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Abstract—The SIS dynamics of the spread of a virus crucially depend on both the network topology and the spreading parameters.
Since neither the topology nor the spreading parameters are known for the majority of applications, they have to be inferred from
observations of the viral spread. We propose an inference method for both topology and spreading parameters based on a maximum-
a-posteriori estimation approach for the sampled-time Markov chain of an SIS process. The resulting estimation problem, given by a
mixed-integer optimisation problem, results in exponential computational time if a brute-force approach is employed. By introducing
an efficient and accurate, polynomial-time heuristic, the topology of the network can almost always be exactly reconstructed.
Notwithstanding, reconstructing the network with a reasonably high accuracy requires a subexponentially increasing number of
observations and an exponentially increasing computation time with respect to the number of nodesN. Such long observation
periods are hardly realistic, which justifies the claim in the title.

Index Terms—SIS process, network reconstruction, spreading parameter estimation, Bayesian estimation

Ç

1 INTRODUCTION

EPIDEMICS on networks received much attention in
recent years [1]. Modern epidemics is a genuinely

interdisciplinary field and incorporates epidemiology,
social and computer sciences, mathematics and physics.
Epidemic models consist of two intertwined parts. The
first part is the network, which is characterised by the
number N of nodes and the L links between the nodes,
specified by the adjacency matrix A 2 RN!N . The second
part of epidemic models is the dynamic behaviour of the
viral spread, which is mostly described by differential
equations.

In the fundamental susceptible-infected-susceptible
(SIS) model, each node is either in a susceptible or an
infected state, which is specified by a Bernoulli random
variable xiðtÞ 2 f0; 1g. For a node i in the SIS model, the
susceptible state at time t is denoted by xiðtÞ ¼ 0 and the
infected state at time t is denoted by xiðtÞ ¼ 1. Thus, for
any node there are two transitions possible in the SIS
model, from susceptible to infected and vice versa. The
SIS model is formulated in continuous time t 2 Rþ, start-
ing at t ¼ 0. The SIS model assumes that the curing pro-
cess per node i is a Poisson process with curing rate d and
that the infection rate per link is a Poisson process with
infection rate b. An extension is the !-SIS model, where a
susceptible node also suffers from self-infections, an event

that is independent of the number of infectious neigh-
bours of the respective node and characterised by the
additive self-infection rate !. The knowledge of the under-
lying topology and of the curing and infection rates is
decisive for the prediction of the viral spread and for the
design of control strategies which aim for steering the net-
work towards a desired state.

This work considers the inverse problem of estimating
both the adjacency matrix A and the spreading parameters b; d
and !, given the knowledge of the viral states xiðtÞ of all
nodes i ¼ 1; . . . ; N of the sampled-time Markov chain of an
!-SIS process, described in Section 5, over a sequence of n
time slots.

Section 2 reviews related work. The nomenclature is
introduced in Section 3. Section 4 states our assumptions.
The sampled-time Markov chain of the !-SIS process is
described in Section 5. The estimation problem is formu-
lated in a Maximum-A-Posteriori (MAP) sense in Sec-
tion 6, which gives rise to a mixed-integer programming
problem. A brute-force approach would require a compu-
tation time of Oð2N2=2Þ. In order to find a close-to-optimal
point of the mixed-integer programming problem in a
feasible computation time for larger networks, an efficient
heuristic based on solving multiple convex problems is
given in Section 7. Numerical evaluations of the heuristic
and the brute-force approach are given in Section 8. The
numerical experiments show that a reconstruction of the
network and, up to a small error, an estimation of the
spreading parameters is possible for the SIS process. The
crucial negative result of our work is that the estimation
requires an infeasibly high amount of data, i.e., observa-
tions of the viral states xiðtÞ of all nodes, for large
networks.
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2 RELATED WORK

Various methods for the network reconstruction were pro-
posed for the susceptible-infected (SI) and the susceptible-
infected-recovered (SIR) models, whereby infected nodes
remain infected, and hence contagious, or can be recovered,
respectively. Since in these models the nodes change their
state only once from susceptible to infected (and possibly to
recovered), it is usually not possible to infer the network
topology from observing the nodal states over time of only
one outbreak. To overcome this shortage of available infor-
mation for the network reconstruction for SI and SIRmodels,
a commonly employed setting is the observation of multiple,
independent outbreaks or cascades [2]. The state-of-the-art
network reconstruction methods for SI and SIR models con-
fine to a maximum-likelihood formulation in discrete time
[3], [4], [5], [6], [7], [8]. Besides network reconstruction meth-
ods based on observing viral dynamics, current research also
focusses on other dynamical processes on networks. For gen-
eral dynamical systems, Peng et al. [9] propose a parameter
estimationmethod by a chaotic ant swarm algorithm.

Substantially less attention has been drawn to the net-
work reconstruction for the SIS epidemics. For a discrete-
time SIS process in which all nodes change their viral state
simultaneously, Shen et al. [10] reconstruct the network
topology by observing the states of all nodes and employ a
heuristic which allows for compressed sensing. Vajdi and
Scoglio [11] formulate the network reconstruction for the
continuous-time SIS model in a Bayesian sense by utilising
the time intervals between infections as observations, derive
the closed-form expression for the posteriori distribution of
the infection rates and propose a Gibbs sampling approach
for a large number of uncertain links. Since in their work
the posterior probability densities of the infection rates
instead of the existence of links is estimated, they assume
the transmission rate for an existing link to be known in
order to deduce the existence of a link from the respective
infection rate. Under the assumption that the adjacency
matrix A is exactly known, Par!e et al. [12] estimate the

spreading parameters b and d of the N-Intertwined Mean-
Field Approximation (NIMFA) [13], [14], [15] of the SIS pro-
cess in discrete-time by observing the viral states xiðtÞ of all
nodes i over time t.

In this work, we assume the more general !-SIS model
[16] in discrete-time without information on the network
topology A nor the spreading parameters b; d and !. Our
contribution consists of rigorously stating the estimation
problem for both the network topology and the spreading
parameters in a MAP, or Bayesian, sense, taking into
account every transition of the sampled-time Markov chain
of the SIS process. Furthermore, by solving the reconstruc-
tion problem, we conclude that the topology and spreading
parameter estimation is hardly feasible in practice.

