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Optimal Induced Spreading of SIS Epidemics
in Networks

Zhidong He and Piet Van Mieghem , Member, IEEE

Abstract—Induced spreading aims to maximize the in-
fection probabilities of some target nodes by adjusting the
nodal infection rates, which can be applied in biochemical
and information spreading. We assume that the adjustment
of the nodal infection rates has an associated cost and
formulate the induced spreading for susceptible-infected-
susceptible (SIS) epidemics in networks as an optimization
problem under a constraint on total cost. We address and
solve both a static model and a dynamic model for the opti-
mization of the induced SIS spreading. By numerical results
in some artificial and real networks, we investigate the ef-
fect of the network topology on the optimal induced strategy
with a quadratic cost function. In the static method, the in-
fection rate increment on each node is coupled to both the
degree and the average hops to the targets. In the dynamic
method, we show that the effective resistance could be a
good metric to indicate the minimum total cost for targeting
a single node. We also illustrate that the minimum total cost
increases much more slowly with the increasing fraction of
targets in the SIS model than in linear control systems.

Index Terms—Network analysis and control, network
topology, virus spread.

I. INTRODUCTION

S INCE the earliest account of mathematical modeling of dis-
eases was proposed by Daniel Bernoulli in 1766, epidemic

models help us to better understand dynamics of spreading pro-
cesses [1]. Spreading in networks can describe many physical
phenomena and human activities, such as information spread-
ing on social networks, biological diseases [2], and computer
viruses on cyber-physical networks [3]. Some previous research
investigated the strategies to eliminate or control the spreading
of viruses as quickly as possible [4]. The optimal epidemics
control problem for mean-field models can be converted into a
spectral control problem, e.g., how to decrease the spectral ra-
dius of a graph [5] more efficiently by some strategies (e.g., link
removals)? Preciado et al. [6] proposed the budget-constrained
allocation problem and present a solution framework based on
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geometric programming to control the epidemics by adjusting
the infection rates and the curing rates of nodes.

Although the existing work on controlling the spreading has
presented some useful proposals and frameworks on a micro-
scopic level, the previous research focuses on the performance
of the whole network. Induced spreading or targeted spreading
is a more general task, which aims to maximize (minimize) the
infection probability of some specific nodes instead of all nodes
in the network. The induced spreading problem is first intro-
duced by Sun et al. [7] for identifying the single best spreader if
the spreading only aims to cover a specific group of nodes. The
induced spreading problem is inspired by many real applica-
tions. In the biochemical application, induced spreading can be
applied for targeting biochemical cascades to treat cancer [8].
We prefer to guide the drug to reach affected areas effectively
with a minimum dose to reduce side effects. In the context of
information spreading, some advertisements (e.g., cigarettes) on
the Internet should reach as much as possible to the potential
customs; and a strategy for active cyber defense [9] based on
spreading patches for targeting the infected computers should
be designed.

Notwithstanding the importance of the induced spreading, the
methods and properties of the induced spreading have been con-
sidered only in a few works [7], [10]. In this paper, we focus on
the susceptible-infected-susceptible (SIS) model and specialize
in the optimal induced spreading problem in networks. We ad-
dress two optimization models: the static and the dynamic. The
static optimization aims to maximize the sum of the steady-state
infection probabilities of the target nodes, under a constraint on
the nodal infection rates. In the dynamic optimization, we model
the induced spreading as an optimal control problem for maxi-
mizing the cumulative infection probabilities of the target nodes
in a time interval, where the time-dependent nodal infection rates
are the control variables. For the dynamic optimization, Lokhov
and Saad [10] proposed a framework for maximizing impact
in spreading processes based a message-passing [11] under the
assumption of a locally tree-like network. Instead, we formu-
late both optimization problems based on the heterogeneous
N-intertwined mean-field approximation (NIMFA) model [12],
[13] for better investigating the effect of topology on the induced
spreading behaviors.

We solve the static optimization problem by the differential
evolution (DE) algorithm [14], and solve the dynamic optimiza-
tion based on the optimality system. Furthermore, we investigate
the impact of the topological properties of the target nodes on
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the induced strategy by numerical results in some artificial and
real networks. We explore the behaviors of both the static and
dynamic induced spreading, as well as compare the performance
between these two optimization models.

This paper is organized as follows. Section II briefly intro-
duces the SIS model in networks and the heterogeneous NIMFA
model. We propose and solve the static optimization for the in-
duced spreading in Section III, and address the dynamic opti-
mization for the induced spreading in Section IV. In Section V,
we explore some properties of the induced strategy by numer-
ical results. We introduce the related work in Section VI and
conclude this paper in Section VII.

II. PRELIMINARIES AND MODEL

A. SIS Model in Networks

The SIS model is an epidemic model where each infected item
can be cured, and becomes susceptible again after recovering
from the disease [15]. We define a Bernoulli random variable
Xi(t) ∈ {0, 1} as the state of a node i at time t, with Xi(t) = 0
for the healthy state and Xi(t) = 1 for the infected state. The net-
work G with N nodes and L links is represented by an adjacent
matrix A, where aij = 1 if there is a link between node i and
node j, otherwise aij = 0. We denote by N = {1, 2, . . . , N}
the set of nodes in the network.

