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Abstract—The underlying core of most epidemic models is the
graph that specifies the contacts between healthy and infected
individuals. However, in the majority of applications, the contact
network is unknown. To understand and predict an epidemic
outbreak nonetheless, network reconstruction methods aim to
estimate the contact network from viral state observations. This
work considers general compartmental epidemic models
(GEMF) in discrete time, which describe the viral spread
between groups of individuals. The reconstruction of the network
translates into a set of linear equations that is severely ill-
conditioned. Counterintuitively, we show that the contact
network cannot be reconstructed from one epidemic outbreak
with any finite machine precision, although an accurate
prediction of the epidemic outbreak is possible.

Index Terms—Epidemic models, network reconstruction, pre-
diction of epidemic outbreaks

I. INTRODUCTION

THE field of epidemics encompasses a plethora of phe-
nomena and is rooted in the description of infectious dis-

eases [1], with seminal works by Bernoulli [2] and Snow [3].
Beyond infectious diseases, the spread of opinions, trends
and fake news on on-line social networks can be described as
an epidemic of a viral infection, whereby individuals infect
one another with the opinion, trend, etc. The vast majority of
epidemic models assigns every individual to a compartment
such as susceptible, infected, or recovered from the disease.
Epidemic processes over networks assume that the spreading
may occur from one to another individual only if the two
individuals have contact [4], for instance by a friendship or
sexual relation.

The contact graph between individuals has a great impact
on the spread of the virus [4], [5]. However, in the study of
real-world epidemics, there is often not much known about
the contact graph other than high-level properties such as, for
instance, the degree distribution [6]. To obtain a better

understanding of the viral spread, network reconstruction
methods aim to infer the unknown contact graph from observ-
ing the viral state evolution. If the contact graph can be recon-
structed, then the epidemic outbreak can be predicted.
However, as we will show in this work, the prediction of epi-
demic outbreaks is surprisingly less related to network recon-
struction, despite the clear dependence of the dynamic
equations of epidemic spread on the contact graph (see equa-
tion (4) below). In particular, we show that, for the majority
of applications, the network cannot b e reconstructed although
the epidemic outb reak can b e predicted.

The majority of network reconstruction methods focussed
on inferring the contact network from viral state observa-
tions of every single individual [7]–[12]. Network recon-
struction methods from viral state observations of single
individuals are subject to two fundamental limitations. First,
it is hardly practical to determine the viral state of every
individual at every time in real-world epidemics. Second,
an accurate network reconstruction requires a tremendous
number n of viral state observation [8]. Thus, inferring the
contact network between single individuals only seems pos-
sible long after the virus reached the endemic state or, if
the virus dies out, by observing multiple epidemic out-
breaks, both of which seems impractical. To overcome the
challenges of reconstructing the contact network of individ-
ual-based models, we describe the evolution of the virus on
a coarser level between groups, or communities, of similar
individuals. The prevalence of a virus within a group is
accessible by sampling representative individuals.

In this work, we focus on the viral spread over a network with
N nodes, where each node corresponds to a group of individuals
such as households or geographical regions. We consider that
the viral spread between groups follows a discrete-time version
of the Generalised Epidemic Mean-Field (GEMF) model [13]
with heterogeneous spreading parameters on a directed contact
network. The GEMF model considers M viral state compart-
ments, which unifies a myriad of diverse epidemic models. For
instance, in the Susceptible-Infected-Susceptible (SIS) process
there areM ¼ 2 compartments, and in the Susceptible-Infected-
Recovered (SIR) process there are M ¼ 3 compartments. The
viral state of node i at continuous time t " 0 is denoted by
viðtÞ ¼ ðvi;1ðtÞ; . . .; vi;MðtÞÞT 2 ½0; 1&M , where vi;pðtÞ describes
the fraction of individuals of group i in compartment p at time t.

Originally, Sahneh et al. [13] derived the GEMF model as a
mean-field approximation of individual-b ased Markovian
spreading processes, where every node i corresponds to a
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single individual, whose viral state equals either one of M
compartments. Then, the probability that the viral state of
individual i equals the p-th compartment at time t is approxi-
mated by the state vi;pðtÞ of the GEMF model. In contrast, our
interpretation of the viral state vi;pðtÞ as the fraction of individ-
uals of group i in compartment p is in line with [14]–[17]. Fur-
thermore, Par!e et al. [17] provided a validation of the NIMFA
epidemic model on real-world epidemic data, where the nodes
of the network correspond to groups of individuals, namely
either households or counties. Ideally, individuals in the same
group are interchangeable for describing the epidemic out-
break. The number of individuals in different groups i does
not need to be the same.

The nomenclature is presented in Section II. We propose
the GEMF epidemic model in discrete time in Section III. The
network reconstruction for the GEMF epidemic model is
equivalent to solving a set of linear equations, as we show in
Section IV. Section V discusses fundamental limits of recon-
structing the contact network from GEMF viral state observa-
tions. We propose a network reconstruction method in
Section VI based on the least ab solute shrinkage and selection
operator (LASSO). The network reconstruction method is
evaluated in Section VII for random graphs and real networks,
also in the presence of model errors, and the results show that
the prediction of an epidemic outbreak and the reconstruction
of the contact network are fundamentally different tasks.

II. NOMENCLATURE

The N 'N identity matrix is denoted by IN . The number
of compartments in the GEMF model is denoted by M 2 N,
and the M ' 1 all-one vector is denoted by u. For an N ' 1
vector x, diagðxÞ denotes the N 'N diagonal matrix with the
vector x on its diagonal. The spectral radius of a square matrix
A is denoted by rðAÞ. For any N 'N matrix A, we define
the N2 ' 1 vector that is obtained by stacking the columns of
A as vecðAÞ ¼ ða11; . . .; aN1; a12; . . .; aN2; . . .ÞT . The Kro-
necker product of a k' l matrix A and a p' q matrix B is
denoted by A ( B 2 Rkp'lq.

III. THE DISCRETE-TIME GEMF EPIDEMIC MODEL

In Section III-A, we define the general discrete-time GEMF
epidemic model. We give important special cases of the
GEMF model in Section III-B. In Section III-C, we introduce
curing probability control for the GEMF model.

A. General GEMF Epidemic Model

We generalise the GEMF model [13] to heterogeneous
spreading parameters and directed graphs. We state the
GEMF model in discrete time and denote the viral state of
group i at discrete time k 2 N by vi½k& 2 ½0; 1&M . Since vi;p½k&
denotes the fraction of individuals of group i in compartment
p and each individual is in exactly one compartment, it holds
that vi;1½k& þ . . .þ vi;M ½k& ¼ 1 at any time k. For every two
compartments p; q ¼ 1; . . .;M, we denote the N 'N zero-
one adjacency matrix as Apq with elements apq;ij. The adja-
cency matrices Apq specify the contact network. If there is a
directed link from compartment q of group j to compartment

p of group i, then apq;ij ¼ 1, and apq;ij ¼ 0 otherwise. For
instance, if compartment q denotes individuals that are in
quarantine, then it holds that Apq ¼ 0 for all compartments
p 6¼ q since the quarantine-compartment q is isolated from all
compartments p 6¼ q. In the GEMF model, there are two kinds
of viral state transitions from time k to kþ 1. Nodal transi-
tions occur at a node i independently of the viral state vj½k& of
the other nodes j 6¼ i. TheM 'M nodal transition probability
matrix Si specifies the probabilities of nodal transitions at
node i. The probability that, via a nodal transition, an individ-
ual in group i changes from compartment p to compartment q
equals ðSiÞpq. In contrast, edge-b ased transitions do depend
on the viral state vj½k& of the neighbours j of node i and, hence,
on the contact network. The M 'M edge-based transition
probability matrix Bm;ij specifies the probabilities of edge-
based transitions at node i due to (for instance, an infection
from) the individuals of group j in compartment m. More pre-
cisely, the probability that an individual in group i changes
from compartment p to compartment q due to a fraction
vj;m½k& of individuals of group j in compartment m equals
ðBm;ijÞpqvj;m½k&. We emphasise that the edge-based transition
probability matrix Bm;ii from group i to group i is not neces-
sarily zero, because the individuals in group i can possibly
interact with each other.
The edge-based transition probability matrix Bm;ij is related

to the adjacency matrices as Apm, for all compartments
p ¼ 1; . . .;M, as follows. Since individuals of group j in com-
partment m have an impact on individuals of group i in com-
partment p only if there is a link from compartment m of
group j to compartment p of group i, it holds

Bm;ij

! "
pq
¼ ð ~Bm;ijÞpqapm;ij (1)

for someM 'M matrix ~Bm;ij. Hence, it holds apm;ij ¼ 1 only
if1 there is a compartment q such that ðBm;ijÞpq > 0. More
precisely, we can obtain the entries apm;ij of the adjacency
matrix Apm by

apm;ij ¼
1 if 9q ¼ 1; . . .;M : Bm;ij

! "
pq
> 0;

0 otherwise:

#
(2)

Any GEMF model can be visualised as in Figure 1 by the
transition graph, which we define as follows. All compart-
ments of two (arbitrary) groups i; j are represented by a node
in the transition graph. Regarding the compartments of group
i, two nodes in the transition graph are connected by a directed
link if there is a transition between the respective compart-
ments of group i. (The transitions between the compartments
of the other group j are omitted, since the transitions between
the compartments of one group i suffice to specify the GEMF
model.) A node-based transition of group i from compartment p
to compartment q is represented by a simple arrow “!” that is
labelled with the transition probability ðSiÞpq. An edge-based
transition of group i from compartment p to compartment q is
represented by an arrow with the multiplier “( ” in the middle.

