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The Viral State Dynamics of the Discrete-Time
NIMFA Epidemic Model

Bastian Prasse and Piet Van Mieghem

Abstract—The majority of research on epidemics relies on models which are formulated in continuous-time. However, processing
real-world epidemic data and simulating epidemics is done digitally and the continuous-time epidemic models are usually approximated
by discrete-time models. In general, there is no guarantee that properties of continuous-time epidemic models, such as the stability of
equilibria, also hold for the respective discrete-time approximation. We analyse the discrete-time NIMFA epidemic model on directed
networks with heterogeneous spreading parameters. In particular, we show that the viral state is increasing and does not overshoot the
steady-state, the steady-state is exponentially stable, and we provide linear systems that bound the viral state evolution. Thus, the
discrete-time NIMFA model succeeds to capture the qualitative behaviour of a viral spread and provides a powerful means to study
real-world epidemics.

F

1 INTRODUCTION

O RIGINATING from the study of infectious human dis-
eases [1], [2], epidemiology has evolved into a field

with a broad spectrum of applications, such as the spread
of computer viruses, opinions, or social media content [3],
[4]. The mutual characteristic of epidemic phenomena is
that they can be modelled by a viral infection, i.e. every
individual is either infected (with the opinion, social me-
dia content, etc.) or healthy. An imperative element for
epidemics is the infection of one individual by another,
provided that the individuals are linked (for instance by
physical proximity). The epidemic model that we consider
in this work describes the spread of a virus on a higher level,
by merging individuals with similar characteristics (such as
residence or age) into groups.

We consider a contact network of N nodes1. At any time
t ≥ 0, each node i has a viral state vi(t), which equals to
the fraction of infected individuals of group i. If a viral
infection is possible from group i to group j, then there
is a directed link from node i to node j. For instance, a node
could correspond to a geographical region, the viral state
vi(t) could be the ratio of infected individuals in region
i and a link could capture a significant flow of people
between the respective regions. For node i, the continuous-
time NIMFA model [5], [6] with heterogeneous spreading
parameters describes the viral state evolution by

dvi(t)

dt
= −δivi(t) + (1− vi(t))

N∑
j=1

βijvj(t). (1)

Here, βij ≥ 0 denotes the infection rate from group j to
group i and δi > 0 denotes the curing rate of group i. The di-
rected link from node j to node i in the network is weighted
by the infection rate βij . If βij > 0, then infections occur
from group j to group i. If βii > 0, then the members of the
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1. In this work, we use the words group and node interchangeably.

same group i infect one another. The discrete-time NIMFA
model is obtained from the continuous-time NIMFA (1) by
applying Euler’s method [7], with sampling time T > 0, and
the discrete-time curing and infection probabilities follow as
qi = δiT andwij = βijT , respectively. For the discretisation,
the sampling time T must be “sufficiently small”, which we
state more precisely in Section 4.

Definition 1 (Discrete-Time NIMFA Model). The discrete-
time NIMFA model is given by

vi[k + 1] = (1− qi)vi[k] + (1− vi[k])
N∑
j=1

wijvj [k] (2)

for every group i = 1, ..., N , where k ∈ N denotes the discrete
time slot, qi > 0 is the discrete-time curing probability, and
wij ≥ 0 is the discrete-time infection probability from group j
to group i.

As vector equations, (2) reads

v[k + 1] = diag(u− q)v[k] + diag(u− v[k])Wv[k], (3)

where the viral state vector at discrete time k equals
v[k] = (v1[k], ..., vN [k])T , the curing probability vector
equals q = (q1, ..., qN )T , the N × N infection probability
matrixW is composed of the elementswij , and u is theN×1
all-one vector. The steady-state2 vector v∞ of the discrete-time
NIMFA model (3) is significant, because it corresponds to
the endemic state of the disease in the network.

Definition 2 (Steady-State Vector). The steady-state vector
v∞ = (v∞,1, ..., v∞,N )T is, if existent, the non-zero equilibrium
of the discrete-time NIMFA model (2), which satisfies

N∑
j=1

wijv∞,j = qi
v∞,i

1− v∞,i
, i = 1, ..., N. (4)

2. Strictly speaking, the origin v[k] = 0 is always a steady-state of the
NIMFA model (2). With slight abuse of notation, we only refer to the
non-zero equilibrium v∞, but not to the zero equilibrium v[k] = 0, as
steady-state.
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We argue that the discrete-time NIMFA system (3) is (one of)
the simplest epidemic models that meets the practical requirements
of modelling real-world epidemics on networks. In particular,
the NIMFA system succeeds to exhibit the following six
properties, which are crucial for modelling and processing
real-world epidemic data:

P1. Every node i can be interpreted as a group of
individuals. In theory, modelling an epidemic per
individual may be more accurate than combining
individuals into groups. However, it is infeasible
in practice to determine the viral state of every
individual at every time t. A more realistic approach
is to sample a subset of individuals to obtain an
estimate of the viral state of a group. Ideally, the
individuals in a same group are exchangeable and
indistinguishable.

P2. The viral state v evolves in discrete time k, which
is advantageous for two reasons. First, for the sim-
ulation of a viral spread, an implicit discretisation
is performed for the majority of continuous-time
epidemic models due to the absence of closed-
form solutions for the viral state v(t). Hence, a
more accurate approach is to directly study the
epidemic model in discrete-time. Second, data on
real-world epidemics is often collected periodically3

and discrete-time models circumvent the incom-
plete knowledge of the viral state of time spans
between two measurements.

P3. Node j infects node i if there is a directed link
from node j to node i. More specifically, the NIMFA
model (2) accounts for the infection from group j
to group i by the term (wij(1− vi[k])vj [k]), which
is proportional to both the fraction (1 − vi[k]) of
healthy individuals of group i at time k and the
fraction vj [k] of infected individuals of group j at
time k. The infection probability wij measures the
contact probability between group i and j (e.g.,
group i and j could be two geographical regions
that are either adjacent or far apart).

P4. There is a curing term that opposes the infection of
node i by its neighbours. In particular, the curing
term (1 − qi)vi[k] of group i in the NIMFA model
(2) is proportional to the fraction vi[k] of infected
individuals of group i. The curing probability qi
measures the capacity of the group i to heal from
the virus (which can be heterogeneous since a group
may, e.g., refer to either young or old individuals).

P5. There is a unique [8], [9] non-zero equilibrium v∞,
which corresponds to the endemic state of the virus.
Furthermore, if the disease does not die out, then
the viral state v approaches the endemic viral state
v∞, i.e. v[k] → v∞ for k → ∞, which we show
in this work. To the best of our knowledge, the
convergence of the viral state v(t) to the steady-state
v∞ has only been shown [5], [10] for the continuous-
time NIMFA model (1).

3. For instance, the German Robert Koch Institute gathers and pro-
vides online access to cases of notifiable diseases with the web-based
query system SurvStat@RKI 2.0 on a weekly basis.

P6. The viral state is increasing, i.e. vi[k] > vi[k − 1] for
any node i at any time k, provided that the disease
does not die out and the initial viral state v[1] is close
to zero (almost disease-free), which we show in this
work. The viral state vi of node i often refers to
cumulative variables in practical applications, which
are increasing and close to zero at the beginning
of the outbreak of the disease. For instance [9], the
viral state vi[k] of node i may refer to the fraction of
deaths by cholera of group i up to time k.

For real-world applications, the usefulness of an epidemic
model does not reduce to solely satisfying the properties
P1–P6. An epidemic model must additionally be capable of
giving answers to questions which are relevant to practical
use-cases. In particular, we identify three questions.

Q1. In view of the absence of a closed-form solution of
the NIMFA difference equation (2), is there an approx-
imate and simpler description of the viral state evolution?
Of particular interest is a worst-case scenario of the
viral spread, i.e. an upper bound of the viral state
vi[k] for any node i at any time k.

Q2. How quickly does the virus spread? I.e. how fast does
the viral state v[k] approach the steady-state v∞?

Q3. How to fit the NIMFA model (2) to real-world data? In
applications, we do not (exactly) know the infection
probability matrix W or the curing probabilities q.
In recent works [9], [11], efficient methods were
derived for learning the spreading parameters W, q
of the NIMFA model (2) from viral state v[k] ob-
servations. A great advantage for the estimation of
the spreading parameters q,W is the linearity of the
NIMFA equations (2) with respect to q,W .

In this work, we answer the questions Q1 and Q2. In sum-
mary, the NIMFA system (2) is a well-behaved and powerful
model, which can be fit to various epidemic data due to
the full heterogeneity of the spreading parameters W, q. In
Section 2, we review related work. The nomenclature and
assumptions are introduced in Section 3 and Section 4, re-
spectively. In Section 5, we analyse the viral state dynamics
for large times k. We study the monotonicity of the viral
state evolution in Section 6. In Section 7, we derive upper
and lower bounds on the viral state dynamics.

2 RELATED WORK

On the one hand, in [5], [8], [9], [11], [12], the continuous-
time NIMFA model (1), and variants thereof, are considered
as the exact description of the viral state evolution and
every node i corresponds to a group of individuals. We
emphasise that the NIMFA equations (1) are a special case
of the epidemic model which was originally proposed by
Lajmanovich et al. [5].

On the other hand, in [6], [13], [14], the NIMFA model
was derived as an approximation of the susceptible-infected-
susceptible (SIS) epidemic process [3], [4] and “NIMFA”
is an acronym for “N -Intertwined Mean-Field Approxima-
tion”. For the SIS process, every node i is usually interpreted
as a single individual.