In Markovian SIS epidemics, both the curing and infection
processes are Poisson processes [15]. Since Xi is a Bernoulli
random variable, it holds that E[Xi(t)] = Pr[Xi(t) = 1], and
the exact SIS governing equation for node i equals

dE[Xi(t)]
dt

= E

[
−δXi(t) + β(1−Xi(t))

N∑
k=1

akiXk (t)

]
.

(1)
The ratio between the infection rate β and the curing rate δ is

called the effective infection rate τ = β/δ. The SIS model fea-
tures a phase transition [16], [17] around the epidemic threshold
τc . Viruses with an effective infection rate τ above the epidemic
threshold τc can infect a sizeable portion of the population on
average and stay for a long time in the network. This long period
is called the metastable state [18].

B. Heterogeneous NIMFA Model

In the NIMFA [2], the infection probability vi of node i that
approximates the exact E[Xi ] is given by the following first-
order nonlinear ordinary differential equation:

dvi(t)
dt

= β

N∑
j=1

aij vj (t)− vi(t)

⎛
⎝β

N∑
j=1

aij vj (t) + δ

⎞
⎠ . (2)

A first-order mean-field approximation of the epidemic thresh-
old τ

(1)
c = 1/λ1(A), where λ1(A) is the spectral radius of the

adjacency matrix A, was shown to be a lower bound, i.e.,
τ

(1)
c < τc , for the epidemic threshold [2], [17].

Heterogeneous infection is more realistic than the assumption
of homogeneity in real-world spreading processes. For example,
the transmission capacity per link in a data communication net-
work can be different. In social networks, people who are keen

on the social activities could spread a rumor more efficiently.
The individual behavior leads to a difference in the infection
rate βi and the curing rate δi . The heterogeneous NIMFA model
[12], [13] with the time-dependent infection rate βi(t) and the
curing rate δi(t) of node i is described by

dvi(t)
dt

= (1− vi(t))
N∑

j=1

aijβj (t)vj (t)− δi(t)vi(t). (3)

In this paper, we focus on a method to adjusting the nodal
infection rates βi(t) for the induced spreading. For simplicity
and without lack of generality, we normalize the curing rate by
δi(t) = 1 at any time for all nodes. Hence, the infection rate
βi(t) equals the effective infection rate τi(t).

III. STATIC OPTIMIZATION FOR INDUCED SPREADING

A. Problem Statements

The SIS process can stay in the metastable state for a much
longer time compared to the transient period if the effective
infection rate τ is above the epidemic threshold τc . Induced
spreading for a long term refers to the static optimization of
the steady-state infection probability vector v∞ = (v1∞, v2∞,
. . . , vN∞) by adjusting the infection rates βj for some nodes
j ∈ N . Static optimization is time-independent and has the ad-
vantage of operational simplicity. Specifically, the optimization
problem aims to maximize the total steady-state infection prob-
abilities of the nodes in the target set S

max
v∞,Δβ

J =
∑
i∈S

vi∞ (4)

subject to the steady-state NIMFA equation with the infection
rate βj = β̂ + Δβj of node j

(1− vi∞)
N∑

j=1

aij (β̂ + Δβj )vj∞ − vi∞ = 0, i, j ∈ N (5)

where β̂ is the original infection rate for all nodes, and the rate
increment vector Δβ = (Δβ1 ,Δβ2 , . . . ,ΔβN ) are the control
variables. Also, we have the constraint on the total cost budget

N∑
i=1

g(Δβi) ≤ C, i ∈ N (6)

where g(Δβi) is a convex function of the infection rate incre-
ment Δβi , and C denotes a prescribed positive constant for the
cost budget. Before solving this problem, we have Lemma 1 and
Theorem 1 as follows.

Lemma 1: The steady-state infection probability vi∞ of
any node i in the graph GN monotonically increases with the
infection rate βj of any node j.

Proof: See Appendix A.A. �
Theorem 1: The steady-state infection probability vi∞ of

node i is not always concave with respect to the infection rate
βj for i �= j.

Proof: See Appendix A.B. �
Since the diagonal element ∂ 2 vi∞

∂β 2
j

in the Hessian matrix of

the steady-state infection probability v∞ with respect to the
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infection rate increment Δβ could be positive according to
Theorem 1, the Hessian matrix is not negative semidefinite.
Thus, we conclude that the static optimization for induced SIS
spreading is not a convex program, which cannot be solved by
a simple method.

B. Global Optimization by DE

We further simplify the NIMFA constraint (5) by expressing
vi∞ explicitly, and only dependent on the infection rates β, but
not on any other vj∞ for j �= i. For any effective infection rate
τ ≥ 0, the nonzero steady-state infection probability vi∞ of any
node i in the NIMFA can expressed as a continued fraction
[2], [15]. We define the k-level infection probability for node
i as v

(k)
i∞ = 1− wi(k), where the kth convergent is wi(k) =

1
1+

∑ N
j = 1 ai j βj −

∑ N
j = 1 ai j βj wj (k−1)

with starting value wi(0) = 0

and limk→∞ wi(k) = 1− vi∞.
If the level k is large enough [2], the infection probability v

(k)
i∞

is sufficiently close to vi∞. By approximating the infection prob-
ability vi∞ by v

(k)
i∞ , the optimization problem can be reduced

to maxΔβ

∑
i∈S v

(k)
i∞ subject to the cost constraint (6). We fur-

ther reduce the inequality constraint
∑N

i=1 g(Δβi)− C ≤ 0 to
a penalty term by converting the objective to

min
Δβ

−
∑
i∈S

v
(k)
i + ζ max

{
0,

N∑
i=1

g(Δβi)− C

}
(7)

where ζ is the penalty parameter. If the constraint is violated
during the optimization process, the penalty term feeds the de-
viation to the objective function and draws the solution to the
feasible region.