3 NOMENCLATURE

We denote the number of nodes in the graph by N . An adja-
cency matrix is denoted by A and the elements of A by aij.
The set of all unweighted adjacency matrices A is denoted by
A. The probability of an adjacency matrix A is denoted by
Pr½A(. The probability density functions of the continuous
spreading parameters are given by fbetaðbÞ, fdeltaðdÞ and
fepsilonð!Þ. Furthermore, the viral state of all nodes at time k is
the N ! 1 vector x½k(. The infected state of node i at time k is
indicated by xi½k( ¼ 1 and the susceptible state by xi½k( ¼ 0.
We denote all observations until discrete time k by the N ! k
matrix X½k( ¼ ðx½k(; x½k ) 1(; . . . ; x½1(Þ. The parameters which
are to be estimated are contained in the tuple u ¼ ðA;b; d; !Þ.
The parameters are given by the random variableQ. The con-
ditional probability density function of the realisation u of the
parameters given the observations X½k( is denoted by
fQjX½k(ðuÞ and the unconditional density by fQðuÞ. Table 1 sum-
marises the nomenclature.

4 ASSUMPTIONS

The sampling time T of the sampled-time Markov chain
of the SIS process needs to be “small enough”, which is
stated more precisely by the following two assumptions.

TABLE 1
Nomenclature

A Set of all adjacency matrices of simple graphs, A ¼ fA 2 f0; 1gN!N jaij ¼ aji; aii ¼ 0; 8i; jg
b and bT Infection rate b and sampled-time infection intensity bT ¼ Tb
d and dT Curing rate d and sampled-time curing intensity dT ¼ Td
! and !T Self-infection ! rate and sampled-time self-infection intensity !T ¼ T!
N Number of nodes
n Number of time instants which were observed, n 2 N

NN Set of natural numbers not greater thanN , i.e., NN ¼ f1; 2; . . . ; Ng
Su Set of all possible parameter tuples u
T Sampling time of the sampled-time Markov chain
u Parameters which are to be estimated: u ¼ ðA; b; d; !Þ
~u Parameters u after change of variables: ~b ¼ b) 1

T ;~d ¼ dT =bT ; ~! ¼ !T =bT
~ucvx;l Solution to the optimisation problem based on convex relaxation and line segment l
uheur;l The heuristic estimate for u based on the lth line segment
uheur The heuristic uheur;l which results in the minimum value of the objective function
u All-one vector u ¼ ð1; . . . ; 1ÞT 2 RN

x½k( At time k: xi½k( ¼ 0 denotes the susceptible and xi½k( ¼ 1 the infected state of node i
X½k( All observations at time k and before,X½k( ¼ ðx½k(; x½k ) 1(; . . . ; x½1(Þ
w Number of line segments of the piecewise-linear approximation
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1) The number of changes of nodal states per time
depends on the value of the spreading parameters
b; d and !, and the greater their value the more
changes of the nodal states per time. Since the exact
values of the spreading parameters are unknown,
we cannot directly state an upper bound on the sam-
pling time T . Instead, we assume that arbitrary but
finite upper bounds on the spreading parameters are
available, i.e.,

b * bmax; d * dmax and ! * !max: (1)

In Section 5, we derive an upper bound on the sam-
pling time T using the upper bounds on the spread-
ing parameters above.

2) The sampling time T of the sampled-time Markov
chain of the SIS process, introduced in Section 5, is
small enough such that describing the SIS process by
the first-order terms of the Taylor expansion of the
transition probabilities of the sampled-time Markov
chain of the SIS process is “sufficiently accurate”.
This assumption translates into two requirements
for the sampling time T : First, each transition is
observed, i.e., there is at most one transition in the
interval ½kT; ðkþ 1ÞT ( for k 2 N. Second, the MAP
estimate of the adjacency matrix A for the continu-
ous-time SIS process coincides with the MAP esti-
mate of the adjacency matrix A for the sampled-time
Markov chain of the SIS process.

For the estimation of the adjacency matrix A and the
spreading parameters b; d and !, the following assumptions
are made.

3) There is an arbitrary, but positive lower bound avail-
able for b, i.e., 0 < bmin < b.

4) A-priori, the adjacency matrix A and the rates b; d
and ! are stochastically independent distributed.
Furthermore, they are stochastically independent of
the first observation x½1(.

5) The prior distribution Pr½A( of A 2 A is logarithmi-
cally concave when extending the range of values
to the convex hull of A, i.e., log ðPr½A(Þ is concave
when the range of elements of A is extended from
aij 2 f0; 1g to aij 2 ½0; 1(. Every nonnegative concave
function is logarithmically concave, but not vice
versa [17].

6) The unknown spreading parameters b; d and ! are
assumed to be uniformly distributed in the intervals
described above, which complies with the maxi-
mum-entropy principle [18].

Assumptions 4-6 are required for the MAP approach in
Section 6. All these three assumptions could be omitted
and a maximum-likelihood approach be employed
instead, which follows straightforwardly from the pre-
sented MAP method by omitting the additive term of the
prior distribution of the parameters u. For the numerical
experiments in Section 8, we choose to generate the net-
work topology A and spreading parameters b; d and !
such that assumptions 4-6 do hold. In Section 8, the MAP
estimate is thus at least as accurate as the maximum-like-
lihood estimate, and the performance of the MAP

estimate serves as a best-case scenario in view of the diffi-
culty of the estimation problem.

The Assumptions 1-3 are satisfied for continuous-time
SIS processes on real-world networks, which justifies the
application of the maximum-likelihood approach as intro-
duced in this work. On the other hand, Assumptions 4-6
may not be not satisfied for the majority of real-world net-
works. Hence, the introduced MAP procedure cannot be
used in a straightforward manner instead of the maximum-
likelihood approach for real-world networks.

5 SAMPLED-TIME !-SIS PROCESS

The inverse problem of the reconstruction of the network
topology and the estimation of the spreading parameters,
given a number of measurements, is best described in dis-
crete-time. For epidemic processes on computer systems,
such as the spread of opinions on social media, the dynam-
ics are inherently in discrete-time due to the digital design
of hardware and software. For other epidemic processes,
such as the spread of a disease, it is reasonable to assume
that there is a limit to the temporal resolution of the empiri-
cal measurements. In the following, the sampled-time Mar-
kov chain for the SIS process is stated.

We denote the transition probability of the continuous-
time Markov chain of the SIS process from state i at time t
to state j at time tþ t by PijðtÞ, which is independent of t
since the SIS process is stationary. The sampled-time Mar-
kov chain with sampling time T is a discrete-time Markov
chain [19], where the transition probabilities Pij from state
i to state j are given by the first-order Taylor expansion of
PijðtÞ,

Pij ¼ P 0ijð0ÞT; (2)

and the transition probabilities from state i to state i are
given by

Pii ¼ 1 )
XN

l¼1

Pil: (3)

The transition probabilities depend on the adjacency
matrix A and the spreading parameters b; d; !, which com-
prise the compound parameter tuple u ¼ ðA;b; d; !Þ. Due
to Assumption 2, there are three transitions possible in
the sampled-time Markov chain of the !-SIS process.
These transitions are listed below and their probabilities
are inferred from the continuous-time SIS equations. For
all transitions, we state upper bounds on the sampling
time T , such that the corresponding transition probabili-
ties are in ½0; 1(.

