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Network Localization Is Unalterable
by Infections in Bursts

Qiang Liu

and Piet Van Mieghem

Abstract—To shed light on the disease localization phenomenon, we study a bursty susceptible-infected-susceptible (SIS) model and
analyze the model under the mean-field approximation. In the bursty SIS model, the infected nodes infect all their neighbors periodically, and
the near-threshold steady-state prevalence is non-constant and maximized by a factor equal to the largest eigenvalue \; of the adjacency
matrix of the network. We show that the maximum near-threshold prevalence of the bursty SIS process on a localized network tends to zero
evenif \; diverges in the thermodynamic limit, which indicates that the burst of infection cannot turn a localized spreading into a delocalized

spreading. Our result is evaluated both on synthetic and real networks.

Index Terms—Complex networks, localization, epidemic process, susceptible-infected-susceptible model

1 INTRODUCTION

HE near-threshold behavior, i.e., the behavior around

the threshold where a phase transition occurs, is of
great interest in the study of dynamical processes, because
many real complex systems may operate near the phase
transition point [1], [2], [3]. One of the most extensively
studied dynamical processes in network science is the
susceptible-infected-susceptible (SIS) spreading process [4],
[5]. For some networks, the SIS epidemic remains restricted
into a small subnetwork and does not spread over the whole
network for infection strength just above the (mean-field)
epidemic threshold. This restricted spreading phenomenon
is known as the (metastable) localization of the SIS process
[6], [7], [8], and has been studied recently. de Arruda et al.
[8] investigated the localization phenomenon of SIS pro-
cesses on multiplex networks. Sahneh et al. [9] focused on
the localization by a maximum entropy and optimization
approach. Another near-threshold behavior, called Griffiths’
phasel of the SIS process, which is related to localization,
is studied by Cota et al. [11] and Munoz et al. [12]. The near-
threshold behavior of the SIS process has also been applied
to explain the operation of brain [13].

1. The terminology Griffiths phase is borrowed from the study of
Ising ferromagnet. Griffiths finds that the magnetization of a random
Ising ferromagnet is not an analytic function of external field H at
H = 0 between the critical temperatures of the random and the corre-
sponding pure Ising ferromagnet [10], but in the study of epidemic
processes, the non-analyticity of the function of the prevalence just
above the epidemic threshold in the thermodynamic limit is still
unknown.
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In this paper, we further study the SIS localization
phenomenon. In previous studies [6], [7], localization of
epidemic processes means that only a finite number of nodes
is infected in the thermodynamic limit, i.e., when the network
size N — oo. In this work, the definition of epidemic localiza-
tion is that the average fraction of infected nodes, i.e., the prev-
alence, tends to zero in the thermodynamic limit, but the
number of infected nodes is not necessarily finite. In the
following part, we first clarify some misconceptions about the
SIS localization in previous studies and show the availability
of mean-field methods [6], [7], [14], [15]. We point out that
the order of the near-threshold prevalence as a function of the
network size NN is essential for understanding the influence of
the network structure on spreading processes. Motivated by
the essence of the prevalence order, we confine ourselves to a
mean-field approximation and study a bursty spreading effect
which maximizes the near-threshold prevalence by a factor
equal to the largest eigenvalue A; of the adjacency matrix of
the network. Even though the spectral radius \; diverges with
network size NN, the spreading bursts cannot change a local-
ized spreading to a delocalized one if the principal eigenvector
of the adjacency matrix of the network is localized.

2 MISCONCEPTIONS AND CONCLUSIONS ABOUT
THE EPIDEMIC LOCALIZATION

In the SIS process, each node can be either infected or suscep-
tible (healthy). An infected node can infect each healthy
neighbor with infection rate § and an infected node is sponta-
neously cured with curing rate §. The network is represented
by the adjacency matrix A with elements a;; for
i,7€{1,...,N}.If node i and j are connected and i # j, then
ai; = aj = 1; otherwise, a;; = aj; = 0. The whole network can
be in two different phases in the steady or metastable state: (a)
in the all-healthy phase or (b) in the endemic phase. In the all-
healthy phase, the epidemic has disappeared. In the endemic
phase, the infection can persist in the network. The SIS process
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experiences a phase transition at a threshold [14], [15], which
can be determined by the mean-field method (V) = 1/);.
If the effective infection rate T 2 /8 > (U, then the process is
in the endemic phase under mean-field theory; otherwise, in
the all-healthy phase.