Since Problem (7) is multidimensional and nonlinear, we pro-
pose an approach based on the DE algorithm to solve the con-
strained optimization problem. DE can approximate the global
optima of a nonlinear program, which was proposed by Storn
and Price [14]. The DE algorithm resembles other traditional
evolution algorithms like genetic algorithms (GA), and can rep-
resent the solution domain of Δβ by real numbers. The DE
algorithm has the advantage of implementation simplicity over
other nongenetic global optimization algorithms, e.g., the per-
formance of simulated annealing algorithm is sensitive to the
cooling rate and the initial solution. Also, the DE algorithm
[19], [20] is usually more efficient and accurate than several
other optimization methods, e.g., simulated annealing and GA.
The proposed DE method is based on population generation,
mutation, crossover, and selection. The implementation is pre-
sented in Algorithm 1 (see Appendix B).

IV. DYNAMIC OPTIMIZATION FOR INDUCED SPREADING

A. Problem Statements

Dynamic optimization is a more general and more flexible
method for the induced spreading. The infection rate increment
Δβ(t) = (Δβ1(t),Δβ2(t), . . . ,ΔβN (t)) is time dependent in
the dynamic optimization, which is different from the static
optimization. Specifically, the dynamic optimization for the in-
duced spreading aims to maximize the total cumulative infection

probability vi(t) of the nodes in the target set i ∈ S in the time
interval [t0 , tf ], i.e.,

max
Δβ (t)

J =
∫ tf

t0

∑
i∈S

vi(t)dt (8)

subject to the NIMFA equation

dvi(t)
dt

= (1− vi(t))
N∑

j=1

aij (β̂ + Δβj (t))vj (t)− vi(t),

i, j ∈ N (9)

and the constraint on the cumulative cost in the time interval
[t0 , tf ] ∫ tf

t0

∑
i∈N

g(Δβi(t))dt ≤ C, i ∈ N (10)

where C is a prescribed cost budget. The dynamic optimization
for induced SIS spreading is a control-affine nonlinear model
[21] with the integral constraint (10), which cannot be solved
by the standard methods for linear–quadratic regulator (LQR)
problems.

B. Optimal Solution

We first introduce an additional control variable z and rewrite
the cost constraint (10) as

dz(t)
dt

=
∑
i∈N

g(Δβi(t)) (11)

with z(t0) = 0 and z(tf ) = C, where t0 is the initial time and
tf is the final time. Then, the corresponding Hamiltonian is

H(v,Δβ,θ, μ) =
∑
m∈S

vm + μ
∑
i∈N

g(Δβi(t)) (12)

+
N∑

i=1

θi

⎡
⎣(1− vi)

N∑
j=1

aij (β̂j + Δβj )vj − δvi

⎤
⎦ (13)

where the parameter θ = (θ1 , θ2 , . . . , θN ) and μ are undeter-
mined. Next, we present the optimality conditions for the dy-
namic optimization.

Theorem 2: Suppose Δβ∗(t) is an optimal control for
the problem, and v∗(t) is the optimal solution with Δβ(t) =
Δβ∗(t). Then, there exist functions θ∗(t) and μ∗(t), such that⎧⎪⎪⎨
⎪⎪⎩

dθ∗i
dt = χi + θ∗i (

∑N
j=1aij β̂j v

∗
j + 1)− β̂i

∑N
j=1aij (1− v∗j )θ

∗
j

i ∈ N
dμ∗
dt = 0

(14)
with the terminal (transversality) conditions μ∗(tf ) = 0 and
θ∗i (tf ) = 0 for i = 1, 2, . . . , N , where χi = −1 for i ∈ S, and
χi = 0 for i /∈ S.

Furthermore, the optimal control variable Δβ∗(t) obeys

dg(Δβ∗i )
dΔβ∗i

= − 1
μ

v∗i
N∑

j=1

aij (1− v∗j )θ
∗
j , i ∈ N . (15)
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Proof: According to the Pontryagin Maximum Principle
[22], we can obtain the costate equations as⎧⎪⎪⎨

⎪⎪⎩
dθ∗i
dt

= −∂H(v∗,Δβ∗,θ∗, μ∗)
∂vi

dμ∗

dt
= −∂H(v∗,Δβ∗,θ∗, μ∗)

∂z

(16)

for t0 ≤ t ≤ tf and i = 1, 2, . . . , N . Direct computing (16)
yields the (14). According to the optimality condition H(v∗,
Δβ∗,θ∗, μ∗) = minΔβi

H(v∗,Δβ,θ∗, μ∗), we obtain that the
optimal control Δβ∗i (t) for t0 ≤ t ≤ tf and i = 1, 2, . . . , N
obeys

∂H(v∗,Δβ,θ∗, μ∗)
∂ui

= μ∗
dg(Δβ∗i )
dΔβ∗i

+ v∗i
N∑

j=1

aij (1− v∗j )θ
∗
j = 0. (17)

The optimality conditions include the state (9), the costate (14),
and the stationary (15). �

The method of adapted forward backward sweep [21] with a
Runge–Kutta fourth-order scheme is applied to solve the opti-
mality system. The convergence of this method is given in [23].