(1) A single node i changes from the infected state at
discrete time k to the susceptible state at discrete
time kþ 1. The probability of this transition is

Pr½xi½kþ 1( ¼ 0jxi½k( ¼ 1; x½k(; u( ¼ dT; (4)

which needs to be smaller than one. Since dT ¼ dT *
Tdmax, T must obey

T * 1

dmax
: (5)
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(2) A single node i changes from the susceptible state at
time instant k to the infected state at time instant
kþ 1with the probability

Pr½xi½kþ 1( ¼ 1jxi½k( ¼ 0; x½k(; u(
¼ ðbNiðA; kÞ þ !ÞT;

(6)

where NiðA; kÞ is the number of infected nodes adja-
cent to node i in A at time k. Since bT ¼ bT , !T ¼ !T
and

NiðA; kÞ ¼
XN

j¼1

aijxj½k(; (7)

we obtain

Pr½xi½kþ 1( ¼ 1jxi½k( ¼ 0; x½k(; u(

¼ !T þ bT

XN

j¼1

xj½k(aij:
(8)

In order to ensure that Pr½xi½kþ 1( ¼ 1jxi½k( ¼ 0;
x½k(; u( is not greater than one, we consider the upper
bound

Pr½xi½kþ 1( ¼ 1jxi½k( ¼ 0; x½k(; u( * !T þ bTN: (9)

Since !T * !maxT and bT * bmaxT , we obtain that T
must obey

T * 1

!max þNbmax
: (10)

(3) The state of no node changes from time k to time
kþ 1. Denote the susceptible and infected nodes,
respectively, at time instant k by

M0½k( ¼ fj 2 NN jxj½k( ¼ 0g; (11)

and

M1½k( ¼ fj 2 NN jxj½k( ¼ 1g: (12)

By denoting the all-one vector as u ¼ ð1; . . . ; 1ÞT , it
holds

jM0½k(j ¼ uT ðu ) x½k(Þ (13)

jM1½k(j ¼ uTx½k(: (14)

Then, the probability of no change from time k to
kþ 1 can be written as

Pr½x½kþ 1( ¼ x½k(jx½k(; u(
¼ 1 )

X

j2M1½k(
dT )

X

i2M0½k(
ðbTNiðA; kÞ þ !T Þ:

(15)

Using (7) and (14) gives

Pr½x½kþ 1( ¼ x½k(jx½k(; u(

¼ 1 ) dTu
Tx½k( )

X

i2M0½k(
!T þ bT

XN

j¼1

aijxj½k(
 !

:

(16)

With (13), we obtain

Pr½x½kþ 1( ¼ x½k(jx½k(; u( ¼ 1 ) dTu
Tx½k(

) uT ðu ) x½k(Þ!T )
X

i2M0½k(

XN

j¼1

bTaijxj½k(:
(17)

Finally, since
P

i2M0½k( aij ¼
PN

i¼1ð1 ) xi½k(Þaij and
uTu ¼ N

Pr½x½kþ 1( ¼ x½k(jx½k(; u(
¼ 1 ) N!T þ ð!T ) dT ÞuTx½k(

)
XN

j¼1

bTxj½k(
XN

i¼1

ð1 ) xi½k(Þaij:
(18)

In order to ensure that the expression for Pr½x½kþ 1( ¼
x½k(jx½k(; u( does not exceed one,we consider the upper
bound of (18)

Pr½x½kþ 1( ¼ x½k(jx½k(; u( * 1 ) N!T

þ ð!T ) dT ÞuTx½k(;
(19)

which follows from the fact that the sum in Equa-
tion (18) is not negative. If the upper bound (19) does
not exceed one, then also the transition probability
Pr½x½kþ 1( ¼ x½k(jx½k(; u( is bounded by one. We con-
sider two cases, depending on the values the self-
infection rate !T and the curing rate dT . If !T + dT ,
then we apply uTx½k( * N and obtain the following
upper bound on the transition probability

Pr½x½kþ 1( ¼ x½k(jx½k(; u( * 1 ) dTN: (20)

On the other hand, if !T < dT , the transition proba-
bility is upper bounded by

Pr½x½kþ 1( ¼ x½k(jx½k(; u( * 1 ) N!T ; (21)

due to uTx½k( + 0. Since the curing rate dT as well as
the self-infection rate !T are not negative, both upper
bounds (20) and (21) are smaller than or equal to one.
Thus, also the transition probability Pr½x½kþ 1( ¼
x½k(jx½k(; u( does not exceed one.

To ensure that the expression for Pr½x½kþ 1( ¼
x½k(jx½k(; u( is not negative, we deduce from (18)

Pr½x½kþ 1( ¼ x½k(jx½k(; u( + 1 ) N!T

þ ð!T ) dT ÞuTx½k( ) bT
XN

j¼1

xj½k(
XN

i¼1

ð1 ) xi½k(Þ;
(22)

since aij + 0. Furthermore, it holds

Pr½x½kþ 1( ¼ x½k(jx½k(; u( + 1 ) N!T

þ ð!T ) dT ÞuTx½k( ) bT
N2

4
;

(23)

which follows after minimisation with respect to
" ¼

PN
j¼1 xj½k(, and the minimum is attained at " ¼ N

2 .
Assumption 1 states the bounds on the infection and
curing rates, namely bT ¼ bT * bmaxT , dT * dmaxT
and !T * !maxT . Using these bounds on the spreading
parameters and the bound (23), we obtain that the
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transition probability Pr½x½kþ 1( ¼ x½k(jx½k(; u( is not
negative if the sampling time T satisfies

T * 4

N2bmax þ 4Nmaxf!max; dmaxg
: (24)

The upper bound on T in (24) is smaller than both bounds
in (5) and (10) and, hence, condition (24) is a sufficient con-
dition for all transition probabilities of the sampled-time
Markov chain to lie in the interval ½0; 1(.

6 MAXIMUM-A-POSTERIORI FORMULATION

The estimation problem is stated in the MAP sense. Given
all measurements X½n( ¼ ðx½n(; . . . ; x½1(Þ, we aim to find the
parameter tuple uMAP, which maximises the posterior

uMAP ¼ arg max
u2Su

fQjX½n(ðuÞ; (25)

where Su denotes the set of feasible solutions for the param-
eter tuple u according to the assumptions in Section 4, i.e.,

Su ¼ A! ½bmin;bmax( ! ½0; dmax( ! ½0; !max(; (26)

where S1 ! S2 denotes the Cartesian product of set S1 and
set S2.