1 Here, we make the technical assumption: if there is a link from compart-
ment m of group j to compartment p of group i, then the probability ðBm;ijÞpq
is positive for at least one compartment q.
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If compartmentm of group j has an influence on the edge-based
transition of group i from compartments p to compartment q,
then there is an arrow from compartment m of group j to the
respective multiplier “( ”, which is labelled with the transition
probability ðBm;ijÞpq. We emphasise that, by definition (1),
ðBm;ijÞpq ¼ 0 if the respective link apm;ij ¼ 0.

Figure 1 illustrates an exemplary transition graph for a GEMF
model with M ¼ 3 compartments. In the following, we show
how the transition graph in Figure 1 fully specifies the GEMF
model, i.e. the node-based and edge-based transitions. In Figure 1,
there is exactly one simple arrow from compartment 3 to com-
partment 1, which is labelled with the transition probability #i.
Hence, the nodal transition probability matrix Si equals

Si ¼
0 0 0
0 0 0
#i 0 0

0

@

1

A: (3)

There are two arrows from compartment 1 of group j to the
edge-based transitions of group i: from compartment 2 to
compartment 1 (labelled with aij), and from compartment 3 to
compartment 1 (labelled with nij). Hence, the edge-based tran-
sition probability matrix B1;ij equals

B1;ij ¼
0 0 0
aij 0 0
nij 0 0

0

@

1

A:

There is no arrow from compartment 2 of group j to a transi-
tion of group i. Hence, compartment 2 of group j has no influ-
ence on the transitions of group i, and it holds that B2;ij ¼ 0.
From the two arrows starting at compartment 3 of group j, we
obtain the edge-based transition probability matrix B3;ij as

B3;ij ¼
0 0 0
gij 0 uij
0 0 0

0

@

1

A:

The matrices Si and Bm;ij, where m ¼ 1; 2; 3, for all groups
i; j fully specify the transitions of the GEMF model. Further-
more, the links apm;ij from compartment m of group j to

compartment p of group i can be obtained from Figure 1 as
follows. The link labelled with aij connects compartment 1 of
group j to an edge-based transition starting at compartment 2
of group i (ending at compartment 1 of group i), which yields
that a21;ij ¼ 1 if aij > 0. Similarly, the link labelled with nij
yields that a31;ij ¼ 1 if nij > 0. Both of the links labelled
with gij and uij connect compartment 3 of group j with edge-
based transitions starting at compartment 2 of group i, which
yields that a23;ij ¼ 1 if gij > 0 or uij > 0 (or both). For the
other compartments p;m, which have not been mentioned yet,
it holds that apm;ij ¼ 0.
Definition 1 (Discrete-Time GEMF Epidemic Model): The

discrete-time GEMF epidemic model describes the evolution
of the viral state vi½k& 2 RM for every group i ¼ 1; . . .; N as

vi½kþ 1& ¼ IM *QT
i

! "
vi½k& *

XN

j¼1

XM

m¼1

vj;m½k&QT
m;ijvi½k&; (4)

where k 2 N denotes the discrete time slot. Here, the M 'M
Laplacian matrices of the nodal transition probability
matrix Si and the edge-based transition probability matrix
Bm;ij are denoted by Qi ¼ diagðSiuÞ * Si and Qm;ij ¼
diagðBm;ijuÞ *Bm;ij.

In Appendix A, we derive the discrete-time GEMF model
(4) from the continuous-time GEMF model [13] by applying
Euler’s method. If the initial viral state vi½1& of every node i
satisfies vi;1½1& þ . . .þ vi;M ½1& ¼ 1, then [13] it holds that
vi;1½k& þ . . .þ vi;M ½k& ¼ 1 at any time k " 1. Thus, the GEMF
model (4) with MN compartments can be reduced to
ðM * 1ÞN non-linear difference equations.

Originally, the GEMF model was formulated for multi-layer
networks [13]. The discrete-time GEMF model (4) does not
explicitly model distinct network layers but directly sums the
influences across all network layers. For instance, consider
that infected individuals in group j infect susceptible individu-
als in group i via a link in the workplace network (network
layer l ¼ 1) with the transition probability b

ð1Þ
ij or via a link in

the friendship contact network (network layer l ¼ 2) with the
transition probability b

ð2Þ
ij . Then, an equivalent GEMF model

is obtained by a total transition probability of bij ¼ b
ð1Þ
ij þ b

ð2Þ
ij

on one network layer. Since the value of the transition proba-
bility bij completely determines the viral state dynamics
of the GEMF model (4), it is only possible to estimate
the transition probability bij from viral state observations
vi½1&; vi½2&; . . ., but not the distinct addends bð1Þ

ij and b
ð2Þ
ij of the

different layers.

B. Special Cases of the GEMF Epidemic Model

In this work, we consider four special cases of the GEMF
model (4). First, we consider the SIS epidemic model with
two compartments: the susceptible (or healthy) compartment
S and the infected compartment I . At any time k, an individ-
ual in group i changes from the infected compartment I to
the susceptible compartment S with the curing,2 probability

Fig. 1. The transition graph for an exemplary GEMF model with M ¼ 3
compartments. The solid lines correspond to possible transitions between the
three compartments of group i. The dashed lines illustrate which compartment
of group j influences which edge-based transition between two compartments
of group i.

2 For the models in Section III-B we refer to the transition probabilities di
and bij as curing probability and infection probability, respectively, to stress
their physical meaning.
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di, which is the only nodal transition. Furthermore, there is
exactly one edge-based transition, which is the infection of
an individual. At any time k, an individual of group i
changes from the susceptible compartment S to the infected
compartment I with the probability

PN
j¼1 bijI j½k&, where

I j½k& denotes the fraction of infected individuals of group j
at time k, and bij is the infection probability from group j to
group i. Figure 2 shows the transition graph of the SIS epi-
demic model.

The derivations in this work hold for the general GEMF
model (4). However, for the sake of explanation, we put a par-
ticular focus on the SIS epidemic model, whose systems equa-
tions are given as:
Definition 2 (SIS Epidemic Model3): For every group i, the

viral state of the SIS epidemic model equals vi½k& ¼ ðSi½k&;
I i½k&ÞT . Here, Si½k& and I i½k& denote the fraction of suscepti-
ble and infected individuals in group i at time k 2 N, respec-
tively. For every group i at any time k 2 N, the viral state
evolves according to

I i½kþ 1& ¼ ð1* diÞI i½k& þ ð1* I i½k&Þ
XN

j¼1

bijI j½k& (5)

and the fraction of susceptible individuals follows as Si½k& ¼
1* I i½k&. Here, bij denotes the infection prob ab ility from
group j to group i, and di denotes the curing prob ab ility of
group i.

The second model that we consider has four compartments:
the susceptible compartment S, the exposed compartment E,
the infectious compartment I , and the recovered (or removed)
compartment R. An individual transitions the compartments
in the order S ! E ! I ! R. Individuals in the exposed
compartment E have been infected by the disease but, in con-
trast to individuals in the infectious compartment I , are not
contagious yet. Individuals in the recovered compartment R
have had the disease, but are not susceptible nor infectious
any more (for instance, by immunisation or death). In the
SEIR epidemic model, the only edge-based transition occurs
from the susceptible compartment S to the exposed compart-
ment E, analogously to the S ! I transition in the SIS epi-
demic model. Furthermore, there are two nodal transitions in
the SEIR epidemic model. First, the transition from the
exposed compartment E to the infectious compartment I ,
which occurs with the incubation probability gi for an individ-
ual in group i. Second, the transition from the infectious

compartment I to the recovered compartment R, which
occurs with the curing probability di for an individual in group
i. Both the transition graph and the systems equation of the
SEIR epidemic model are stated in Appendix D.
The third model is the SIR epidemic model [20], which is

closely related to the SEIR model. In the SIR epidemic model,
the exposed compartment E is omitted and individuals transi-
tion the compartments in the order S ! I ! R. Appendix C
contains both the systems equations and the transition graph
of the SIR epidemic model for completeness.
Lastly, we consider a two-staged infection process, with

two different diseases and five compartments: the susceptible
compartments Sl, the infectious compartments I l, and the
recovered (or removed) compartment R, where l ¼ 1; 2
denotes the disease. In the SISIR epidemic model, individuals
transition the compartments in the order S1 ! I1 ! S2

! I2 ! R. There are two edge-based transitions in the SISIR
model, the infectious transitions S1 ! I1 and S2 ! I2,
which occur analogously to the S ! I transition in the SIS
model, but with infection rates bl;ij that depend on the respec-
tive disease l ¼ 1; 2. The two nodal transitions I1 ! S2 and
I2 ! R occur with the curing probabilities d1;i and d2;i,
respectively, for an individual in group i. The main motivation
for studying the SISIR model is technical: the two contact net-
works corresponding to the two viruses are completely unre-
lated. Hence, the fact that node i can infect node j with virus 1
does not imply that node i can infect node j with virus 2.
Thus, effectively a contact network with 2 N nodes has to be
reconstructed from the viral state observations of N groups.
Both the transition graph and the systems equation of the
SISIR epidemic model are stated in Appendix E.