The discrete-time NIMFA model with homogeneous
spreading parameters has been studied in [9], [11], [15]. The
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discrete-time NIMFA model (2) with fully heterogeneous
spreading parameters has been proposed by Paré et al. [9],
who showed that there is either one stable equilibrium,
the healthy state v[k] = 0, or there are two equilibria, the
healthy state and a steady-state v∞ with positive compo-
nents. Furthermore, the discrete-time NIMFA model (3) has
been validated on data of real-world epidemics [9]. We are
not aware of results that assess the stability of the steady-
state v∞ of the discrete-time NIMFA system (2). On the
contrary, Ahn et al. [15] gave a counterexample for which
the steady-state v∞ of the NIMFA model (3) is unstable.
In this work, we extend the analysis of Paré et al. [9] and
we show that the steady-state v∞ is exponentially stable,
provided that the Assumptions in Section 4 hold true.

3 NOMENCLATURE

For a square matrix M , we denote the spectral radius by
ρ(M) and the eigenvalue with the largest real part by
λ1(M). For two N × 1 vectors y, z, it holds y > z or
y ≥ z if yi > zi or yi ≥ zi, respectively, for every
element i = 1, ..., N . The minimum of the discrete-time
curing probabilities is denoted by qmin = min{q1, ..., qN}.
We define the N ×N matrix R as

R = I − diag(q) +W. (5)

The principal eigenvector of the matrix R is denoted by x1.
Table 1 summarises the nomenclature.

4 ASSUMPTIONS

Assumption 1. The curing probabilities are positive and the
infection probabilities non-negative, i.e. qi > 0 and wij ≥ 0
for all nodes i, j.

Assumption 2. For every node i = 1, ..., N , the sampling time
T > 0 satisfies

T ≤ Tmax =
1

δi +
∑N

j=1 βij
. (6)

The results of this work which rely on Assumption 2
hold true if the sampling time is sufficiently small, which
we consider a rather technical assumption. The particular
choice of the bound (6) is due to Lemma 3 in Section 5.
Furthermore, we make the following assumption on the
initial viral state vi[1].

Assumption 3. For every node i = 1, ..., N , it holds that 0 ≤
vi[1] ≤ v∞,i.

Assumption 3 is reasonable since the initial viral state
v[1] of many real-world epidemics is almost disease-free.
For instance, at the beginning of the periodic outbreak of the
flu, every geographical region is almost healthy. As another
example, consider the spread of content (e.g., a novel tweet
or a post) on online social media. The beginning of the
epidemic outbreak (at time k = 1) would correspond to
the first appearance of the online content. Hence, the viral
state vi[1], where node i refers to a group of users, is close
to 0.

Assumption 4. The infection probability matrix W is irre-
ducible.

Assumption 4 holds if and only if the infection probabil-
ity matrix W corresponds to a strongly connected graph4.
Finally, as shown in [9], Assumption 5 avoids the trivial
viral dynamics in which the virus dies out.

Assumption 5. The spectral radius of the matrix R is greater
than one, i.e. ρ (R) > 1.

5 VIRAL STATE DYNAMICS CLOSE TO THE
STEADY-STATE

For completeness, we recapitulate the results of Paré et al.
[9] on the equilibria and the stability of the healthy state5.

Theorem 1 ([9]). Under Assumptions 1, 2 and 4, the following
two statements hold true:

1) If ρ (R) ≤ 1, then the healthy state v[k] = 0 is the
only equilibrium of the discrete-time NIMFA model (3).
Furthermore, v[k] → 0 when k → ∞ for any initial
viral state v[1] with 0 ≤ vi[1] ≤ 1 for every node i.

2) If ρ (R) > 1, then there are two equilibria of the discrete-
time NIMFA model (3): The healthy state v[k] = 0 and
a steady-state v∞ with v∞,i > 0 for every node i.

The basic reproduction number R0 of the NIMFA epidemic
model [16] equals the spectral radius ρ (R). The NIMFA
model with homogeneous spreading parameters [6], [17] as-
sumes that there is a scalar curing rate δ and a scalar
infection rate β such that qi = δ and βij = βaij for all
nodes i, j, where aij denote the elements of a symmet-
ric and irreducible zero-one adjacency matrix A. For the
NIMFA model with homogeneous spreading parameters,
the condition ρ (R) ≤ 1 simplifies to τ ≤ τ

(1)
c with the

effective infection rate τ = β/δ and the epidemic threshold
τ
(1)
c = 1/λ1(A).

Lemma 1. Suppose that Assumptions 1, 2 and 4 hold. Then, the
matrix R is irreducible and non-negative.

Proof. Appendix A.

Hence, it follows from the Perron-Frobenius Theorem
[18] that, under Assumptions 1, 2 and 4, there is a real
eigenvalue λ1(R) of the matrix R which equals the spectral
radius ρ(R) and that the principal eigenvector x1 is positive.

We can generalise the bounds from [6], [13] for the
steady-state vector v∞ to the NIMFA model (2) with het-
erogeneous spreading parameters.

Lemma 2. Suppose that Assumptions 1, 2, 4 and 5 hold. Then,
the steady-state v∞,i of any node i is bounded by

1− qi∑N
j=1 wij

≤ v∞,i ≤ 1− qi

qi +
∑N

j=1 wij

.

Proof. Appendix B.

We denote the difference of the viral state v[k] to the
steady state v∞ by ∆v[k] = v[k] − v∞. By considering

4. In a strongly connected graph, there is a path from every node i to
any other node j.

5. Theorem 1 follows immediately from merging [9, Theorems 1-2
and Proposition 2].
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TABLE 1
Nomenclature

βij Continuous-time infection rate from group j to group i

δi Continuous-time curing rate of group i

diag(x) For a vector x ∈ RN , diag(x) is the N ×N diagonal matrix with x on its diagonal

I The N ×N identity matrix

λ1(M) Eigenvalue with the largest real part of a square matrix M

N Number of nodes

q Discrete-time curing probability vector; q = (q1, ..., qN )T and qi = δiT

qmin Minimal discrete-time curing probability; qmin = min{q1, ..., qN}
R N ×N matrix R = I − diag(q) +W

ρ(M) Spectral radius of a square matrix M

T Sampling time of the discrete-time NIMFA model

u All-one vector u = (1, ..., 1)T ∈ RN

v[k] Viral state v[k] = (v1[k], ..., vN [k])T at discrete time k ∈ N; vi[k] ∈ [0, 1] for i = 1, ..., N

v∞ Steady state vector, the non-zero equilibrium of (2)

∆v[k] Difference of the viral state to the steady state; ∆v[k] = v[k]− v∞
W Discrete-time N ×N infection probability matrix; wij = βijT

x1 Principal eigenvector of the matrix R; Rx1 = ρ(R)x1

the difference ∆v[k] = v[k] − v∞, we obtain an equivalent
representation6 of the discrete-time NIMFA equations (2).

Proposition 1 (NIMFA Equations as Difference to the
Steady-State). Suppose that Assumptions 1, 2, 4 and 5 hold.
Then, the difference ∆v[k] = v[k] − v∞ from the viral state
v[k] to the steady state v∞ of the discrete-time NIMFA model (3)
evolves according to

∆v[k + 1] = F∆v[k]− diag(∆v[k])W∆v[k], (7)

where the N ×N matrix F is given by

F = I + diag
(

q1
v∞,1 − 1

, ...,
qN

v∞,N − 1

)
+ diag(u− v∞)W. (8)

Proof. Appendix C.

For a sufficiently small sampling time T , Lemma 3 states
that every element of matrix F is non-negative.

Lemma 3. Suppose that Assumptions 1, 2, 4 and 5 hold. Then,
theN×N matrix F defined by (8) is non-negative, i.e. (F )ij ≥ 0
for every i, j = 1, ..., N .

Proof. Appendix D.

Furthermore, Proposition 1 leads to the following corol-
lary7.

Corollary 1. Suppose that Assumption 1–5 hold. Then, it holds
that vi[k] ≤ v∞,i for every node i at every time k ≥ 1.

Proof. Appendix E.

In other words, Corollary 1 states that the set V = {v|0 ≤
vi ≤ v∞,i, ∀i = 1, ..., N} is a positive invariant set [19] of the
NIMFA model (2), i.e., if the initial viral state v[1] is element

6. Proposition 1 is a generalisation of [11, Proposition 3] to the NIMFA
model with heterogeneous spreading parameters q,W .

7. Corollary 1 is a generalisation of [11, Corollary 1] to the NIMFA
model with heterogeneous spreading parameters q,W .

of the set V , then the viral state v[k] will remain in the set
V for k ≥ 1. We emphasise that Corollary 1 does not imply
that the viral state v[k] increases monotonically.

To provide a graphical illustration of Corollary 1, we
generate a random network with N = 10 nodes by creating
a directed link aij = 1 from any node j to any node i with
probability 0.25 and we repeat this network generation if
the resulting network is not strongly connected. If aij = 1,
then we set the infection probability wij to a uniformly
distributed random number in [0, 1] and, if aij = 0, then
we set wij = 0. The curing probability qi for every node
i is set to a uniformly distributed random number in
[0.95c, 1.05c], where c = 10 is a constant. If the spectral
radius ρ(R) ≤ 1 + 10−3, then we set the constant c to c/1.1
and generate new curing probabilities q and we repeat this
generation of curing probabilities q until ρ(R) > 1 + 10−3.
The sampling time T is set to T = Tmax/10, given by (6). For
every node i, the initial viral state vi[1] is set to a uniformly
distributed random number in [0, 0.01v∞,i]. Figure 1 depicts
the resulting viral state traces vi[k] for every node i. As
stated by Corollary 1, the viral state v[k] approaches the
steady state v∞ from below without overshooting, but the
viral state v[k] is not strictly increasing. The absence of
overshoot is not evident, e.g., in a Markovian SIS process
overshoot is possible [20].