Applying the MAP estimation method is motivated espe-
cially by two facts. First, the estimation problem is trans-
lated into an optimisation problem, which often allows for
an efficient computation due to the advances in modern
optimisation theory and the availability of high perfor-
mance computers [20], [21].

Second, the MAP method exhibits two important accu-
racy properties for continuous parameter estimation,
namely the MAP estimation gives an unbiased and efficient
estimator. In order to introduce these accuracy properties,
we denote an arbitrary estimator of the true parameters u
given n observations by ûðnÞ. Since the observations are
generated by a random process, e.g., the !-SIS process, and
the estimator ûðnÞ is a non-trivial mapping of these observa-
tions, the estimator ûðnÞ is a random variable.

The first accuracy property of the MAP estimator is that,
under mild conditions, the MAP estimator is (uncondition-
ally) unbiased, which means that its expectation E½ûðnÞ(
equals the true parameters, if ûðnÞ equals the MAP estimator
[22, Theorem 4.16].

In order to state the second property of the MAP estima-
tor, we refer to the bound on the highest attainable accuracy
of estimators, which was discovered independently by
Rao [23] and Cram!er [24], in 1945 and 1946, respectively.
Under mild conditions, the Cram!er-Rao inequality [22]
gives a lower bound on the mean square error for any esti-
mator ûðnÞ

E½ðûðnÞ ) uÞðûðnÞ ) uÞT ( , Mðn;X½n(; fQÞ; (27)

where for matrices A;B, we denote by A , B that A ) B is a
positive semidefinite matrix, Mðn;X½n(; fQÞ is a matrix
depending on the number of observations n, the observa-
tions X½n( and the prior distribution fQ of the parameters u.
An estimator ûðnÞ is efficient if equality in (27) holds. The
importance of the MAP estimator stems from the fact that if
an unbiased efficient estimator exists, then it coincides with

the MAP estimator.1 We emphasise that the bound (27)
solely depends on the estimation problem and not on the
specific estimator ûðnÞ. Hence, the bound, together with the
equality-achieving MAP estimator, gives a measure of diffi-
culty of the respective estimation problem.

The Cram!er-Rao bound requires the parameters u to be
continuous. For the !-SIS process considered in this work, the
parameters are not continuous due to the binary-valued adja-
cency matrix A. Only recently, attention has been drawn to
establishing accuracy bounds on estimators for discrete
parameter settings [25]. Motivated by translating the estima-
tion into an optimisation problem and the strength for
completely continuous parameter estimation, the vast major-
ity of approaches to network reconstruction rely on maxi-
mum-likelihood or MAP estimation methods [3], [4], [5], [6],
[7], [8].

The optimisation problem (25) is translated into a mixed-
integer program. Bayes’ theorem gives

fQjX½n(ðuÞ ¼
Pr X½n(ju½ (fQðuÞ

Pr X½n(½ ( ; (28)

and, since the SIS process is Markovian [19, Chapter 9]

fQjX½n(ðuÞ ¼
Pr x½1(ju½ (
Pr X½n(½ (

fQðuÞ
Yn

k¼2

Pr x½k(jx½k ) 1(; u½ (: (29)

The term Pr X½n(½ ( is not a function of u and neither is
Pr x½1(ju½ ( ¼ Pr x½1(½ (, since u and x½1( are stochastically inde-
pendent by Assumption 4 in Section 4. Hence, the first fac-
tor of (29) can be neglected and the estimation problem (25)
becomes

uMAP ¼ arg max
u2Su

Pr½A(fbetaðbÞfdeltaðdÞfepsilonð!Þ-

-
Yn

k¼2

Pr x½k(jx½k ) 1(; u½ (;
(30)

since A, b; d and ! are stochastically independent by
Assumption 4. The spreading parameters b, d and ! are uni-
formly distributed by Assumption 6, thus the last three
factors can be neglected, and by taking the logarithm (pre-
serving the same optimum), we obtain

uMAP ¼ arg max
u2Su

log Pr½A(ð Þ þ
Xn

k¼2

log Pr x½k(jx½k ) 1(; u½ (ð Þ: (31)

We denote the set of the time instants of the infections of
node i as

H01½i( ¼ fk 2 Nnjxi½kþ 1( ¼ 1 ^ xi½k( ¼ 0g: (32)

Furthermore, we denote the set of time instants which corre-
spond to the curing of a node and to a constant transition,
respectively, as

1. For a finite number of observations n, the Cram!er-Rao inequality
can be stated in two versions, either neglecting the prior distribution fQ
of the parameters u [22, Theorem 4.13] or taking the prior distribution
into account [22, Theorem 4.17]. The former bound is attained for maxi-
mum-likelihood estimators and the latter, and tighter, bound is attained
for MAP estimators. The bounds coincide when the observation length
n tends to infinity. In other words, considering the prior distribution of
the parameters u in the estimation procedure only has an impact on the
accuracy for small observation lengths n.
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H10 ¼ fk 2 Nnj9i 2 NN : xi½kþ 1( ¼ 0 ^ xi½k( ¼ 1g (33)

Hconst ¼ fk 2 Nnj8i 2 NN : xi½kþ 1( ¼ xi½k(g: (34)

The addends of the optimisation problem (31) corre-
spond to the time instant of either one of the sets H01½i(; H10

orHconst. We obtain

uMAP ¼ arg min
u2Q

fobjðuÞ; (35)

where the objective function arises from the expressions
for the transition probabilities (4), (8) and (18), and is explic-
itly given by

fobjðuÞ ¼ ) log ðPr½A(Þ )
X

k2H10

log dTð Þ

)
XN

i¼1

X

k2H01½i(
log !T þ bT

XN

j¼1

xj½k(aij

 !

)
X

k2Hconst

log ð1 ) N!T þ ð!T ) dT ÞuTx½k(

þ bT

X

i;j

xj½k(ðxi½k( ) 1ÞaijÞ:

(36)

Since transitions can occur multiple times, i.e., x½k1( ¼ x½k2(
and x½k1 ) 1( ¼ x½k2 ) 1( for k1 6¼ k2, the objective function
fobjðuÞ may contain the same addends multiple times and
they can be replaced by a single addend weighted with the
multiplicity of the addend. By formulating u 2 Su as con-
straints, the MAP estimation is given by the following
mixed-integer programming optimisation problem

minimise
u

fobjðuÞ

subject to aij 2 f0; 1g 8i; j
Tbmin * bT * Tbmax

0 * dT * dmaxT

0 * !T * !maxT:

(37)

The solution to the above optimisation problem (37) is
denoted by uMAP. The optimisation problem (37) can be
proved to be NP-hard [26], for any connected true adjacency
matrix A, on which the SIS viral state sequence x½1(; . . . ; x½n(
was generated. If the considered graph is simple, i.e., undi-
rected and without self-loops, the constraints aij ¼ aji and
aii ¼ 0 can be added to the optimisation problem. For ease
of exposition, these constraints are not explicitly stated in
the following.

