IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Inverse All Shortest Path Problem

Zhihao Qiu, Ivan Joki¢, Siyu Tang, member, IEEE, Rogier Noldus, and Piet Van Mieghem, Fellow, IEEE

Abstract—Although resource management schemes and algorithms for networks are well established, we present two novel ideas,
based on graph theory, that solve inverse all shortest path problem. Given a symmetric and non-negative demand matrix, the inverse
all shortest path problem (IASPP) asks to find a weighted adjacency matrix of a graph such that all the elements in the corresponding
shortest path weight matrix are not larger than those of the demand matrix. In contrast to many inverse shortest path problems that are
NP-complete, we propose the Descending Order Recovery (DOR) that exactly solves a variant of IASPP, referred to as optimised
IASPP. The network provided by DOR minimized the number of links and the sum of the link weights among all the graphs with the
same shortest path weight matrix. Our second proposed algorithm, Omega-based Link Removal (OLR), solves the optimised IASPP by
utilising the effective resistance from flow networks. The essence of our idea is the applications of properties of flow networks, such as
electrical power grids, to compute the needed resources in path networks subject to end-to-end demands, such as telecommunication

networks where quality of service constraints specify the end-to-end demands.

Index Terms—Complex network, Inverse all shortest path problem, Graph theory, Shortest path, Effective resistance.

1 INTRODUCTION

HE design, dimensioning or operation of networks is
Toften constrained by end-to-end limits. For example, a
telephone call requires that the voice packets travel through
a telecommunication network with a designated maximum
latency; the delay between a source and a destination is
limited to about 150ms. However, real-time control of sys-
tems over the Internet may require a lower end-to-end delay.
Thus, different services (voice, video, ftp, email, etc.) typi-
cally require a different end-to-end delay. Usually, a telecom
operator can determine the demand matrix D containing
the maximum tolerably end-to-end delay d;; between node
7 and node j in the network. However, given the demand
matrix D, a telecom operator is still confronted to dimen-
sion the network, both topology and link weights, so that
transport along the “best” path between any pair (,7) of
nodes consumes less time than the maximum tolerable end-
to-end delay d;;. Here, we focus on finding a solution to
the operator’s problem, which we call “inverse all shortest
path problem”(IASPP). Other applications of IASPP are the
design and construction of transportation networks, where
the goal entails creating a network that ensures commute
times between stations are constrained by specific upper
bounds. Similar challenges occur in wireless sensor and
actuator networks [1], mobile communication radio access
networks [2], etc. An exploration of practical applications is
discussed in Section 6.

While extensive research has focused on finding the
shortest paths in a given graph, limited attention is given
to the inverse direction, i.e. obtaining or recovering a graph

e Z.Qiu, Ijoki¢, and P. Van Mieghem are with Faculty of Electrical
Engineering, Mathematics and Computer Science, Delft University of
Technology, 2600 GA Delft, The Netherlands.

E-mail: Z.Qiu-1@tudelft.nl

e R.Noldus is with Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, 2600 GA Delft, The
Netherlands, and also with Ericsson, The Netherlands.

o S.Tang is with Huawei Munich Research Center, Riesstrasse 25, 80992
Munich, Germany.

based on the shortest path weights between each node pair
as IASPP. A related challenge, termed the inverse shortest
path problem (ISPP), which has garnered attention in prior
research [3], [4], [5], [6], [7], [8], [9], is reviewed in Section 2.
ISPP asks for making a set of predetermined paths in the
graph the shortest paths, after modification and/or ensuring
the shortest path weights between specific node pairs are
bounded by given demands. Applications of the ISPP occur
in the design of networks [3], [10], modelling traffic [5] and
seismic tomography [3], [4]. However, in many practical
scenarios, the topology of the network is unknown, ren-
dering existing ISPP approaches inapplicable. In contrast to
ISPP, our IASPP only requires a demand matrix as input.
Additionally, the approach we propose in Section 3 not only
furnishes a graph that satisfies specified demands, but also
stands as an effective technique of “network sparsification”
[11] and helps to better understand the importance of dif-
ferent links within a network.

Before introducing the inverse all shortest path problem
(IASPP) in Section 2, we explain the terminology. We con-
sider a graph G that possesses a set N’ of N nodes and a
set £ of L links. The graph G can be represented [12] by
an N x N adjacency matrix A, with element a;; = 1 if
there is a link in G between node i € A/ and node j € N,
otherwise a;; = 0. Each link [€ £ has a weight w;, which is
a positive real number that specifies a property of the link,
e.g. the resistance in an electrical graph or the delay when
transmitting IP packets over that link. On the graph G, two
different types of transport are possible that lead to either
“path networks” or “flow networks”. In a path network, the
transport of items follows a single path P;; between a node
pair (i,7), whereas in a flow network, the transport from
node ¢ to node j propagates over all possible paths from
node i to node j. Two typical examples are a communication
network, where IP packets follow most of the time a single
path P;; from source i to destination j, and a power grid,
where electrical current flows over all possible paths.