For a finite network, the endemic and all-healthy phases
can be identified by the prevalence, which is the average frac-
tion of infected nodes, and can be considered as an order
parameter for the SIS process. A non-zero prevalence
implies the endemic phase and a zero prevalence means the
all-healthy phase. However, in the thermodynamic limit
where the network size N — o0, a zero prevalence does not
necessarily coincide with an all-healthy state just above the
epidemic threshold. Goltsev et al. [6] considered the zero
prevalence in the thermodynamic limit as an indication of
the localization phenomenon of the SIS process, where only
a finite number of nodes are infected on average. In particu-
lar, Goltsev et al. [6] evaluate the steady-state prevalence
Yoo (T) just above the mean-field epidemic threshold by its
first-order expansion y(7) = a7 + o(7) with [16]

N
DY =L M
NYiL

where z; is the ith component of the principal eigenvector of
the adjacency matrix, obeying the normalized condition
SN 22 =1and 727/7() — 1 < 1is the normalized effective
infection rate. A tight bound of a is % <a<——sas
derived in Appendix B, which can be found on the Céxﬁpﬁter
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TNSE.2018.2889539. If a — 0 as N — oo, then
the near-threshold prevalence is zero, and if a > 0 as
N — oo, then a non-zero fraction of nodes are infected just
above the threshold. Goltsev et al. [6] define localization by
the inverse participant ratio (IPR) 5(z) = S~ z of the prin-
cipal eigenvector z, and state that if the IPR 5(z) = O(1), then
the principal eigenvector x is localized in a few components
z; = O(1) and only a finite number of nodes are infected in
the network with a — 0 as N — oo. Otherwise, if n(z) = o(1),
then the vector z is delocalized such that each component
x; = O(\/—%) Ferreira et al. [7] argue that if a finite number of
nodes are infected using mean-field theory, then the virus
eventually dies out and then the mean-field approximations

[4], [14] fail due to their omission of the absorbing state.
However, a zero prevalence in the thermodynamic limit
does not necessarily mean that the number of infected nodes
is finite. To illustrate this fact, let us consider a scale-free
network which follows a power-law degree distribution
with exponent y, i.e., Pr[D = k] = %, k€ N and ¢(y) is the
Riemann zeta function [17], in the thermodynamic limit. If the
average degree of a scale-free network is finite, then y > 2
for N — oo, because E[D™] = ¢(y —m)/¢(y) converges
when y > m + 1. The maximum degree scales as dy.x =
O(N'Y(r=1) as derived in [18, p. 594], and thus we may find
nodes with degree O(N®) fora < 1/(y — 1). Given a constant
¢, the expected number of nodes 7, with degree d = [¢cN?] is
fig = NPr[D = [cN*]] = (¢ "N ) /¢(y). If 0 < o < Jl/, then
limy_., g = 00. Thus, the average number of hubs diverges.
For each hub with degree of the order O(N*) for & > 0, the

local star subgraph ensures that the infection can persist for
the effective infection rate r > 0 in the thermodynamic limit.
Related discussions can be found in [19], [20], where the
epidemic threshold of power-law networks is shown to be
zero in the thermodynamic limit.

Furthermore, the principal eigenvector # may not be
localized in a finite subgraph, but localized in a subgraph
whose size increases as O(N%) with 0 < « < 1 with N.
Pastor-Satorras and Castellano [21], [22] define the vector =
to be delocalized, only when the IPR n(z) = O(N~'), while
if n(z) = O(N™) with 0 <« < 1, then z is localized on a
subgraph of size order of O(N®). An example that can be
exactly evaluated is the star-like, two-hierarchical graph [23,
p- 143]. In this graph, there are m fully connected nodes, and
each node as hub is connected to m leaf nodes. Basically, the
graph consists of m fully meshed m-stars. The network size is
N = m? 4+ m and the average degree is d,, = 3 — %H ~ 3 for
a large network. The largest eigenvalue A; of the graph is m as
derived in [23, p. 145], which is actually well approximated
by the degree of each node in the maximum K-core [24]. One
may verify that the principal eigenvector

T

1 1 1 1
V1 Vm+ T mym 1 mym+ 1

m m 2

is localized on a clique with size in the order of O(1/v/N) and
the IPR n(xz) = O(N~"®). In this graph, the coefficient a =
O(\/%T) leads to a zero prevalence, but the average number of
infected nodes Ny, (7) = O(v/N) diverges in the thermody-
namic limit.

