
1

Decentralized Protection Strategies
against SIS Epidemics in Networks

Stojan Trajanovski, Student Member, IEEE, Yezekael Hayel, Member, IEEE, Eitan Altman, Fellow, IEEE,
Huijuan Wang, and Piet Van Mieghem, Member, IEEE

Abstract—Defining an optimal protection strategy against
viruses, spam propagation or any other kind of contamination
process is an important feature for designing new networks and
architectures. In this work, we consider decentralized optimal
protection strategies when a virus is propagating over a network
through a SIS epidemic process. We assume that each node in
the network can fully protect itself from infection at a constant
cost, or the node can use recovery software, once it is infected.

We model our system using a game theoretic framework
and find pure, mixed equilibria, and the Price of Anarchy
(PoA) in several network topologies. Further, we propose both a
decentralized algorithm and an iterative procedure to compute a
pure equilibrium in the general case of a multiple communities
network. Finally, we evaluate the algorithms and give numerical
illustrations of all our results.

Index Terms—Game theory; Decentralized network protection;
Virus-spread

I. INTRODUCTION

Virus spread processes in networks can be explained, using
epidemic models [1], [2], [3], [4], [5]. The probability of
infection, especially in the steady-state, in relation to the
properties of the underlying network has been widely studied
in the past [1], [2]. We consider the Susceptible Infected
Susceptible (SIS) model, which is one of the most studied
epidemic models [1], [6]. In the SIS model, the state of each
node is either susceptible or infected. The recovery (curing)
process of each infected node is an independent Poisson
process with a recovery rate δ. Each infected node infects
each of its susceptible neighbors with a rate β, which is
also an independent Poisson process. Immunization [7], [8]
(e.g. via antivirus software) or quarantining [9] (via modular
partitioning) fully prevent nodes from being infected, while
additional tools, like anti-spyware software, can clean the virus
from an infected node. Finally, the network can be modified
to increase the epidemic threshold [10].

This paper considers investment games that find appropriate
protection strategies against SIS virus spread. In particular,
we consider a game, in which, each node is a player in
the game and decides individually whether or not to invest
in antivirus protection. Further, if a host does not invest in
antivirus protection, it remains vulnerable to the virus spread
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process, but can recover (e.g., by a system recovery or clean-up
software). The cost or negative utility of each node (player)
is: (i) the investment cost, if the node decides to invest in
antivirus software or in the opposite case: (ii) the cost of being
infected, which is proportional to the infection probability in
the epidemic steady-state.

Models in game theory describe complex systems, in which
several decision makers optimize their own objective and
interact together. In our setting, the decision of each node
has a natural impact on the cost of the other players through
the network structure and the epidemic dynamics. In fact, a
node which is not protected would be a potential relay of the
virus. Moreover, a node protecting itself additionally induces
a protection to its neighbors. This last concept is known as
a “positive externality effect” in economic game theory [11].
Finally, as the network under study may be potentially large,
we look for a scalable optimal strategy, which is given by the
equilibrium of a game. Thus, a game theory model is suitable
to study such decentralized protection strategy problem in a
network.

Our main contributions are summarized as follows:

1) We prove that the game on a single community/full
mesh network is a potential game by showing that it
is equivalent to a congestion game. Subsequently, we
determine a closed-form expression for the unique pure
equilibrium. We also prove the existence and uniqueness
of a mixed equilibrium.

2) We provide a measure of the equilibrium efficiency
based on the Price of Anarchy (PoA) and propose
a simple, fully decentralized Reinforcement Learning
Algorithm (RLA) that converges to the equilibrium.

3) We extend our equilibrium analysis to bipartite net-
works, where we show that multiple equilibria are
possible. At an equilibrium, the number of nodes that
invest in one partition is often close to the number of
nodes that invest in the other partition.

4) In a multi-communities network, in which several com-
munities are communicating through a single core node,
we introduce the concept of parametric potential games,
and subsequently, show the convergence of an iterative
procedure to a pure Nash equilibrium. Here, we also
show that the iterative procedure can be used to find the
metastable stationary infection probability of the core
node that links all the communities.

The paper is organized as follows. An overview of decen-
tralized protection strategies, epidemics and game theory is
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given in Section II. The SIS epidemic model is introduced
in Section III. Sections IV and V describe the game models
in a single community (full mesh) and bipartite network,
respectively and subsequently prove game theoretic results.
In Section VI, we study the potential parametric games and
equilibrium properties in a multi-communities network. Evalu-
ation of the RLA algorithm, its convergence to the equilibrium
point and numerical illustrations are given in Section VII. We
conclude in Section VIII. The proofs of the propositions and
corollaries are given in Appendices A, B and C.

II. RELATED WORK

Virus spread processes in networks have been studied in
the past [1], [2], [3], [4], usually considering the number of
infected nodes [1] over the time and in stationary regimes, the
epidemic threshold [2] or the relation with eigenvalues [12].
One of the widely explored Susceptible Infected Susceptible
(SIS) approximations is the N-intertwined mean-field approx-
imation NIMFA [1], [6].

Game theoretical studies for network problems have been
conducted, in routing [13], [14], network flow [15], workload
on the cloud [16] or optimal network design [17], [18],
employing standard game-theoretic concepts [19], [20] such
as pure Nash or mixed equilibrium. The Price of Anarchy
(PoA) [21], [20] is often used as an equilibrium performance
evaluation metric.

Game theory has been used in several studies [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31] related to epidemic
protection or curing, for example, in a generalized game
settings [26] without considering the infection state of the
neighbors; by assigning nodal weights to reflect the security
level [25] etc. Omić et al. [22] tune the strength of the nodal
antivirus protection i.e. how big those (different) δ should be
taken. Contrarily to [22], (i) we fix the curing and infection
rates, which are not part of the game, and the decision consists
of a player’s choice to invest in an antivirus or not; (ii) we also
consider mixed strategies Nash Equilibrium and (iii) propose
a convergence algorithm to the equilibrium point. The goal
of [22] is in finding the optimal curing rates δi for each
player i, while this paper targets the optimal decision of
taking an anti-virus that fully protects the host, because today’s
antivirus software packages provide accurate and up-to-date
virus protection.

III. SIS EPIDEMICS ON NETWORKS

We consider a connected, undirected and unweighted net-
work G with N nodes. The virus behaves as an SIS epidemic,
where an infected node can infect each of its direct, healthy
neighbors with rate β. Each node can be cured at rate δ,
after which the node becomes healthy, but susceptible again to
the virus. Both infection and curing process are independent
Poisson processes. All nodes in the network G are prone to a
virus that can re-infect the nodes multiple times.

We denote the viral probability of infection for node i at
time t by vi (N ; t). For each node i of the graph with N nodes,
the SIS governing equation, under the standard N -Intertwined

mean-field approximation (NIMFA) [32], is given by

dvi (N ; t)

dt
= −δvi (N ; t) + β(1− vi(N ; t))

N∑
j=1

aijvj (N ; t) , (1)

where aij = 1, if nodes i and j are directly connected
by a link, otherwise aij = 0. The physical interpretation
of (1) is the following: the infection probability of a node
i changes over time by two competing processes: (i) each
infected neighbor of node i tries to infect him with Poisson
rate β, while node i is healthy (with probability 1−vi(t)), and
(ii) node i can be cured with a Poisson rate δ, while infected
with probability vi(t).

We further confine ourselves to the stationary regime of the
SIS epidemic process, meaning lim

t→∞
dvi(N ;t)

dt = 0. We denote

the spreading rate τ = β
δ and vi,∞(N) = lim

t→∞
vi (N ; t) the

probability of node i being infected in the stationary regime. In
the stationary regime, based on (1), vi,∞ (N) can be expressed
as [1], [32],

vi,∞(N) = 1− 1

1 + τ
N∑
j=1

aijvj,∞(N)

(2)

for ∀i = 1, 2, . . . , N . These steady-state equations only have
two possible solutions: (i) the trivial vi∞(N) = 0, corre-
sponding to the exact absorbing state in SIS epidemics, and
(ii) the non-trivial solution (vi∞(N) 6= 0), corresponding to
the metastable SIS regime. In this paper, we focus on the
metastable SIS regime.