For applications in which the initial viral state v[1] is
close to zero, the NIMFA equations (9) can be replaced by
linear time-invariant (LTI) systems in two different regimes:
On the one hand, it holds for small times k that v[k] ≈ 0.
Hence, the representation (3) can be linearised around the
origin v[k] = 0, which yields

v[k + 1] ≈ Rv[k], (9)

for small times k. On the other hand, if the viral state v[k] is
close to the steady-state v∞, which implies ∆v[k] ≈ 0, then
the representation (7) can be linearised around the origin
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Fig. 1. The upper sub-plot depicts the viral state traces vi[k], i =
1, ..., N , for a directed network with N = 10 nodes and heterogeneous
spreading parameters q,W until discrete time k = 3000. The lower sub-
plot depicts the same viral state traces vi[k], i = 1, ..., N , but only the
initial phase until discrete time k = 200.

∆v[k] = 0, which gives

∆v[k + 1] ≈ F∆v[k]. (10)

Furthermore, we obtain that the steady-state v∞ is asymp-
totically stable8.

Theorem 2 (Asymptotic Stability of the Steady-State). Under
Assumptions 1, 2, 4 and 5, the steady-state v∞ of the discrete-time
NIMFA system (3) is asymptotically stable.

Proof. Appendix F.

Ahn et al. [15] gave a counterexample for which the
steady-state v∞ of the discrete-time NIMFA system (3) is
unstable. However, their counterexample does not satisfy
Assumption 2. Hence, a sufficiently small sampling time
T is decisive for the stability of the discrete-time NIMFA
model (3). (Paré et al. [9] observed that the counterexample
in [15] violates the third assumption in [9], which is closely
related to Assumption 2.)

6 MONOTONICITY OF THE VIRAL STATE DYNAM-
ICS

As stated by the property P6 in Section 1, we will show that
the viral state v[k] is increasing, provided that the initial
viral state v[1] is small.

Definition 3 (Strictly Increasing Viral State Evolution). The
viral state v[k] is strictly increasing at time k if v[k + 1] >

8. The steady-state v∞ is asymptotically stable if there exists an ε > 0
such that ‖v[1]− v∞‖ < ε implies that v[k]→ v∞ when k →∞.

v[k]. The viral state v[k] is globally strictly increasing if v[k] is
strictly increasing at every time k ≥ 1.

Lemma 4 states an inductive property of the monotonic-
ity.

Lemma 4. Under Assumptions 1–5, the viral state v[k] is strictly
increasing at time k if the viral state v[k−1] is strictly increasing
at time k − 1.

Proof. Appendix G.

For any vector y = (y1, ..., yN )T we define yl =
(yl1, ..., y

l
N )T . Theorem 3 states equivalent conditions to a

globally strictly increasing viral state evolution.

Theorem 3 (Monotonicity of the Viral State Evolution).
Suppose that Assumptions 1–5 hold. Then, the viral state v[k]
is globally strictly increasing if and only if one of the following
two (equivalent) statements holds:

1) The initial viral state v[1] satisfies

(W − diag(q)) v[1] > diag(q)
∞∑
l=2

vl[1]. (11)

2) It holds

(diag (u− v∞)Wdiag (u− v∞)− diag(q)) z

> diag(q)
∞∑
l=2

zl,

where the N × 1 vector z is given by

zi =
vi[1]− v∞,i

1− v∞,i
, i = 1, ..., N.

Proof. Appendix H.

For any scalar y with |y| < 1, the geometric series∑∞
l=2 y

l = y2

1−y gives an alternative form of the right-hand
sides of statement 1 and 2 of Theorem 3. From Theorem 3,
we obtain a corollary which states sufficient conditions for
a globally strictly increasing viral state.

Corollary 2. Suppose Assumptions 1–5 hold and that the initial
viral state v[1] equals either

v[1] = εx1 + η (12)

or

v[1] = (1− ε)v∞ + η

for some small ε > 0 and an N × 1 vector η whose norm ‖η‖2 =
O(εp) for some scalar p > 1 which is independent of ε. Then,
there exists an ε > 0 such that the viral state v[k] is globally
strictly increasing.

Proof. Appendix I.

Numerical simulations show that if the initial viral state
v[1] approaches zero from an arbitrary direction, which
differs from (12), then the viral state v[k] is in general not
globally strictly increasing. However, the simulations also
indicate that, if the initial viral state v[1] is small, then
the viral state seems “almost” globally strictly increasing,
which is illustrated by Figure 1 and motivates us to state
Definition 4.
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Definition 4 (Quasi-Increasing Viral State Evolution). Define
S− as the set of times k ≥ 1 at which the viral state v[k] is not
strictly increasing:

S− = {k ∈ N | ∃i : vi[k + 1] ≤ vi[k]} .

Then, the viral state v[k] is quasi-increasing with stringency ε,
if the set S− is finite and ‖v[k + 1] − v[k]‖2 ≤ ε for every time
k in S−.

Thus, a quasi-increasing viral state v[k] is strictly increas-
ing at every time k not in the set S− and at the times k in the
finite set S−, the viral state v[k] is decreasing only within an
ε-stringency. For the viral state trace v[k] depicted in Figure
1, the set S− equals S− = {1, 2, ..., 165}. Theorem 4 states
that the viral state v[k] is quasi-increasing with an arbitrarily
small stringency ε, provided that the initial viral state v[1] is
sufficiently small.

Theorem 4. Suppose that Assumptions 1–5 hold and that
v[1] 6= 0. Then, for any ε > 0 there is a ϑ(ε) such that
‖v[1]‖2 ≤ ϑ(ε) implies that the viral state v[k] is quasi-
increasing with stringency ε.

Proof. Appendix J.

7 BOUNDS ON THE VIRAL STATE DYNAMICS

Due to the non-linearity of the NIMFA equations (3), an
analysis of the exact viral state evolution is challenging.
However, it is possible to upper- and lower-bound the viral
state v[k] by LTI systems, which allows for an approximate
analysis of the viral state evolution. As stated by Proposition
2, the linearisation (9) of the NIMFA model around zero
directly yields an upper bound on the viral state v[k].

Proposition 2 (First Upper Bound). Suppose that Assumptions
1–3 hold and define the LTI system

v
(1)
ub [k + 1] = Rv

(1)
ub [k], k ≥ 1, (13)

where the matrix R is given by (5). If v(1)ub [1] ≥ v[1], then it holds
that v(1)ub [k] ≥ v[k] at every time k ≥ 1. If ρ (R) ≥ 1, then the
LTI system (13) is unstable. If ρ (R) < 1, then the LTI system
(13) is asymptotically stable.

Proof. Appendix K.

In addition the upper bound in Proposition 2, the lineari-
sation (10) of the NIMFA model around the steady-state v∞
yields another upper bound on the viral state v[k], as stated
by Proposition 3.

Proposition 3 (Second Upper Bound). Under Assumptions
1–5, denote an upper bound of the difference of the viral state v[k]
to the steady-state v∞ at time k by ∆vub[k]. Furthermore, define
the LTI system

∆vub[k + 1] = F∆vub[k], k ≥ 1, (14)

where the N × N matrix F is given by (8). Then, the following
statements hold true:

1) If ∆vub[1] ≥ ∆v[1], then it holds that ∆vub[k] ≥ ∆v[k]
at every time k ≥ 1.

2) If ∆vub[1] ≤ 0, then it holds that ∆vub[k] ≤ 0 at every
time k.

Proof. Appendix L.

Hence, the LTI system (14) yields the upper bound

v
(2)
ub [k] := ∆vub[k] + v∞ ≥ v[k]

on the viral state v[k] at every time k. If Assumption 3 holds
and ∆vub[1] = ∆v[1], then it holds that 0 ≥ ∆vub[k] ≥
∆v[k] for every time k. Thus, the convergence of ∆v[k] to 0
implies the convergence of ∆vub[k] to 0. The upper bound
of Proposition 2 is tight when the viral state v[k] is small
and the upper bound of Proposition 3 is tight when the
viral state v[k] is close to the steady-state v∞. We combine
Propositions 2 and 3 to obtain a tighter upper bound, for
every node i = 1, ..., N , as

vub,i[k] := min{v(1)ub,i[k], v
(2)
ub,i[k]}. (15)

Finally, Proposition 4 provides a lower bound on the viral
state v[k].

Proposition 4 (Lower Bound). Suppose that Assumptions 1–5
hold and let there be an N × 1 vector vmin > 0 such that v[k] ≥
vmin holds at every time k ≥ 1. Furthermore, let ∆vlb[1] = ∆v[1]
and define the LTI system

∆vlb[k + 1] = Flb∆vlb[k], k ≥ 1, (16)

where the N ×N matrix Flb is given by

Flb = I + diag
(

q1
v∞,1 − 1

, ...,
qN

v∞,N − 1

)
+ diag (u− vmin)W.

Then, the following statements hold true:

1) It holds that ∆vlb[k] ≤ ∆v[k] ≤ 0 at every time k ≥ 1.
2) Denote γ = min{vmin,1, ..., vmin,N}. Then, it holds

∆vlb[k] ≥ −
(

1− qmin
γ

1− γ

)k−1
v∞.

Hence, ∆vlb[k]→ 0 when k →∞.

Proof. Appendix M.