Even if the principal eigenvalue x is localized in a finite
subgraph and the IPR n(x) = O(1), the average number of
infected nodes may not be finite in the thermodynamic limit.
Let us consider the extreme case of a star graph, whose

1 1 17
V2N-1)" T av-1)
may verify that the IPR 5(z) = O(1) and the coefficient
a=0(1/V/N). The average number of infected nodes is

Nyoo(7) = O(V/N). Thus, just above the epidemic threshold
(see also [25] for an exact, asymptotic analysis), an infinite
number of nodes is infected, but the prevalence y.(7) =
O(\/LV) tends to zero in the thermodynamic limit.

Our conclusions are: a) the localization of the principal
eigenvector and the SIS epidemic process are related, but
do not exactly correspond, because the infection can persist
in subgraphs which correspond to the delocalized parts of the
principal eigenvector; b) a zero prevalence just above thresh-
old in the thermodynamic limit does not imply that the num-
ber of infected nodes is finite. Even for the star graph, the

principal eigenvector is z =[5,

average number of infected nodes is of order O(v/N) just
above the epidemic threshold. Thus, it might be impossible to
find a network, where the near-threshold number of infected
nodes is finite in the thermodynamic limit under the mean-
field theory. We address those conclusions to show that: a)
in the thermodynamic limit, mean-field theories are consis-
tent and applicable to study the near-threshold behavior
because the epidemic may never die out; b) the order of
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Fig. 1. (): The bursty SIS prevalence on an Erdés-Rényi (ER) graph Gy 5(50). The epidemic threshold is (") = sy = 0.4437. The red curve
reflects the regime with the effective infection rate = 1 > (%), while the black curve represents the prevalence at ¢ ='0.4 below the threshold; (b):
The phase transition of the bursty SIS model with the normalized effective infection rate T on the same network. The upper blue curve and the lower
green curve are the maximum and minimum steady-state prevalence, respectively. The steady-state prevalence changes periodically between the

maximum and minimum.

the prevalence as a function of the network size N is essential
in the near-threshold spreading dynamic, which is also the
motivation of our work. In the following part, we consider
a network localized if the IPR n(z) = O(N ) for 0 <« < 1,
and is delocalized only if n(z) = O(N~') as defined by
Pastor-Satorras and Castellano [21], [22].

Throughout this paper, we confine ourselves to the mean-
field method. Beyond the mean-field theory, the correlation
between infection states of neighbors needs to be taken into
consideration. In some cases, the correlation can be substan-
tial. For example, the covariance of the infection state between
neighbors in an infinite cycle graph is shown [26, Theorem 3]
tobe £ = 0.121375 which is apparently not negligible and may
introduce long-range correlations. The effect of long-range
correlations on localization is unclear and the understanding
of localization beyond mean-field theories is still open.

3 THE BEHAVIOR OF BURSTS JUST ABOVE THE
EPIDEMIC THRESHOLD

Since our focus lies on the order of the prevalence as a func-
tion of network size N, we construct an SIS process with a
non-constant prevalence in the steady state. We consider
bursts that infect all healthy neighbors, leading to an explo-
sion of the spreading. We choose periodical infections to allow
analysis, and confine the SIS process to an infectious regime
just above the epidemic threshold by tuning the period of the
bursts. In some heterogeneous networks, e.g., scale-free net-
works, the ratio between the maximum prevalence (after each
burst) and the minimum prevalence (before each burst) grows
to infinity with the network size N. Even if infected nodes
maximize their infection capability to infect all neighbors and
magnify the prevalence by a divergent factor, we demonstrate
that the process is still localized and the spreading is restricted
to a small subgraph, whose size divided by the whole net-
work size N tends to zero.