The infection probabilities can be substantially different
after some nodes decide to invest in protection, causing those
nodes not to be part of the epidemic process. Motivated by so-
cial networks, we start with a single community network, then
continue with a general multi-community network as a model
of social or ego-centric social networks [33]1. The single
community game can be regarded as a simpler and special case
of the multi-community social network, however, the game on
a complete graph can also be applied in full mesh wireless
networks (e.g., MANETs). A multi-community network can
be used for modeling a network, where nodes are connected
if they belong to the same community school, institution,
geographical location, interest in sport or music activities.
These communities may weakly overlap with a small number
of nodes that belong to multiple communities. A different
type of a 2-communities network is the bipartite graph. A
bipartite graph models two communities, where nodes do not
communicate internally in their community, and there is only
inter-communities communication. Like the single community
network, the bipartite network has applications, different from
social networks, to reliable client-server dependences: the
topology of the Amsterdam Internet Exchange is designed as
a bipartite network such that all the locations in Amsterdam
are connected to two high throughput Ethernet switches; the
topologies of sensor networks are also bipartite graphs.

1An ego-centric social network is a network of a user and its (online)
friends.
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A. Single community (full mesh) network
We first consider a single community (or full mesh) net-

work, modeled as a complete graph KN , where aij = 1 for
all i and j. If some nodes are removed from the original
graph, the resulting graph Kn is also a complete graph, where
n ∈ {0, 1, . . . , N}. By symmetry, all vi,∞(n) are equal. For
simplicity, we use the notation v∞(n) = vi,∞(n). From (2),
we have [1], [6],

v∞(n) = vi,∞(n) =

{
1− 1

τ(n−1)
, if τ ≥ 1

n−1
and n ≥ 2,

0, otherwise
(3)

for each node i in a complete graph.

B. Bipartite network

The bipartite network KM,N consists of two clusters, M
and N , with M and N nodes, such that a node from a cluster
is connected to all the nodes from the other cluster and is not
connected to any node within his own cluster as illustrated in
Fig. 1a. Therefore, there are exactly (M+N) nodes and MN
links in the network.

M N

(a)

N1

N2

N3

(b)

Fig. 1: (a) An example of a bipartite graph and (b) an example
of a multi-communities network.

If some nodes are removed from the original graph, the
resulting graph is again a bipartite graph Km,n, where m and
n are the number of the remaining nodes in the clusters M
and N , respectively.

The system of governing equations (2), for Km,n, reduces
to [1], [34]

v(M)
∞ (m,n) =

τ2mn− 1

τm(τn+ 1)
and v(N )

∞ (m,n) =
τ2mn− 1

τn(τm+ 1)
(4)

where v(M)
∞ (m,n) and v(N )

∞ (m,n) are the infection probabil-
ities in clusters M and N , respectively.

C. Multi-communities network

We consider the multi-communities network composed of
M cliques/communities {Nm | m = 1, 2, . . . ,M}, where
each community has size |Nm| = Nm + 1. Furthermore,
we assume that each sub-network is connected to any other
sub-network by a core node, and all communities overlap
(communicate) only via one node as shown in Fig. 1b. The
core node does not participate into the game and cannot invest
in an anti-virus protection. The total number of nodes in this
network is 1+

∑M
m=1Nm. This communities network is highly

modular [35] and has the property that after removing some

nodes from arbitrary communities, the resulting graph is still
a communities network with communities sizes (nm + 1) for
all m. The degree of any node i, which belongs to community
Nm, but is not the core node, is equal to nm.

The core node functions as a bridge between all communi-
ties: the M fully connected graphs are interconnected through
one common node. We will compute the infection probability
for each non-core node in each community as a function of
the infection probability of a core node. Different communities
might have different virus-spread dynamics. We consider the
more general in-homogeneous SIS model, see e.g., [36], [37],
with different effective infection rate τm for each community
Nm. We use NIMFA and obtain for ∀m = 1, 2, . . . ,M ,

v(Nm)
∞ (nm, u∞) = 1− 1

1 + τm(nm − 1)v
(Nm)
∞ + τmu∞

(5)

where v(Nm)
∞ is the metastable state infection probability for

any non-core node of community Nm and u∞ is the infection
probability for the core node. v(Nm)

∞ is a function of nm and
u∞.

All three considered classes of networks have a common
property: with the exception of the core node in the multi-
communities network, if a node decides to invest in antivirus
protection, the resulting (induced) overlay graph still belongs
to the same class as the initial graph, only with less nodes.
There are not many such classes of networks and this property
is crucial in the game-theoretic analysis.

IV. GAME MODEL ON A SINGLE COMMUNITY NETWORK

In the investment game on the complete graph KN , each
node is a player and decides individually to invest in antivirus
protection. The investment cost is C, while the infection cost is
H . When a node invests, it is assumed to be directly immune to
the virus and not part of the epidemic process anymore. Hence,
this node cannot infect other nodes nor can be infected. If a
node does not invest in antivirus protection, it is prone to the
epidemics and might be infected by the virus (with rate β), but
also can use additional protective mechanisms, like recovery
or anti-spyware software (with rate δ). The induced network,
without the nodes that decide to invest, is also a complete
graph and it influences on the epidemic spread process.

A. Pure strategies

The investment cost for any player is a constant C and
does not depend on the action of the other players. If a player
i decides not to invest, his cost is a linear function of its
infection probability vi,∞(n) in the metastable state of the
SIS process. The probability vi,∞(n) depends explicitly on the
number of nodes n that decide not to invest. In other words,
there is an initial contact graph G = KN in which all the
nodes are connected and the decisions of all the nodes induce
an overlay graph Kn only composed of the nodes that have
decided not to invest.

1) Congestion Game: Each node has the choice between
two actions: invest (further denoted by 1) or not (further
denoted by 0). The negative utility of a player, in case he
does not invest, depends on the number of players that choose
the same action (0) not to invest. We denote by σi ∈ {0, 1}
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the action of node i. For example, the cost Si1 of a player
i ∈ {1, 2, . . . , N} which decides to invest is defined by:
Si1 = C := S1, while the cost of a player i which decides
not to invest is: Si0(n) = Hvi,∞(n) := S0(n). This game is
a congestion game [38] as the cost of a player depends on
the number of players that choose his action. In the context
of a congestion game, a (pure) Nash equilibrium is a vector
of (pure) strategies, characterized by the number of nodes n∗

that do not invest. We remark that several Nash equilibria lead
to the same n∗. The conditions for pure Nash Equilibrium are
given in Definition 1.

Definition 1. At a Nash equilibrium, no node has an interest
to change unilaterally his decision. The number n∗ of nodes
that do not invest at a Nash equilibrium is defined for any
player i, by: Si1 ≤ Si0(n∗ + 1) and Si0(n∗) ≤ Si1.

Our game is symmetric as all players share the same
set of cost functions. The following important property (in
Proposition 1) says that our game is not only a congestion
game but also a potential game, due to the potential formula
in [39, Theorem 3.1]. As mentioned in Section III-A, we
denote v∞ = vi,∞ for ∀i in this case.

Proposition 1. The game is a potential game, where Φ(n) =
C(N − n) + H

∑n
j=2 v∞(j) is the potential function of the

game.

The existence of a potential function in a game shows
the existence of pure Nash equilibrium: any minimum of the
potential function Φ is a pure equilibrium. The existence also
allows decentralized procedures like best response dynamics or
reinforcement learning [40], [41] to converge to the pure Nash
equilibrium. We can assume, for example, that an investment is
valid only for a fixed amount of time and then each node pays
again after expiration of his license. The Nash Equilibrium is
fully determined by the number of nodes n∗ that do not invest
and this is given in Proposition 2.

Proposition 2. For the number of nodes n∗ that do not invest
at equilibrium, the following inequality holds:

v∞(n∗) ≤ C

H
≤ v∞(n∗ + 1).

Moreover, above the epidemic threshold (τ > 1
N−1 ), n∗ is

uniquely defined by:

n∗ =

{
min

{
N, d 1

(1− C
H

)τ
e
}
, if C < H

N, otherwise
(6)

where dxe is the closest integer greater or equal than x and
N is the total number of nodes.

2) Performance of the equilibrium: In order to evaluate
the performance of the system, considering a non-cooperative
behavior of each node, we use the Price of Anarchy (PoA)
metric [21]. We define the social cost S(n) of this system,
when n users do not invest, as the summation of the cost for
all users:

S(n) =
N∑
i=1

Siσi(n) = C(N − n) + nHv∞(n) (7)

We define nopt such that: nopt = arg minn S(n), while the
Price of Anarchy, considering pure strategies, is defined by:

PoAp =
S(n∗)

S(nopt)
≥ 1.

Before determining the Price of Anarchy, we characterize the
globally optimal solution for the minimal social cost.