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we investigate the behaviors of the induced
SIS spreading by numerical results in some artificial and real
networks. We define the quadratic cost function as g(Δβi) =
(Δβi)2 in the static method and g(Δβi(t)) = (Δβi(t))2 in the
dynamic method for i = 1, 2, . . . , N . Since the control inputs
are generally related to the external force or the electric cur-
rent, the cumulative quadratic cost can be interpreted as the
control energy [24], [25]. Applying the quadratic cost function
also helps to compare the behavior of the induced spreading
model with other existent models, e.g., LQR model. In order to
guarantee the induced SIS spreading without extinction, we set
the original constant infection rate β̂ = τ

(1)
c = 1

λ1
, and the in-

fection probability vi(t) ≈ 0 for all nodes. Thus, the additional
cost C for the induced spreading leads to a positive payoff on
the infection probabilities of nodes.

A. Numerical Results in the Static Optimization

1) Payoff Versus Cost Budget for a Single Target Node:
We first investigate the impact of the cost budget C for targeting
a single node in the static model. Fig. 2 presents the payoff
B = J(Δβ∗) as a function of the cost budget C for a single
target node in the lattice network L3×5 in Fig. 1(a). Fig. 2 shows
that the payoff B of the target node for the same cost budget
C depends on the topological properties of the target node. The
target node with a larger degree (e.g., node 2 and 3) can obtain
a higher payoff for the same cost budget C.

2) Cost Allocation in Static Optimization: We apply our
methods to the Karate network [26] with N = 34 nodes, as illus-
trated in Fig. 1(b). Fig. 3 compares the time-dependent payoff
B(t) after the optimal cost allocation in the exact Markovian

Fig. 1. Illustration of the network topologies. (a) Lattice network L3×5
with N = 15 nodes. (b) Karate network with N = 34 nodes.

Fig. 2. Payoff B = J (Δβ∗) in the static optimization as a function of
the cost budget C for a single target node in the lattice network L3∗5 .

Fig. 3. Time-dependent payoff B(t) after the static optimization with
a determined cost budget C for |S| = 5 randomly selected target nodes
in the Karate network. The spreading processes start from the initial
spreader 34. The payoff B(t) in the exact model is obtained from the
simulations based on Gillespie algorithm [18] by averaging 104 realiza-
tions.

model and NIMFA. The payoffs B(t) in both models follow
a similar behavior, and the gap in the payoff between NIMFA
and the exact model decreases for a larger cost budget C. Since
NIMFA usually provides an upper bound of infection proba-
bility in the SIS spreading process [2], the exact payoff is also
upper-bounded by the payoff in NIMFA.

For the static optimization, it is of practical significance to
investigate the cost allocation on the nodes in the network. We
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Fig. 4. (a) Relation between the optimal rate increment Δβ∗i on node
i and the degree di for different number of target nodes |S|. (b) Relation
between the optimal rate increment Δβ∗i on node i and the average
target distance h̄i . The target nodes are randomly selected in the Karate
network with N = 34 nodes.

define the average target distance h̄i as the mean of all the
minimum hops hij from node i to the target nodes j ∈ S, i.e.,
h̄i = 1

|S|
∑

j∈S hij , where |S| denotes the number of targets.
Since the infection rate βj does not directly influence the infec-
tion probability vj∞ of node j, the actual minimum hops of the
influence on infection probability vj∞ by the infection rate βj is
two hops. Hence, we set hjj = 2 instead of hjj = 0 to compute
the average target distance h̄j for the target node j ∈ S.

Fig. 4 shows the relation between the optimal rate increment
Δβ∗i and the topological properties of node i, e.g., the degree di

and the average distance h̄i , for different fraction of targets |S|.
We illustrate that both the degree di and the average distance h̄i

are highly related to the cost allocation on nodes. Specifically,
the node with a relatively high degree di and a shorter average
distance h̄i to the target nodes usually has a larger infection
rate increment Δβ∗i . The steady-state infection probability [2]
approximates

vi∞ ≈ 1− 1

1 +
∑N

j=1 aijβj

(
1− 1

1+
∑ N

k = 1 aj k βk

)

≈ 1− 1

1 +
∑N

j=1 aijβj

(
1− 1

1+dj βk

) (18)

assuming that the infection rate βk of the neighbors of node j
are the same. The infection rate increment on the node with a
larger degree dj among the neighbors of node i could provide
a larger payoff on the infection probability vi∞ of the target

Fig. 5. Optimal control Δβ∗(t) for the target node 4 with the initial
spreader 1 in the lattice network L3∗5 . The initial time is t0 = 0 and
the final time is tf = 5. (a) Optimal control Δβ∗(t) for the cost budget
C = 0.5. (b) Optimal control Δβ∗(t) for the cost budget C = 10.

node i. If the fraction of target nodes |S|N is relatively large, the
cost allocated on the node with a larger degree can benefit more
neighbors of this node, which leads to a stronger correlation
between the infection rate increment Δβ∗i and the degree di . In
Appendix C, we show more numerical results about the relation
between the optimal rate increment Δβ∗i and the degree di .