Hence, the LTI system (16) yields the lower bound

vlb[k] := ∆vlb[k] + v∞ ≤ v[k] (17)

on the viral state v[k] at every time k. In particular, if the
viral state v[k] is globally strictly increasing, as discussed in
Section 6, then the vector vmin can be chosen as vmin = v[1].
Lemma 5 ensures the existence of a vector vmin > 0 for
every initial viral state v[1] 6= 0, which can be applied to
Proposition 4.

Lemma 5. Suppose that Assumptions 1–5 hold. Then, for any
initial viral state v[1] > 0, there exists an N × 1 vector vmin > 0
such that v[k] ≥ vmin holds at every time k ≥ 1. Furthermore,
for any initial viral state v[1] 6= 0, there exists an N × 1 vector
vmin > 0 such that v[k] ≥ vmin holds at every time k ≥ N − 1.

Proof. Appendix N.

Proposition 4 and Lemma 5 guarantee the existence of
an LTI system (16) that lower-bounds the viral state v[k].
Thus, the viral state v[k] converges to the steady-state v∞
exponentially fast:
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Corollary 3 (Steady-State is Exponentially Stable). Suppose
that Assumptions 1–5 hold. Then, for any initial viral state v[1] 6=
0 there exist constants α < 1 and k∗ ≤ N − 1 such that

‖v[k]− v∞‖2 ≤ ‖v∞‖2αk−1 ∀k ≥ k∗. (18)

If the initial viral state v[1] > 0, then the constant k∗ can be set
to k∗ = 1. Furthermore, if the viral state v[k] is globally strictly
increasing (cf. Theorem 3) and v[1] > 0, then (18) is satisfied for

α = 1− qmin
γ

1− γ
, (19)

where γ = min {v1[1], ..., vN [1]}.

Proof. Appendix O.

It is an open problem whether the steady-state v∞ is
exponentially stable for initial viral states v[1] that do not
satisfy Assumption 3. In the susceptible-infected-susceptible
(SIS) epidemic process [3], [21], the hitting time THn is the
first time when the SIS process reaches a state with n
infected nodes. As argued in [22], the average hitting time
E[THn ] scales exponentially with respect to the number n of
infected nodes, which is in agreement with the exponential
convergence to the steady state v∞ for the NIMFA epidemic
model9.

We provide a numerical evaluation of the upper bound
vub[k], given by (15), and the lower bound vlb[k], given by
(17). We generate a directed Erdős-Rényi random graph
with N = 500 nodes by creating a directed link aij = 1
from any node j to any node i with link probability 0.05. We
generate another graph if the resulting graph is not strongly
connected. If aij = 1, then we set the infection probability
wij to a uniformly distributed random number in [0, 1] and,
if aij = 0, then we set wij = 0. The curing probability qi
for every node i is set to a uniformly distributed random
number in [0.95c, 1.05c], where c = 10 is a constant. If the
spectral radius ρ(R) ≤ 1 + 10−5, then we set the constant
c to c/1.005 and generate new curing probabilities q and
we repeat this generation of curing probabilities q until
ρ(R) > 1+10−5. The sampling time T is set to T = Tmax/20,
given by (6). For every node i, the initial viral state vi[1] is
set to a uniformly distributed random number [0, 0.1v∞,i].
We initialise the bounds vub[k] and vlb[k] on the viral state
v[k] at different bound-initialisation times k0 ≥ 1, i.e.,
vlb[k0] = v[k0] = vub[k0]. To obtain the lower bound vlb[k],
we set the vector vmin of Proposition 4 to

vmin,i = min
k≥k0

vi[k], i = 1, ..., N.

We emphasise that if vi[k0] > vi[k0−1] holds for every node
i, then the vector vmin becomes vmin = v[k0] due to Lemma
4. Figure 2 illustrates that, for a small bound-initialisation
time k0, the upper bound vub[k] results in a reasonable fit,
whereas the lower bound vlb[k] does not perform well. If
the bound-initialisation time k0 is greater, then both bounds
vlb[k] and vub[k] give a tight fit to the exact viral state v[k].

9. For an SIS process, the spreading time [23] is another measure for
the time of convergence to the metastable state. For the spreading time,
the convergence to the metastable state is defined differently for every
realisation of the same SIS epidemic process. Hence, the spreading
time is subject to random fluctuations, which approximately follow a
lognormal distribution [22], contrary to the deterministic NIMFA model
(2) and the average hitting time E[THn ] of an SIS process.
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Fig. 2. For a directed Erdős-Rényi random graph with N = 500 nodes
and heterogeneous spreading parameters q,W , the fit of the lower
bound vlb[k] and the upper bound vub[k] on the viral state v[k] is de-
picted. Each of the four sub-plots shows two viral state traces vi[k] and
the corresponding bounds of the two nodes with the maximal and min-
imal steady-state v∞,i, respectively. From top to bottom, the sub-plots
correspond to an initialisation of the bounds vlb[k0] = v[k0] = vub[k0] at
the bound-initialisation time k0 = 1, k0 = 250, k0 = 500 and k0 = 750,
respectively.

8 CONCLUSIONS

In this work, we analysed the discrete-time NIMFA epi-
demic model with heterogeneous spreading parameters on
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directed graphs. Our contribution is threefold. First, we
proved that the steady-state v∞ is asymptotically stable and
we showed that the viral state v[k] approaches the steady-
state v∞ without overshooting. Second, provided that the
initial viral state v[1] is sufficiently small, we showed that
the viral state v[k] is increasing. Third, we derived linear
systems that give upper and lower bounds on the viral state
v[k] and we proved that the viral state v[k] converges to the
steady-state v∞ exponentially fast.

The properties listed as the first and second contribution
are phenomena that occur in many real-world epidemics, in
particular when the viral state v[k] refers to a cumulative
variable (for instance, a fraction of individuals that have
shared particular online social media content up to time k).

In conclusion, we have shown that the discrete-time
NIMFA epidemic model captures the qualitative behaviour
of real-world epidemics in which the virus reaches an en-
demic state. Furthermore, since the spreading parameters
are heterogeneous and the underlying contact network is
directed, the NIMFA model has a vast parameter space and
can be fitted to various real-world epidemic data, which al-
lows for quantitative predictions of the viral state evolution.
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APPENDIX A
PROOF OF LEMMA 1
The elements of the matrix R, defined by (5), equal

Rij =

{
1− qi + wii if i = j,

wij if i 6= j.

Under Assumption 1, it holds wij ≥ 0 for all nodes i, j.
Thus, the off-diagonal entries of the matrix R are non-
negative. For the diagonal entries of the matrix R, it holds

Rii = 1− qi + wii ≥ 1− δiT,
since wii ≥ 0 and qi = δiT . From Assumption 2, we further
obtain that

Rii ≥ 1− δi
1

δi +
∑N

j=1 βij
≥ 0.

Hence, the matrix R is non-negative. Furthermore, the ma-
trix R is irreducible, which follows from the irreducibility of
the infection probability matrix W under Assumption 4.

APPENDIX B
PROOF OF LEMMA 2
The proof is analogous to the proof in [6, Theorem 5 and
Lemma 9]. From the steady-state equation (4), we obtain
that

v∞,i

qi +
N∑
j=1

wijv∞,j

 =
N∑
j=1

wijv∞,j .

Hence, it holds that

v∞,i =

∑N
j=1 wijv∞,j

qi +
∑N

j=1 wijv∞,j

,

which equals

v∞,i = 1− qi

qi +
∑N

j=1 wijv∞,j

. (20)

Since v∞,j ≤ 1 for every node j, we obtain an upper bound
on the steady-state v∞,i of node i as

v∞,i ≤ 1− qi

qi +
∑N

j=1 wij

.

We denote the minimum of the steady-state vector by

v∞,min = min{v∞,1, ..., v∞,N}.
Theorem 1 implies that v∞,min > 0. Assuming that the
minimum v∞,min occurs at node i, we obtain from (20) that

v∞,min = v∞,i

= 1− qi

qi +
∑N

j=1 wijv∞,j

≥ 1− qi

qi + v∞,min
∑N

j=1 wij

.

Hence, it holds

v∞,min ≥
v∞,min

∑N
j=1 wij

qi + v∞,min
∑N

j=1 wij

,

from which we obtain that

v∞,min ≥ 1− qi∑N
j=1 wij

.