Proposition 3. The value that minimizes the social cost is
nopt ∈ {N, d1 + 1

τ e}.

Corollary 1 expresses the relation of the numbers of node
that do not invest in a Nash Equilibrium and the optimal
solution.

Corollary 1. The equilibrium value n∗ is at least as large as
the optimum value nopt, thus n∗ ≥ nopt.

We have determined n∗ and nopt in Propositions 6 and 3,
respectively. Via (7), we can find PoAp in an exact, but rather
complex form. Moreover, we can obtain a simple upper bound
for PoAp.

Corollary 2. The Price of Anarchy PoAp is bounded by:

1 ≤ PoAp ≤
1

1− (1 + 1
τ

) 1
N

.

3) Decentralized Algorithm: Here, we propose a simple
fully decentralized Reinforcement Learning Algorithm (RLA)
that converges to a pure Nash Equilibrium in our invest game.
At each discrete time slot k, independently, each node i
decides whether to invest in antivirus protection. We denote
by σ̄[k] = (σ1[k], . . . , σN [k]) the vector of pure actions of
all the nodes at time k. The pure action σi[k] of node i at
time slot k is an element from {0, 1}, where action 1 means
node i invests and action 0 otherwise. The probability that
node i invests at time slot k (i.e. σi[k] = 1) is denoted by
pi[k] = Pr[σi[k] = 1]. The corresponding induced complete
graph is Kn, where n[k] = N −

∑N
j=1 σj [k] is the number

of nodes that do not to invest. Our learning algorithm is the
following:

1) Set an initial probability pi[0], for each user i ∈
{1, . . . , N}.

2) At every time slot k, each node i invests with probability
pi[k] = Pr[σi[k] = 1], which determines its pure action
σi[k].

3) Each player i has a negative utility (cost) Siσi[k](n[k]),
which is equal to:

Siσi[k](n[k]) =

{
C, if σi[k] = 1,

Hvi,∞(n[k]), otherwise.

where n[k] = N −
∑N
j=1 σj [k].

4) The cost of each node i is normalized: S̃iσi[k](n[k]) =
Si,σi[k](n[k])

C+H . A normalization is necessary for this algo-
rithm [42].

5) Each node i updates its probability according to the
following rule:

pi[k + 1]← pi[k] + b[k]S̃iσi[k](n[k])(σi[k]− pi[k]),

where b[k] is the learning rate.
6) Stop when a stopping criterion is met (for example,

the maximum of the differences between consecutive
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updates is smaller than a small ε); else increase k by
1 and go to step 2).

Sastry et al. [42] have proved that as b[k]→ 0, for any node
i, the discrete probability sequence pi[k] converges weakly to
the solution pi(t) of the following continuous time ordinary
differential equation (ODE)

ṗi(t) = pi(t)(1− pi(t))
[
Si0
(
n(pi(t))

)
− Si1

(
n(pi(t))

)]
,

which is known in evolutionary game theory as the replicator
dynamic equation [43]. Bournez and Cohen [44] show that
any potential game possesses a Lyapunov function F . Hence,
our decentralized algorithm converges almost surely to a pure
(ε-)Nash equilibrium of our game (see e.g., [45], [44]). Due
to [44, Theorem 5], the convergence time T ≤ O(F (σ[0])

ε ) only
depends on ε and the Lyapunov value F (σ[0]) of the initial
strategy σ[0]. The algorithm is simple and fully distributed, the
only required information for each node is its instantaneous
cost at each time slot. Similar algorithms have been success-
fully used in many networking applications [46], [47] and we
illustrate the behavior of our algorithm in Section VII.

B. Symmetric mixed strategies
We now assume that each individual decides with a prob-

ability p to invest in the anti-virus protection. Moreover, the
game is symmetric and then we look for a symmetric mixed
Nash equilibrium. Each individual is faced with a new game,
which depends on the realization of the random choice process
of all the other individuals. We denote by S̄iσi(p) the expected
cost of player i choosing the pure strategy σi against the
probability choice p of the other N−1 players. For any user i,
we have S̄iσi(p) =

∑N−1
n=0 Siσi(n+1)

(
N−1
n

)
(1−p)npN−1−n,

where by definition Si0(1) = 0. Hence, the total expected cost
of node i which invests with probability p′ and when all the
other nodes invest with probability p, is:

S̄i(p
′, p) = p′S̄i1(p) + (1− p′)S̄i0(p). (8)

Definition 2. (indifference property) At equilibrium, the prob-
ability p∗, that a node invests, is the solution of S̄i(0, p∗) =
S̄i(1, p

∗).

Definition 2 is a starting point for the characterization of
the mixed equilibrium. The existence and uniqueness of a
symmetric mixed equilibrium p∗ are shown by Propositions 4
and 5, respectively.

Proposition 4. A symmetric mixed equilibrium exists.

The equilibrium point p∗ can be determined from an exact,
but rather complex, non-closed expression in p:

S̄i(0, p) =

N−1∑
n=0

Si0(n+ 1)

(
N − 1

n

)
(1− p)npN−1−n

=H

N−1∑
n=n

(1− 1

τn
)

(
N − 1

n

)
(1− p)npN−1−n, (9)

with n = d 1τ e because Si0(n + 1) = vi,∞(n + 1) if τ ≥ 1
n

and Si0(n+ 1) = 0, otherwise.

Proposition 5. The symmetric mixed equilibrium is unique.

Expression (9) involves generalized hyper-geometric func-
tions [48], which explains the difficulty of finding a closed
form for p∗.

1) Approximation: In order to get a closed-form expression
of the symmetric mixed strategy, we consider the following
approximation: instead of considering a player faced to realize
a symmetric mixed strategy of the other players and optimizing
his average cost, we consider that a player is part of an average
game. If player i chooses strategy 1 with probability p′ we
obtain the following average approximated cost:

Ŝapprox
i (p′, p) = p′C + (1− p′)Hvi,∞(n̄(p) + 1), (10)

where n̄(p) is the average number of nodes, except node i,
that decide not to invest, i.e. n̄(p) = (1− p)(N − 1).

We denote by BN (f ;x) =
∑N
n=0 f( nN )

(
N
n

)
xn(1 − x)N−n

the N -th Bernstein Polynomial on function f , see e.g. [49].
The following Theorem 1 is due to Bernstein [50] and is
crucial for proving that the approximation works.

Theorem 1. (Bernstein, 1912) If f(x) is a continuous and
bounded function defined on x ∈ [0, 1], then for each ε > 0
there is a positive integer n0(ε) such that

| f(x)−BN−1(f ;x) |< ε

for all x ∈ [0, 1] and N ≥ n0(ε).

Applying Theorem 1 for f(x) = p′C + (1 − p′)H(1 −
1

τ(N−1)x ) if x ∈ [ 1
τ(N−1) , 1] and f(x) = p′C if x ∈

[0, 1
τ(N−1) ), using (8), (9) and (10), taking x = 1− p, yield

| Ŝapprox
i (p′, p)− S̄i(p′, p) |< ε.

Therefore, for high enough N ≥ n0(ε), Ŝapprox
i (p′, p) can be

arbitrary close, for any ε, to the real S̄i(p′, p). A theoretical
estimate of n0 can be obtained, for example, following the
proof of Theorem 1 in [50]. Moreover, numerical simulations
in Fig. 2a show that the corresponding PoAs are similar even
for low N . Finally, based on this approximation, we can
characterize the mixed equilibrium in Proposition 6.

Proposition 6. If we approximate the number of nodes that do
not invest by its average, we obtain the following symmetric
mixed Nash equilibrium is achieved for

p̂∗ =

{
1− H

τ(H−C)(N−1)
, if C < H(1− 1

τ(N−1)
),

0, otherwise.

and the corresponding social cost S∗m = NC.

If the investment cost C is higher than the curing cost H ,
then the equilibrium is p̂∗ = 0, because even, if a node is
infected, its cost H is less than the cost C, then he would pay
to be protected.

2) Performance of symmetric mixed equilibrium: The social
cost can be defined considering the mixed strategies:

Ŝapprox(p) =

N∑
i=1

Ŝapprox
i (p, p) (11)

Further, using (10) into (11), we can compute the optimal
social cost by finding the probability p̂opt:

p̂opt = arg min
[
Ŝapprox(p)

]
' arg min

[ N∑
i=1

Ŝapprox
i (p, p)

]
= arg min

[
N · (pC + (1− p)H max{0, 1− 1

τ(1− p)(N − 1)
}
]

= arg minN ·

{
(C −H)p+H(1− 1

τ(N−1)
), if p ∈ [0, 1− 1

τ(N−1)
)

pC, if p ∈ [1− 1
τ(N−1)

, 1].
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and the solution is given in Proposition 7.