In particular, our bursty SIS model is still an SIS model
and each infected node can still be cured with rate § as a

Poisson process, but the infection (infecting all healthy
neighbors) only happens at the time points: 1/8,2/8,...
with infection rate B and effective infection rate T = /3.
This bursty SIS model is a limit case of a non-Markovian SIS
model [27] and was proposed to find the largest possible
non-Markovian epidemic threshold. The bursty effect may
lead to counterintuitive results. For example, in the epi-
demic process on a very large star graph, the infection prob-
ability of the hub node is much larger than those of the leaf
node, when the process is just above the epidemic thresh-
old. If the hub is infected just before a burst, the hub can
infect all the leaf nodes and thus all nodes in the network
are infected, which seems to lead to a non-zero prevalence
(a global epidemic). However, even for the star graph, we
will show that the prevalence just above threshold still
converges to zero as the network size N — oo.

The mean-field governing equations of the bursty SIS
process are [27]

n+1 . L n
(55~ ol

(2)
n n
- 11—t += it +=) |,
,HN{ “J( +/3)H+U( +ﬁ>>
and
dv,;(%—l—t*) n
“E) ) e

where v; (1) is the infection probability of node 7 at time ¢, the
length of the time passed after the nearest burst is
t* €10,1/B), and N; denotes the set of neighbors of node i.
Egs. (2) and (3) describe the bursty infection and curing pro-
cesses, respectively. The epidemic threshold of the bursty SIS
model is (%) = 1/1In(\; + 1) as demonstrated in [27]. Fig. 1a
shows that, if the effective infection rate 7 is above the mean-
field threshold 77, then the prevalence periodically changes
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with period 1/8 in the steady state; otherwise, the infection
vanishes exponentially fast.

We denote the steady-state prevalence at time ¢* after each
burst by yoo (7, ¢*) 2 Llim, o 321 v;(n/B + t*) in the bursty
SIS process with the normalized effective infection rate 7 =
7/7(P) — 1. The steady-state prevalence y.,(7,t*) is maximum
just after each burst at t* =0, denoted by y! (7) £y« (7,0),
and is minimum before each burst at ¢* — 1/8, denoted by
Yoo (T) £ limp 1 /5 Yoo (T, 1%). The ratio between the maximum
and minimum steady-state prevalence is shown in [27] to be
Y1 (7)/y-(T) < A+ 1 and equality is achieved when 7 | 0.
Thus, for a network with a largest eigenvalue \; = O(N®)
with @ > 0, yZ (7)/y (7) diverges for small 7 in the thermo-
dynamic limit, which is the most unusual feature of the bursty
dynamic compared to traditional studies. As shown in Fig. 1b,
the steady prevalence y: (7) (blue curve) and y__ (%) (green
curve) experience a phase transition at the threshold 7 = 0.
Although the two curves approach each other from above to
o5, their ratio v (7) /y, (7) can diverge if \; — oo in the ther-
modynamic limit.

The maximum and the minimum steady-state prevalence
YL (T) = amaxT 4+ 0(T) and y_(T) = amnT + o(7) just above
threshold possess coefficients (see Theorem 1 in Appendix A,
available in the online supplemental material)

1)1 1
Gy = 2L )An“ﬁ Ja, @)
1

and apin = Gmax/ (A1 + 1), respectively. The coefficient a of
the traditional SIS prevalence in (1) is only determined by
the first- and third-order moments of the principal eigen-
vector x and the network size N, but the coefficients .y
and ay,, are also related to the largest eigenvalue ;.

As mentioned, the bursts increase the prevalence by
a factor of A;. For delocalized network with convergent
maximum degree, we expect that the largest eigenvalue
A = O(1) because A; < maxyjnk(ij)y/did; as shown in
[23, p. 48]. Thus, the maximum and minimum prevalence
are of the same order O(1). There is always a non-zero
average fraction of infected nodes just above the mean-field
epidemic threshold in the thermodynamic limit.