B. Numerical Results in the Dynamic Optimization

1) Induced Strategy for a Single Target Node: Dynamic
optimization is concerned with the spreading trajectory for steer-
ing the viruses from the initial spreader to the target nodes. We
first investigate the behavior of the optimal induced spreading
for a single target node. Fig. 5 shows the optimal control Δβ∗(t)
in the lattice network L3×5 in Fig. 1(a) with the single target
node 4 and the initial spreader 1, which illustrates that the be-
havior of the optimal rate increment Δβ∗(t) depends on the cost
budget C. For a small cost C [e.g., C = 0.5 in Fig. 5(a)], most
of the cost budget is allocated to the nodes on the shortest paths
from the initial spreader to the target node. For a large cost C
[e.g., C = 10 in Fig. 5(b)], the time-dependent optimal control
Δβ∗(t) can be divided into two periods: first steering the viruses
from the initial spreader to the target node, and then the control
inputs on the neighbors (e.g., Δβ∗5(t),Δβ∗8(t),Δβ∗9(t)) of the
target node 1 stay in a meta-steady state (e.g., t = 1.5− 4) to
maintain the infection probability of the target node.

We define the payoff B = J(Δβ∗(t)) with the optimal con-
trol Δβ∗(t) for the SIS induced spreading. Fig. 6 shows the
payoff B as a function of the cost budget C for a single target
node in the lattice network L3×5 . The logarithmic payoff log B
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Fig. 6. Payoff B = J (Δβ∗(t)) as a function of the cost C with the initial
spreader 1 for a single target node in the lattice network L3∗5 .

Fig. 7. (a) Minimum cost C ∗1j to make the target node vj for j =
2, 3, . . . , 15 be infected at least once in the time interval [0, 5], i.e.,∫ 5

0
vj (t)dt ≥ 1, in the Lattice network L3×5 . The spreading starts from

the initial spreader 1. (b) Relation between the minimum cost C∗1j and

the normalized shortest distance
h 1 j

m ax j ∈N h 1 j
as well as the normalized

effective resistance
ω 1 j

m ax j ∈N r 1 j
.

increases faster than a linear function with the logarithmic cost
budget log C for small cost budgets C, while the figure in Fig. 6
shows the relation B ∼ log C for larger cost budgets C. This
result is in agreement with the above-mentioned discussion on
the behavior of the optimal control Δβ∗(t). The small cost bud-
get mainly contributes to steering the viruses from the initial
spreader to the target nodes, and the payoff increases relatively
faster. The larger cost budget is mainly allocated to the neigh-
bors of the target nodes, and the payoff presents diminishing
returns, which approximates the induced strategy in the static
optimization (e.g., Fig. 2).

Fig. 8. (a) Optimal cost C ∗(s) as a function of the fraction of leaf targets
in the star K1 ,N with N leaf nodes. We set the central node as the initial
spreader and the leaf nodes as the targets. (b) Normalized average
cost E [C ∗(s)]

E [C ∗(1/N )] as a function of the fraction of target nodes s = |S|
N in

the ER random network Gp (16) with the link density p. Each average
optimal cost E [C ∗(s)] is obtained by 20 realizations. The time interval of
controlling is [t0 , tf ] with t0 = 0 and tf = 5.

2) Cost Scaling With the Topological Properties of a Sin-
gle Target Node: Furthermore, we investigate the cost scaling
with the topological properties of a single target node. Fig. 7
shows the minimum cost C∗ij that makes the target node vj be
infected at least once in the time interval [0, 5], i.e., the cumu-
lative infection probability J =

∫ 5
0 vj (t)dt ≥ 1, in the lattice

L3×5 with the initial infection node i. Intuitively, the minimum
cost C∗ij depends on the shortest distance (minimum hops) hij

from the initial spreader i to the target j because all the nodes
on the paths should be allocated some cost to steer the viruses
to the target. Meanwhile, Fig. 7(a) illustrates that the minimum
cost C∗ij is also coupled to the number of paths from the initial
spreader i to the target node j, i.e., a larger number of paths
leads to a less cost C∗ij .

Inspired by Thompson’s principle [27] that the minimum en-
ergy dissipation is related to the effective resistance in electric
circuits, we introduce the effective resistance ωij between node
i and node j as ωij = (Q†ii + Q†jj − 2(Q†ij )), where Q† is the
pseudoinverse of the Laplacian matrix Q of the network topol-
ogy. Van Mieghem et al. [28] showed that the best conducting
node j in a graph as the minimizer of the diagonal element Q†jj

of the pseudoinverse matrix Q†. Fig. 7(b) shows that the relation
between the optimal cost C∗1j with the initial spreader 1 and the

normalized shortest distance h1 j

maxj ∈N h1 j
as well as the normal-
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Fig. 9. (a) Comparison of the payoff B in the static optimization and the dynamic optimization with the cost budget C in the Karate network. The
initial spreader is node 2 and the target node is node 25. The time interval of controlling is [0, 5]. (b) Optimal control Δβ∗ in the static method (dash
lines) and Δβ∗(t) in the dynamic method (solid lines) with the cost budget C = 10 in the Karate network. (c) Normalized cost allocated on the node

i.e.,
t f −t0

C g(Δβ∗i ) for the static optimization and 1
C

∫ t f

t0
g(Δβ∗i (t)) as a function of the cost budget C .

ized effective resistance ω1 j

maxj ∈N ω1 j
. We obtain that the Pearson

correlation coefficient ρh between the minimum cost C∗1j and
the hops h1j is equal to ρh = 0.907. For the Pearson correlation
coefficient ρω between the minimum cost C∗1j and the effective
resistance ω1j , we obtain ρω = 0.983. This demonstrates that
the effective resistance is a good metric for the cost scaling for
a single target node in the induced spreading.

