interactions
among nodes?

The SIS (Susceptible-Infected-Susceptible) model in net-
works is one of the dynamics that can be accurately predicted
without knowing the network topology in [16]. The governing
equation of SIS model is shown as

dxi(t)

dt
= −δxi(t) + (1− xi(t))

N∑
j=1

Aijxj(t) . (20)

The equation of the contagion process on hypergraphs, i.e.,
(3) extends (20) to hypergraphs, by replacing the xj(t) term
of single node state (according to the definition of pairwise
interaction) by the products of nodes in the same hyperedge,∏

k∈ej
k ̸=i

xk(t). Suppose we are given the observed data of a

contagion process on hypergraphs Xtrain ∈ RN×T , without
knowing the underlying process. We adopt the method pro-
posed in [16] to predict the nodal state matrix Xpred ∈ RN×T ,
assuming the underlying process is the SIS epidemic process
without higher-order interaction. If the prediction is accurate,
then the modelling of higher-order interaction in the contagion
model will be unnecessary.

The prediction of dynamics on hypergraph contact-high-
school is illustrated in Fig. 3, which shows that the network
dynamics prediction method is incapable of predicting the
higher-order contagion process. Predictions on other 5 hyper-
graphs are similar to the prediction on hypergraph contact-
high-school. Thus, we demonstrate that the higher-order con-
tagion process cannot be predicted with unknown topology by
the method designed for networks, assuming only pairwise in-
teractions between nodes. The higher-order interactions among
nodes must be modelled and studied explicitly.

2) Comparing with deep learning prediction algorithm:
We compared the performance of TaHiP to three latest
Transformer-based models for multivariate time series predic-
tion:

• Zeng et al. [35] (LTSF, 2022): They extracted the
temporal relations in an ordered set of continuous points,
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and introduced a simple one-layer linear model named
LTSF-Linear for the long-term time series prediction task.

• Nie et al. [36] (PatchTST, 2023): They proposed an effi-
cient design of Transformer-based model for multivariate
time series prediction, with segmentation of time series
into subseries-level patches and channel-independence
where each channel contains a single univariate time
series that shares the same embedding and Transformer
weights across all the series.

• Yi et al. [37] (FreTS, 2023): They explored a novel direc-
tion of applying MLPs in the frequency domain for time
series prediction. They investigated the learned patterns
of frequency-domain MLPs, and proposed FreTS, an
effective architecture built upon frequency-domain MLPs
for time series prediction.

In this work, we set the parameters of each baseline method
according to the setting on the ILI dataset (adopted by all the
baseline models), which has a similar size (966 time steps) to
the training matrix Xtrain ∈ RN×T used in TaHiP algorithm
(1500 time steps). We set the number of input features in the
baseline models according to the number of nodes N in each

Fig. 3: Prediction of dynamics on hypergraph contact-high-
school by the network dynamics prediction method proposed
in [16]. The black curves are the true nodal states xi(t), and
red curves are the predictions of the corresponding nodes. For
clarity, 12 randomly chosen nodal states are depicted.

Fig. 4: Prediction of dynamics on hypergraph contact-high-
school by the TaHiP algorithm. The black curves are the true
nodal states xi(t), and red curves are the predictions of the
corresponding nodes. For clarity, 12 randomly chosen nodal
states are depicted.

hypergraph. The prediction results on various hypergraphs of
TaHiP and baseline models are presented in Table III.

Overall, the TaHiP algorithm outperforms all the baseline
models by metrics of MSE and MAE in all the six real-world
hypergraphs. Furthermore, TaHiP only needs an N × 1 initial
node state vector to start prediction, while the baseline models
require continuous data input (called ‘look-back window’
[35] with length of L) to predict future data. Unlike the
baseline models, which rely exclusively on training datasets
and disregard the underlying process that generates the time
series, we have successfully integrated the governing equations
of a dynamical system into the prediction method in TaHiP,
and achieved a better performance. This finding highlights the
importance of combining the prior knowledge of a specific
domain with the training data, and these methods with prior
knowledge may outperform the data-driven methods developed
for general prediction purpose.