Now we consider the localized networks. If the variance
Var[D] — oo as N — oo, then the largest eigenvalue \; >
V/ Var[D] + E?[D] diverges as shown in [23, p. 47]. Further-
more, a divergent maximum degree ensures the largest eigen-
value \; — oo as N — oo, since \; of the whole network is
larger than that of the star subgraph with a divergent hub [23,
Eq. (3.23)]. In particular, the largest eigenvalue of a power-
law network diverges in the thermodynamic limit [28]. The
bursts magnify the traditional SIS coefficient a in (1) by a
divergent factor In(\; 4+ 1) as shown by Eq. (4), i.e,, ayax =
21In(Ay)a. For the eigenvector localization as discussed in [21],
where the eigenvector z is defined to be localized in a finite or
infinite subnetwork, the coefficient ¢ in (1) follows an decay
as O(N™) for € > 0 and the maximum coefficient a,, in
(4) will also converge to zero as apa.x = O(N “InN) since
InA; < InN. Although the bursts allow the infected nodes to
infect all their healthy neighbors to reach as many nodes as
possible in the network, the bursts cannot transform a zero
prevalence to a non-zero prevalence in the thermodynamic
limit.

4 NUMERICAL AND SIMULATION RESULTS

In this section, we evaluate our conclusion in synthetic and
real networks.

4.1 Numerical Results Under the Mean-Field Theory
The first case is the delocalized networks. In regular graphs
with average degree d, the largest eigenvalue \; = d and the
coefficients an.x and a, are constant, only depending on
degree d as explained in Appendix D, available in the online
supplemental material. Fig. 2a shows the results of the
Erdos-Rényi (ER) graphs with average degree day = 8, and
both the maximum and minimum coefficients a,,.x and @y,
arein the order of O(1) and independent of the network size N.

For localized networks with divergent largest eigenvalue
A1, the ratio between the maximum and minimum prevalence
limz o y*(7)/y~ (T) — oo in the thermodynamic limit. We first
consider star graphs as already mentioned. We may verify
(see Appendix C, available in the online supplemental
material) that the coefficients of star graphs follow am. =
O(N7®In N) and ay, = O(N~!In N). Although the average
number of infected nodes both before and after each burst
diverge, the maximum and minimum prevalence converges
to zero as N — co. We also generate connected scale-free
networks with different power-law exponents y and average
degree d,, = 8 using the method introduced by Goh et al.
[29]. When generating the scale-free networks, we only pre-
serve the largest connected component, because the original
method of Goh et al. does not guarantee a connected network.
Fig. 2b shows that the coefficient ., of power-law networks
with different exponent y decays with the network size N.
Furthermore, we consider networks with exponential degree
distribution and use the network generating method in [30].
Initially, there are only m nodes in the network, and each step
a new node arrives. The new node is randomly connected to
m nodes of the current network (without preferential attach-
ment as in the Barabasi-Albert model [31]). The case m =1
introduced in [30] generates a uniform recursive tree [18,
16.2.2]. Following a same derivation as in [30], the degree dis-
tribution of the network is Pr[D = k] = - (1 4+ 1/ m) " for
a network with average degree d,, = 2m in the thermody-
namic limit. Fig. 2c shows the maximum coefficient a,,.x of
exponential networks with m = 1,2,4, which decays with
network size V.

For the synthetic networks, we can evaluate their near-
threshold behavior by generating those networks with
different size and check their order with the network size N.
However, the size of a real network is fixed and the value of
the coefficients ap.x and ay, provide no information about
the order of magnitude as a function of the network size N.
To obtain insights from the value of a,, in real networks, we
generate random synthetic networks with a similar size, aver-
age degree, and degree distribution for each real network and
compare the coefficients a,,.x of the synthetic networks with
those of the real networks. For most real networks, the degree
distributions approximately follow a power law? or exponen-
tial distribution. Thus, we can compare those real networks