3) Cost Scaling With the Fraction of Target Nodes: In a
linear system, the optimal control energy (cost) C∗max for tar-
geted controlling in the worst case [29] has the scaling equation
log C∗max ∼ |S|

N , which implies that the cost C∗max increases fast

with the fraction s = |S|
N of target nodes. We will show that

the behavior of energy scaling with the fraction of target nodes
in the SIS process is different. We compute the optimal cost
C∗(s) subject to the constraint on the average infection fre-
quency 1

|S|
∫ tf

t0

∑
i∈S vi(t)dt ≥ 1 of |S| target nodes in the SIS

spreading process. Then, we can obtain the average optimal
cost E[C∗(s)] with randomly selected |S| target nodes in the
network for multiple realizations.

In a star network K1,N with an initial central spreader, the
infection rate increment Δβ∗1(t) on the central node for a leaf
target could steer the viruses to other leaves simultaneously.
Thus, the increasing fraction s = |S|

N of the target leaves influ-
ences little on the required average minimum cost E[C∗(s)],
as shown in Fig. 8(a). Fig. 8(b) illustrates that the normalized
average cost

E[C∗(s)]
E[C∗(1/N)]

∼ η log
|S|
N

(19)

in the Erdős–Rényi (ER) random network Gp(N) with link
density p, where η is a parameter. The cost scaling law (19) is
different from targeting control in linear control systems [29].
In linear systems, the control input for controlling a target could
introduce perturbances for another target, which leads to more
additional effort to control multiple targets. In the spreading
process, the cost allocated on one node always benefit multiple
targets by steering the viruses to them. Furthermore, Fig. 8(b)
shows that the parameter η in (19) is coupled to the network
topology and decreases with the increasing link density p in
the ER random network. More nodes can benefit from the cost
allocated on a single node in a denser network with a higher

average degree. Thus, the less additional cost is required to steer
the virus to additional targets, which translates to a smaller η.

C. Comparison Between the Static Optimization and the
Dynamic Optimization

Two optimization methods, static and dynamic optimizations,
are proposed for the induced SIS spreading in the network.
We now compare their performance in the Karate network.
We rewrite the constraint (6) in the static method as

∑N
i=1

g(Δβi) ≤ C
tf −t0

where C is also the cost budget in the dynamic
method, and both methods have a same cost budget C in the
time interval [t0 , tf ]. Then, we compute the payoff in the static
method by B =

∫ tf

t0

∑
i∈S vi(t) by the NIMFA (2) with the con-

stant optimal solution Δβ∗(t) = Δβ∗ for any time in the static
optimization.

Fig. 9(a) shows that the dynamic method generally outper-
forms the static method for different cost budgets C. Specifi-
cally, the difference between both methods exhibits a maximum
around C = 10, and then decays slowly with the cost budget
C. Fig. 9(b) shows the optimal infection rate increment Δβ∗(t)
for the target node 25 with the initial spreader 2, where the
optimal control Δβ∗ is time-dependent for the dynamic opti-
mization and constant for the static optimization. The optimal
control vector Δβ∗(t) for the dynamic optimization (solid line)
exhibits a metastable state from t = 1− 4, and the optimal con-
trol Δβ∗ for the static optimization (dash line) approximates
the dynamic control Δβ∗(t) in the metastable state. Moreover,
Fig. 9(c) shows the normalized cost allocated on the node, i.e.,
tf −t0

C g(Δβ∗i ) for the static optimization and 1
C

∫ tf

t0
g(Δβ∗i (t))

for the dynamic, versus the cost budget C. The difference be-
tween the normalized cost in both optimizations also becomes
smaller for a larger cost budget C, which demonstrates that the
dynamic induced strategy approaches the static strategy with in-
creasing cost budget C. Thus, we suggest to apply the dynamic
optimization for a limited cost budget while the performance of
the static optimization is already good enough for an adequate
cost budget.

VI. RELATED WORK

Virus spread in networks has been deeply studied in recent
years [1]. The previous works on the SIS model involve the
epidemic threshold [12], [16], [17], the average fraction of
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infection nodes over time [30] and time-dependent properties
in SIS processes [18], [31]. The N-intertwined mean-field ap-
proximation [2] is a reasonably accurate approximation of the
exact SIS epidemics on a network [32].