C. Curing Prob ab ility Control

So far, we assumed that the curing rates di are constant or,
equivalently, that the nodal transition probability matrices Si

do not change over time k. However, public health agencies
react to an emerging epidemic outbreak by vaccinations and
other disease control measures that do vary as time k evolves.
In the SIS, SIR and SEIR epidemic models, we consider that
the curing rates of every group i are time-dependent, i.e., the
curing probability di is replaced by

~di½k& ¼ di þ Ddi½k&: (6)

Here, the scalar Ddi½k& " 0 is the known curing prob ab ility
control at time k (for instance the fraction of vaccinations).
Khanafer and Başar [21] studied a similar curing probability
control approach to reduce the prevalence of virus. The con-
stant curing probability term di > 0 in (6) corresponds to nat-
ural immunities and other influences which are unknown and
have to be reconstructed from viral state observations to pro-
vide a full understanding of the viral spread. For the SISIR
epidemic model, we consider that the curing rates of both dis-
eases l ¼ 1; 2 are time-dependent and equal to ~dl;i½k& ¼ Ddl;i½k&
þdl;i for every group i. For the general GEMF model (4), the
concept of time-varying curing rates (6) is generalised by
replacing the nodal transition probability matrix Si by the
time-dependent M 'M matrix ~Si½k& ¼ Si þ DSi½k&. Here, the
time-dependent M 'M matrix DSi½k& describes the known

Fig. 2. The transition graph for the SIS epidemic model.

3 The equations (5) are also known as the discrete-time N-Intertwined
Mean-Field Approximation (NIMFA) of the SIS process [18], [19]. 1.n this
work, we refer to the system (5) as SIS model for consistency with the other
special cases of the GEMF model.
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controlled interventions to the viral state evolution, and the
constant M 'M matrix Si is due to unknown terms of the
nodal transitions. In Section V, we will show that a non-zero
curing probability control Ddi½k& > 0 is beneficial for the task
of network reconstruction.

IV. FORMULATING THE NETWORK RECONSTRUCTION

PROBLEM AS LINEAR EQUATIONS

The focus of this work is the inverse problem of estimating
the parameters of the GEMF model (4) from viral state obser-
vations. More precisely:
Definition 3 (GEMF Network Reconstruction Prob lem):

Assume that the controlled interventions DSi½k& to the viral state
evolution are either known or zero at every time k. Estimate the
nodal transition probability matrix Si and the edge-based transi-
tion probability matrix Bm;ij for all nodes i; j and all compart-
mentsm from observations of theM ' 1 viral state vector vi½k&
of every group i at every discrete time k ¼ 1; . . .; nþ 1, where
n 2 N denotes the numb er of ob served transitions.

We emphasise that the adjacency matrices Apm can be
obtained from the matrices Bm;ij by (2). For given viral state
observations vi½1&; . . .; vi½nþ 1& of every group i, the GEMF
model (4) is linear with respect to the Laplacian matrices Qi

and Qm;ij.
Lemma 4: Consider the GEMF model (4) with a nodal tran-

sition matrix ~Si½k& ¼ Si þ DSi½k&, where the time-varying
matrix DSi½k& is known (or equals zero). Denote the M 'M
Laplacian matrix of the known control matrix DSi½k& by
DQT

i ½k& ¼ diagðDSi½k&uÞ * DSi½k&. For any group i, define
theMn ' 1 vector Vi as

Vi ¼
vi½2& * vi½1& þ DQT

i ½1&vi½1&
..
.

vi½nþ 1& * vi½n& þ DQT
i ½n&vi½n&

0

B@

1

CA;

and define theMn'M2 matricesWi;Rm;ij as

Wi ¼ *ðIM ( vi½1&; . . .; IM ( vi½n&ÞT

Rm;ij ¼ ðvj;m½1& IM ( vi½1&ð Þ; . . .; vj;m½n& IM ( vi½n&ð ÞÞT :

Furthermore, define theMn'M2ð1þNMÞ matrix Fi as

Fi ¼ Wi;R1;i1; . . .; R1;iN ; R2;i1; . . .; RM;iN

! "

and theM2ð1þNMÞ ' 1 GEMF parameter vector xi as

xi ¼ vecðQiÞT ; vecðQ1;i1ÞT ; . . .; vecðQ1;iNÞT ;
$

' vecðQ2;i1ÞT ; . . .; vecðQM;iNÞT
%T

:

Then, the GEMF parameter vector xi satisfies the linear system

Vi ¼ Fixi: (7)

Proof: Appendix B. &

The entries of the M2 ' 1 vectors vecðQiÞ and vecðQm;ijÞ
are linear combinations of the entries of the nodal transition
probability matrix Si and the edge-based transition probability
matrix Bm;ij. Thus, the GEMF network reconstruction prob-
lem results in a set of equations (7) that is linear with respect
to the matrices Si and Bm;ij. For every node i, the maximum
number of unknowns is bounded by the number
M2ð1þNMÞ of entries of the GEMF parameter vector xi.
However, in most cases, many entries of the matrices Si and
Bm;ij are a-priori known to be zero, since some nodal or edge-
based transitions cannot occur. For instance, at most one entry
of the matrix Si in (3) is non-zero. Furthermore, since the viral
state vi½k& of every group i obeys vi;1½k& þ + + + þ vi;M ½k& ¼ 1,
there are n redundant equations in (7), and every N-th row of
(7) can be omitted. Hence, the set of linear equations (7) can
be often be expressed more compactly for particular GEMF
models. To give an example, for the group-based SIS epi-
demic model (5) the linear system (7) can be expressed com-
pactly as follows.
Lemma 5: For any node i, the curing probability di and the

infection probabilities b1i; . . .;biN of the SIS epidemic model
(5) with time-varying curing rates ~di½k& ¼ Ddi½k& þ di satisfy

VSIS;i ¼ FSIS; i di;bi1; . . .;biNð ÞT : (8)

Here, the n' 1 vector VSIS; i equals

VSIS; i ¼
I i½2& * ð1* Ddi½1&ÞI i½1&

..

.

I i½nþ 1& * ð1* Ddi½n&ÞI i½n&

0

B@

1

CA

and the n' ðN þ 1Þ matrix FSIS; i is given by

FSIS; i ¼
*I i½1& Si½1&I 1½1& . . . Si½1&IN ½1&

..

. ..
. . .

. ..
.

*I i½n& Si½n&I 1½n& . . . Si½n&IN ½n&

0

B@

1

CA:

Analogously to Lemma 5, we state the linear system (7)
more compactly for the group-based SIR, SEIR, and SISIR
epidemic models in Appendix C, Appendix D, and Appendix
E, respectively.

V. THE LIMITS OF NETWORK RECONSTRUCTION

On the first sight, it seems straightforward to infer the net-
work from GEMF viral state observations, since the network
reconstruction is equivalent to solving the linear system (7).
However, as we show in the following, the linear system (7) is
extremely ill-conditioned, which is a severe limitation to the
GEMF network reconstruction problem itself – regardless of
the specific network reconstruction method. In Section V-A,
we discuss the limits of reconstructing large networks from
GEMF viral state observations. In Section V-B, we show the
dramatic impact of model errors on the network reconstruction
problem.
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A. Reconstruction of Large Networks

The set of linear equations (7) can, in theory, be solved
exactly if the rank of the matrix Fi equals the number of
unknowns. However, any computer works with finite preci-
sion arithmetic, which causes small, but non-zero, round-
off errors. In the worst case, even small round-off errors
can accumulate and greatly affect the accuracy of the solu-
tion of the linear system (7). To solve the linear system
(7) in practice, the numerical rank of the matrix Fi is deci-
sive. The numerical rank of the matrix Fi equals the num-
ber of singular values of the matrix Fi that are greater
than a small threshold !rank, which is set in accordance to
the machine precision.