APPENDIX C
PROOF OF PROPOSITION 1

Since ∆vi[k + 1] = vi[k + 1] − v∞,i, the evolution of the
difference ∆vi[k] over time k can be stated with the NIMFA
equations (2) as

∆vi[k + 1] = (1− qi)vi[k]

+
N∑
j=1

wijvj [k]− vi[k]
N∑
j=1

wijvj [k]− v∞,i. (21)

We would like to express the difference ∆vi[k + 1] at the
next time k + 1 only in dependency of the difference ∆v[k]
at the current time k and the constant steady state v∞. The
steady state v∞ is given by (4) and satisfies

v∞,i = (1− qi)v∞,i + (1− v∞,i)
N∑
j=1

wijv∞,j , (22)

for all nodes i. We insert (22) in (21) and obtain

∆vi[k+1] = (1−qi)vi[k]+
N∑
j=1

wijvj [k]−vi[k]
N∑
j=1

wijvj [k]

− (1− qi)v∞,i −
N∑
j=1

wijv∞,j + v∞,i

N∑
j=1

wijv∞,j . (23)

Since ∆vi[k] = vi[k] − v∞,i, we can express (23) more
compactly as

∆vi[k + 1] = (1− qi)∆vi[k] +
N∑
j=1

wij∆vj [k]

−
N∑
j=1

wij (vi[k]vj [k]− v∞,iv∞,j) . (24)

The first two addends in (24) are already in the desired form:
they depend on the difference ∆v[k] but not on the viral
state v[k] at time k. To replace the viral state v[k] in the last
term of (24) by an expression of the difference ∆v[k], we
observe that

vi[k]vj [k]− v∞,iv∞,j = ∆vi[k]∆vj [k] + ∆vi[k]v∞,j

+ v∞,i∆vj [k], (25)

since vi[k] = ∆vi[k] + v∞,i. Inserting (25) in (24) yields

∆vi[k + 1] =

1− qi −
N∑
j=1

wijv∞,j

∆vi[k]

+ (1− v∞,i)
N∑
j=1

wij∆vj [k]−∆vi[k]
N∑
j=1

wij∆vj [k]. (26)

The expression (26) can be further simplified. The steady-
state equation (4) is equivalent to

N∑
j=1

wijv∞,j = qi

(
1

1− v∞,i
− 1

)
. (27)
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From (27), it follows that (26) is equivalent to

∆vi[k + 1] =

(
1 +

qi
v∞,i − 1

)
∆vi[k]

+ (1− v∞,i)
N∑
j=1

wij∆vj [k]−∆vi[k]
N∑
j=1

wij∆vj [k]. (28)

Stacking equation (28) for all nodes i = 1, ..., N completes
the proof.

APPENDIX D
PROOF OF LEMMA 3
We consider the elements of the matrix F . For i 6= j it holds
that

Fij = (1− v∞,i)wij ≥ 0,

since v∞,i ≤ 1 and wij ≥ 0. The diagonal elements of the
matrix F equal

Fii = 1 +
qi

v∞,i − 1
+ (1− v∞,i)wii, i = 1, ..., N.

Since wii ≥ 0, we obtain that

Fii ≥ 1 +
qi

v∞,i − 1
. (29)

We proceed the proof of Lemma 3 by showing that the right
hand side of (29) is non-negative, i.e., by showing that

1 +
qi

v∞,i − 1
≥ 0,

which is equivalent to

v∞,i ≤ 1− qi. (30)

By using the upper bound on the viral state v∞,i provided
by Lemma 2, we obtain that a sufficient condition for (30) is

1− qi

qi +
∑N

j=1 wij

≤ 1− qi,

which is equivalent to

qi +
N∑
j=1

wij ≤ 1.

From qi = δiT and wij = βijT , we finally obtain that

T ≤ 1

δi +
∑N

j=1 βij
,

which holds true under Assumption 2, is a sufficient condi-
tion for Fii ≥ 0.

APPENDIX E
PROOF OF COROLLARY 1
We rewrite equation (26) to obtain

∆vi[k + 1] = gi[k] + hi[k]∆vi[k], (31)

where the terms gi[k] and hi[k] are given by

gi[k] = (1− v∞,i)
N∑
j=1

wij∆vj [k] (32)

and

hi[k] = 1− qi −
N∑
j=1

wij (v∞,j + ∆vj [k])

for every node i. Since wij ≥ 0 and (1 − v∞,i) ≥ 0, the
definition (32) of gi[k] shows that

∆vj [k] ≤ 0 ∀j ⇒ gi[k] ≤ 0.

Furthermore, by the definition of ∆vj [k] = vj [k]− v∞,j and
since vj [k] ≤ 1, it holds that

hi[k] = 1− qi −
N∑
j=1

wijvj [k] ≥ 1− qi −
N∑
j=1

wij . (33)

Assumption 2 states that qi +
∑N

j=1 wij ≤ 1 and, hence,
(33) implies that hi[k] ≥ 0. From hi[k] ≥ 0 and gi[k] ≤ 0 if
∆vi[k] ≤ 0 for all nodes i and (31) it follows that: ∆vi[k] ≤
0 for all nodes i implies ∆vi[k + 1] ≤ 0 for all nodes i.
Hence, we obtain by induction that ∆vi[1] ≤ 0 for all nodes
i implies ∆vi[k] ≤ 0 for all nodes i at every time k ≥ 1,
which proves Corollary 1. (Analogously, we can prove that
∆vi[1] ≥ 0 for all nodes i implies ∆vi[k] ≥ 0 for all nodes i
at every time k ≥ 1.)

APPENDIX F
PROOF OF THEOREM 2
The discrete-time NIMFA system (3) is asymptotically stable
at the steady-state v∞ if the linearisation (10) at ∆v[k] = 0
is stable [19]. The LTI system (10) is stable if the magnitudes
of all the eigenvalues of its N × N system matrix F are
smaller than one, which is equivalent to ρ(F ) < 1 by the
definition of the spectral radius. Lemma 3 states that the
matrix F is non-negative. Hence, the spectral radius ρ(F ) is
upper bounded by [24, Theorem 8.1.26.]

ρ(F ) ≤ max
i=1,...,N

1

yi

N∑
j=1

Fijyj (34)

for any N × 1 vector y > 0. It holds v∞ > 0 and by setting
y = v∞, we obtain from (34) that

ρ(F ) ≤ max
i=1,...,N

1

v∞,i

N∑
j=1

Fijv∞,j . (35)

From the definition (8) of the matrix F follows that
N∑
j=1

Fijv∞,j = v∞,i − qi
v∞,i

1− v∞,i
+ (1− v∞,i)

N∑
j=1

wijv∞,j

= v∞,i − qi
v∞,i

1− v∞,i
+ qiv∞,i,

where the last equality follows from the steady-state equa-
tion (4). Thus, the upper bound (35) on the spectral radius
ρ(F ) becomes

ρ(F ) ≤ max
i=1,...,N

1− qi
v∞,i

1− v∞,i
< 1,

since qi > 0 and v∞,i > 0 for every node i. From ρ(F ) < 1
it follows that the linearisation (10) is stable and, hence, the
discrete-time NIMFA system (2) is asymptotically stable at
the steady-state v∞.
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APPENDIX G
PROOF OF LEMMA 4
Since ∆v[k] = v[k] − v∞, the viral state v[k] is strictly
increasing at time k if and only if the difference ∆v[k] is
strictly increasing at time k. Thus, it holds that

∆vj [k] > ∆vj [k − 1], j = 1, ..., N, (36)

since the viral state v[k − 1] is assumed to be strictly
increasing at time k − 1. From Proposition 1 follows that

∆vi[k + 1]−∆vi[k] =
N∑
j=1

Fij (∆vj [k]−∆vj [k − 1])

+
N∑
j=1

wij (∆vi[k − 1]∆vj [k − 1]−∆vi[k]∆vj [k]) . (37)

As stated by Lemma 3, the matrix F is non-negative under
Assumption 2. Thus, we obtain from Fij ≥ 0 and (36) that
the first sum in (37) is positive. Regarding the second sum
in (37), we observe that

∆vi[k − 1]∆vj [k − 1]−∆vi[k]∆vj [k] >

∆vi[k − 1]∆vj [k − 1]−∆vi[k]∆vj [k − 1] (38)

due to (36) and since ∆vi[k] ≤ 0 holds for every node i
under Assumption 3 as stated by Corollary 1. With (36) and
∆vi[k] ≤ 0 for every node i, we obtain from (38) that

∆vi[k − 1]∆vj [k − 1]−∆vi[k]∆vj [k] > 0.

Hence, since wij ≥ 0 for every nodes i, j, both sums in (37)
are positive, which implies that ∆vi[k + 1] > ∆vi[k] for
every node i.

APPENDIX H
PROOF OF THEOREM 3
Lemma 4 states that v[k+1] > v[k] implies v[k+2] > v[k+1]
for any time k ≥ 1. Thus, v[2] > v[1] implies (by induction)
that the viral state v[k] is globally strictly increasing. Fur-
thermore, if the viral state v[k] is globally strictly increas-
ing then it holds v[2] > v[1] by Definition 3. Hence, the
viral state v[k] is globally strictly increasing if and only if
v[2] > v[1]. We prove the two statements of Theorem 3 in
Subsection H.1 and Subsection H.2, respectively, by stating
equivalent conditions to v[2] > v[1].

H.1 Statement 1

From the NIMFA equations (2), it follows that

vi[2]− vi[1] = −qivi[1] + (1− vi[1])
N∑
j=1

wijvj [1].

Lemma 2 and Assumption 1 imply that v∞,i < 1 for every
node i. Thus, it holds that vi[1] < 1 for every node i under
Assumption 3. Hence, v[2] > v[1] is equivalent to

N∑
j=1

wijvj [1] > qi
vi[1]

1− vi[1]
, ∀i = 1, ..., N. (39)

The geometric series yields that

vi[1]

1− vi[1]
=
∞∑
l=1

vli[1],

which converges since vi[1] < 1 for every node i. Thus, (39)
is equivalent to

N∑
j=1

wijvj [1] > qi

∞∑
l=1

vli[1], ∀i = 1, ..., N. (40)

We stack (40) and obtain

Wv[1] > diag(q)
∞∑
l=1

vl[1], (41)

where we denote vl[1] = (vl1[1], ..., vlN [1])T . By subtract-
ing diag(q)v[1] on both sides of (41), we obtain the first
statement of Theorem 3. We obtained the statement (41)
from v[2] > v[1] by equivalent transformations. Hence,
v[2] > v[1] holds if and only if (41) holds true.

H.2 Statement 2
We obtain the second statement of Theorem 3 by considering
when ∆v[2] > ∆v[1] holds, which is equivalent to v[2] >
v[1]. With Proposition 1, it holds for node i that

∆vi[2]−∆vi[1] =
qi

v∞,i − 1
∆vi[1]

+ (1− v∞,i)
N∑
j=1

wij∆vj [1]−∆vi[1]
N∑
j=1

wij∆vj [1].