2. Although there are debates that power-law networks are rare [32],
[33], the degree distribution of most real networks is linear in a log-log
plot for several orders of magnitude, and then we can use synthetic
power-law random graphs to approximate those real networks.
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Fig. 2. (a): The coefficient a,,., and a,,;, of ER networks; (b): The coefficients a,,,, of networks with power-law degree distribution converge to zero
with network size N; (c): The coefficient a,,., of networks with exponential degree distributions; (d): The coefficient a,,.x of some well studied real
networks: Email-URV [36], hep-th [37], PGP [38], astro-ph [37], Internet [39], Email-Enron [40], and cond-mat 2005 [37].

with the synthetic power-law and exponential networks
mentioned above. Fig. 2d shows the value of the coefficient
amax Of real networks and corresponding synthetic net-
works, which are described in detail in the supplementary
information, available in the online supplemental material.
The value of the coefficients amay are similar in synthetic and
real networks, especially for large networks. Thus, we conjec-
ture that the near-threshold behavior of bursts is similar in
real and synthetic networks.

4.2 Simulations

We emphasize that the exact coefficient . is hard to
obtain by simulations due to several reasons: a) The SIS pro-
cess on finite-size networks has no sharp phase transition;
b) Around the mean-field epidemic threshold, most realiza-
tions of the simulation die out (entering the absorbing all-
healthy state) in a relatively short time. The time when the
process is in the metastable state is hard to determine;
) The prevalence yZ (7) and the normalized effective infec-
tion rate 7 = t/7{®) — 1 are small just above the mean-field
threshold, and the numerical error of the exact coefficient

Y (7)/7 can be large (since 7 ~ 0). Thus, only an approxima-
tion of the coefficient a, can be obtained by simulations.

In our simulations of the bursty SIS process, all nodes are
infected at time ¢ = 0 to prevent early die-out [34]. If a node
is infected at time ¢, then the infected node will be cured at
time ¢ + 7" where T is an exponential random variable with
mean 1/8 and all its neighbors will be infected at time
t+1/Bif T > 1/B. Each realization of the bursty SIS pro-
cess runs for 50 time units (simulations stop at ¢ = 50) which
are long enough under our setting and 10° realizations are
simulated for each network. During the simulation of the
bursty SIS process, the number of infected nodes is recorded
every 0.01 time unit for each realization and the prevalence
is calculated by averaging all realizations. The coefficient
amax s calculated by dividing the last local maximum of the
recorded prevalence by 7.

The simulation result on ER random graphs is shown in
Fig. 2a for 7 = 0.0001 and curing rate § = 4. The results on
power-law networks is shown in Fig. 2b for 7 =0.1 and
8 = 2. We also perform the simulations on exponential net-
works as shown in Fig. 2c, for 7 = 0.1 with§ =1 form = 1,2
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and § = 2 for m = 4. The different settings of parameters 7
and § are based on the relaxation time of the process, i.e.,
the time that the prevalence curve approaches zero visually.
In the cases of power-law and the exponential graphs,
most of the realizations die out and the prevalence is calcu-
lated by averaging the realizations which do not die out at
t =45. In the power-law and the exponential graphs,
the simulation results are amazingly consistent with the
mean-field theoretical results even though correlations of
the infection state between neighbors are omitted in the
mean-field analysis. In the ER graphs, the mean-field
approximation does not perform well because the correla-
tions play a role in sparse networks with homogeneous
degree distribution [35]. However, the variation of the simu-
lated coefficient a..x with the network size N agrees
with the mean-field results: Fig. 2a indicates delocalization
while Figs. 2b and 2c indicate localization of the bursty
SIS process.

5 CONCLUSION

In this paper, we study the localization of the SIS process on
networks. We specifically study a bursty SIS model which
possesses a non-constant steady-state prevalence. In the
bursty SIS model, the infected nodes can infect all healthy
neighbors periodically to reach as many nodes as possible,
and the prevalence is magnified by a divergent factor equal
to the largest eigenvalue A; in the thermodynamic limit. We
show that the spreading process is still localized even if the
bursty mechanism is applied, and our result introduces an
open problem: are there any spreading dynamics leading to
a delocalized spreading on networks with localized princi-
pal eigenvectors? If there exists such a case, then our analy-
sis shows that the infection dynamic with a Poisson curing
process must magnify the near-threshold prevalence y.(7)
of the traditional SIS model by a factor in the order of O(N*)
for some value of z € (0,1).
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