The optimum uMAP of problem (37) can be found by a
brute-force algorithm, whose computation time is in
Oð2NðN) 1Þ=2Þ. Thereby, the minimum of the optimisation
problem (37) is computed for every possible N !N adja-
cency matrix A1; A2; . . . 2 A. For a fixed A ¼ Am, where
m 2 f1; . . . ; 2NðN) 1Þ=2g, the optimisation is performed with
respect to the three spreading parameters bT ; dT ; !T , and
the objective function (36) is convex, since the objective
function is a sum of composition of negative logarithms
and linear functions. The brute-force approach yields
2NðN) 1Þ=2 feasible points um, one for each Am, and the solu-
tion uMAP to the optimisation problem (37) is given by the
feasible point which results in the minimal objective

value. Since a computational complexity of Oð2NðN) 1Þ=2Þ is
infeasible for large N , a heuristic based on convex relaxa-
tion and piecewise-linear approximation is presented in
the Section 7.

7 HEURISTIC BY PIECEWISE-LINEAR
APPROXIMATION AND CONVEX RELAXATION

A common heuristic for solving mixed integer program-
ming problems is based on the solution of a convex optimi-
sation problem which results from relaxing the integer
constraint [17], i.e., replacing aij 2 f0; 1g by aij 2 ½0; 1(.
However, the objective function fobj given by (36) contains
the terms baij which render fobj non-convex also when
applying the convex relaxation of the integer constraint.

The intuitive approach of introducing a new variable
~aij ¼ bTaij and relaxing the binary constraint ~aij 2 f0;bTg to
~aij 2 ½0;bT ( cannot be straightforwardly employed. First,
there is no guarantee that expressing log ðp½A(Þ by ~aij (and
possibly by bT ) results in a convex function. Second, even if
A is assumed to be uniformly distributed and the term
log ðp½A(Þ can hence be omitted, replacing bTaij by ~aij would
erase bT in the objective fobj, and bT would only appear in
the constraints ~aij 2 ½0; bT ( and Tbmin * bT * Tbmax. Thus,
setting bT ¼ Tbmax would always be a solution to the corre-
sponding convex optimisation problem since the constraint
½0; Tbmax( is the least restrictive interval for ~aij. It is not obvi-
ous how to infer an estimate bT which does not equal
Tbmax, and furthermore, how to deduce aij ¼ 0 or aij ¼ 1
from a solution 0 < ~aij < Tbmax.

We propose a heuristic by translating the non-convex
optimisation problem (37) into w convex optimisation prob-
lems with the solutions ~ucvx;l for l ¼ 1; . . . ; w. The translation
is achieved by a transformation of the optimisation varia-
bles, i.e., ~u ¼ tðuÞ for a bijective function t, a piecewise-linear
approximation of non-convex terms of the objective func-
tion with w line segments and by a convex relaxation of the
binary constraint aij 2 f0; 1g. The greater the number of line
segments w, the more accurate is the piecewise-linear
approximation. We refer the reader to the Appendix for
details, which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TNSE.2018.2872511.

The solutions ~ucvx;l ¼ ðAcvx;l; ~bcvx;l;~dcvx;l; ~!cvx;lÞ, l ¼ 1 . . . ; w,
correspond to a non-binary estimates of the links, i.e.,
ðAcvx;lÞi;j may neither be 0 nor 1. Considering that the links
have to be binary-valued, a heuristic is employed which
aims for finding an estimate that approximates the exact
solution uMAP of the original optimisation problem (37). For
each ~ucvx;l, the following two steps are performed.

1) The solution ~ucvx;l of the optimisation problem (22)
corresponds to a non-binary valued adjacency
matrix Acvx;l. To obtain a binary-valued solution,
we round the elements of Acvx;l to the nearest inte-
ger, which results in the heuristic estimate denoted
by

Aheur;l

! "
ij
¼

1 if Acvx;l

! "
ij
+ 1

2

0 if Acvx;l

! "
ij
< 1

2 :

(

(38)
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2) The binary-valued heuristic estimates for the adja-
cency matrix Aheur;l, together with the estimates ~bcvx;l;
~dcvx;l; ~!cvx;l for the spreading parameters obtained by
the convex problems (22), do realise a feasible point
to the original optimisation (37). However, a better
estimation of the three rates, for Aheur;l given, can be
performed as follows.

When A is fixed to Aheur;l, the objective of the
original problem (37) becomes a function of the three
rates, i.e.,

fobj;lðbT ; dT ; !T Þ ¼ fobjðAheur;l;bT ; dT ; !T Þ; (39)

The function fobj;lðbT ; dT ; !T Þ is convex with respect
to bT ; dT ; !T . Hence, the function fobj;lðbT ; dT ; !T Þ can
be efficiently minimised with respect to these three
variables, whereby the constraints of the original
optimisation problem (37) have to be considered (the
constraints are also convex with respect to bT ; dT ; !T ).
The reduced-size optimisation problem is also called
convex restriction [27] of the original optimisation
problem at the point Aheur;l.

The refinement of the spreading parameters by
convex optimisation results in an heuristic estimate,
which is denoted by uheur;l ¼ ðAheur;l;bheur;l; dheur;l;
!heur;lÞ. As the heuristic is performed for every line
segment l ¼ 1; . . . ; w, we obtain w solution candi-
dates uheur;l.

The final estimate of the presented heuristic estimation
approach is denoted by uheur and is given by the candidate
uheur;l which results in the minimal value of the objective
function (36), i.e.,

uheur ¼ argmin fobj uheur;l
! "

jl ¼ 1; . . . ; w
# $

: (40)

The corresponding value of the objective function is
denoted by fheur ¼ fobjðuheurÞ.

In pseudocode, the approach for determining a heuristic
estimate uheur is given by Algorithm 1. The presented algo-
rithm allows for parallelisation in a straightforward manner
since uheur;l can be obtained independently for the different
line segments l.