We perform numerical simulations to obtain the average
numerical rank of the matrix Fi for the group-based SIS, SIR,
SEIR and SISIR epidemic models. For the SIS, SIR, SEIR,
and SISIR epidemic models, the adjacency matrices A12, A12,
A13, and both A12 and A34, respectively, that correspond to
the contact network between infected and susceptible nodes,
are generated according to the Barab!asi-Albert random graph
model [22], where the initial number of nodes is set tom0 ¼ 3
and the number of links per addition of a new node is set to
m ¼ 3. Furthermore, we set aii ¼ 1 for every group i of the
respective adjacency matrices, since we consider that individ-
uals in group i can infect one another. On the one hand, we
consider that there is no curing probability control, i.e.
Ddi½k& ¼ 0 for every group i at every time k. On the other
hand, we set the curing probability control term Ddi½k& to a
uniformly distributed random number in ½0;Ddmax; i& for every
group i at every time k, where the maximum control value
equals Ddmax; i ¼ 0:01dmax; i. Further details on the simula-
tion parameters are given in Appendix F.

Without curing probability control, i.e. Ddi½k& ¼ 0 for
every group i at every time k, Figure 3 shows that the
numerical rank of the matrix Fi, computed by the Matlab
command rank, quickly stagnates as the number of
groups N grows. Thus, the linear system (7) is very ill-
conditioned. For instance, for the group-based SIS model
(5), the numerical rank stagnates at approximately
numrankðFiÞ , 15, and the linear system (8) has practi-
cally not more than 15 independent equations. Hence,
large networks cannot b e reconstructed from GEMF viral
state ob servations of a single epidemic outb reak without
curing prob ab ility control4, which is in agreement with
other works [23], [24] that consider network reconstruction
for individual-b ased epidemic models. For the SISIR
model, the numerical rank of the matrix Fi is approxi-
mately twice as high as for the other epidemic models,
which is intuitive since the contact network for the SISIR
model is effectively of size 2 N . With curing probability
control on the other hand, the numerical rank of the matrix
Fi behaves very differently. In particular, the numerical

rank of the matrix Fi equals the number of unknown
parameters for the SIS, SIR, SEIR and SISIR epidemic
model, also for large networks. Hence, a time-varying con-
trol of the curing rates di½k& is necessary for the recon-
struction of large networks.
In theory, we see two alternatives to controlling the curing

rates for the reconstruction of large networks. However, we
argue that neither of these two alternatives is applicable to
real-world epidemics. First, a greater number of linearly inde-
pendent equations (7) can be achieved by observing multiple
epidemic outbreaks [25] with different initial viral states v½1&.
Each epidemic outbreak results in a different matrix Fi, which
can be stacked such that the linear system (7) has sufficiently
many independent equations. However, the numerical rank of
the matrix Fi stagnates when the number of nodes N
increases. Thus, the greater the network size N the more epi-
demic outbreaks need to be observed to reconstruct the net-
work. We believe that it is far from practical to observe
multiple outbreaks for real-world epidemics, in particular for
novel viruses that demand rapid intervention.
Second, if some properties of the contact network are

known a-priori, then less equations are possibly needed to
solve the GEMF network reconstruction problem. For
instance, if the maximum degree of a node i is upper-bounded
by dmax and the infection rates are upper-bounded by
bij - bmax, then the constraint

PN
j¼1 bij - bmaxdmax can

be included in the linear system (8) of the group-based SIS
network reconstruction problem. However, the rank of the
matrix Fi stagnates when the number of nodes N increases.
Hence, the greater the network, the more constraints must be
included in the linear system (7), which does not seem viable
for a large network size N .

B. The Impact of Model Errors

A real-world virus does not exactly follow the difference
equations of the GEMF model (4). Instead, the viral state vi½k&
of any group i evolves according to vi½kþ 1& ¼ fGEMF; iðv1½k&;
. . .; vN ½k&Þ þ wi½k&, where fGEMF; iðv1½k&; . . .; vN ½k&Þ denotes
the right-hand side of (4), and the M ' 1 vector wi½k& denotes
the model error at group i and time k. To ensure that vi;1½k&þ
+ + + þ vi;M ½k& ¼ 1 at every time k, we set wi;l½k& ¼ 0 for exactly
one compartment l. For the SIS, SIR, SEIR, and SISIR models,
we choose the remaining compartment l as: Si, Si,Ri, andRi,
respectively.

Fig. 3. The numerical rank of the matrix Fi versus the number of nodes N .
The dashed and the solid lines depict the results without and with curing prob-
ability control, respectively. The results are averaged over 100 Barab!asi-
Albert random graphs.

4 If the contact network is sparse, then compressed sensing methods [10]
could be applied to reconstruct the network from the underdetermined system
(7). For compressed sensing methods, the number of linearly independent
equations that are required for reconstructing a network with s non-zero ele-
ments grows at least proportionally to slog ðN=sÞ. However, since the rank of
the matrix Fi stagnates for a growing number of nodes N , also compressed
sensing methods fail for large networks.
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To demonstrate the impact of model errors wi½k& on the
network reconstruction problem, we perform numerical
simulations of the SIS epidemic model (5) on a small
Erdo!!s-R!enyi random graph with N ¼ 20 nodes and link
probability p ¼ 0:1. We set all parameters to the same val-
ues as in Section V-A. We consider three cases for the
maximum control value: Ddmax; i ¼ 0 (no curing probabil-
ity control), Ddmax; i ¼ 0:05di, and Ddmax; i ¼ di. On the
one hand, we consider a viral state evolution without
model errors, i.e. wi½k& ¼ 0 for all nodes i and all times k.
On the other hand, we consider that the SIS epidemic
model (5) is subject to independently and identically dis-
tributed Gaussian model errors wi;m½k& . N ð0; &2i Þ with
variance &2i ¼ ð0:05DtÞ2.

Figure 4 illustrates that the evolution of the viral state vi½k&
is virtually unaffected by the model error wi½k&. If a real-world
epidemic evolved with an equally small model error wi½k& as
in Figure 4, then the SIS epidemic model (5) would be consid-
ered an outstanding fit to the epidemic data. On the first sight,
Figure 4 suggests that it is possible to reconstruct the network
from GEMF viral state observations vi½k& with a negligibly
small model error wi½k&. However, the GEMF network recon-
struction problem is dramatically sensitive to small perturba-
tions by model errors wi½k&. The upper sub-plot in Figure 5
shows that, without curing probability control, only around
five singular values sjðFSIS; iÞ of the matrix FSIS; i remain
largely unaffected by model errors wi½k&. Hence, without cur-
ing probability control, even small networks cannot be recon-
structed from GEMF viral state observations, also when the
model errors wi½k& seem negligibly small5. The lower sub-plot
in Figure 5 shows that, for a sufficiently great curing probabil-
ity control Ddi½k&, the model error wi½k& only slightly perturbs
the singular values sjðFSIS; iÞ. Hence, curing prob ab ility con-
trol is necessary to reconstruct the network in the presence of
model errors wi½k& – but controlling the curing rates is possi-
bly not sufficient, since we only studied the perturbation of the
singular values sjðFSIS; iÞ but not the perturbation of the
whole matrix FSIS; i.

VI. NETWORK RECONSTRUCTION ALGORITHM

When the GEMF model (4) is subject to model errors wi½k&,
then the GEMF parameter vector xi does not satisfy the linear
system (7) with equality. Thus, we resort to finding the vector
xi as the minimiser of the Euclidean norm kVi * Fixik22. More
precisely, our network reconstruction method is based on the
constrained LASSO [27]:

x̂i ¼ arg min
xi

Vi * Fixik k22þri xik k1

s.t. xi " 0

xið Þj ¼ 0 8j 2 Vi
(9)

Including the ‘1-regularisation term kxik1 in the objective
favours the estimation of a sparse GEMF parameter vector xi,
which is motivated by two reasons. First, the majority of real-
world networks are indeed sparse [28]. Second, we follow the
b et on sparsity principle: “Use a procedure does well in sparse
problems, since no procedure does well in dense prob-
lems” [27]. Tuning the regularisation parameter ri > 0 in
the objective of (9) controls the trade-off between a good fit to
the model (first addend) and the sparsity of the GEMF parame-
ter vector xi (second addend). We set the value of the scalar
ri > 0 by cross-validation [27]. In (9), the inequality xi " 0
for the GEMF parameter vector xi holds element-wise. The
indices j in the set Vi / f1; . . .;M2ð1þNMÞg refer to
entries ðxiÞj that must be zero for the particular GEMF model.
For instance, the 3' 3 nodal transition matrix Si in (3) has

Fig. 4. The viral state I ½k& of the group-based SIS epidemic model (5) for an
Erdo!!s-R!enyi random graph with N ¼ 20 groups without curing probability
control (Ddmax;i ¼ 0), with and without model errors wi½k&. The viral state
I i½k& of four of the twenty groups i is depicted.