Thus, ∆v[2] > ∆v[1] holds if and only if

(1− v∞,i −∆vi[1])
N∑
j=1

wij∆vj [1] >
qi

1− v∞,i
∆vi[1] (42)

holds true for every node i = 1, ..., N . Following the argu-
ments before (39), it holds that vi[1] < 1 for every node i.
Hence, it holds that ∆vi[1] < 1 − v∞,i for every node i.
Thus, the inequality (42) is equivalent to

N∑
j=1

wij∆vj [1] >
qi

1− v∞,i

∆vi[1]

1− v∞,i −∆vi[1]
. (43)

We rewrite the right-hand side of (43) to obtain the equiva-
lent inequality

N∑
j=1

wij∆vj [1] >
qi

1− v∞,i

∆vi[1]

1− v∞,i

1− ∆vi[1]

1− v∞,i

=
qi

1− v∞,i

∞∑
l=1

(
∆vi[1]

1− v∞,i

)l

, (44)

where the equality follows from the geometric series, which
converges since ∆vi[1] < 1 − v∞,i for every node i. We
introduce zi = ∆vi[1]/ (1− v∞,i) for every node i and we
obtain from (44) that v[2] > v[1] is equivalent to

N∑
j=1

wij (1− v∞,j) zj >
qi

1− v∞,i

∞∑
l=1

zli, ∀i = 1, ..., N.
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We bring the first-order terms on the left-hand side to obtain
the equivalent statement

(1− v∞,i)
N∑
j=1

wij (1− v∞,j) zj − qizi > qi

∞∑
l=2

zli (45)

for all nodes i = 1, ..., N . Stacking (45) yields that v[2] > v[1]
implies

(diag (u− v∞)Wdiag (u− v∞)− diag(q)) z >

diag(q)
∞∑
l=2

zl. (46)

We obtained the statement (46) from v[2] > v[1] by equiv-
alent transformations. Hence, v[2] > v[1] holds if and only
if (46) holds true, which completes the proof of the second
statement of Theorem 3.

APPENDIX I
PROOF OF COROLLARY 2
We prove Corollary 2 for the two different initial viral states
v[1] in Subsection I.1 and Subsection I.2, respectively.

I.1 First Statement
The initial state is given by

v[1] = εx1 + η,

where the N × 1 vector η satisfies ‖η‖2 = O(εp) with p > 1.
By the definition of the principal eigenvector x1, we obtain
that

Rv[1] = ρ(R)εx1 +Rη.

Thus, we obtain that

Rv[1] = ρ(R)v[1] + (R− ρ(R)I) η. (47)

We add v[1] on both sides of the inequality of the first
statement of Theorem 3, which yields that the viral state
v[k] is globally strictly increasing if and only if

(I +W − diag(q)) v[1] > v[1] + diag(q)
∞∑
l=2

vl[1],

which simplifies to

Rv[1] > v[1] + diag(q)
∞∑
l=2

vl[1]. (48)

With (47), we obtain from (48) that the viral state v[k] is
globally strictly increasing if

ρ(R)v[1] + (R− ρ(R)I) η > v[1] + diag(q)
∞∑
l=2

vl[1],

which is equivalent to

(ρ(R)− 1) v[1] > (ρ(R)I −R) η + diag(q)
∞∑
l=2

vl[1]. (49)

Since ρ(R) > 1 and v[1] > 0, the left-hand side of (49) is
positive and in O(ε) and the right-hand side of (49) is in
O(εp) with p > 1. Hence, there is an ε > 0 such that (49)
holds true.

I.2 Second Statement

The initial state is given by

v[1] = (1− ε)v∞ + η, (50)

where the N × 1 vector η satisfies ‖η‖2 = O(εp) with p > 1.
With (50), we obtain the i-th component of the vector z in
Theorem 3 as

zi =
−εv∞,i + ηi

1− v∞,i
. (51)

Then, with (51), the inequality in the second statement of
Theorem 3 becomes

(1− v∞,i)
N∑
j=1

wij (−εv∞,j + ηj)− qi
−εv∞,i + ηi

1− v∞,i
>

qi

∞∑
l=2

zli

for every node i = 1, ..., N . We rearrange and obtain

− ε (1− v∞,i)
N∑
j=1

wijv∞,j + εqi
v∞,i

1− v∞,i
>

− (1− v∞,i)
N∑
j=1

wijηj + qi
ηi

1− v∞,i
+ qi

∞∑
l=2

zli, (52)

for every node i. We rewrite the sum on the left-hand side
of (52) by using the steady-state equation (4), which yields

− εqiv∞,i + εqi
v∞,i

1− v∞,i
> − (1− v∞,i)

N∑
j=1

wijηj

+ qi
ηi

1− v∞,i
+ qi

∞∑
l=2

zli,

which simplifies to

εqi
v2∞,i

1− v∞,i
> − (1− v∞,i)

N∑
j=1

wijηj (53)

+qi
ηi

1− v∞,i
+ qi

∞∑
l=2

zli.

The left-hand side of (53) is positive and in O(ε) and the
right-hand side of (53) is in O(εp). Hence, there is an ε > 0
such that the inequality (53) holds true.

APPENDIX J
PROOF OF THEOREM 4
Before giving a rigorous proof of the statement of Theorem
4, we give an intuitive explanation:

Intuitive Explanation. If the initial viral state v[1] is close to
zero, then the NIMFA model (3) is accurately described by its
linearisation (9) around the origin. The viral state v[k] of the LTI
system (9) converges quickly to the principal eigenvector x1 of the
system matrix R. If the viral state v[k∗] at some time k∗ ≥ 1 is
small and almost parallel to the principal eigenvector x1, then it
follows from Corollary 2 that v[k] is strictly increasing at every
time k ≥ k∗.
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In the following, we give a rigorous proof of Theorem 4.
If existent, we denote by k∗ the time when the viral state
v[k] begins to be strictly increasing, i.e. v[k + 1] > v[k] for
every time k ≥ k∗. To find an expression for the time k∗, we
obtain from Theorem 3 that the viral state v[k] is increasing
at every time k ≥ k∗ if and only if

Rv[k∗] > v[k∗] + diag(q)
∞∑
l=2

vl[k∗], (54)

which follows from adding the viral state v[k∗] at time k∗

on both sides of (11). We obtain an approximation the viral
state v[k∗] at time k∗ from the linearisation (9) of the NIMFA
model (3) around the origin. First, we decompose the matrix
R into two addends

R = ρ(R)x1x
T
1 +B.

Here, the N ×N matrix B is given by

B = R− ρ(R)x1x
T
1 ,

and it holds that Bx1 = 0. Then, the linearisation (9) yields

v[k + 1] ≈ Rv[k] = ρ(R)x1x
T
1 v[k] +Bv[k]. (55)

After iterating (55), the viral state v[k∗] at time k∗ ≥ 1
follows as

v[k∗] = Rk∗−1v[1] + η[k∗], (56)

where the linearisation error vector η[k∗] is in ‖η[k∗]‖2 =
O
(
‖v[1]‖22

)
for any fixed time k∗ when v[1]→ 0. We rewrite

(56) as

v[k∗] = ρ(R)k
∗−1

(
xT1 v[1]

)
x1 +Bk∗−1v[1] + η[k∗]. (57)

By inserting (57) in (54), we obtain that the viral state v[k] is
strictly increasing at every time k ≥ k∗ if

ρ(R)k
∗
x1
(
xT1 v[1]

)
+Bk∗

v[1] >

ρ(R)k
∗−1x1

(
xT1 v[1]

)
+Bk∗−1v[1] + Υ[k∗]. (58)

Here, the N × 1 vector Υ[k∗] equals

Υ[k∗] = diag(q)
∞∑
l=2

vl[k∗] + (I −R)η[k∗].

It holds that ‖Υ[k∗]‖2 = O
(
‖v[1]‖22

)
for any fixed time k∗

when v[1]→ 0. We rearrange (58), which yields that

ρ(R)k
∗−1 (ρ(R)− 1)

(
xT1 v[1]

)
x1 >

Bk∗−1 (I −B) v[1] + Υ[k∗]. (59)

To obtain a bound on the time k∗ from (59), we state Lemma
6 and Lemma 8, which bound the left and right side of (59),
respectively.

Lemma 6. Suppose that Assumption 1–5 hold. Then, it holds
that(

ρ(R)k
∗−1 (ρ(R)− 1)

(
xT1 v[1]

)
x1
)
i
≥

ρ(R)k
∗−1 (ρ(R)− 1)x21,min‖v[1]‖1

for every i = 1, ..., N , where x1,min = min{(x1)1 , ..., (x1)N}.

Proof. It holds

xT1 v[1] ≥ x1,min

N∑
i=1

vi[1] = x1,min‖v[1]‖1, (60)

since v[1] ≥ 0 and x1,min > 0, since the principal eigenvector
satisfies x1 > 0 by Lemma 1. With (60), the i-th component
of the left-hand side of (59) becomes(

ρ(R)k
∗−1 (ρ(R)− 1)

(
xT1 v[1]

)
x1
)
i
≥

ρ(R)k
∗−1 (ρ(R)− 1)x1,min‖v[1]‖1 (x1)i .

since (ρ(R)− 1) > 0. By employing the lower bound
(x1)i ≥ x1,min, we have proved Lemma 6.

For completeness, we introduce Lemma 7, which is from
[24, Corollary 5.6.13.] and applied in the proof of Lemma 8.