Algorithm 1. Heuristic for SIS Network Reconstruction
and Spreading Parameter Estimation

1: Input: ObservationsX½n(
2: Output:Heuristic for MAP estimate uheur
3: fheur  1
4: for l ¼ 1; . . . ; w do " Piecewise-linear approximation with

w segments
5: Obtain ~ucvx;l ¼ ðAcvx;l; ~bcvx;l;~dcvx;l; ~!cvx;lÞ by solving the con-

vex optimisation problem (22)
6: Obtain binary Aheur;l from non-binary Acvx;l by rounding

(38)
7: Obtain bheur;l; dheur;l; !heur;l

! "
by minimising the convex

fobj;lðbT ; dT ; !T Þ given by (39)
8: if fobj Aheur;l;bheur;l; dheur;l; !heur;l

! "
< fheur then

9: uheur  Aheur;l;bheur;l; dheur;l; !heur;l
! "

10: fheur  fobjðuheurÞ
11: end if
12: end for

8 NUMERICAL EVALUATION

Both the heuristic estimation approach, resulting from con-
vex relaxation and piecewise-linear approximation, and the
brute-force approach are numerically evaluated. Multiple
Erdo!!s-R!enyi graphs are generated randomly. For each of
these graphs, the nodal infection state matrix X½n( is created
by a random number generator according to the transition
probabilities of the sampled-time !-SIS process described in
Section 5. The nodal states X½n( are then given as input to
the estimation procedures. A solution to the optimisation
problems (22) of the heuristic is obtained by the Matlab
command fmincon. The expression for the gradient of
the respective objective function is provided to the solver
fmincon. The resulting estimated graph and spreading
parameters are compared with the true parameters.

We choose the link probability p of the Erdo!!s-R!enyi
model such that the generated random graphs are con-
nected with a high probability, which holds if p is signi-
ficantly greater than the threshold log ðNÞ=N . By setting
p ¼ 0:7, we ensure p > 2 log ðNÞ=N for all networks consid-
ered in the numerical evaluation, which are of size N ¼ 4 or
greater. For Erdo!!s-R!enyi random graphs, the logarithm of
the prior distribution of the adjacency matrix A is given by

log Pr½A(ð Þ ¼ 1

2
NðN ) 1Þ log 1 ) pð Þ (41)

þ log
p

1 ) p

% &XN

i¼1

XN

j¼1

aij: (42)

Only the second addend depends on A and has to be con-
sidered for the optimisation. Alternatively, prior informa-
tion on the link density could be considered by replacing
log Pr½A(ð Þ by r

P
ij aij, where r is the sparsity parameter [6].

The brute-force and the heuristic estimation of Section 7
are compared for small2 network sizes N ¼ 4; 5; 6 and for
gradually increasing observation lengths from n ¼ 100 to
n ¼ 5000. Furthermore, the heuristic estimation approach is
numerically evaluated for larger networks up to N ¼ 24
nodes and for gradually increasing observation lengths rang-
ing from n ¼ 103 to n ¼ 106. For each pair of number of nodes
N and observation length n, 103 networks are randomly gen-
erated according to the Erdo!!s-R!enyi random graph model
with p ¼ 0:7-except for the comparison of brute-force and
heuristic in Section 8.1, where 2 - 103 networks are created.

The spreading parameters are set to b ¼ 2=3, d ¼ 1 and
! ¼ 0:01. The upper bounds on the parameters are set to
bmax ¼ 1, dmax ¼ 1 and !max ¼ 1. The lower bound on the
infection rate is set to bmin ¼ 0:1b ¼ 2=30. The sampling
time T is set as large as possible, considering the upper
bound (24). Every node is set initially to the infected state,
i.e., x½1( ¼ u. For the heuristic approach presented in
Section 7, the number of line segments for the piecewise-
linear approximation is set to w ¼ 10.

The accuracy of the resulting estimates is compared as fol-
lows. For the spreading parameters b; d and !, the error of the

2. The ratio of possible adjacency matrices grows exponentially with
respect to N . For N ¼ 6, there are approximately 3 - 104 possible adja-
cency matrices and for N ¼ 7 there are approximately 2 - 106 possible
matrices.
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estimates is defined as the relative deviation, i.e., ðb ) b̂Þ=b,
where b̂ is the estimate and b the true value (the error of d and
! is defined analogously). For the adjacency matrix, the error
is defined as ðÂ ) AÞ=L, where Â andA are the estimated and
true adjacency matrix, respectively, and L ¼ ðN ) 1ÞN=2 is
the number of possible links.

8.1 Evaluation of the Heuristic Estimation Method
The heuristic based on convex relaxation and piecewise-lin-
ear approximation, as introduced in Section 7, and the exact
brute-force algorithm are compared with respect to accu-
racy and computation time. Fig. 1 depicts that for almost
every randomly generated graph the heuristic and the
brute-force estimates are identical. Fig. 2 demonstrates the
difference in computation time of the heuristic and exact
brute-force approach.

We aim to justify the convex relaxation of the binary con-
straints of the MAP estimation problem (37), i.e., the replace-
ment of the constraints aij 2 f0; 1g by aij 2 ½0; 1(. We set the
spreading parameters to their true value and consider the
estimation onlywith respect to the adjacencymatrixA

Acvx ¼ arg min
A

fobjðA;bT ; dT ; !T Þ

s.t. aij 2 ½0; 1( 8i; j:
(43)

Fig. 3 illustrates the error of the non-binary estimate Acvx

and the rounded, binary estimate Aheur. The accuracy of the
non-binary estimate Acvx increases monotonically, which
justifies the convex relaxation of the binary constraints of
the MAP estimation problem (37).

8.2 Accuracy of Estimation Depending on
Observation Length

The dependency of the accuracy of the heuristic estimate
uheur, given by Equation (40), on the number of observation
samples n is depicted in Fig. 4. The figure shows that for a
sufficiently large observation length, the adjacency matrix
can be reconstructed with the heuristic approach almost
always exactly. The network size N has not a great impact
on the accuracy of the estimate for d, but the network size N
does have a considerable impact on the goodness of the esti-
mates of both b and !. The accuracy of the estimate of the
self-infection rate ! is not monotonically increasing when
the number of observations n is small and the adjacency
matrix A is reconstructed very poorly.

To evaluate the introduced network reconstruction
method for real-world networks, we consider the Zachary
karate club [28] withN ¼ 34 nodes and the network of wind-
surfers [29] with N ¼ 43 nodes. We accessed the networks
via the Konect network collection [30]. In both networks, the
nodes refer to an individual, and the edges refer to a tie or
interpersonal contact of the individuals, respectively. For the
two networks, 100 different SIS viral state sequences
x½1(; . . . ; x½n( were created. Since the prior distribution is not
available, we perform a maximum-likelihood estimation by
omitting the term log ðPr½A(Þ in the objective function (31).
Fig. 5 depicts the resulting accuracy of the estimates of the
adjacency matrices A, averaged over the 100 different SIS
viral state traces, in dependency of the observation length n.
For both networks, the number of observations n is very
large if a reasonable estimation accuracy is to be achieved.