Fig. 5. The singular values sjðFSIS;iÞ of the matrix FSIS;i of the linear system
(8), with and without model errors wi½k&. The upper sub-plot refers to no cur-
ing probability control (Ddmax;i ¼ 0), and the lower sub-plot considers a small
and great value for the maximum value Ddmax;i of the curing probability con-
trol. The results are averaged over 100 Erdo!!s-R!enyi random graphs with
N ¼ 20 nodes.

5 Furthermore, the sensitivity to model errors renders model-free network
inference methods [26] not suitable for the GEMF network reconstruction
problem, since model-free methods per definition induce model errors.
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eight zero entries, which results in the inclusion of eight indi-
ces in the set Vi. To solve (9) numerically, we apply the inte-
rior point algorithm provided by the Matlab command
quadprog. If there are no model errors, i.e., wi½k& ¼ 0 for
every group i at every time k, then we do not estimate the
GEMF parameter vector xi by the LASSO formulation (9).
Instead, we apply the QR-solver provided by the Matlab com-
mand mldivide if the matrix Fi is of full rank, and we apply
a basis pursuit approach [29] if the matrix Fi is not of full
rank. For further details on the network reconstruction algo-
rithm, we refer the reader to Appendix G.

VII. NUMERICAL EVALUATION

To evaluate the quality of the network reconstruction, we
compute the area under the receiver-operating-characteristic
curve (AUC) [30]. The AUC ranges from 0 to 1, where an
AUC of 1=2 is equivalent to flipping a coin to determine
whether a link is presence or absence. If the estimated network
equals the true network, then the AUC equals 1. We compute
the AUC with respect to the estimates of the respective adja-
cency matrices A12, A21, and A13 of the SIS, SIR and SEIR
model. For the SISIR model, we consider the mean of the two
AUCs with respect to the adjacency matrices A12 and A34.
Furthermore, we define the prediction error !I until the pre-
diction time npred as

!I ¼ 1

N

1

npred * n

Xnpred

k¼nþ1

XN

i¼1

I i½k& * Î i½k&
&& &&:

Here, Î i½k& denotes the predicted fraction of infectious indi-
viduals in group i at time k, which is obtained by iterating
GEMF (4) without model errors from time k ¼ n to k ¼ npred

with the parameter vector x̂i that was estimated from the viral
state observations vi½1&; . . .; vi½n& for every node i. For the
SISIR model, we define the prediction error !I as the sum of
the two prediction errors with respect to the two compartments
I 1 and I2. Unless stated otherwise, all parameters are set to
the same values as in Section V-A.

A. Ab sence of Model Errors

For every group i, we set the maximum control value to
Ddmax; i ¼ 0:05di and the observation length to n ¼ 10 N .

Figure 6 shows that, without model errors wi½k&, the network
reconstruction is almost always exact – provided that the cur-
ing rates are controlled (Ddmax; i ¼ 0:05di). Without curing
probability control (Ddmax; i ¼ 0), the reconstructed network
differs considerably from the true network when the number
of nodes N is large, in agreement with Figure 3.
To evaluate the prediction error !I in the absence of curing

probability control, we reduce the observation length to
n ¼ 100 and set the prediction time to npred ¼ 1000. Table I
shows that the prediction error !I is practically zero, even
though the AUC is very low. Thus, without curing prob ab ility
control, fundamentally different contact networks result in vir-
tually the same viral state sequence.
Figure 7 shows the absolute value of the Pearson correlation

coefficient jcorrðxi; x̂iÞj of the entries of the i-th eigenvector
xi and the estimate x̂i of the edge-based transition probability
matrices between the infectious and the susceptible compart-
ment6. Only the principal eigenvectors x1; x̂1 are similar and
the correlation between the eigenvectors xi; x̂i is very small
for i " 2.

B. Presence of Model Errors

As illustrated by Figure 5, we cannot expect that an accurate
network reconstruction is possible in the presence of model
errors wi½k&. However, Table I shows that, at least in the
absence of model errors wi½k&, the prediction of the epidemic
outbreak is surprisingly less related to an accurate network
reconstruction. We consider Barab!asi-Albert random graphs
with N ¼ 100 nodes. For every group i at every time k, we
generate the model error wi½k& as a Gaussian random variable
with standard deviation &i ¼ 0:1Dt, and we set the sampling
time to Dt ¼ Dtmax=5, where the maximum sampling time
Dtmax is given in Appendix F.
Figure 8 gives an impression on the prediction accuracy for

the SIS process (5), when the network is reconstructed from
the viral state sequence v½1&; . . .; v½n& until the observation
lengths n ¼ 50 and n ¼ 100, respectively. For an observation
length n ¼ 50, the AUC equals approximately 0.53 and the
viral state prediction diverges from the true viral state v½k& as
time k evolves. However, the viral state prediction is accurate
until discrete time k , 125, which is valuable for medium-
term disease control measures. For an observation length
n ¼ 100, the AUC equals approximately 0.54 and the viral
state prediction is relatively accurate at all times k " n – tak-
ing the random model errors wi½k& into account. Hence, also in

Fig. 6. The accuracy of the network reconstruction versus the network size
N for four different epidemic models. The solid lines show the accuracy with
curing probability control, Ddi½k& 6¼ 0, and the dashed lines show the accuracy
without curing probability control, Ddi½k& ¼ 0. The results are averaged over
100 Barab!asi-Albert random graphs.

TABLE I
THE PREDICTION ERROR !I AND THE AUC FOR DIFFERENT EPIDEMIC MODELS

WITHOUT CURING PROBABILITY CONTROL, AVERAGED OVER 100 BARAB!ASI-
ALBERT RANDOM GRAPHS WITH N ¼ 200 NODES

6 For the SISIR model, only the correlation of the eigenvectors corre-
sponding to the contact graph from the infectious compartment I 1 to the sus-
ceptible compartment S1 is depicted. The correlation corresponding to the
compartments I2 and S2 behaves similarly.
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the presence of model errors wi½k&, a prediction of the viral
state v½k& is generally possible, and the greater the number of
observations n the more accurate the long-term viral state
prediction.

To evaluate the prediction accuracy versus the observation
length n, we consider the contact network of the Infectious:
Stay Away exhibition [31] with N ¼ 410 nodes, accessed via
the Konect network collection [32]. Every node i corresponds
to an individual, and there is a link between two nodes if the
corresponding two individuals had at least one face-to-face
contact for more than 20 seconds. We set the infection rates
bij proportional to the number of contacts between individual
i and j, such that the infection probability bij of the two indi-
viduals i; j that had the most face-to-face contacts is three
times as great as the infection probability of two individuals
that only had a single face-to-face contact. The self-infection
probabilities bii are set to zero for every group i. The curing
probabilities di are set as in Section V-A, such that the basic
reproduction number equals R0 ¼ 1:5. Figure 9 shows the
AUC and the prediction error !pred versus the observation

length n with and without model errors wi½k&. In the presence
of model errors wi½k&, the prediction error !pred converges
quickly to a small value, even though the AUC remains at
around 0.5 for all observation lengths n.

VIII. CONCLUSIONS

In this work, we considered the reconstruction of the contact
network and the prediction of epidemic outbreaks for general
group-based compartmental epidemic models. Our contribu-
tion is composed of two parts.

In the first part, we proposed the GEMF model in discrete
time, which generalises a plethora of diverse compartmental
group-based epidemic models. We suggested the transition
graph as an equivalent and compact visual representation of
any particular GEMF model. Furthermore, the GEMF model
can take multi-layer contact networks into consideration.
Thus, the GEMF model is a powerful framework to study gen-
eral spreading processes.

In the second part, we studied the network reconstruction
problem for the GEMF model. Reconstructing the network
gives rise to a set of linear equations that is severely ill-condi-
tioned. The ill-condition of the linear system has three crucial
implications for the network reconstruction from one epidemic
outbreak. First, the network can only be reconstructed if there
are no model errors and the curing rates are controlled. Sec-
ond, fundamentally different networks result in virtually the
same viral state sequences. Third, even though the contact net-
work cannot be reconstructed without curing probability con-
trol or in the presence of model errors, the prediction of the
epidemic outbreak is possible, provided that it is known by
which GEMF compartmental model the viral state sequence
was generated.

Fig. 7. The absolute value of the Pearson correlation coefficient of the entries
of the eigenvectors xi and the estimates x̂i, averaged over 100 Barab!asi-Albert
random graphs withN ¼ 200 nodes.

Fig. 8. The true and predicted viral state vi½k& of the SIS model (5) of four
nodes of a Barab!asi-Albert random graph with N ¼ 100 nodes subject to
model errors wi½k&. The upper and lower sub-plot refer to an observation
length of n ¼ 50 and n ¼ 100, respectively.