Proposition 7. The optimal solution of the social cost is
N ·min{C,H}(1− 1

τ(N−1) ) and it is achieved for

p̂opt =


0, if C > H
[0, 1− 1

τ(N−1)
], if C = H

1− 1
τ(N−1)

, if C < H.

Based on Propositions 6 and 7, we approximate PoAm in
the case of mixed strategies:

Corollary 3. When each node uses a mixed strategy, the Price
of Anarchy PoAm can be approximated by:

PoAm ≈
C

min{C,H}(1− 1
τ(N−1)

)
.

C. Comparison of strategies

In the previous sections, we have studied two different
approaches for our non-cooperative investment game: the pure
and the mixed strategies. These two game variants assume
significantly different decision processes for each node. First,
the approximation of the expected number of nodes that do not
invest at equilibrium is very close to the result obtained using
the potential game approach: n̂ = N(1 − p̂∗) ' n∗. Second,
we compare the social costs obtained in each situation, and
we observe that pure strategies always yields a lower social
cost compared with symmetric mixed strategies.

Based on Proposition 6, S∗m = CN . On the other hand,
in the proof of Corollary 2, we find S∗p := S(n∗) > CN .
Corollary 4 immediately follows.

Corollary 4. The social cost is smaller if all the nodes use
a pure strategy (S∗p ) compared to the case in which all the
nodes use a symmetric mixed strategy (S∗m), i.e. S∗p < S∗m.

The bound achieved in Corollary 4 is tight, because
(S(n∗) − CN) is small - based on Proposition 2. This is
also visualized in Fig. 2a in Section VII, where indirectly, by
comparing the Price of Anarchy for different equilibria, we
show that the approximation leads to an almost correct value
for the real expected cost.

V. GAME MODEL IN BIPARTITE NETWORK

In this section, we characterize the equilibrium points, their
existence and uniqueness for the complete bipartite network
KM,N . If m and n nodes do not invest in an anti-virus, from
partitions M and N , respectively, the induced graph is also
bipartite Km,n. The results for the Nash Equilibria are given
in Proposition 8.

Proposition 8. The equilibrium pair (n∗,m∗) exists and
satisfies the following inequalities. For each node

from M, v(M)
∞ (n∗,m∗) <

C

H
≤ v(M)
∞ (n∗,m∗ + 1) and

from N , v(N )
∞ (n∗,m∗) <

C

H
≤ v(N )
∞ (n∗ + 1,m∗)

Moreover, above the epidemic threshold, the following hold:
1) for a given n∗ (m∗) there is no more than one m∗ (n∗).

2) for any τ and C
H ≥

1
2 ; or τ ≥ (H+C)(H−2C)

2C(H−C) and C
H <

1
2 : |n∗ − m∗| ≤ 1 i.e. n∗ and m∗ are either equal or
consecutive integers.

3) in general, it is possible to have multiple equilibria pairs
such that |n∗ −m∗| ≥ 2 for some (n∗,m∗).

The social cost is now given by:

S(n,m) =

N∑
i=1

Siσi(n) = C(N − n+M −m)

+H(nv(N )
∞ (n,m) +mv(M)

∞ (n,m)). (12)

We define the optimal pair (nopt,mopt) as:

(nopt,mopt) = arg min
(n,m)

S(n,m).

and the Price of Anarchy: PoA := S(n∗,m∗)
S(nopt,mopt) . Before pro-

ceeding with PoA, we first find the globally optimal solution
in Proposition 9.

Proposition 9. In KN,M , the minimum (optimal) value of
the social cost is equal to S = max{τ2MN − 1, 0} ·
min{ C

τ2 max{M,N} , H
τ(M+N)+2

τ(τM+1)(τN+1)}. In particular,

1) if MN ≤ 1
τ2 , then S = 0 and (nopt,mopt) = (N,M).

2) if MN > 1
τ2 , τ max{M,N} τ(M+N)+2

(τM+1)(τN+1) ≥
C
H then:

S = C τ2MN−1
τ2 max{M,N} and (nopt,mopt) = ( 1

τ2M ,M) if
M > N ; (nopt,mopt) = (N, 1

τ2N ) if M < N or both
points for M = N .

3) if MN > 1
τ2 , τ max{M,N} τ(M+N)+2

(τM+1)(τN+1) < C
H

then S = H (τ2MN−1)[τ(M+N)+2]
τ(τM+1)(τN+1) and (nopt,mopt) =

(N,M).

Based on the results in Propositions 8 and 9, we find a tight
bound for the Price of Anarchy (PoA) in Corollary 5.

Corollary 5. The Price of Anarchy is bounded by:

PoA ≤ τ(M +N)

max{τ2MN − 1, 0}min{ 1
τ max{M,N} ,

H(τ(M+N)+2)
C(τM+1)(τN+1)

}
.

The only used inequality in the proof of Corollary 5 is from
Proposition 8. Corollary 6 gives a better intuition for the bound
in Corollary 5.

Corollary 6. The upper bound in Corollary 5
τ(M+N)

max{τ2MN−1,0}min{ 1
τ max{M,N} ,

H(τ(M+N)+2)
C(τM+1)(τN+1)

}
is greater

than max{2, CH }.

When the bound of PoA from Corollary 5 is accurate (i.e.
close to the real PoA), Corollary 6 tells us that the social
cost due to a decentralized investment decision is often twice
larger than the optimal. In the bipartite network case, we talk
about the number of nodes that do not invest in both partitions
separately, which is more complex than the case of a complete
graph (Section IV). Moreover, as will be shown later (Fig. 4a),
PoA is always smaller if the partitions are “more balanced”
(same number of nodes) and for any bipartite graph with N
nodes, the PoA is always higher than the PoA of the complete
graph with N nodes. For a bipartite graph, not much can be
said about the mixed equilibrium due the fact that the bipartite
network is not symmetric, and a players’ uniform social cost
function cannot be defined.
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VI. GAME MODEL IN MULTI-COMMUNITIES NETWORK

In the single community case, we first show that pure
equilibrium strategies yield better performance compared to
symmetric mixed strategies. Hence, we decide to restrict the
analysis of the multi-communities network investment game
to the existence of a pure Nash equilibrium.

In this section, we propose a new game theoretic concept,
namely a parametric potential game, which is defined as
follows. We assume that the infection probability u∞ of the
core node is given. Further, our game with M communities
is equivalent to M independent potential games. We observe
that, if u∞ is given, then based on (5), the infection probability
v
(Nm)
∞ of a non-core node in community Nm depends only on
nm,

v(Nm)
∞ (nm, u∞) =

V (τm, nm, u∞)

(
1 +

√
1 +

4τ2mu∞(nm−1)

V (τm,nm,u∞)

)
2τm(nm − 1)

(13)

where V (τm, nm, u∞) = τm(nm − 1) − τmu∞ − 1.
Clearly, the resulting u∞ = 1 − 1

1+
∑M
m=1 τmnmv

(Nm)
∞

=

1 − 1

1+
∑M
m=1 nm

V (τm,nm,u∞)+

√
V (τm,nm,u∞)2+4τ2mu∞(nm−1)

2(nm−1)

is

in (0, 1), because the second term in the difference is positive
and smaller than 1. Hence, u∞ is feasible. The above men-
tioned expressions for v(Nm)

∞ (nm, u∞) and u∞ are not related
to the game and the derivations are given in Appendix C.

Further, nodes from each community play a potential game
within their own community. The approach is the following:
(1) we first compute the equilibrium n∗m in each community
Nm using the parametric potential game approach (u∞ fixed);
(2) we then compute the value of v(Nm)

∞ by using the expres-
sion (13).

We propose an iterative heuristic procedure to compute a
pure Nash equilibrium of this parametric potential game.

1) Fixed an initial value for u∞[0].
2) Based on this value, we solve the M independent

potential games and we obtain the solution vector2

n∗(u∞[k]) = (n∗1(u∞[k]), . . . , n∗M (u∞[k])), where
n∗m(u∞[k]) is the number of nodes of community
Nm that do not invest at equilibrium in the k-
th iteration, given the infection probability u∞[k] of
the core node in the k-th iteration. We denote for
each community Nm, the following parametric po-
tential function: Φm(nm, Nm, u∞[k]) = C(Nm −
nm) +H

∑nm
i=2 v

(Nm)
∞ (i, u∞[k]). Hence, n∗m(u∞[k]) =

arg minnm Φm(nm, Nm, u∞[k]) for all m.
3) Further, we compute the infection probability

of a node from community m by the function
v
(Nm)
∞ (n∗m(u∞[k]), u∞[k])[k] from equation (13) and

the infection probability of the core node: u∞[k+ 1] =
1− 1

1+
∑M
m=1 τmn

∗
m(u∞[k])v

(Nm)
∞ (n∗m(u∞[k]),u∞[k])[k]

.