8.3 Impact of Self-Infections
The !-SIS model is more general than the SIS-model without
self-infections (! ¼ 0), and the network reconstruction
method in this work is applicable in both cases. Without the
presence of self-infections, the virus can die out, which
means that xi½k( ¼ 0 for all nodes i and some time k. If the
virus dies out at time k, then we reset the viral state to the all-
one vector: x½kþ 1( ¼ u. If the self-infection equals ! ¼ 0,
then only the infection rate b, the curing rate d and the adja-
cencymatrixA are estimated in theMAP problem (37). Fig. 6
illustrates the impact of self-infections on the accuracy of the
network reconstruction and estimation of the infection rate
b. The accuracy of the network A changes to a negligible
extend when self-infections do not occur. For larger

Fig. 2. Comparison of computation time of heuristic (heur) and brute-
force (bf) approach in dependency of the number of nodesN.

Fig. 3. Accuracy of the non-binary estimate Acvx, given by (43), and the
rounded estimate Aheur in dependency of the observation length n. Dis-
continued graphs in the logarithmically scaled plot refer to zero errors of
the estimate of A.

Fig. 1. Accuracy of heuristic: Fraction Rdiff of the 2 - 103 randomly gener-
ated graphs for which the results of the heuristic and the exact brute-
force methods do not coincide.
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observation lengths n, the accuracy of the estimation of the
infection rate b deteriorates in the presence of self-infections.

8.4 Impact of Knowledge of Spreading Parameters
In some cases, the spreading parameters b; d and ! may be
available, and the estimation problem reduces to finding
the adjacency matrix A. Fig. 7 depicts the error of the recon-
structed network for the two cases of known and unknown
spreading parameters. If the spreading parameters are
known, then the network reconstruction method performs
better -especially for large observation lengths n- than if the
spreading parameters are unknown.

8.5 Impact of the Value of the Infection-Rate
The greater the infection rate b, the more nodes are infected
in the metastable state of the SIS process, which may have
an impact on the accuracy of the network reconstruction.
We aim to choose the spreading parameters close to the epi-
demic threshold, which is decisive for the average number
of infected nodes in the metastable state.

We generate adjacency matrices A with N ¼ 22 nodes by
the Erdo!!s-R!enyi model with the link probability p ¼ 0:1,
and keep 1,000 connected adjacency matrices. Since we dis-
card disconnected adjacency matrices, the prior distribution
(42) is not correct, and we perform a maximum-likelihood
estimation instead by omitting the term log ðPr½A(Þ in
the objective function (31). For each generated adjacency
matrix A, the infection rate b is set to a multiplicity l 2 R
of the lower bound on the epidemic threshold given by
[19, Theorem 17.3.1]

Fig. 4. Accuracy of reconstructed network and estimated parameters in
dependency of the observation length n. Discontinued graphs in the first,
logarithmically scaled plot refer to zero errors of the estimate of A.

Fig. 5. Accuracy of reconstructed network and estimated parameters in
dependency of the observation length n, for two real-world networks.

Fig. 6. Impact of self-infections: Comparison of accuracy of recon-
structed network and estimated spreading parameters in dependency of
the observation length n. Discontinued graphs in the logarithmically
scaled plot refer to zero errors of the estimate of A.
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b

d
¼ ltð1Þc ¼ l

1

#1
; (44)

where #1 is the spectral radius of the adjacency matrix A
on which the SIS process is run. The largest eigenvalue #1

of an N !N adjacency matrix is bounded by #1 * N ) 1
and #1 + 2L=N , where L is the number of links of the
adjacency matrix A. For Erdo!!s-R!enyi random graphs, the
expected value of the lower bound on the eigenvalue #1 is
E½2L=N ( ¼ ðN ) 1Þp. For a given multiplicity l, we set the
bounds of the infection rate to bmin ¼ 0:1lðN ) 1Þ) 1 and
bmax ¼ 10lðpðN ) 1ÞÞ) 1. We set the curing rate to d ¼ 1 and
the self-infection rate to ! ¼ 0:01. Fig. 8 illustrates the net-
work reconstruction error versus the infection rate b.

8.6 Impact of Knowledge on Prior Distribution
In Fig. 9, the impact of knowledge of the prior distribution
of the adjacency matrix A on the accuracy of the estimation
is depicted. For the link probabilities p ¼ 0:7 and p ¼ 0:9,
the heuristic estimation as presented in Section 7 is per-
formed in two versions. The first version assumes that a-pri-
ori knowledge is available and sets the term of the a-priori
distribution Pr½A( in the objective function (36) accordingly.
The other version assumes that there is no a-priori knowl-
edge available and the term Pr½A( in the objective function
(36) is omitted, which is equivalent to assuming a uniform
distribution of A. The plot shows that, if no a-priori knowl-
edge is available, then the estimation accuracy for A is

worse for small observation lengths n but the estimation
accuracy converges to the accuracy of the case where a-
priori knowledge is available if n increases. The observation
is due to the fact that the ratio of log ðPr½A(Þ to fobjðuÞ in (36)
converges to zero as the observation length n tends to infin-
ity. For p ¼ 0:9 the relative gap is larger than for p ¼ 0:7,
which is align with the intuition that a-priori knowledge of
the distribution of the adjacency matrix A has more impact
when A is randomly generated by a random graph model
with higher entropy.

8.7 Required Observation Length and Computation
Time

The number of observations and the computation time,
which are required for a certain error tolerance of the recon-
structed network, is a decisive indicator for the amount
of information and time required for solving the estimation
problem. In Figs. 10 and 11, the dependency of the

Fig. 7. Impact of knowledge of spreading parameters: Comparison of
accuracy of reconstructed network with knowledge of spreading parame-
ters (sp) and without knowledge of spreading parameters (no sp).
Discontinued graphs in the logarithmically scaled plot refer to zero errors
of the estimate of A.

Fig. 8. Average error of estimates of A in dependency of the infection
rate b.

Fig. 9. Impact of a-priori knowledge: Comparison of accuracy of recon-
structed network and estimated spreading parameters with a-priori
knowledge (ap) and without a-priori knowledge (no ap) for the link proba-
bilities p ¼ 0:7 and p ¼ 0:9. Discontinued graphs in the logarithmically
scaled plots refer to zero errors of the estimate of A.