Fig. 9. The AUC and the prediction error !pred versus the observation
length n of the contact network of the Infectious: Stay Away exhibition [31]
with N ¼ 410 nodes. The solid and dashed lines correspond to the absence
and presence of model errors wi½k&, respectively. The results are averaged
over 10 realisations of the respective epidemic model with different initial
viral states v½1&.
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In summary, a given viral state sequence, and in particular
small perturbations thereof, corresponds to a diverse set of
potentially underlying contact networks. Furthermore, the task
of predicting an epidemic outbreak is significantly easier than
reconstructing the contact network. Specifying the set of con-
tact networks that result in virtually the same viral state
sequence stands on the agenda of future research.
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APPENDIX A
DERIVATION OF THE DISCRETE-TIME GEMF
MODEL

In Subsection A.1, we give a brief description the
continuous-time GEMF model [13] for completeness. In Sub-
section A.2, we extend the continuous-time GEMF model to
heterogeneous spreading parameters. In Subsection A.3, we
show that applying Euler’s method to the continuous-time
GEMF model of Sahneh et al. [13] results in the discrete-time
model (4).

A.1 Continuous-Time GEMF Model with Homogeneous
Spreading Parameters

There are two kinds of transition in the GEMF model. First,
there are nodal transitions. Node i changes from compart-
ment p to compartment q with the transition rate �pq . The
M ⇥M nodal transition rate matrix A� is defined as

(A�)pq = �pq, 1  p, q M.

The second kind of transitions in the GEMF model are edge-

based transitions. The GEMF model is formulated for multi-
layer networks. The layers are denoted by l = 1, ..., L, where
L denotes the number of layers. For every layer l, there is
an N ⇥N adjacency matrix Al with elements al,ij for every
pair of nodes i, j. If there is a directed link on layer l from
node j to node i, then it holds al,ij = 1. If there is no link on
layer l from node j to node i, then it holds al,ij = 0. To every
network layer l, there is exactly one influencer compartment
cl 2 {1, ...,M}. If a node i has neighbours j on graph layer l,
i.e. al,ij = 1, which are in compartment cl, then node i
changes from compartment p to compartment q with the
transition rate �l,pq . For every layer l, the M ⇥M edge-based

transition rate matrix A�l is defined as

(A�l)pq = �l,pq, 1  p, q M.

The matrices A� and A�l are adjacency matrices and define
the nodal transition rate graph and, for every layer l, an
edge-based transition rate graph. The Laplacian matrix of
the nodal transition rate graph and the edge-based transi-
tion rate graphs, respectively, are denoted by

Q� = diag (A�u)�A�

and

Q�,l = diag (A�lu)�A�l .

Finally, the GEMF model in continuous time describes the
evolution of the M ⇥ 1 viral state vector vi(t) as

dvi(t)

dt
= �QT

� vi(t)�
LX

l=1

0

@
NX

j=1

al,ijvj,cl(t)

1

AQT
�,lvi(t)

(10)

for every node i. We refer the reader to [13] for further
details of the GEMF model.

A.2 Continuous-Time GEMF Model with Heteroge-
neous Spreading Parameters

In real-world epidemics, heterogeneous spreading param-
eters are more likely than homogeneous spreading pa-
rameters. For instance, in an SIS epidemic process, an
elderly individual is more susceptible to getting infected
than younger individuals. Hence, if �1j and �2j denote the
infection rates from an individual j to an elderly individual
1 and a younger individual 2, respectively, then it holds
that �1j > �2j . Similarly, the curing rate �1 of an elderly
individual 1 is lower than the curing rate �2 of a younger
individual 2.

To consider heterogeneous spreading parameters, we
replace the nodal transition rates �pq from compartment p
to compartment q by the rates �pq,i, which depend on the
node i. Hence, the M ⇥M nodal transition rate matrix A�

is replaced by the M ⇥M matrix A�,i whose elements are
given by

(A�,i)pq = �pq,i, 1  p, q M,

for every node i. Analogously, we replace the edge-based
transition rates �l,pq from compartment p to compartment
q on layer l by the rates �l,pq,ij , which depend on the
nodes i, j. Hence, the M ⇥M adjacency matrix A�l of the
edge-based transition rates on layer l is replaced by the
M ⇥M adjacency matrix A�l,ij whose elements are defined
by

(A�l,ij)pq = �l,pq,ij , 1  p, q M.

With heterogeneous spreading parameters, the GEMF
model (10) becomes

dvi(t)

dt
= �QT

�,ivi(t)�
LX

l=1

NX

j=1

vj,cl(t)al,ijQ
T
�,l,ijvi(t), (11)

Here, the Laplacian matrix of the nodal transition rate graph
and the edge-based transition rate graphs, respectively, with
heterogeneous spreading parameters are denoted by

Q�,i = diag (A�,iu)�A�,i

and

Q�,l,ij = diag (A�,l,iju)�A�,l,ij .

A.3 Discrete-Time GEMF Model with Heterogeneous
Spreading Parameters

Before formulating the GEMF model in discrete time, we
rewrite the differential equation (11). We define the set of
layers l whose influence compartment cl equals m as

Lm = {l = 1, ..., L|cl = m} .

Then, we can rewrite (11) as

dvi(t)

dt
=�QT

�,ivi(t)

�
NX

j=1

MX

m=1

X

l2Lm

vj,m(t)al,ijQ
T
�,l,ijvi(t),
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which is equivalent to

dvi(t)

dt
=�QT

�,ivi(t) (12)

�
NX

j=1

MX

m=1

vj,m(t)

0

@
X

l2Lm

al,ijQ
T
�,l,ij

1

A vi(t).

Euler’s method approximates the derivative as

dvi(t)

dt

����
t=k�t

⇡ vi ((k + 1)�t)� vi (k�t))

�t
(13)

for a small1 sampling time �t and a discrete time slot k 2 N.
We denote vi[k] = vi(k�t) and, using Euler’s method (13)
with equality, obtain from (12) that

vi[k + 1] =vi[k]��tQT
�,ivi[k]

�
NX

j=1

MX

m=1

vj,m[k]

0

@�t
X

l2Lm

al,ijQ
T
�,l,ij

1

A vi[k].

Finally, we identify the Laplacian matrices of the
discrete-time GEMF model (4) as

Qi = �tQ�,i

and

Qm,ij = �t
X

l2Lm

al,ijQ�,l,ij .

Thus, the nodal transition probability matrix Si and
the edge-based transition probability matrix Bm,ij of the
discrete-time GEMF model (4) are related to the matri-
ces A�,i, A�,l,ij of the continuous-time GEMF model (11)
via

Si = �tA�,i

and

Bm,ij = �t
X

l2Lm

al,ijA�,l,ij . (14)

From (14) follows that the edge-based transition probabil-
ity matrix Bm,ij describes the influence of individuals of
group j in compartment m on node i, summed over all layers
l that are in the set Lm.

APPENDIX B
PROOF OF LEMMA 4
The GEMF model (4) model with a time-varying nodal
transition matrix S̃i[k] = Si +�Si[k] is given by

vi[k + 1] =
⇣
IM �QT

i ��QT
i [k]

⌘
vi[k]

�
NX

j=1

MX

m=1

vj,m[k]QT
m,ijvi[k]

for every group i = 1, ..., N . Here, the M ⇥M Laplacian
matrix of the known control matrix �Si[k] equals

�QT
i [k] = diag (�Si[k]u)��Si[k].

1. For the SIS epidemic model, we derived an upper bound on the
sampling time �t that ensures the stability of the steady-state [19].

For any M ⇥M matrix A and any M ⇥ 1 vector x, it holds

Ax =
⇣
IM ⌦ xT

⌘
vec(AT ),

which follows from the definition of the matrix vectorisation
and the Kronecker product. Hence, we can rewrite the
GEMF equations (4) as

vi[k+1]�vi[k]+�QT
i [k]vi[k] = �

⇣
IM ⌦ vTi [k]

⌘
vec(Qi)

�
NX

j=1

MX

m=1

vj,m[k]
⇣
IM ⌦ vTi [k]

⌘
vec(Qm,ij). (15)

To complete the proof, we stack (15) for the observation
times k = 1, ..., n and obtain

0

B@
vi[2]� vi[1] +�QT

i [1]vi[1]
...

vi[n+ 1]� vi[n] +�QT
i [n]vi[n]

1

CA =

�

0

B@
IM ⌦ vTi [1]

...
IM ⌦ vTi [n]

1

CA vec(Qi)

�
NX

j=1

MX

m=1

0

B@
vj,m[1]

�
IM ⌦ vTi [1]

�

...
vj,m[n]

�
IM ⌦ vTi [n]

�

1

CA vec(Qm,ij).

APPENDIX C
SIR EPIDEMIC MODEL

Youssef and Scoglio [20] derived a mean-field approxima-
tion of the individual-based SIR model in continuous time.
Applying Euler’s method to the continuous-time SIR model
in [20] yields the group-based SIR epidemic model, whose
transition graph is given by Figure 10.