We plot the prediction on hypergraph contact-primary-
school in Fig. 4 to show the accuracy of the prediction. As
Table III shows, the TaHiP algorithm predicts with extremely
small MSE errors (around 10−4) on hypergraphs contact-
high-school, contact-primary-school, and email-Eu. The 3
hypergraphs have small mean hyperedge sizes of 2.3, 2.4,
and 2.33, respectively, and high proportions of size-2 hy-
peredge (%|ej | = 2 > 50%). In contrast, the hypergraphs
senate-bills and house-bills have larger mean hyperedge sizes
(9.9 and 22.1) and lower proportions of size-2 hyperedges
(%|ej | = 2 < 20%). To summarize, the TaHiP algorithm pre-
dicts with higher accuracy on hypergraphs with smaller mean
hyperedge sizes and higher proportions of size-2 hyperedges.
The mean hyperedge size is one of the important indicators of
the complexity of the hypergraph topology, and hypergraphs
with larger mean hyperedge size contain more hyperedges
with higher-order. The existence of higher-order hyperedges,
which contain far more nodes than 2 (the minimum size of a
hyperedge), makes the accurate prediction based on observed
dynamics among nodes more difficult.

To quantitatively study the impact of mean hyperedge size
of a hypergraph on the prediction accuracy, we test the TaHiP
algorithm in different synthetic hypergraphs in Section III-D.

D. Predicting higher-order dynamics with known hyperedge
size distribution

In the previous experiments, we predict the dynamics of
hypergraphs with completely unknown topology. In this sub-
section, we conduct more experiments to explore the following
questions:

• In real-world applications of the algorithm, limited struc-
tural information of the target hypergraph (for instance,
the hyperedge size distribution) may be known, will
the known hyperedge size distribution (the topology of
the hypergraph is still unknown) improve the prediction
accuracy of TaHiP?

• We have observed in Table III that the TaHiP algorithm
predicts with higher accuracy on real-world hypergraphs
with smaller mean hyperedge sizes, it is necessary to
validate this finding in more synthetic hypergraphs.
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TABLE III: Prediction results of TaHiP and baseline models on hypergraphs. The best results of MSE are in bold. IMP.
denotes the improvement on MSE of TaHiP compared to the corresponding method, with IMP. = 1− MSE(TaHiP )

MSE(Model) .

Hypergraph N TaHiP LTSF PatchTST FreTS
MSE MAE MSE MAE IMP. MSE MAE IMP. MSE MAE IMP.

contact-high-school 327 0.00022 0.0102 0.00644 0.0591 96.6% 0.00456 0.0454 95.2% 0.00612 0.053 96.4%
contact-primary-school 242 0.00017 0.0089 0.00556 0.0535 96.9% 0.00589 0.0524 97.1% 0.00516 0.0443 96.7%

email-Enron 148 0.00806 0.0631 0.01581 0.0928 49.0% 0.01143 0.0703 29.5% 0.01075 0.0751 25.0%
email-Eu 998 0.00031 0.0124 0.00887 0.0621 96.5% 0.00284 0.0265 89.1% 0.00224 0.0297 86.2%

senate-bills 294 0.00227 0.0215 0.0283 0.1285 92.0% 0.01046 0.0663 78.3% 0.01259 0.0686 82.0%
house-bills 1494 0.00773 0.0611 0.03021 0.1330 74.4% 0.02992 0.1201 74.2% 0.01888 0.0761 59.1%

We test the TaHiP algorithm in synthetic uniform hyper-
graphs generated by two distinct methods. The first method
adds each hyperedge by randomly selecting m nodes from
the hypergraph. The second method selects nodes to form
hyperedges with the principle of preferential attachment.
Specifically, the probability of a node i being selected is
defined as

p(i) =
dH(i)∑N
j=1 dH(j)

. (21)

In both methods, duplicate hyperedges are not allowed. We
refer to the two classes of uniform hypergraph as uniform-
random and uniform-pa (‘pa’ is short for preferential attach-
ment), respectively. The sizes of all the uniform hypergraphs
are set as N = 500 and E = 10000.

For each m−uniform hypergraph, we use two distinct
methods of initialize the surrogate matrix. In the first case,
we assume the hyperedge size distribution of the target hyper-
graph is known, and generate samples from this distribution,
{m, m, · · · , m} to initialize the surrogate matrix, which
guarantees that the surrogate matrix and the target hypergraph
share the same hyperedge size distribution. In the second case,

2 4 6 8
Mean hyperedge size

10 4

10 3

10 2

10 1

M
SE

uniform-random-Poisson
uniform-random-*
uniform-pa-Poisson
uniform-pa-*

Fig. 5: Prediction errors measured by MSE of TaHiP on
synthetic uniform hypergraphs with different mean hyperedge
sizes. The label ‘uniform-random’ or ‘uniform-pa’ indicates
the generation method of the hypergraph, while the suffix ‘-
Poisson’ or ‘-*’ refers to the surrogate matrix initialization
method of Poisson distribution or hyperedge size distribution,
respectively.

where the hyperedge size distribution of the target hypergraph
is unknown, we use a Poisson distribution with λ = 2 for
initialization, similar to the experiments in Section II-C.