Fig. 10. Required observation length n for given average fraction "A of
erroneous links of the estimate of A, in dependency of the number of
nodes N. The points are obtained by interpolation and the fitted subex-
ponential dependencies are given by the dashed graphs.
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observation length n and of the computation time, respec-
tively, on the number of nodes N is depicted, if a certain
error margin on the estimate of A is given. Since none of the
data points in Fig. 4 coincides exactly with either of the
desired error on the estimate of A, a linear interpolation
between these points is performed. The Figs. 10 and 11 indi-
cate that, given a desired average error on the adjacency
matrix A, both the observation length and the computation
time seem to grow exponentially with respect to the number
of nodes N . Indeed, given the small range for N , we can
approximately deduce a subexponential dependency [31] of
the number of observations n on the number of nodes N ,
log 10ðnÞ . Na þ b. Similarly, for the computation time
Tcomp, we approximately find an exponential dependency
on the number of nodes N , log 10ðTcompÞ . mN þ d. The
parameters a; b;m and d, which resulted from fitting the
(sub)exponential functions to the interpolated data points,
are given by Table 2.

Interior-point algorithms, such as the one implemented
by the Matlab command fmincon, allow for a large number
of decision variables. The number of decision variables in
the optimisation problem (22) equals ðNðN ) 2Þ=2þ 3Þ,
which is not problematic for computing the solution of (22).
Instead, the size N of the network, for which the network
reconstruction can be performed, is in practice determined
by the computation time, which is required for a reasonable
estimation accuracy. For the Zachary karate club network
[28] of size N ¼ 34, Algorithm 1 took approximately 75
minutes on a 2.5 GHz Intel Xeon Processor E5-2670 v2 in order
to estimate the network with a reasonable accuracy (average
fraction of erroneous links "A . 10) 4). As illustrated by
Fig. 11, the computation time for a desired average fraction
of erroneous links "A grows exponentially with respect to
the number of nodes N , which poses a severe practical con-
straint, even if the large number of observations n given by
Fig. 10 is available.

9 CONCLUSIONS

The problem of reconstructing the underlying graph and
estimating the spreading parameters of the sampled-time
SIS process is formulated in a Bayesian sense and an effi-
cient, polynomial-time heuristic is proposed. Numerical
evaluations indicate that the heuristic estimation procedure
performs very well in comparison to the exact solution on

small-scale networks. This observation motivates to use
the heuristic for larger networks, where solving the estima-
tion problem exactly becomes computationally infeasible.
Indeed, we have proved in another work [26] that the maxi-
mum-likelihood estimation problem is NP-hard for any con-
nected true adjacency matrix A, on which the SIS viral state
sequence was generated.

Numerical evaluations demonstrate that also for larger
networks the heuristic algorithm estimates the true
spreading parameters up to a small error margin and that
the true topology A is almost always inferred correctly for
sufficiently many observations n. However, the number of
observations n which is required for a sufficiently high
accuracy of the network reconstruction grows rapidly
with respect to the size N of the network, in particular
log 10ðnÞ . Na þ b, for a . 0:56.

In practical applications, the underlying network is only
available in exceptional cases and reconstructing the net-
work is rendered infeasible due to the tremendous amount
of required observations. The negative result will further
deteriorate with incomplete information, when certain
nodes or periods of time are not observable. Endeavours
that aim for steering the viral spread towards a desired
state, such as the mitigation of an outbreak of an infectious
human disease or countermeasures against fake news on
social media, are thus subject to the fundamental limit of
uncertainty of the underlying network. This limit strongly
opposes the Big Data belief, suggesting that the vast amount
of available data is sufficient to solve most problems. Since
observing the viral states for a practicable number of obser-
vation does not allow for reconstructing the network with a
viable accuracy, approaches for steering the viral spread
necessarily have to incorporate the uncertainty of the under-
lying network.
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APPENDIX

CONVEX OPTIMISATION FORMULATION

To overcome the challenge of the non-convexity of the
optimisation problem (17), we consider the following refor-
mulation of the objective function

fobj(✓) =� log(Pr[A])�
X
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✓
log (�T ) + log

✓
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We transform ✓ according to the one-to-one mapping
defined by

t(✓) = (A,�
�1
T

,
�T

�T

,
✏T
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),

and denote

✓̃ = (A, �̃, �̃, ✏̃) = t(✓)

Expressing the objective in terms of ✓̃ gives, since
n = |H10|+ |Hconst|+

P
i
|H01[i]|,
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, (21)

where g(✓̃) = fobj(✓)�n log(�̃). Given the convex relaxation
of the integer constraint aij 2 [0, 1], the function g(✓̃) is
convex as the function g(✓̃) is a sum of composition of
negative logarithms and linear functions of ✓̃ and since
log(Pr[A]) is concave by assumption 5, but the remaining
term log(�̃) is not convex. Based on the above form (21)
of the objective function fobj, a convex approximation is
stated in the following. We consider a piecewise-linear
(or, more accurately, piecewise-affine) approximation of the
non-convex term log(�̃). We denote the number of segments
of the piecewise-linear approximation by w, the more line
segments, the more accurate the resulting approximation.

Given the range of � (assumption 1 and 3), it holds
that �̃ = (�T )�1 2 [(T�max)�1

, (T�min)�1] and hence
the image of the non-convex term log(�̃) is given by
[� log(T�max),� log(T�min)]. For stating a piecewise-linear
approximation, we divide the image of log(�̃) into w sub-
intervals of equal size. These intervals are denoted by

[log(tl), log(tl+1)], l = 1, ..., w, where (log(tl+1) � log(tl))
is constant with respect to l, log(t1) = � log(T�max) and
log(tw+1) = � log(T�min). The piecewise-linear approxima-
tion is then given by the line segments connecting the points
(tl, log(tl)) of the intervals:

log
⇣
�̃

⌘
⇡ hl(�̃) := cl�̃ + dl, for �̃ 2 [tl, tl+1],

where

cl =
log(tl+1)� log(tl)

tl+1 � tl

and

dl =
tl log(tl+1)� tl+1 log(tl)

tl � tl+1

Each line segment l of the piecewise-linear approximation
gives rise to a convex optimisation problem when the inte-
ger constraint on A is relaxed to aij 2 [0, 1]. Considering
the feasible regions for �̃, �̃ and ✏̃ as constraints in the
optimisation problem, we obtain for each line segment l

minimise
✓̃

g(✓̃) + nhl(�̃)

subject to aij 2 [0, 1] 8i, j
tl  �̃  tl+1

0  �̃  �maxT �̃

0  ✏̃  ✏maxT �̃

(22)

The solution to the convex optimisation problem (22) is
denoted by ✓̃cvx,l = (Acvx,l, �̃cvx,l, �̃cvx,l, ✏̃cvx,l).