S

I

R

S

I

R

Group j Group i

�i

�ij

Fig. 10. The transition graph for the SIR epidemic model.

Definition 6 (SIR Epidemic Model [20]). For every group i,
the viral state of the discrete-time SIR epidemic model equals

vi[k] = (Si[k], Ii[k],Ri[k])T . Here, Si[k], Ii[k] and Ri[k] de-

note the fraction of susceptible, infected, and recovered individuals

in group i at time k 2 N, respectively. For every group i, the viral

state evolves in discrete time k according to

Ii[k + 1] = (1� �i)Ii[k] + (1� Ii[k]�Ri[k])
NX

j=1

�ijIj [k]

Ri[k + 1] = Ri[k] + �iIi[k] (16)
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and the fraction of susceptible individuals follows as

Si[k] = 1� Ii[k]�Ri[k] (17)

at any time k 2 N. Here, �ij denotes the infection probability
from group j to group i, and �i denotes the curing probability
of group i.

Stacking the SIR equations (16) for Ii[k+1] and Ri[k+ 1]
for the observation times k = 1, ..., n yields with (17)
Lemma 7.

Lemma 7. For any node i, the curing probability constant

�i and the infection probabilities �1i, ...,�iN of the group-

based SIR epidemic model (16) with time-varying curing rates

�̃i[k] = ��i[k] + �i satisfy

ṼSIR,i = FSIR,i (�i,�i1, ...,�iN )T .

Here, the 2n⇥ 1 vector ṼSIR,i equals

ṼSIR,i =
⇣
Ṽ T

SIR,i[1], ..., Ṽ
T

SIR,i[n]
⌘T

,

with the 2⇥ 1 vectors

ṼSIR,i[k] =

✓
Ii[k + 1]� (1���i[k])Ii[k]
Ri[k + 1]� (1 +��i[k])Ri[k]

◆
.

Furthermore, the 2n⇥ (N + 1) matrix FSIR,i equals

FSIR,i =
�
FT

SIR,i[1] ... FT
SIR,i[n]

�T

with the 2⇥ (N + 1) matrices

FSIR,i[k] =

✓
�Ii[k] Si[k]I1[k] ... Si[k]IN [k]
Ii[k] 0 ... 0

◆
.

APPENDIX D
SEIR EPIDEMIC MODEL

S

E

I

R

S

E

I

R

Group j Group i

�i

�i

�ij

Fig. 11. The transition graph for the SEIR epidemic model.

From Figure 11, we obtain the nodal-based transition
matrix Si and the edge-based transition matrices B3,ij of
the SEIR model as

Si =

0

BB@

0 0 0 0
0 0 �i 0
0 0 0 �i
0 0 0 0

1

CCA ,

and

B3,ij =

0

BB@

0 �ij 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA .

For the compartments m = 1, 2, 4, the edge-based transition
matrices equal B1,ij = B2,ij = B4,ij = 0. Thus, the
Laplacian matrices equal

Qi =

0

BB@

0 0 0 0
0 �i ��i 0
0 0 �i ��i
0 0 0 0

1

CCA , (18)

and

Q3,ij =

0

BB@

�ij ��ij 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1

CCA . (19)

For the compartments m = 1, 2, 4, the Laplacian matri-
ces equal Q1,ij = Q2,ij = Q4,ij = 0. With (18) and (19), the
SEIR model specified by Figure 11 follows with (4) as:

Definition 8 (SEIR Epidemic Model). For every group

i, the viral state of the SEIR epidemic model equals

vi[k] = (Si[k], Ei[k], Ii[k],Ri[k])T . Here, Si[k], Ei[k], Ii[k]
and Ri[k] denote the fraction of susceptible, exposed, infectious,

and recovered individuals in group i at time k 2 N, respectively.

For every group i, the viral state evolves in discrete time k
according to

Si[k + 1] = Si[k]� Si[k]
NX

j=1

�ijIj [k]

Ei[k + 1] = (1� �i)Ei[k] + Si[k]
NX

j=1

�ijIi[k]

Ii[k + 1] = (1� �i)Ii[k] + �iEi[k] (20)

and the fraction of recovered individuals follows as

Ri[k] = 1� Si[k]� Ei[k]� Ii[k]

at any time k 2 N. Here, �ij denotes the infection probability
from group j to group i, �i denotes the incubation probability
of group i, and �i denotes the curing probability of group i.

Stacking the SEIR equations (20) for Si[k + 1], Ei[k + 1]
and Ii[k + 1] for the observation times k = 1, ..., n yields
Lemma 9.

Lemma 9. For any node i, the incubation probability �i, the

curing probability constant �i and the infection probabilities

�1i, ...,�iN of the group-based SIR epidemic model (20) with

time-varying curing rates �̃i[k] = ��i[k] + �i satisfy

ṼSEIR,i = FSEIR,i (�i, �i,�i1, ...,�iN )T .

Here, the 3n⇥ 1 vector ṼSEIR,i equals

ṼSEIR,i =
⇣
Ṽ T

SEIR,i[1] ... Ṽ T
SEIR,i[n]

⌘T
,
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with the 3⇥ 1 vectors

ṼSEIR,i[k] =

0

@
Si[k + 1]� Si[k]
Ei[k + 1]� Ei[k]

Ii[k + 1]� (1���i[k])Ii[k]

1

A .

Furthermore, the 3n⇥ (N + 2) matrix FSEIR,i equals

FSEIR,i =
�
FT

SEIR,i[1] ... FT
SEIR,i[n]

�T

with the 3⇥ (N + 2) matrices

FSEIR,i[k] =0

@
0 0 �Si[k]I1[k] ... �Si[k]IN [k]

�Ei[k] 0 Si[k]I1[k] ... Si[k]IN [k]
Ei[k] �Ii[k] 0 ... 0

1

A .

APPENDIX E
SISIR EPIDEMIC MODEL

An exemplary application of the SISIR model is the de-
scription of two viruses, which spread outside and inside a
quarantine. The state S1 corresponds to healthy individuals.
Individuals that are infected by the first virus are in the state
I1 and are moved upon detection of the infection (with the
curing probability �1) to the state S2, which corresponds
to the quarantine. In the quarantine, the spread of another
virus takes place, which is modelled by an SIR process (the
states S2,I2,R).

S1

I1

S2

I2

R

S1

I1

S2

I2

R

Group j Group i

�1,i

�2,i

�1,ij

�2,ij

Fig. 12. The transition graph for the SISIR epidemic model.

From Figure 12, we obtain the nodal-based transition
matrix Si and the edge-based transition matrices B2,ij and
B4,ij of the SISIR model as

Si =

0

BBBB@

0 0 0 0 0
0 0 �1,i 0 0
0 0 0 0 0
0 0 0 0 �2,i
0 0 0 0 0

1

CCCCA

and

B2,ij =

0

BBBB@

0 �1,ij 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

CCCCA

and

B4,ij =

0

BBBB@

0 0 0 0 0
0 0 0 0 0
0 0 0 �2,ij 0
0 0 0 0 0
0 0 0 0 0

1

CCCCA
.

For the compartments m = 1, 3, 5, the edge-based transition
matrices and their Laplacians equal B1,ij = B3,ij = B5,ij =
0 and Q1,ij = Q3,ij = Q5,ij = 0. The other Laplacian
matrices equal

Qi =

0

BBBB@

0 0 0 0 0
0 �1,i ��1,i 0 0
0 0 0 0 0
0 0 0 �2,i ��2,i
0 0 0 0 0

1

CCCCA

and

Q2,ij =

0

BBBB@

�1,ij ��1,ij 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1

CCCCA

and

Q4,ij =

0

BBBB@

0 0 0 0 0
0 0 0 0 0
0 0 �2,ij ��2,ij 0
0 0 0 0 0
0 0 0 0 0

1

CCCCA
.

Thus, the SISIR specified by Figure 12 follows with (4) as:

Definition 10 (SISIR Epidemic Model). For every group

i, the viral state of the SISIR epidemic model equals

vi[k] = (S1,i[k], I1,i[k],S2,i[k], I2,i[k],Ri[k])T . Here, Sl,i[k]
and Il,i[k] denote the fraction of individuals in group i at time

k 2 N that are susceptible to and infected by disease l = 1, 2,

respectively. At time k 2 N, Ri[k] denotes the fraction of

recovered individuals in group i. For every group i, the viral state

evolves in discrete time k according to

S1,i[k + 1] = S1,i[k]� S1,i[k]
NX

j=1

�1,ijI1,j [k] (21)

I1,i[k + 1] = (1� �1,i)I1,i[k] + S1,i[k]
NX

j=1

�1,ijI1,j [k]

S2,i[k + 1] = S2,i[k] + �1,iI1,i[k]� S2,i[k]
NX

j=1

�2,ijI2,j [k]

I2,i[k + 1] = (1� �2,i)I2,i[k] + S2,i[k]
NX

j=1

�2,ijI2,j [k]

and the fraction of recovered individuals follows as

Ri[k] = 1� S1,i[k]� I1,i[k]� S2,i[k]� I2,i[k]
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at any time k 2 N. Here, for the disease l = 1, 2, �l,ij denotes the

infection probability from group j to group i, and �l,i denotes

the curing probability of group i.