We continue to use MSE as the measurement of prediction.
The results are showed in Fig. 5. Each MSE is the mean value
of 10 experiments. The method of hypergraph generation is
labeled as ‘uniform-random’ or ‘uniform-pa’, as noted above.
The suffix ‘-Poisson’ or ‘-*’ refers to the surrogate matrix
initialization method of Poisson distribution or hyperedge size
distribution, respectively.

First, in both classes of uniform hypergraphs with different
mean hyperedge sizes, the knowledge of hyperedge size distri-
bution reduces the prediction error MSE (comparing ‘uniform-
random-Poisson’ with ‘uniform-random-*’, and ‘uniform-pa-
Poisson’ with ‘uniform-pa-*’ in Fig. 5), especially in hyper-
graphs with larger mean hyperedge size (< |ej | >= 6 or 8).
This finding demonstrates that the hyperedge size distribution
of the unknown hypergraph for initialization can improve
the prediction accuracy in uniform hypergraphs. Second, the
prediction error increases with mean hyperedge size of the
hypergraph generally (except for the ‘uniform-pa-*’ case,
where the hypergraph with < |ej | >= 6 slightly outperforms
hypergraph with < |ej | >= 4), which aligns with the results
of experiments in real-world hypergraphs (see Table III). We
attribute this finding to the complicated topology of hyper-
graphs with higher mean hyperedge size, which adds to the
difficulty of prediction.

To provide more evidence, we test the performances of
the proposed TaHiP algorithm in real-world hypergraphs,
given the hyperedge size distribution of each hypergraph. The
results are compared with the predictions without hyperedge
size distribution in Table IV, which shows that in all the
hypergraphs except for hypergraph email-Eu, the knowledge
of hyperedge size distribution reduces the prediction errors,
especially in hypergraph senate-bills and hypergraph house-
bills, where the improvement are 83.3% and 76.4%.

Thus, the results in both synthetic hypergraphs and real-
world hypergraphs demonstrate that, the knowledge of hy-
peredge size distribution of the unknown hypergraph can
improve the prediction accuracy, and the prediction error of
the TaHiP algorithm increases with mean hyperedge size of
the hypergraph.

IV. TOPOLOGY OF THE SURROGATE MATRIX

In Section II-C, we provided detailed description of how
the proposed TaHiP algorithm predicts the dynamics of an
unknown hypergraph accurately by optimizing a surrogate
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TABLE IV: Prediction results of the proposed TaHiP algorithm without/with hyperedge size distribution in real-world
hypergraphs. The best results of MSE are in bold. IMP. denotes the improvement on MSE of TaHiP w/e compared to
TaHiP, with IMP. = 1− MSE(TaHiPw/e)

MSE(TaHiP )

Hypergraph N
TaHiP TaHiP w/e1

IMP.MSE MAE MSE MAE
contact-high-school 327 0.00022 0.0102 0.00019 0.0093 13.6%

contact-primary-school 242 0.00017 0.0089 0.00010 0.0068 41.2%
email-Enron 148 0.00806 0.0636 0.00673 0.0629 16.5%
email-Eu 998 0.00031 0.0124 0.00031 0.0122 0%

senate-bills 294 0.00227 0.0215 0.00038 0.0124 83.3%
house-bills 1494 0.01594 0.0546 0.00376 0.0394 76.4%

1 w/e denotes ‘with hyperedge size distribution’.

matrix, B̂. Does the prediction accuracy imply a similarity
of the surrogate matrix with the true incidence matrix of the
hypergraph?

We here denote the incidence matrix of any hypergraph by
B. The hyperdegree of any node i in this hypergraph can be
computed by summing all the elements of the ith row in matrix
B (see Definition 1).