Lemma 7 ([17]). Let an N × N matrix M and an ε > 0 be
given. Then, there is a constant c(M, ε) such that(

Mk
)
ij
≤ c(M, ε) (ρ(M) + ε)

k

for all k = 1, 2, ... and all i, j = 1, ..., N .

For any N × 1 vector z, the maximum vector norm is
given by

‖z‖∞ = max{|z1|, ..., |zN |}.

For any N ×N matrix M with elements mij , we denote the
matrix norm which is induced the maximum vector norm
by

‖M‖∞ = max
i=1,...,N

N∑
j=1

|mij |. (61)

Lemma 8. Suppose that Assumption 1–5 hold and let ε > 0 be
given. Then, there is a constant C(B, ε) such that(

Bk∗−1 (I −B) v[1]
)
i
≤

C(B, ε) (ρ(B) + ε)
k∗−1 ‖I −B‖∞ ‖v[1]‖1

holds for every integer k∗ ≥ 2 and every i = 1, ..., N .

Proof. For any N × 1 vector z and any N ×N matrix M , it
holds

(Mz)i =
N∑
j=1

mijzj ≤
N∑
l=1

|mil|
N∑
j=1

|zj |.

From (61) and ‖z‖1 =
∑N

j=1 |zj |, we obtain that

(Mz)i ≤ ‖M‖∞ ‖z‖1, i = 1, ..., N, (62)

for any vector z and any square matrix M . By setting the
matrix M to M =

(
Bk∗−1 (I −B)

)
and the vector z to

z = v[1], we obtain from (62) that(
Bk∗−1 (I −B) v[1]

)
i
≤
∥∥∥Bk∗−1 (I −B)

∥∥∥
∞
‖v[1]‖1
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for every i = 1, ..., N . Since the matrix norm is sub-
multiplicative1, it holds that(
Bk∗−1 (I −B) v[1]

)
i
≤
∥∥∥Bk∗−1

∥∥∥
∞
‖I −B‖∞ ‖v[1]‖1.

(63)

For a given square matrix M and a given ε > 0, there is a
constant C(M, ε) such that

‖Mk‖∞ ≤ C(M, ε) (ρ(M) + ε)
k (64)

for all integers k ≥ 1, which follows from applying Lemma
7 to every addend of the sum

‖Mk‖∞ = max
i=1,...,N

N∑
j=1

∣∣∣∣(Mk
)
ij

∣∣∣∣ .
We combine (64) and (63) and obtain that, for any ε > 0,
there is a constant C(B, ε) such that(

Bk∗−1 (I −B) v[1]
)
i
≤

C(B, ε) (ρ(B) + ε)
k∗−1 ‖I −B‖∞ ‖v[1]‖1

holds for every integer k∗ ≥ 2 and every node i = 1, ..., N .

By applying the bounds of Lemma 6 and Lemma 8 to
(59), we obtain that the viral state v[k] is strictly increasing
at every time k ≥ k∗ if

ρ(R)k
∗−1 (ρ(R)− 1)x21,min‖v[1]‖1 >

C(B, ε) (ρ(B) + ε)
k∗−1 ‖I −B‖∞ ‖v[1]‖1 + Υ[k∗]. (65)

In the limit v[1] → 0, it holds Υ[k∗] = O(‖v[1]‖22) for k∗

fixed and the inequality (65) converges to

ρ(R)k
∗−1 (ρ(R)− 1)x21,min >

C(B, ε) (ρ(B) + ε)
k∗−1 ‖I −B‖∞ .

We take the logarithm and obtain

log
(
(ρ(R)− 1)x21,min

)
> log (C(B, ε) ‖I −B‖∞)

+ (k∗ − 1) log

(
ρ(B) + ε

ρ(R)

)
. (66)

We choose ε such that ρ(B) + ε < ρ(R) and find that (66) is
satisfied if

k∗ >

log

(
(ρ(R)− 1)x21,min

C(B, ε) ‖I −B‖∞

)
log (ρ(B) + ε)− log (ρ(R))

+ 1. (67)

Hence, in the limit v[1] → 0, the viral state v[k] is strictly
increasing at every time k ≥ k∗ if k∗ satisfies (67) and
we emphasise that (67) is independent of v[1]. Thus, when
v[1] → 0, the set S− of time instants k, for which the
viral state v[k] is not strictly increasing, is a subset of
{1, ..., k∗ − 1}. Hence, the set S− is finite when v[1] → 0,
which is the first requirement for a quasi-increasing viral

1. A matrix norm ‖·‖ is sub-multiplicative if ‖AB‖ ≤ ‖A‖‖B‖ holds
for any matrices A,B.

state evolution by Definition 4. It remains to be shown that,
for any ε-stringency,

‖v[k + 1]− v[k]‖2 ≤ ε ∀k ∈ S−, (68)

if ‖v[1]‖2 ≤ ϑ(ε) for a sufficiently small ϑ(ε). With the
triangle inequality it holds that

‖v[k + 1]− v[k]‖2 ≤ ‖v[k + 1]‖2 + ‖v[k]‖2, ∀k ∈ S−.

Since v[1] → 0 implies that v[k] → 0 for every time k ≤
k∗ + 1, we obtain that, for any ε-stringency, there is a ϑ(ε)
such that ‖v[1]‖2 ≤ ϑ(ε) implies (68).

APPENDIX K
PROOF OF PROPOSITION 2
We prove Proposition 2 by induction. More precisely, we
show that if the base case at time k = 1 is satisfied, i.e.
v
(1)
ub [1] ≥ v[1], then it holds v(1)ub [k] ≥ v[k] at every time
k ≥ 1. For the inductive step from time k ≥ 1 to time k + 1,
we obtain from (2) and (13) that

v
(1)
ub,i[k + 1]− vi[k + 1] = (1− qi)

(
v
(1)
ub,i[k]− vi[k]

)
+

N∑
j=1

wij

(
v
(1)
ub,j [k]− vj [k]

)
+ vi[k]

N∑
j=1

wijvj [k]. (69)

Hence, v(1)ub,j [k] ≥ vj [k] for every node j and (1 − qi) ≥ 0
by Assumption 2 imply that the first term and the first sum
of (69) are non-negative. Since the second sum in (69) is
positive, it follows from (69) that v(1)ub,i[k + 1] > vi[k + 1 ]

if v(1)ub,j [k] ≥ vj [k] for every node j. Thus, it follows by

induction, that the base case at time k = 1, i.e. v(1)ub [1] ≥ v[1],
implies that v(1)ub [k] ≥ v[k] at every time k ≥ 1. The LTI
system (13) is asymptotically stable if and only if the spectral
radius ρ(R) satisfies ρ(R) < 1.

APPENDIX L
PROOF OF PROPOSITION 3
L.1 Statement 1)

We prove that ∆vub,i[k], given by (14), is indeed an upper
bound of ∆vi[k] for all nodes i at every time k ≥ 1 by induc-
tion. For the initial time k = 1, it holds ∆vub,i[1] ≥ ∆vi[1]
by assumption. In the following, we show that ∆vub,i[k] ≥
∆vi[k] for all nodes i implies ∆vub,i[k + 1] ≥ ∆vi[k + 1] for
all nodes i. From (14) and (7) it follows that the difference of
the bound ∆vub,i[k + 1] to the true value ∆vi[k + 1] at time
k + 1 can be stated as

∆vub[k + 1]−∆v[k + 1] =

F (∆vub[k]−∆v[k]) + diag (∆v[k])W∆v[k]. (70)

For the first addend in (70) it holds that

F (∆vub[k]−∆v[k]) ≥ 0,

since ∆vub[k] − ∆v[k] ≥ 0 and since the matrix F is non-
negative by Lemma 3. Under Assumption 3, Corollary 1
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implies that ∆vi[k] ≤ 0 for every node i at every time k ≥ 1.
Thus, we obtain for the second addend in (70) that

N∑
j=1

wij∆vj [k]∆vi[k] ≥ 0, i = 1, ..., N,

since wij ≥ 0 for every i, j = 1, ..., N under Assumption 1.
Thus, both addends of (70) are non-negative, which implies
that ∆vub[k + 1] ≥ ∆v[k + 1].

L.2 Statement 2)
We prove the second statement of Proposition 3 by induc-
tion. More precisely, we show that if the base case at time
k = 1 is satisfied, i.e. ∆vub[1] ≤ 0, then it holds that
∆vub[k] ≤ 0 at every time k ≥ 1. For the inductive step
from time k ≥ 1 to time k + 1, we make use of the fact that,
under Assumption 2, the matrix F is non-negative as stated
by Lemma 3. Hence, we obtain from

∆vub,i[k + 1] =
N∑
j=1

Fij∆vub,j [k]

that ∆vub,i[k] ≤ 0 for every node i implies ∆vub,i[k+ 1] ≤ 0
for every node i. Thus, it follows by induction, that the base
case at time k = 1, i.e. ∆vub[1] ≤ 0, implies that ∆vub[k] ≤ 0
at every time k ≥ 1.