Stacking the SISIR equations (21) for Sl,i[k + 1] and
Il,i[k + 1], where l = 1, 2, for the observation times
k = 1, ..., n yields Lemma 11.

Lemma 11. For any node i, the curing probability constant cl,i
and the infection probabilities �l,1i, ...,�l,iN , for both diseases

l = 1, 2, of the group-based SISIR epidemic model (21) with time-

varying curing rates �̃l,i[k] = ��l,i[k] + �l,i satisfy

ṼSISIR,i = FSISIR,i (�1,i, �2,i,�1,i1, ...,�1,iN ,�2,i1, ...,�2,iN )T .

Here, the 4n⇥ 1 vector ṼSISIR,i equals

ṼSISIR,i =
⇣
Ṽ T

SISIR,i[1] ... Ṽ T
SISIR,i[n]

⌘T
,

with the 4⇥ 1 vectors

ṼSISIR,i[k] =

0

BB@

S1,i[k + 1]� S1,i[k]
I1,i[k + 1]� (1���1,i[k])I1,i[k]

S2,i[k + 1]� S2,i[k]���1,i[k]I1,i[k]
I2,i[k + 1]� (1���2,i[k])I2,i[k]

1

CCA

for any time k = 1, ..., n. Furthermore, the 4n⇥(2N+2) matrix

FSISIR,i equals

FSISIR,i =
�
FT

SISIR,i[1] ... FT
SISIR,i[n]

�T

where the 4⇥ (2N + 2) matrices FSISIR,i[k] are given by

FSISIR,i[k] =

0

BBBB@

0 0 �F (1)
SISIR,i[k] 0

�I1,i[k] 0 F (1)
SISIR,i[k] 0

I1,i[k] 0 0 �F (2)
SISIR,i[k]

0 �I2,i[k] 0 F (2)
SISIR,i[k]

1

CCCCA

for any time k = 1, ..., n, and the 1⇥N vectors F (l)
SISIR,i[k] equal

F (l)
SISIR,i[k] =

�
Sl,i[k]Il,1[k] ... Sl,i[k]Il,N [k]

�
.

APPENDIX F
SIMULATION PARAMETERS

We describe the precise setting of the simulation parameters
for Subsection 5.1. In [19], an upper bound �tmax on the
sampling time �t of Euler’s method was derived that
ensures the stability of the steady-state I1 of the discrete-
time SIS2 epidemic model (5). We set the sampling time
to �t = �tmax/100. For the Barabási-Albert of Figure 3,
the resulting sampling time �t ranges from 5.4 · 10�4 to
1.2 · 10�3. If there is a link between node i and j, then we
set the infection rates �ij and �ji (respectively, �l,ij and
�l,ji for the SISIR model) to a uniformly distributed random
number in [0.5�t, 0.6�t]. Hence, �ij 6= �ji holds in general,
and �ii > 0 due to infections between individuals in the
same group i. If there is no link between node i and j,
then we set the infection rates to �ij = 0 and �ji = 0. We
set the “initial curing rates” �(0)i to a uniformly distributed
random number in [0.5�t, 0.6�t]. Then, we set the curing
rates �i to a multiple of the initial curing rates �(0)i , i.e.

2. The stability of the equilibria of the general discrete-time GEMF
model (4) is an open question.

�i = c�(0)i for every node i and some scalar c such that
the basic reproduction number equals R0 = 1.5. For every
group i of the SIS, SIR and SEIR epidemic models, the initial
fraction of infected individuals Ii[1] is set to a uniformly
distributed random number in [0, 1], and the initial fraction
of susceptible individuals Si[1] is set to Si[1] = 1 � Ii[1].
For the SEIR epidemic model, the incubation probability �i
is set to a uniformly distributed number in [0.5�t, 0.6�t]
For every group i and both diseases l = 1, 2 in the SISIR
epidemic model, the initial fractions of infected individuals
Il,i[1] is set to a uniformly distributed random number in
[0, 0.5], and the initial fraction of susceptible individuals is
set to Sl,i[1] = (1�I1,i[1]�I2,i[1])/2 for l = 1, 2. Hence, the
initial fraction of recovered individuals in the SIR, SEIR and
SISIR model and the initial fraction of exposed individuals
in the SEIR model are Ri[1] = 0 and Ei[1] = 0, respectively.
The observation length is set to n = 1000.

APPENDIX G
DETAILS OF THE NETWORK RECONSTRUCTION AL-
GORITHM

In Subsection G.1, we provide the details of the network re-
construction algorithm in the presence of model errors wi[k].
Subsection G.2 gives the network reconstruction algorithm
in case of no model errors wi[k].

G.1 Network Reconstruction in the Presence of Model
Errors
The GEMF parameter vector xi in the LASSO problem (9)
implicitly depends on the sampling time �t. For instance,
the SIS model (5) reads

Ii[k + 1] =(1��t�cont,i)Ii[k]

+ (1� Ii[k])
NX

j=1

�t�cont,ijIj [k],

where the continuous-time spreading parameters
�cont,i,�cont,ij and the discrete-time spreading parameters
�i,�ij are related via �cont,i = �i/�t and �cont,ij = �ij/�t.
More generally, the GEMF parameter vector xi equals
xi = xcont,i�t for some vector xcont,i that is independent of
the sampling time �t. The sampling time �t is not related
to the contact network and, hence, should not have an
influence on the estimation of the GEMF parameter vector
xi. By multiplying the objective in the LASSO problem (9)
by (�t)�2, we obtain an equivalent optimisation problem
as

min
xcont,i

����
1

�t
Vi � Fixcont,i

����
2

2

+
⇢i
�t
kxcont,ik1

s.t. xcont,i � 0

(xcont,i)j = 0 8j 2 ⌦i

(22)

In contrast to (9), the LASSO problem (22) is independent
of the sampling time �t. The estimate x̂i(⇢i) for the GEMF
parameter vector xi follows from multiplying the solution
of (22) by the sampling time �t.

To set the regularisation parameter ⇢i > 0 in the
LASSO problem (22) by cross-validation, we generate can-
didate values for ⇢i that are logarithmically equidistantly
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spaced from ⇢min,i to ⇢max,i. We set the maximum value
to ⇢max,i = 2 1

�tkF
T
i Vik1 · 10�4 and the minimum value

to ⇢min,i = 10�4⇢max,i. We denote the set of all candidate
values for the scalar ⇢i by ⇥i = {⇢min,i, ..., ⇢max,i}. We apply
cross validation [27] to obtain the value of the scalar ⇢i in
the set ⇥i that results in the minimum mean squared error
kVi � Fixik22. Our network reconstruction method is given
in pseudo-code by Algorithm 1.

Algorithm 1 GEMF Network Reconstruction
1: Input: viral states vi[1], ..., vi[n + 1] and �Si[1], ...,

�Si[n] for all nodes i
2: Output: estimate for the GEMF parameter vector x̂i for

all nodes i
3: for i = 1, ..., N do

4: ⇢max,i  2kFT
i Vik1 · 10�8

5: ⇢min,i  10�4⇢max,i
6: ⇥i  20 logarithmically equidistant values from

⇢min,i to ⇢max,i
7: for ⇢i 2 ⇥i do

8: estimate MSE (x̂i(⇢i)) by 5-fold cross validation
on Fi, Vi and solving (22) on the respective training set

9: end for

10: ⇢opt,i  minimiser of the estimates of MSE (x̂i(⇢i))
11: x̂i  the solution x̂i(⇢opt,i) to (22) on the whole data

set Fi, Vi

12: end for

G.2 Network Reconstruction in the Absence of Model
Errors
If there are no model errors, i.e. wi[k] = 0 at every time k
for every group i, then the linear system (7) is satisfied with
equality. Depending on the (numerical) rank of the matrix
Fi, we employ two methods to estimate the parameter
vector xi. First, if the rank of the matrix Fi equals the
number of unknown components of the parameter vector
xi, then we solve the linear system Fixi = Vi with the
QR-solver provided by the Matlab command mldivide.
Second, if the rank of the matrix Fi is lower than the number
of unknown components of the parameter vector xi, then
we estimate the parameter vector xi by the basis pursuit
[29] approach:

x̂i = arg min
xi

kxik1

s.t. Fixi = Vi

xi � 0

(xi)j = 0 8j 2 ⌦i

(23)

To solve the linear programme (23) numerically, we apply
the dual simplex algorithm provided by the Matlab com-
mand linprog.