Definition 4. Predicted Hyperdegree (PHD). Similar to
hyperdegree, we can sum all the elements of the ith row in
matrix B̂, and refer to this sum as the predicted hyperdegree
of node i, denoted as d̂H(i)

d̂H(i) =

E∑
j=1

B̂ij . (22)

To quantitatively study the similarity between the surrogate
matrix B̂ and the incidence matrix B, we introduce two node
centrality metrics, including the higher-order H-index (HOH)
[22], and higher-order PageRank (HOP) [22]. The H-index
[53] is originally used to measure the citation impact of a
scholar or a journal, and is adopted in [54] as a node centrality
metric in networks. In this work, we use an extension of H-
index for hypergraphs defined in [22].

Definition 5. Higher-Order H-index (HOH). The HOH
of a node i is the maximum value H , such that there exists
at least H neighbors of the node i with hyperdegrees no less
than H . Here the neighbor of node i is defined as the node
that belongs to the same hyperedge with node i.

Definition 6. Higher-Order PageRank (HOP). Similarly
to PageRank [55], the element of the transition matrix P of a
hypergraph is defined as

Pij =

{
(AH)ij∑
i(AH)ij

, if i ̸= j,

0, if i = j.

where AH is the adjacency matrix of hypergraph defined in
the Appendix A. The stationary distribution P∞ is defined by

P∞ = lim
t→∞

Pt.

The basic PageRank at time t is defined by

pr(t) = PT pr(t− 1) ∈ RN , (24)

where pri(t) is the PageRank value of the ith node in
the hypergraph. Considering that there might be a group of
interconnected nodes, the PageRank values remain the same
within the group and will not be changed. A damping factor

s is introduced to avoid this case, and we obtain a revised
PageRank. The steady-state value of the revised PageRank for
each node is defined by

pr(t) = s(P∞)T pr(0) +
u(1− s)

N
, (25)

where u ∈ RN is a vector with every entry equal to 1, and
each element of pr(0) is 1/N , s ∈ (0, 1) is the damping factor.

We calculate the Pearson correlation coefficients between
each pair of metrics, including the hyperdegree (HD), the pre-
dicted hyperdegree (PHD), the higher-order H-index (HOH)
and the higher-order PageRank (HOP) in the 6 real-world
hypergraphs. The Pearson correlation coefficient reflects the
linear correlation between variables, and has value between -1
and 1. The results are provided in Fig. 6. In all the real-world
hypergraphs in Fig. 6, the Pearson correlation coefficients
between HOH and the other three metrics are relatively low,
revealing its different nature of defining influential nodes from
the other metrics. On the other hand, the Pearson correlation
coefficients between HD and HOP are close to 1 in all the
hypergraphs, reflecting the strong correlation between these 2
metrics.

The PHD metric is computed from the surrogate matrix
generated during the prediction for each hypergraph. In hyper-
graph contact-high-school, contact-primary-school, email-Eu
and senate-bills , where the prediction is accurate (with MSE<
0.003, see Table IV), the Pearson correlation coefficients be-
tween HD and PHD, HOP and PHD (see Fig. 6(a),(b),(d),(e))
are close to 1, and larger than the corresponding Pearson
correlation coefficients in hypergraph email-Enron and house-
bills (see Fig. 6(c),(f)), where the prediction is inaccurate.
The results in Fig. 6 demonstrates that, if the prediction of
the unknown hypergraph dynamics is accurate, then we can
obtain the predicted hyperdegree of that hypergraph, which is
highly correlated with the true hyperdegree of each node in
the hypergraph.

For instance, we plot the hyperdegree distribution and the
predicted hyperdegree distribution of the hypergraph contact-
high-school in Fig. 7. Each dot in Fig. 7 is the hyperdegree
or predicted hyperdegree of a node, and the distributions are
obtained by sorting the hyperdegrees of all the nodes by value.
There is a remarkable similarity across the distributions illus-
trated in Fig. 7, which shows that the predicted hyperdegree
can be regarded as the inference of the hyperdegree of a node,
when the prediction of TaHiP is accurate.
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V. CONCLUSION AND FUTURE DIRECTIONS

The prediction of contagion dynamics on unknown hyper-
graphs is studied, based on observations of the dynamics.
We propose a prediction framework which consists of two
steps. First, we obtain a surrogate matrix by fitting the dy-
namical model to the observations of a contagion process
on a hypergraph with unknown topology. Second, we pre-
dict the dynamics of any contagion process on the same
hypergraph using the surrogate matrix, given initial values
of all the nodes. The proposed TaHiP algorithm outperforms
three Transformer-based deep learning models [35]–[37] in
different real-world hypergraphs, and requires less data input,
training time and storage space. Moreover, experiments in
synthetic and real-world hypergraphs show that the prediction
accuracy of TaHiP can be improved, if the hyperedge size
distribution of the hypergraph is used to initialize the surrogate
matrix. Furthermore, we studied the surrogate matrix obtained
by TaHiP, and found that when the prediction is accurate,
the Pearson correlation coefficient between hyperdegree and
predicted hyperdegree defined in this work is close to 1,
which shows that the hyperdegree distribution of the unknown
hypergraph could be inferred by calculating the predicted
hyperdegree distribution from the surrogate matrix.