4) Stop if | u∞[k+1]−u∞[k] |< ε and thus u∞ = u∞[k+
1], otherwise increase k ← k+ 1 and start with step 2).

The algorithm is a heuristic, a theoretical guarantee is not
given, and it converges in practice as shown in Fig. 4b. In

2The iteration step k, given in brackets [], is a discrete time and should not
be mixed with the continuous time t from Eq. (1).

Appendix C, we show that u∞[k+ 1] is bounded from above
and bellow by decreasing functions in u∞[k], which influences
on the convergence. In particular, if u∞[k] is monotone
sequence, then the convergence is proved.

VII. NUMERICAL EVALUATION

A. Single-community network

1) Performance of the decentralized system: We evaluate
the performance of the decentralized system (equilibrium)
compared to the centralized point of view (social optimum)
via the Price of Anarchy of our system in different cases: pure
and mixed strategies. We show how this metric depends on
the system parameters, such as the number of nodes (decision
makers), the effective epidemic spreading rate τ = β

δ and the
costs C and H .

Fig. 2a illustrates the PoA with the following costs C =
0.4, H = 0.5 and the effective spreading rate τ = 2/3. We
observe that when the number of nodes is relatively small
(N < 8): using pure strategies yields a smaller PoA compared
to the case of mixed strategies. Moreover, we find that the
upper bound of the pure PoAp is very close to both PoAp
and PoAm, when N becomes relatively large (N > 10). We
also observe that the approximation of PoAm, which is based
on Corollary 3, is very close to the exact PoAm. In Fig. 2a
(inset), we show that the ratio

S∗p
S∗m

depends on the size N of
the network. Fig. 2a matches Corollary 4, i.e., the social cost
obtained using pure strategies in the game, is lower than the
one obtained via symmetric mixed strategies. This difference
is noticeable when the network is small but diminishes quickly
(e.g., for N = 8,

S∗p
S∗m

= 0.9821, and for N ≥ 10,
S∗p
S∗m
≈ 1).

In Fig. 2b, we describe the number of nodes which do
not invest considering the two methods: decentralized n∗

(Nash equilibrium) and the centralized case nopt (social cost),
depending on the effective spreading rate τ (main plot) and
ratio of the costs of investing and not investing C

H (inset).
First, we observe that our result is correct, i.e., considering a
decentralized point of view, the number of nodes which invest
is lower than that of the centralized point of view. This result is
somewhat surprising, as in general in a decentralized system,
the players are more suspicious and we would think that in our
setting, more nodes would invest at equilibrium compared to
the central decision. Second, those numbers are exponentially
decreasing with the effective spreading rate τ : the more the
infection rate β dominates the curing rate δ, more nodes decide
to invest in equilibrium. On the other hand, the number of
nodes increases if the relative cost of investment decreases,
as expected. However, the increase is faster in a decentralized
system for a fixed C

H (Fig. 2b inset).
2) Distributed Learning: We simulate the epidemic process

in a full-mesh network of size N = 15 in which each node i
uses the decentralized algorithm proposed in Section IV. The
main problem is the two time scales: the update of strategies
of each individual and the epidemic process. Our analysis is
based on the metastable state of the infection process. When all
nodes have taken their decision, the update rule of the RLA
strategy depends on the infection probability for each node
in the metastable state, i.e. v∞. We assume that the strategy
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Fig. 2: (a) Price of Anarchy depending on the number of nodes N (main plot). Ratio
S∗p
S∗m

of the social costs depending on
the size N of the network (inset); (b) Number of nodes which do not invest as a function of the effective spreading factor τ
(main plot) or the ratio C

H (inset) for N = 15; and (c) Convergence of the RLA to the pure Nash equilibrium. Probability of
3 random nodes that invest at each iteration (main plot); number of nodes that invest after each iteration (inset).

update time scale is large compared to the infection time scale,
and then, the infection probability has enough time to converge
to the metastable state. This assumption is realistic in a case in
which the decision to buy an anti-virus is not very often taken
compared to the propagation process of virus in a network. In
Fig. 2c (main plot), we show the convergence of the RLA for
three particular nodes. We observe that two nodes converge
to the decision to invest and one not to invest. Moreover, in
Fig. 2c (inset) we plot the number of nodes that invest, at
each iteration of our RLA. This number converges after few
iterations to a pure equilibrium (n∗ = 8).

0
20

40
60

80
100

0

20

40

60

80

100

10

20

30

40

50

60

70

80

90

100

 

 M N
 

U
pp

er
 b

ou
nd

 o
f 

Po
A

10

20

30

40

50

60

70

80

90

100

(a) C
H

= 5

0 20 40 60 80 100
5

10

15

20

25

30

35

 N

U
pp

er
 b

ou
nd

 o
f 

Po
A

 

 

 M = 5

 M = 10

 M = 20
 M = 30

 M = 50

Bound  C/H = 5

(b) C
H

= 5

0
20

40
60

80
100

0

20

40

60

80

100

10

20

30

40

50

60

70

80

90

100

 

 M N
 

U
pp

er
 b

ou
nd

 o
f 

Po
A

10

20

30

40

50

60

70

80

90

100

(c) C
H

= 0.2

0 20 40 60 80 100

5

10

15

20

25

30

35

 N

U
pp

er
 b

ou
nd

 o
f 

Po
A

 

 

 M = 5

 M = 10

 M = 20
 M = 30

 M = 50

Bound = 2

(d) C
H

= 0.2

Fig. 3: The upper bound of the Price of Anarchy. (a) and (c)
3D plots as functions of M and N . (b) and (d) 2D plots as
functions of N for fixed M .

B. Bipartite network

For the bipartite network, the upper bound of the Price of
Anarchy (PoA) is illustrated in Fig. 3. In particular, Figs. 3a
and 3c show the upper bound as a function of both M and
N as a 3 dimensional plot, while Fig. 3b and 3d demonstrate
the change of the upper bound of the Price of Anarchy as a
function of N for several fixed values of M . All the figures
confirm Corollary 6 that the upper bound of PoA is greater
than the maximum of 2 or C

H . In all the cases, the closer M
and N are to one another - the smaller upper bound of PoA
(black/dark regions in Figs. 3a and 3c and the minimum values
for the upper bound in Figs. 3b and 3d). For fixed M and
C
H < 2, the upper bound is dominated by τ2(M+N)max{M,N}

τ2MN−1
(Corollary 5), which is a function that decreases in N for
N < M , achieves its minimum (close to 2) and then increases
for N > M (Fig. 3d). For fixed M and C

H > 2, the upper
bound is dominated by C

H
τ(M+N)(τM+1)(τN+1)
(τ2MN−1)(τ(M+N)+2) (Corollary 5),

which is also a function that decreases in N for N < M ,
achieves its minimum (close C

H ) and stays almost constant (for
M ≈ N ). Finally, the bound increases for N > M (Fig. 3b).

As shown in Fig. 4a, the PoA in any bipartite graph is
always higher than the one of a complete graph, if the same
number of nodes are considered. In addition, PoA would have
smaller value if the partitions have the similar sizes than
having partitions with different sizes (e.g., a star graph).