APPENDIX M
PROOF OF PROPOSITION 4
M.1 Statement 1
Since

Flb = F − diag (vmin − v∞)W,

we can rewrite the lower bound ∆vlb[k + 1] at time k + 1
with (16) as

∆vlb[k + 1] = F∆vlb[k]

− diag (vmin − v∞)W∆vlb[k]. (71)

We prove that ∆vlb[k] given by (71) is indeed a lower bound
of ∆v[k] at every time k ≥ 1 by induction. For the initial
time k = 1, it holds ∆vlb[1] ≤ ∆v[1] by assumption. In the
following, we show that ∆vlb[k] ≤ ∆v[k] implies ∆vlb[k +
1] ≤ ∆v[k + 1] for any time k ≥ 1. We obtain from (7) and
(71) that

∆v[k + 1]−∆vlb[k + 1] = F (∆v[k]−∆vlb[k])

+ diag (vmin − v∞)W∆vlb[k]

− diag (∆v[k])W∆v[k]. (72)

Under Assumption 2, the matrix F is non-negative as stated
by Lemma 3. From the non-negativity of the matrix F and
from ∆v[k] ≥ ∆vlb[k] it follows that the first term of (72) is
non-negative, i.e.

F (∆v[k]−∆vlb[k]) ≥ 0.

We denote the i-th component of the second and third terms
in (72) by

ςi =
N∑
j=1

wij ((vmin,i − v∞,i) ∆vlb,j [k]−∆vi[k]∆vj [k]) .

Under Assumption 3 it holds ∆vi[k] ≤ 0 as stated by
Corollary 1. Furthermore, since ∆vj [k] ≥ ∆vlb,j [k], we
obtain that

ςi ≥
N∑
j=1

wij ((vmin,i − v∞,i) ∆vlb,j [k]−∆vi[k]∆vlb,j [k]) .

Since we assumed that v[k] ≥ vmin holds at every time k, we
obtain that ∆v[k] ≥ vmin − v∞ at every time k. Hence, we
can lower bound the term ςi by

ςi ≥
N∑
j=1

wij((vmin,i − v∞,i) ∆vlb,j [k]

− (vmin,i − v∞,i) ∆vlb,j [k]) = 0.

Thus, (72) is non-negative, which implies that ∆v[k + 1] ≥
∆vlb[k + 1] if ∆v[k] ≥ ∆vlb[k].

M.2 Statement 2
Parts of the proof are inspired by the proof of Ahn et al. [15,
Theorem 5.1] and based on two lemmas.

Lemma 9. For any two vectors z, z̃ with z ≥ z̃ it holds that
Flbz ≥ Flbz̃.

Proof. First, we show that the matrix Flb is non-negative.
The elements of the matrix Flb are given by

(Flb)ij =

1 +
qi

v∞,i − 1
+ (1− vmin,i)wii if i = j,

(1− vmin,i)wij if i 6= j.
(73)

For every node i, we have (Flb)ii ≥ Fii ≥ 0 under Assump-
tion 2 as stated by Lemma 3. Since vmin,i < 1 and wij ≥ 0
for every nodes i, j, the matrix Flb is non-negative. Hence,
z ≥ z̃ implies that

(Flbz − Flbz̃)i =
N∑
j=1

(Flb)ij (zj − z̃j) ≥ 0, ∀i = 1, ..., N.

Lemma 10. Define the N × 1 vector z(1) as

z(1) = −v∞

and the N × 1 vectors z(k+1) as

z(k+1) = Flbz
(k) k ≥ 1.

Then, the vector z(k) at iteration k can be lower bounded by

z(k) ≥ −
(

1− qmin
γ

1− γ

)k

v∞. (74)

Proof. The right-hand side of (74) is proportional to the
steady-state vector v∞ and, as a first step, we consider
the product (−Flbv∞). With (73), we obtain for every
i = 1, ..., N that

(−Flbv∞)i = −
N∑
j=1

(Flb)ij v∞,j

= −v∞,i + qi
v∞,i

1− v∞,i
− (1− vmin,i)

N∑
j=1

wijv∞,j .
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The steady-state equation (4) yields that

−
N∑
j=1

(Flb)ij v∞,j = −v∞,i + qi
v∞,i

1− v∞,i

− (1− vmin,i) qi
v∞,i

1− v∞,i
. (75)

We simplify (75) and obtain

−
N∑
j=1

(Flb)ij v∞,j = −v∞,i

(
1− qi

vmin,i

1− v∞,i

)
. (76)

We stack (76), which yields that

−Flbv∞ ≥ −v∞
(

1− qmin
γ

1− γ

)
, (77)

since qi ≥ qmin and v∞,i ≥ vmin,i ≥ γ for every i = 1, ..., N .
As a second step, we obtain the inequality (74) from (77) by
induction. At iteration k = 1, (74) holds true with equality.
Consider that (74) holds at time k ≥ 1, then we obtain

z(k+1) = Flbz
(k) ≥ Flb

(
−
(

1− qmin
γ

1− γ

)k

v∞

)
,

where the inequality follows from Lemma 9. Finally, with
(77), we obtain that

z(k+1) ≥ −
(

1− qmin
γ

1− γ

)k+1

v∞.

Since ∆vlb[1] = ∆v[1] and ∆v[1] = v[1] − v∞, it holds
that ∆vlb[1] ≥ −v∞ = z(1). Hence, Lemma 9 and Lemma 10
imply (by induction) that

∆vlb[k] ≥ z(k) ≥ −
(

1− qmin
γ

1− γ

)k

v∞

at every time k ≥ 1.

APPENDIX N
PROOF OF LEMMA 5
In Subsection N.1, we consider that the initial viral state v[1]
satisfies v[1] > 0. In Subsection N.2, we consider that the
initial viral state v[1] satisfies v[1] 6= 0 but not v[1] > 0.

N.1 Positive Initial Viral State

We consider that the initial viral state v[1] satisfies v[1] > 0.
The proof consists of three steps:

1) It follows from the NIMFA equations (2) that
vi[k] > 0 implies vi[k + 1] > 0 since (1 − qi) > 0
and wij ≥ 0 for all nodes i, j. Hence, it holds that
v[k] > 0 at every time k ≥ 1.

2) The viral state vector v[k] does not approach zero
arbitrarily close: Under Assumption 5, the origin is
an unstable equilibrium of the NIMFA equations (3).
From vi[k] > 0 for every node i we obtain that
xT1 v[k] > 0, where x1 > 0 is the eigenvector to the
unstable eigenvalue ρ(R) > 1 of the linearisation (9)
of the NIMFA model (3) around the origin. Hence,

there is an ε > 0 such that ‖v[k]‖2 > ε at every time
k ≥ 1.

3) The viral state vi[k] of any single node i does not
approach zero arbitrarily close. (This is a stronger
statement than the second statement.) Since the viral
state vector v[k] does not approach zero arbitrar-
ily close, there is at least one node i such that
vi[k] ≥ vmin,i for some vmin,i > 0 at every time
k ≥ 1. Under Assumption 4, node i has at least one
neighbour l 6= i, for which the NIMFA equations (2)
are given by

vl[k + 1] =
N∑
j=1

wljvj [k]

+ vl[k]

1− ql −
N∑
j=1

wljvj [k]

 . (78)

With vj [k] ≤ 1 for every node j we obtain that

1 − ql −
N∑
j=1

wljvj [k] ≥ 1 − ql −
N∑
j=1

wlj ≥ 0,

where the last inequality follows from Assump-
tion 2. Thus, (78) yields

vl[k+1] ≥
N∑
j=1

wljvj [k] ≥ wlivi[k] ≥ vmin,l > 0,

where we define vmin,l = wlivmin,i. Hence, if there is
a vmin,i > 0 for some node i such that vi[k] ≥ vmin,i
at every time k ≥ 1, then it holds vl[k] ≥ vmin,l at
every time k ≥ 1 for every node l which is adjacent
to node i. By repeating this argument for every
node in the connected graph, we find that there is
a positive vector vmin > 0 such that v[k] ≥ vmin
holds at every time k ≥ 1 provided that v[1] > 0.

N.2 Non-zero Initial Viral State

We consider that the initial viral state v[1] does not satisfy
v[1] > 0, but only v[1] 6= 0. Since the graph given by the
infection probability matrix W is strongly connected, there
is a pair of adjacent nodes i, l such that the initial viral
state v[1] satisfies vi[1] > 0 and vl[1] = 0. It follows from
the NIMFA equations (2) that node i infects its neighbour
l and, hence, it holds that vl[2] > 0. Furthermore, it holds
vi[2] > 0 as argued in the first point of Subsection N.1.
The longer the time k evolves, the more nodes l become
infected. At some time k∗ ≤ N − 1 all nodes are infected
and the viral state satisfies v[k∗] > 0. We apply the three
arguments in Subsection N.1 to the viral state v[k∗] at time
k∗ to establish that there is a vector vmin > 0 such that the
viral state satisfies v[k] > vmin for every time k ≥ k∗.
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APPENDIX O
PROOF OF COROLLARY 3
If the initial viral state v[1] satisfies v[1] > 0, then Lemma
5 implies that there exists some vector vmin > 0 such that
v[k] ≥ vmin at every time k ≥ 1. Since

∆vlb[k] ≤ ∆v[k] ≤ 0⇒ ‖∆v[k]‖2 ≤ ‖∆vlb[k]‖2,

Proposition 4 yields that

‖∆v[k]‖2 ≤
(

1− qmin
γ

1− γ

)k−1
‖v∞‖2 ∀k ≥ 1, (79)

where γ = min{vmin,1, ..., vmin,N} > 0. If the initial viral
state v[1] satisfies v[1] 6= 0 but not v[1] > 0, then Lemma 5
yields an analogous statement to (79) by formally replacing
k ≥ 1 by k ≥ k∗.

If the viral state v[k] is globally strictly increasing and
v[1] > 0, then we can set vmin = v[1], which yields that

‖∆v[k]‖2 ≤ αk−1‖v∞‖2 ∀k ≥ 1,

where

α = 1− qmin
γ

1− γ
and γ = min{v1[1], ..., vN [1]} > 0.
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