In terms of future directions, first, it is an open question
whether our prediction method applies to other higher-order
dynamics on hypergraphs, including diffusion, synchroniza-
tion, etc. Theoretically, this method works if the incidence
matrix of hypergraph can be embedded into the equation of
the dynamical process. Second, the proposed TaHiP algorithm
predicts with low accuracy on hypergraphs with higher mean

hyperedge size (⟨|ej |⟩ > 10), how to improve the performance
of TaHiP on hypergraphs with higher mean hyperedge size
needs further works.

APPENDIX A
HYPERGRAPH AND INCIDENCE MATRIX

Fig. 8 shows a hypergraph of 5 nodes and 3 hyperedges and
its corresponding incidence matrix. Note that the size of the
hyperedge e2 that contains node v2 and v3 is 2, which means
this hyperedge models pairwise interaction between nodes,
similar to an edge in a network. Moreover, a hyperedge is not
equivalent to a complete graph containing the same number
of nodes, as higher-order interactions cannot be accurately
modelled by linear combinations of pairwise interactions [20].

For an undirected graph G of N nodes and L edges, the
unsigned incidence matrix R ∈ RN×L is defined as

Ril =

{
1, if node i and node j is linked by edge el,
0, otherwise.

The N × N adjacency matrix A of the graph G can be
written [41] in terms of the unsigned incidence matrix R as

A = RRT −∆, (26)

where ∆ = diag(d1, d2 , · · · , dN ) is the degree matrix.
Analogous the definition of adjacency matrix of graph, the

adjacency matrix of a hypergraph, H with N nodes and E
hyperedges can be defined as

(AH)ij =

{
es, if node i and node j share eS hyperedges,
0, otherwise.

(27)

Fig. 6: Pearson correlation coefficients between each pair of metrics, including the hyperdegree (HD), the predicted hyperdegree
(PHD), the higher-order H-index (HOH) and the higher-order PageRank (HOP) in the 6 real-world hypergraphs.
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Similarly, we have

AH = BBT −∆H, (28)

where B is the incidence matrix of hypergraph H,
as we have defined in Section II-A, and ∆H =
diag(dH(1), dH(2) , · · · , dH(N)) is the hyperdegree matrix,
where dH(i) is the hyperdegree of node i.

We also find that in the E × E matrix

M = BTB, (29)

the element Mij is the number of nodes that belong to hy-
peredge i and hyperedge j simultaneously, and each diagonal
element Mii is the size of each hyperedge i.

APPENDIX B
CONVERGENCE ANALYSIS OF TAHIP

We analyze the convergence of TaHiP using the framework
proposed in [42]. First, the pseudocode of Adam [42] is
provided in Algorithm 2.

Given an arbitrary, unknown sequence of convex cost func-
tions f1(θ), f2(θ), · · · , ft(θ), the goal of Adam is to predict
parameter θt, which is then evaluated on ft. The regret R(T )
is used to prove the convergence of an optimization algorithm.
R(T ) is the sum of all the previous differences between the
prediction ft(θt) and the best parameter ft(θ∗) from a feasible
set X for all the previous steps. Specifically, R(T ) is defined
as

R(T ) =

T∑
t=1

[ft(θt)− ft(θ
∗)] , (30)

where θ∗ = argminθ∈X
∑T

t=1 ft(θ). The convergence of an
algorithm is ensured if the average regret, i.e., R(T )/T of the
algorithm converges.

Theorem 1. (Corollary 4.2. in [42])
Assume the function ft has bounded gradients,

||∇ft(θ)||2 ≤ G, ||∇ft(θ)||∞ ≤ G∞ for all θ ∈ Rd
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Fig. 7: Hyperdegree distribution and the predicted hyperdegree
distributions of hypergraph contact-high-school. The predicted
hyperdegree distributions are obtained by TaHiP without/with
hyperedge size distribution, denoted as ‘TaHiP’ and ‘TaHiP
w/e’, respectively.