Some previous research has investigated epidemics control
[4], which aims to stop the spreading as soon as possible. The
static optimization of epidemics control can be converted to a
spectral control problem, where a fixed number of resources
must be optimally allocated to best mitigate the effects of a
disease. Preciado et al. [6] proposed the budget-constrained
allocation problem and present a solution framework based on
geometric programming. Some greedy strategies of link removal
based on the topological properties of links for spectral control
are proposed [5], [33]. However, the solution by the greedy
strategies may deviate much from the optimum in some worst
cases [34]. The dynamic optimization, i.e., the optimal control,
of a deterministic epidemic is proposed in [35] and [36] and
solved by using Pontryagin’s maximum principle. The epidemic
processes on a network allow each individual to have its own
state, which makes the control strategy depend on the network
topology [37], [38].

The problem of influence maximization [39] has a similar
goal with the optimal induced spreading but different control
variables. Influence maximization aims to find the optimal initial
state (initial spreader) of a spreading, while the optimal induce
spreading aims to adjust the parameters of the SIS model under
the assumption that the initial spreaders are fixed.

VII. CONCLUSION

In this paper, we explore the induced SIS spreading on net-
works, which aims to steer the viruses to the target nodes as
much as possible by adjusting the nodal infection rates under a
limited cost budget. We provide two frameworks for the optimal
induced spreading: the static optimization and the dynamic op-
timization. We propose the algorithms for both the optimization
problems and further investigate the behavior of the induced
strategy by numerical results on networks with the constraint of
a quadratic cost function.

In the static optimization, the optimal infection rate incre-
ment of each node is highly related to the degree and its average
hops to the targets, while the degree dominates the nodal in-
fection rate increment for a large fraction of targets. In the
dynamic optimization, we show that the time-dependent opti-
mal infection rate increment exhibits two periods for a large
cost budget: steering the viruses from the initial spreader to the
target, and maintaining the infection probability of the target
by its neighbors. For a single target node, we show that the
effective resistance could be a good metric to indicate the cost
scaling. Furthermore, we illustrate that the cost scaling with the
fraction of targets has different behaviors to that of the targeted
controlling in linear systems, because the cost for increasing the
infection rate of one node usually benefits the infection proba-
bilities of multiple targets. Finally, we show that the dynamic
induced strategy approximates the static for a large cost budget.

Some problems of practical significance merit further study.
First, the induced SIS spreading problem can be generalized to
guide the infection to some target nodes while avoiding some

other specific nodes as much as possible. We suspect that some
results presented in this paper, such as the cost scaling with the
fraction of the targets, could change for the generalized problem.
Second, the topological properties of the most efficient spreader
[40] with a minimum total cost for the induced spreading is
worthy of study.

APPENDIX A
PROOFS OF LEMMA AND THEOREM

A. Proof for Lemma 1
Proof: According to the NIMFA (2), we have the steady-

state equation

(diag(1− vi∞)Adiag(βj )− I)v∞ = 0. (20)

By differentiation with respect to βj , we obtain⎧⎨
⎩

∑N
k=1 aikβk

∂vk

∂βi
− 1

(1−vi∞)2
∂vi∞
∂βi

= 0 if i = j∑N
k=1 ajkβk

∂vk

∂βi
− 1

(1−vj∞)2
∂vj∞
∂βi

+ ajivi∞ = 0 if i �= j.

Written in matrix form, we have(
Adiag(βi)− diag

(
(1− vi∞)−2) )

T1 + Adiag(v∞) = 0

(21)
where the element of the matrix T1 in the kth row and the qth
column is T1(kq) = ∂vk∞

∂βq
. For the matrix M1 := Adiag(βi)−

diag
(
(1− vi∞)−2

)
, it has been proved that all entries in M−1

1
are nonpositive [12], which implies that all entries in T1 =
M−1

1 (−Adiag(v∞)) are nonnegative. �
B. Proof for Theorem 1

Proof: By differentiation of (21) with respect to βj , we
obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑N
k=1aikβk

∂ 2 vk

∂βi
2 − 1

(1−vi∞)2
∂ 2 vi∞
∂βi

2

− 2
(1−vi∞)3

(
∂vi∞
∂βi

)2
= 0 if i = j∑N

k=1ajkβk
∂ 2 vk

∂βi
2 − 1

(1−vj∞)2
∂ 2 vj∞
∂βi

2

− 2
(1−vj∞)3

(
∂vj∞
∂βi

)2
+ 2aji

∂vi∞
∂βi

= 0 if i �= j.

Written in matrix form, we have(
Adiag(βi)− diag

1
(1− vi∞)2

)
T2 + 2Adiag

(
∂vi∞
∂βi

)

− 2diag
(
(1− vi∞)−3) T

(2)
1 = 0 (22)

where the element of the matrix T2 in the kth row and the
qth column is T2(kq) = ∂ 2 vk∞

∂βq
2 , and T

(2)
1(kq) = ( ∂vk∞

∂βq
)2 for the

matrix T
(2)
1 . In the matrix M2 := 2Adiag( ∂vi∞

∂βi
)− 2diag((1−

vi∞)(−3))T (2)
1 , the entries follows:

M2(ij ) = 2
∂vi∞
∂βj

(
aij − (1− vi∞)−3 ∂vi∞

∂βj

)
. (23)

Invoking that ∂vi∞
∂βi

is always nonnegative, the entries M2(ij )
in M2 could be nonpositive only when aij = 0. Unfortunately,
the sign of ∂ 2 vi∞

∂βj
2 cannot be determined and could be positive.