C. Multi-communities network

We illustrate the results obtained in Section VI. Particularly,
we present how the iterative algorithm can be used to obtain
the equilibrium of the game by using the parametric potential
game approach. First, we consider an example with M = 2
communities with N1 = 10, N2 = 15, τ1 = 0.5 and τ2 = 1.5.
Second, we consider the following stopping criteria ε = 10−7

and we observe that the number of iterations to achieve an
equilibrium is very small (8 iterations). In Fig. 4b (main
plot), we observe that the number of nodes which do not
invest at equilibrium is n∗1 = 6 (over 10 nodes) and n∗2 = 3
(over 15 nodes). The iterative procedure starts with an initial
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Fig. 4: (a) A comparison between PoA of a complete and
bipartite graphs (C = 0.4, H = 0.5, τ = 2

3 ). (b) Main plot:
the number of nodes that do not invest at the equilibrium.
Inset: The infection probability of the core node u∞.

probability of the core node u∞[0] = 0.5. The infection
probability of the core node obtained at the convergence of the
iterative procedure is u∞ = 0.8389 (Fig. 4b inset). We also
consider a more complex scenario with M = 7 communities
and the following features (N) = (10, 15, 12, 8, 9, 4, 15) and
(τ) = (0.5, 1.5, 1, 1.2, 1.4, 0.8, 0.1). The iterative algorithm
converges after only 10 iterations for a precision ε = 10−7

and u∞[0] = 0.5. We obtain the infection probability of
the core node u∞ = 0.935 and the following equilibrium
n∗ = (6, 3, 4, 3, 3, 4, 15). For the last community, for which
the effective spreading rate is the lowest, none of the nodes
invests at equilibrium, whereas, for the second community, for
which the effective spreading rate is the highest, the number
of nodes that invest is 12 over 15 nodes.

VIII. CONCLUSIONS

In this paper, we explore the problem of optimal decentral-
ized protection strategies in a network, where a node decides
to invest in an anti-virus or to be prone to the virus SIS
epidemic spread process. If a node decides to invest, it cannot
be infected, while if a node chooses not to invest, it can
be infected by a virus and further spreads the virus inside
the network. We study this problem from a game theoretic
perspective. If a node decides to invest, the cost function of
the node is the investment cost, otherwise the cost function is
linearly proportional to the node’s infection probability in the
epidemic steady state.

We look for the optimal, fully decentralized protection
strategies for each node. We show the existence of a po-
tential structure, which allows us to prove the existence and
uniqueness and derive the pure and mixed equilibrium in a
single-community (or mesh) network. Moreover, we find the
pure equilibrium in a bipartite network. We also evaluate the
performance of the equilibrium by finding the Price of Anar-
chy (PoA). Finally, we propose a simple, fully decentralized
algorithm which converges to the pure equilibrium. In a multi-
communities topology, in which several communities are con-
nected through a single core node, we introduce the concept
of parametric potential games and further derive an accurate,
iterative heuristic for computing the Nash equilibrium.
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APPENDIX

A. Proofs of the propositions and corollaries in a single
community network

Proposition 2: Let S be the set of nodes that invest C. A
node k /∈ S must pay an infection cost equal to Hv∞(n∗).
If that node k deviates3, then it will pay instead C. At
equilibrium this user has no interest to deviate, meaning that:
C ≥ Hv∞(n∗).

It remains to show that nodes in S do not gain by deviating.
Each node in S pays constant cost C. When deviating, a node
l, originally in S, becomes connected to those not in S, which
implies that node l changes the size of the set N \ S which
becomes n∗ + 1. The following inequality at equilibrium also
applies: C ≤ Hv∞(n∗ + 1).

Now, we show that n∗ exists and is uniquely defined. For
C > H , we have a trivial solution n∗ = N , otherwise based
on (3), we arrive at

H(1− 1

(n∗ − 1)τ
) < C ≤ H(1− 1

n∗τ
)

which gives n∗ = d 1
(1− CH )τ

e, if d 1
(1− CH )τ

e < N , otherwise we
have the trivial upper bound of n∗ = N . �

Proposition 3: The cost of the nodes that do not invest is
non-negative since H ≥ 0 and v∞(n) ≥ 0. If n < 1 + 1

τ ,
S(n) = C(N − n) which decreases in n. On the other hand,
if n ≥ 1+ 1

τ , the derivative of (7) is S′(n) = H−C+ H
τ(n−1)2 .

Two cases can be distinguished:
1) C < H: the function S(n) is strictly increasing over the
interval [1 + 1

τ , N ], so the minimum is achieved in d1 + 1
τ e.

2) C ≥ H: the function S(n) is increasing over the interval
[1+ 1

τ , 1+
√

H
τ(C−H) ] and decreasing over [1+

√
H

τ(C−H) , N ],

so the minimum is achieved in {d1 + 1
τ e, N} depending on

the parameters of the system. �
Corollary 1: If C ≥ H , based on the proof in Proposition 2,

we have n∗ = N , which is clearly as large as any value
of nopt ≤ N . Otherwise (C < H), based on Proposition 2:
nopt = d1 + 1

τ e and S(n) is increasing. Using the definition
of PoA: S(nopt) ≤ S(n∗), which gives nopt ≤ n∗. �

Corollary 2: First, the numerator S(n∗) of PoAp is strictly
lower than CN . Indeed, using Proposition 2 into (7) we have:
S(n∗) = C(N − n∗) + n∗Hv∞(n∗) = CN − n∗(C −
Hv∞(n∗)) < CN .

In Proposition 3, we obtain nopt ∈ {N, d1 + 1
τ e}. If

nopt = N then n∗ = N (Corollary 1) and PoAp = 1. For the
case nopt = d1 + 1

τ e, the following (based on Proposition 3)
applies: (i) C < H: the function S(n) is strictly increasing
and
(ii) C ≥ H and nopt = d1 + 1

τ e, S(n) is also strictly
increasing. Therefore, in both cases nopt = d1 + 1

τ e ≥ 1 + 1
τ ,

hence S(nopt) ≥ S(1 + 1
τ ) = C(N − (1 + 1

τ )) i.e. PoAp =
S(n∗)
S(nopt) ≤

CN
C(N−(1+ 1

τ ))
= 1

1−(1+ 1
τ )

1
N

. �

3Deviation means that the node changes its action. If the multistrategy for
the node is to invest, then “deviating” means that the node does not invest or
vice versa.
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Proposition 4: For any p ∈ [0, 1] and any player i, we
have: S̄i(1, p) = C

∑N−1
n=0

(
N−1
n

)
(1 − p)npN−1−n = C. We

also have: S̄i(0, 0) = H(1− 1
(N−1)τ ) > 0, and S̄i(0, 1) = 0.

If C < H(1− 1
(N−1)τ ) the mixed strategy p∗ exists because

the function S̄i(0, p) is continuous. Otherwise, we have for all
p ∈ [0, 1], S̄i(1, p) > S̄i(0, p), meaning that the strategy 0
is dominant irrespective of the mixed strategy of the other
players. In this case, the action 0 is the equilibrium. �

Proposition 5: The proof relies on the monotonicity of
S̄i(0, p) and the fact that S̄i(1, p) = C (a horizontal line),
so the two curves intersect in one point. However, proving the
monotonicity of S̄i(0, p) is not trivial, because the well know
function H

∑N−1
n=n

(
N−1
n

)
(1 − p)npN−1−n decreases faster

than S̄i(0, p) on some intervals of p, but slower on other inter-
vals. In what follows, we prove the monotonicity of S̄i(0, p).
For simplicity, we denote MN

n (p) = (1 − 1
τn )
(
N−1
n

)
(1 −

p)npN−1−n. Taking the first derivative in p and using the fact
that 1− 1

τn < 1− 1
τ(n+1) , we obtain

d(MN
n (p))

dp
= (N − 1)(1− 1

τn
)
[
CN−1
n (1− p)− CN−1

n−1 (1− p)
]

< (N − 1)
[
(1− 1

τ(n+ 1)
)CN−1

n (1− p)− (1− 1

τn
)CN−1

n−1 (1− p)
]

(14)

where CN−1n (1 − p) =
(
N−1
n

)
(1 − p)npN−1−n is Bernstein

Basis Polynomial. Summing (14) over all n = n̄, . . . , N − 1,
multiplied by H and knowing the values of the boundary term
CN−1N−1 (1− p) =

(
N−2
N−1

)
(1− p)N−1p−1 = 0 result with

d(S̄i(0, p))

dp
= H

N−1∑
n=n̄

d(MN
n (p))

dp
< (N − 1)H×

[N−1∑
n=n̄

(1−
1

τ(n+ 1)
)CN−1
n (1− p)−

N−2∑
n=n̄−1

(1−
1

τ(n+ 1)
)CN−1
n (1− p)

]
= (N − 1)H

[
(1−

1

τN
)CN−1
N−1 (1− p)− (1−

1

τn̄
)CN−1
n̄−1 (1− p)

]
=

− (N − 1)H(1−
1

τn̄
)CN−1
n̄−1 (1− p) < 0

i.e. S̄i(0, p) is a decreasing function. �
Proposition 6: Using (3), the average approximated cost is:

Ŝi(pi, p
′) = piC + (1− pi)Hvi∞(n̄+ 1) = piC +

(1−pi)H max{0, 1− 1
τ(1−p′)(N−1)}. Based on Definition 2 for

the equilibrium, assuming that is achieved for p′ = p̂∗, we have
Ŝi(0, p̂

∗) = Ŝi(1, p̂
∗), which gives C = H(1− 1

τ(1−p∗)(N−1) )

for C < H(1 − 1
τ(N−1) ) and p∗C = 0 otherwise. Finally,

p̂∗ = 1 − H
τ(H−C)(N−1) , if C < H(1 − 1

τ(N−1) ), otherwise
p̂∗ = 0 is an equilibrium. �

Proposition 7: First, the function is continuous in p,
because the value is the same from the left and the right side
of 1 − 1

τ(N−1) . If p ∈ [1 − 1
τ(N−1) , 1] then it is increasing

for any C and H . If C > H , the function is increasing on
the whole interval p ∈ [0, 1], hence p̂opt = 0 and the value
is H(1 − 1

τ(N−1) ). If C = H the function is constant on
[0, 1 − 1

τ(N−1) ], hence p̂opt ∈ [0, 1 − 1
τ(N−1) ] and the value

is H(1 − 1
τ(N−1) ). If C < H the function is decreasing on

[0, 1 − 1
τ(N−1) ], hence p̂opt = 1 − 1

τ(N−1) and the value is
C(1− 1

τ(N−1) ). �

B. Proofs of the propositions and corollaries in a bipartite
network

Proposition 8: For simplicity, we define q = C
H . By

definition, at equilibrium a user from each of the two partitions
has no interest to change its pure strategy, i.e. a player that
decides to invest has no interest to change its strategy. Let S
be the set of nodes that invest C. A node k /∈ S must pay
an infection cost equal to H · v(M)

∞ (n∗,m∗). If that node k
deviates, then it will pay instead C. At equilibrium a user from
each of the partitions has no interest to deviate, meaning that:
C ≥ H · v(M)

∞ (n∗,m∗) and C ≥ H · v(N )
∞ (n∗,m∗).

It remains to show that nodes in S do not gain by devi-
ating. These nodes pay C each. When deviating, a node l
in partition N nodes, originally in S becomes connected to
those not in S, which implies that node l changes the size
of N \ S which becomes n∗ + 1. The following inequality
at equilibrium also applies: C ≤ H · v(N )

∞ (n∗ + 1,m∗). In a
similar way, considering a node in partition M nodes, it also
holds C ≤ H · v(M)

∞ (n∗,m∗ + 1).
If q = C

H > 1 then for m∗ < M or n∗ < N , we obtain
a contradiction in the relations in the previous paragraph as
v
(M)
∞ (n∗,m∗ + 1) or v(N )

∞ (n∗ + 1,m∗) will be greater than
1. Hence, the only possible value is (m∗, n∗) = (M,N).
Based on the discussion in the previous paragraph and the
exact expression in (4) we end up with the following

m <
1

τ(τn(1− q)− q) ≤ m+ 1 (15)

n <
1

τ(τm(1− q)− q) ≤ n+ 1 (16)

Hence, we have m = d 1
τ(τn(1−q)−q)e − 1 and n =

d 1
τ(τm(1−q)−q)e − 1, from which for a given n, we have

a unique m or vice versa, which proves point 1) of the
proposition.

Let us assume that q ≥ 1
2 or τ ≥ (1+q)(1−2q)

2q(1−q) . For simplicity
in the derivations we denote A = τ2(1 − q) and B = τq.
From (16), we get 1

Am−B − 1 ≤ n, hence A
Am−B −A−B ≤

An − B < 1
m . From the last inequality, we obtain B

A+B ≤
m(Am−B). Finally,

m >
B +

√
B2 + 4AB

A+B

2A
(17)

Further, from (16) we obtain Am − B < 1
n , hence

A(B+
√
B2+ 4AB

A+B )

2A − B ≤ Am − B < 1
n i.e.

√
B2+ 4AB

A+B−B
2 <

1
n ⇔ n < 2√

B2+ 4AB
A+B−B

=
2(B+

√
B2+ 4AB

A+B )

4AB
A+B

=

(1+A
B )(B+

√
B2+ 4AB

A+B )

2A i.e.

n <
(1 + A

B
)(B +

√
B2 + 4AB

A+B
)

2A
(18)

From (17) and (18), we arrive at

n−m <
A

B

B +
√
B2 + 4AB

A+B

2A
=

1 +
√

1 + 4A
B(A+B)

2

=
1 +

√
1 + 4τ2(1−q)

τ2q(τ(1−q)+q)

2
=

1 +
√

1 + 4(1−q)
q(τ(1−q)+q)

2
(19)

The condition q ≥ 1
2 or τ ≥ (1+q)(1−2q)

2q(1−q) is equivalent to
1−q

k(τ(1−q)+q) < 2, and applying this in (19), gives n − m <
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1+
√
1+4·2
2 = 2. In the same way, m−n < 2, hence |n−m| ≤ 1,

which completes the proof for 2). In conclusion, we find out
to have limited number of possibilities to be checked n = m;
n = m−1 or n = m+ 1 , from which the system of (15) and
(16) boils down to significantly simplified one in one variable.

For 3), we give a counter example. We set τ =
1+
√
40000001
20000 ≈ 0.316278 and k =

√
40000001−1

20000 ≈
0.000316178. Now, A = 10−1 and B = 10−4. The system
of equations (15) and (16) will give 6 solutions: (n∗,m∗) =
{(1, 10), (2, 5), (3, 3), (5, 2), (10, 1)}. Five of these solutions
are pairs of numbers that are neither equal nor consecutive
integers. �

Proposition 9: S(n,m) is a function of two variables.
Bellow the epidemic threshold (mn ≤ 1

τ2 ) and S(n,m) =
C(N+M−n−m). If MN ≤ 1

τ2 , then (nopt,mopt) = (N,M)
is the optimal pair and S = 0. In the remaining cases
(MN > 1

τ2 ), because the first derivatives in both m and n give
constant non-zero values, we look for the extremal points on
the boundaries in m,n-plane: mn = 1

τ2 ; m = M or n = N .
1) If m = M , then n = min{N, 1

τ2M } = 1
τ2M and

S = C τ2MN−1
τ2M .

2) Similarly, if n = N , then m = 1
τ2N and S = C τ2MN−1

τ2N .
3) If mn = 1

τ2 then 1
τ2M ≤ n ≤ N and S(n) = C(M +N −

n− 1
τ2n ). S(n) increases to some point (n = 1

τ ) and then starts
to decrease, hence the minimum is on one of the boundaries,
in the same points as 1) and 2). Finally, we take the minimum
of 1) and 2), which gives S = C τ2MN−1

τ2 max{M,N} , achieved
for (nopt,mopt) = ( 1

τ2M ,M) for M > N ; (nopt,mopt) =
(N, 1

τ2N ) for M < N or both points for M = N .
Above the epidemic threshold (mn ≥ 1

τ2 ), we have

S(n,m) = C(N +M − n−m) +H(
τ2mn− 1

τ(τn+ 1)
+
τ2mn− 1

τ(τm+ 1)
)

Taking the first derivatives and equaling them to 0, results with

S′n(n,m) = −C +H(
τm

τm+ 1
+

τm+ 1

(τn+ 1)2
) = 0

S′m(n,m) = −C +H(
τn

τn+ 1
+

τn+ 1

(τm+ 1)2
) = 0 (20)

Subtracting the two equations of (20) gives

Hτ(2 + (m+ n)τ)2(m− n)

(1 + τm)2(1 + τn)2
= 0

Therefore m = n is the only possibility. Going back into the
first equation of (20) results with C = H . Hence, if C 6= H
there is no singular point inside the region and we should again
look for the extrema on the boundaries: mn ≥ 1

τ2 , n ≤ N
and m ≤M .
1) if mn = 1

τ2 , then S(n,m) = C(N +M − n−m), so we
again end up with the same solution as for the case bellow
the epidemic threshold, considered before.
2) if m = M , we have S(n) = C(N − n) + H( τ

2Mn−1
τ(τn+1) +

τ2Mn−1
τ(τM+1) ). The first derivative is S′(n) = −C + H( τM

τM+1 +
τM+1
(τn+1)2 ) and S′′(n) = −H τ(τM+1)

(τn+1)3 < 0. Therefore, the
function could only have local maximum and we should look
for the minimum on the extremal points for 1

τ2M ≤ n ≤ N .
• n = 1

τ2M then S = C(N − 1
τ2M ) for (nopt,mopt) =

( 1
τ2M ,M), which is again a boundary case exactly on

the epidemic threshold and it was considered above.