Fig. 8: A hypergraph of 5 nodes and 3 hyperedges and its
corresponding 5× 3 incidence matrix B. The hyperdegree of
a node i, denoted as dH(i), is defined in Section III-A.

Algorithm 2 Adam.

Input:
Stepsize α, with β1, β2 ∈ [0, 1) being exponential
decay rates for the moment estimates. Stochastic objective
function f(θ), with initial parameter vector being θ0.

Output:
Resulting parameters θt.

1: m0 ← 0 (Initialize 1st moment vector)
2: v0 ← 0 (Initialize 2nd moment vector)
3: t← 0 (Initialize timestep)
4: while θt not converged do
5: t← t+ 1
6: gt ← ∇θft(θt−1) (Get gradients w.r.t. objective at t)
7: mt ← β1mt−1 + (1− β1)gt (Update biased first moment)
8: vt ← β2vt−1+(1−β2)g

2
t (Update biased second raw moment)

9: m̂t ← mt(1− βt
1) (Bias-corrected first moment)

10: v̂t ← vt(1− βt
2) (Bias-corrected second raw moment)

11: θt ← θt−1 − α · m̂t/(
√
v̂t + ϵ) (Update parameters)

12: end while

and the distance between any θt generated by Adam is
bounded, ||θn − θm||2 ≤ D, ||θn − θm||∞ ≤ D∞ for
any m,n ∈ {1, 2, · · · , T}. Adam achieves the following
guarantee, for all T ≥ 1.

R(T )

T
= O(

1√
T
), limT→∞

R(T )

T
= 0 . (31)

In TaHiP, first, we prove that the cost function of mean
squared error, namely, f(x) = 1

N

∑k
i=2(xi − x̃i)

2 (See
Section II-C 2) and Fig. 1(b) ) is convex.

Lemma 2. (Affine transformations preserve convexity [56]).
If f is convex, then g(x) = f(Ax+ b) is also convex.

Lemma 3. (Non-negative weighted sum preserve convex-
ity [56]). If f1, f2, · · · , fk are convex, then f = β1f1 +
β2f2+ · · ·+βkfk is also convex, when β1, β2, · · · , βk ≥ 0.

As 1
N

∑k
i=2 ||x||2is convex, the MSE f(x) = 1

N

∑k
i=2(xi−

x̃i)
2 is convex by Lemma 2 and Lemma 3, which satisfy

the requirement of Adam that the cost function is convex.
Second, we use the gradient norm clipping method to ensure
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that the gradients during the training process are bounded,
which satisfy the conditions of Theorem 1. Therefore, the
convergence of TaHiP is guaranteed. We plot the curves of
train loss and test loss during the training processes of TaHiP
in Fig. 9.

Fig. 9: Train loss and test loss vs training epochs of TaHiP
applied to hypergraph contact-high-school.

Fig. 9 shows that, during the training process of TaHiP, the
test loss decreased simultaneously with the train loss and con-
verged quickly, proving the effectiveness of the algorithm. The
training process of TaHiP being applied to other hypergraphs
is similar.

APPENDIX C
COMPLEXITY ANALYSIS OF TAHIP

The time complexity of TaHiP could be estimated as

TCtrain(N,E) = O(k ·M · batch size · (2N + 3N · E))

= O(N · E),

TCprediction(N,E) = O(T ·N · E) = O(N · E),

where TCtrain is the time complexity of the training part of
TaHiP, TCprediction is the time complexity of the prediction
part, the random window length k = 100, the number of
training epochs M = 1000, the size of a batch of training
samples batch size = 4, prediction time steps T = 1500,
the number of nodes N and the number of hyperedges E
vary with specific hypergraph. The training time of TaHiP
increases linearly with the number of nodes of the hypergraph
for prediction.

The storage space of TaHiP is

Space(train) ≈ batch size ·N · [4 ·E · (k + 1) + 1] , (32)

Space(prediction) ≈ N · E · (T + 1) , (33)

where batch size = 4, k = 100, T = 1500, the number of
nodes N and the number of hyperedges E vary with specific
hypergraph. The space complexity of TaHiP is O(N ·E), which
increases linearly with the number of nodes of the hypergraph.
We attribute the cost-effectiveness of TaHiP to the limited size
of training parameters (the elements of an N × E matrix).
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