Therefore, the infection probability vi∞ is not always concave
to βj . We present a counterexample in Fig. 10. �
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Fig. 10. Infection probability v
(3)
1∞ and its second order partial derivative

∂2 v
(3)
1∞/∂Δβ2

2 as the function of Δβ2 with different original infection rate
β̂ in the example network G6 .

APPENDIX B
DE ALGORITHM

We propose the DE algorithm to solve the static induced SIS
spreading problem. The implementation is as follow.

Population generation: The jth vector of the population at
the kth generation is denoted as Δβj (k) = {Δβ1,j (k),Δβ2,j

(k), . . . ,ΔβN,j (k)}. The initial population vectors are gener-
ated considering the constraints on the variables. We choose the
initial generation as Δβi,j (1) = κΔβi , where κ is a uniformly
distributed random number on interval [0, 1].

Mutation: Mutation is a change or perturbation with a ran-
dom element. We choose three different vectors with indices
r1 , r2 , r3 ∈ {1, 2, . . . , Np} and construct the mutated vector
Δβj (k + 1) at the (k + 1)th generation as Δβj (k + 1) =
Δβr1 (k) + F (Δβr2 (k)− βr3 (k)), where F is a uniformly dis-
tributed random number on interval [Fmin, Fmax].

Crossover: Crossover is to enhance the potential diversity of
the population, which obeys

Δβi,j (k + 1) =

{
Δβi,j (k + 1) if κ ≤ R

Δβi,j (k) otherwise

where R is the crossover rate, which is a prescribe parameter of
the algorithm.

Selection: DE uses the greedy strategy to choose the better
vector to be the population in the next generation. The selection
operation is described as

Δβj (k + 1)

=

{
Δβj (k + 1) if J(Δβj (k + 1)) ≤ J(Δβj (k))

Δβj (k) otherwise.

The process of the DE algorithm for the static induced spreading
problem is presented in Algorithm 1.

APPENDIX C
MORE NUMERICAL RESULTS

Fig. 11 shows the relation between the optimal rate increment
Δβ∗i on node i and the degree di in the Les Misérables network
[41] and the dolphins network [42]. Fig. 11 shows that the

Fig. 11. Relation between the optimal rate increment Δβ∗i on node i
and the degree di for different number of target nodes |S|. The target
nodes are randomly selected. (a) Les Misérables network. (b) Dolphins
network.

Algorithm 1: Differential Evolution algorithm.
1: Inputs:

A, β, M , K, ε
2: Initialization:

Set k ← 1
Generate initial populations
Δβj (1), j ∈ {1, 2, . . . , NP }

3: for k = 1 to K do
4: for j = 1 to NP do
5: Select randomly r1 �= r2 �= r3 with r1 , r2 , r3
∈ {1, 2, . . . , NP } :jrand = randint(1, N)

6: for i = 1 to N do
7: if randj (0, 1) < R or j = jrand then
8: Δβi,j (k + 1) = Δβi,r1 (k)

+F (Δβi,r2 (k)−Δβi,r3 (k))
9: else

10: Δβi,j (k + 1) = Δβi,j (k)
11: end if
12: end for
13: if J(Δβj (k + 1)) ≤ J(Δβj (k)) then
14: Δβj (k + 1)←Δβj (k + 1)
15: else
16: Δβj (k + 1)←Δβj (k)
17: end if
18: end for
19: k ← k + 1
20: end for

correlation between the optimal rate increment Δβ∗i and the
degree di usually becomes stronger with the increasing number
of target nodes |S|.
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[31] A. Ganesh, L. Massoulié, and D. Towsley, “The effect of network topology
on the spread of epidemics,” in Proc. IEEE INFOCOM. 24th Annu. Joint
Conf. IEEE Comput. Commun. Soc., 2005, vol. 2, pp. 1455–1466.

[32] C. Li, R. van de Bovenkamp, and P. Van Mieghem, “The SIS meanfield
N-intertwined and Pastor-Satorras & Vespignani approximation: a com-
parison,” Phys. Rev. E, vol. 86, no. 2, 2012, Art. no. 026116.

[33] A. N. Bishop and I. Shames, “Link operations for slowing the spread of
disease in complex networks,” EPL (Europhys. Lett.), vol. 95, no. 1, 2011,
Art. no. 18005.

[34] M. Zargham and V. Preciado, “Worst-case scenarios for greedy, centrality-
based network protection strategies,” in Proc. 48th Annu. Conf. Inf. Sci.
Syst., 2014, pp. 1–6.

[35] R. Morton and K. H. Wickwire, “On the optimal control of a deterministic
epidemic,” Adv. Appl. Probab., vol. 6, no. 4, pp. 622–635, 1974.

[36] G. A. Forster and C. A. Gilligan, “Optimizing the control of disease
infestations at the landscape scale,” Proc. Nat. Acad. Sci., vol. 104, no. 12,
pp. 4984–4989, 2007.

[37] S. Eshghi, M. Khouzani, S. Sarkar, and S. Venkatesh, “Optimal patching
in clustered epidemics of malware,” IEEE Trans. Netw., vol. 25, no. 1,
pp. 283–298, Feb. 2015.

[38] L. Yang, X. Yang, and Y. Wu, “The impact of patch forwarding on the
prevalence of computer virus: A theoretical assessment approach,” Appl.
Math. Model., vol. 43, pp. 110–125, 2017.
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