• n = N then S = H( τ
2MN−1
τ(τN+1) + τ2MN−1

τ(τM+1) ) =

H (τ2MN−1)[τ(M+N)+2]
τ(τM+1)(τN+1) for (nopt,mopt) = (N,M).

3) if n = N , we have similar cases as in 2).
If C = H (i.e. k = 1) and m = n, then the social cost

function boils down to S(n) = C(N+M−2n)+2C τ2n2−1
τ(τn+1) =

C(N + M − 2n) + 2C τn−1
τ = C(N + M − 2

τ ) = const
i.e. S is constant and does not depend on n or m. However,
C(N+M− 2

τ ) ≥ C τ2MN−1
τ2M for any m as the last is equivalent

to (
√
M − 1

τ
√
M

)2 ≥ 0. In conclusion, S = max{τ2MN −
1, 0} ·min{ C

τ2 max{M,N} , H
τ(M+N)+2

τ(τM+1)(τN+1)}. �

Corollary 5: First, the denominator of PoA: S(n∗,m∗) is
strictly lower than C(N + M). Indeed, using Proposition 8
and equation (12) we have:

S(n∗,m∗) =C(N +M − n∗ −m∗)
+ n∗Hv(N )

∞ (n∗,m∗) +m∗Hv(M)
∞ (n∗,m∗)

=C(N +M)− n∗(C −Hv(N )
∞ (n∗,m∗))

−m∗(C −Hv(M)
∞ (n∗,m∗)) < C(N +M)

which is an upper bound for S(n∗,m∗) and S(nopt,mopt)
could be determined exactly based on Proposition 9, which
completes the proof. �

Corollary 6: For simplicity, we denote h(M,N, τ) =
τ(M+N)

max{τ2MN−1,0}min{ 1
τ max{M,N} ,

H(τ(M+N)+2)
C(τM+1)(τN+1)

}
. If τ2MN ≤

1, then h(M,N, τ) =∞ ≥ max{2, CH }. If τ2MN > 1, then

h(M,N, τ) ≥ τ2 max{M,N}(M +N)

τ2MN − 1
=

max{M,N}( 1
M

+ 1
N

)

1− 1
τ2MN

=
1 + max{M,N}

min{M,N}

1− 1
τ2MN

>
1 + 1

1− 0
= 2 and

h(M,N, τ) ≥ C

H

τ(M +N)(τM + 1)(τN + 1)

(τ2MN − 1)(τ(M +N) + 2)
≥ C

H
×

τ3MN(M +N) + τ2(2MN +M2 +N2) + τ(M +N)

τ3MN(M +N) + τ2(2MN)− τ(M +N)− 2
>
C

H
.

�
C. Technical details of the expressions for a multi-
communities network

Details of expression (13): For simplicity, we de-
note V (τm, nm, u∞) = τm(nm − 1) − τmu∞ − 1 and
W (τm, nm, u∞) = (τm(nm − 1))

2
+ (τmu∞)

2
+ 1 +

2 (τmu∞) + 2τmu∞τm(nm − 1). For a given u∞, for any
non-core node in community Nm, based on equation (5), we
have the equation

τm(nm − 1)(v(Nm)
∞ )2 − V (τm, nm, u∞)v(Nm)

∞ − τmu∞ = 0

of degree 2 in v
(Nm)
∞ (nm, u∞), which solu-

tions are the following infection probabilities:

v
(Nm)
∞ (nm, u∞) =

V (τm,nm,u∞)(1±
√

1+
4τ2mu∞(nm−1)

V (τm,nm,u∞)
)

2τm(nm−1) =

V (τm,nm,u∞)+
√
W (τ,nm,u∞)−2τm(nm−1)

2τm(nm−1) , where
V (τm, nm, u∞) is positive, otherwise, we would have
two negative solutions. The value under the square
root is greater than 1, so the solution with “-” sign
is negative, hence it is not valid. Using the fact that
−2τm(nm−1) < 2τm(nm−1), we obtain v(Nm)

∞ (nm, u∞) <
V (τm,nm,u∞)+

√
W (τ,nm,u∞)+2τm(nm−1)

2τm(nm−1) = 1. Hence, the
solution with sign “+” is in the interval (0, 1).
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Bounds of u∞ and a discussion on the algorithm con-
vergence: For simplicity, we define q = C

H . Here, we show
that g(u∞[k]) < u∞[k + 1] < f(u∞[k]), where f and g are
decreasing functions bounded from both sides. The functions
f and g do not converge to the same value, hence an absolute
convergence based on this result cannot be stated. In this
direction, there might be extreme cases of non-convergence
if u∞ changes from increasing to decreasing or vice versa,
periodically. However, this bounding is an evidence that u∞
converges (in practice). Moreover, if u∞ is monotone then the
convergence is proved.

Applying the condition for a Nash Equilibrium (or find-
ing the minimum of the potential function) for the game
in each community, gives v

(Nm)
∞ (n∗m[k], u∞[k]) < C

H =

q < v
(Nm)
∞ (n∗m[k] + 1, u∞[k]). Using the expression from

Proposition 13, we obtain

1

τm(1− q) −
u∞[k]

q
< n∗m[k] <

1

τm(1− q) + 1− u∞[k]

q
, (21)

i.e. n∗m[k] = b 1
τm(1−q) −

u∞[k]
q c for q < 1, otherwise

n∗m[k] = Nm. We proceed with the case q < 1. (For
q ≥ 1, a similar, but simpler analysis applies, because
n∗m[k] = Nm is constant over k.) We continue with bounding
τmn

∗
m[k]v

(Nm)
∞ (n∗m[k], u∞[k]).

1) For the upper bound, using the right part of (21), we have
τmn

∗
m[k]v

(Nm)
∞ (n∗m[k], u∞[k]) < qτmn

∗
m[k] < q

1−q + qτm −
τmu∞[k].

2) For the lower bound, using the left part of
(21), we arrive at τmn

∗
m[k]v

(Nm)
∞ (n∗m[k], u∞[k]) >

τm(n∗m[k] − 1)v
(Nm)
∞ =

τm(n∗m[k]−1)−τmu∞[k]−1
2 +√

(τm(n∗m[k]−1)−τmu∞[k]−1)2+4τ2
m(n∗m[k]−1)u∞[k]

2 >
q

1−q−
1+q
q u∞[k]τm−τm+ q

1−q+
1−q
q u∞[k]τm−τm

2 = q
1−q − τm −

τmu∞[k].
Now, applying 1) and 2) into the expression for u∞[k + 1]

(see step 3) in the algorithm), yield

1−
1

1 +
∑M
m=1( q

1−q − τm − τmu∞[k])
< u∞[k + 1]

= 1−
1

1 +
∑M
m=1 τmn

∗
m[k]v

(Nm)
∞ (n∗m[k], u∞[k])

< 1−
1

1 +
∑M
m=1( q

1−q + qτm − τmu∞[k])
or

1−
1

(1 + Mq
1−q −

∑M
m=1 τm)− u∞[k]

∑M
m=1 τm

< u∞[k + 1] <

1−
1

(1 + Mq
1−q −

∑M
m=1 τm) + (1 + q)

∑M
m=1 τm − u∞[k]

∑M
m=1 τm

.

Therefore, u∞[k + 1] is bounded from above and below, re-
spectively, by two bounded decreasing functions f(u∞[k]) =
1 − 1

(1+ Mq
1−q−

∑M
m=1 τm)+(1+q)

∑M
m=1 τm−u∞[k]

∑M
m=1 τm

and

g(u∞[k]) = 1− 1
(1+ Mq

1−q−
∑M
m=1 τm)−u∞[k]

∑M
m=1 τm

. The func-

tion f(u∞[k]) contains the term (1 + q)
∑M
m=1 τm in the

denominator of the quotient, which is the only difference from
g(u∞[k]). The Squeeze (Sandwich) theorem cannot be ap-
plied, because f and g converge to different values. However,
if u∞[k] is a monotone increasing sequence then, due to the
fact that f(u∞[k]) is a decreasing function, u∞[k] converges.
Similarly, if u∞[k] is a monotone decreasing sequence then,

due to the fact that g(u∞[k]) is a decreasing function, u∞[k]
also converges. Both cases are possible, based on the initially
taken u∞[0], however u∞[k] is not necessarily monotone
sequence (see e.g., Fig. 4b). However, in practice, u∞[k]
converges.
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