The weight w (P;;) = 3_cp,, w1 of a path P;; between a
node pair (i, j) consists [13] of the sum of the weights over

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

all links that belong to that path P;;. We will denote by P;
the shortest path between a node pair (7,). The shortest
path P;; minimizes the path weight over all paths P;; and

*

obeys w (PZJ) < w(P;;). In most real-world networks,

there is only one shortest path Pfj, but, in general, there
can be many shortest paths between the same node pair
(i,7), in particular in unweighted graphs, where each link
has the same link weightl, i.e. wy; = w for all elements of
the V x N link weight matrix W. The weighted adjacency
matrix is A = W o A, where the Hadamard product o
means a direct elementwise multiplication, a;; = w;ja;;
and we use “tilde” notation for weighted graph matrices®.
In our setting, a;; = 0 means that there is no link between
node ¢ and node j, because we exclude zero link weights,
i.e. w;; > 0, as in Dijkstra’s shortest path algorithm [14],
[16], [17] and in order to avoid the complication that a zero
weight, i.e. w;; = 0, would physically mean that node ¢
and j are the same. The separation between link weights,
represented by the link weight matrix W, and underlying
graph G, represented by the adjacency matrix A, is obvious
in unweighted graphs, where W = w.J and J = u-u7 is the
all-one matrix and w is the all-one vector. In the unweighted
case, the graph is confining. In the other extreme, where link
weights are highly variable and where the minimum link
weight wpin > 0 is orders of magnitude smaller than the
maximum link weight Wy, the underlying graph G is less
confining than the link weight structure®, which effectively
thins out the graph. Indeed, mainly links with small link
weights are relevant in a shortest path problem and large
link weights may be ignored* from the onset, especially
if link weights are assigned per link independently of the
other links (see also [13, Chapter 16], [18], [19], [20]). In
a shortest path setting, links with low link weights are
generally more costly than links with high link weights.

Let v, denote the potential or voltage of node k in the
graph G. The effective resistance w;; between node i and
node j equals the voltage difference w;; = “~2 when a
unit current I, = 1 Ampere is injected in node i and leaves
the network at node j. The N x N effective resistance matrix
2 with elements w;;, studied in e.g. [12], [21], [22], [23], [24]
and [12, Chapt. 5], is briefly reviewed in Sec. 1.2. If the graph
G is connected®, then the effective resistance w;; as well
as the path weight w (P;;) is finite for any node pair (¢, j)
and a shortest path P;; exists between each node pair (i, j).
We define the N x N matrix S, that contains all shortest
path weights with element s;; = w (PZ*J) If the weighted

adjacency matrix A is known, then the matrix S is readily

1. The shortest path does not change if all weights are multiplied by
a constant o > 0.

2. The flow network is characterized by the subscript I, i.e. Ap is
the weighted adjacency matrix of a flow network, while A denotes the
weighted adjacency matrix of a path network.

3. The link weight structure refers to the entire ensemble {w; }, - of
all link weights in the graph as one coherent set, possibly generated by
a process that takes correlations of weights over links into account. The
matrix W can then be considered as one particular realization of the
link weight structural process.

4. If their removal does not disconnect the graph.

5. The weighted adjacency matrix A is called irreducible when the
graph G is connected (see [13, p. 183]; [12, art. 167 on p. 235]). For a
connected graph, the (weighted) Laplacian only has 1 zero eigenvalue
and its rank is NV — 1.

2

found via a shortest path algorithm, like Dijkstra’s shortest
path algorithm. Dijkstra’s shortest path computation is very
efficient and only requires O (N log N) elementary opera-
tions. Both the effective resistance matrix (2 and the shortest
path weight matrix S are distance matrices®.

In the sequel, we limit ourselves to connected, undi-
rected, simple” graphs. Consequently, the N x N symmetric
matrices A, W, A, Q and S are non-negative with zero
diagonal elements.

The main contributions of this work are as follows:

1) We propose a novel problem named “Inverse all
shortest path problem” (IASPP) and its variant “the
optimised IASPP” (OIASPP). The IASPP asks for
a weighted graph whose shortest path weight be-
tween each node pair satisfies a given demand.

2) We prove that OIASPP is not NP-complete.

3) We propose the Descending Order Recovery (DOR)
algorithm that exactly solves OIASPP. The DOR
graph minimizes the number of links and the sum
of the link weights among all the graphs with the
same shortest path weight matrix.

4) We demonstrate that DOR is also an effective net-
work sparsification algorithm.

5) We propose the Omega-based Link Removal (OLR)
algorithm, which solves OIASPP by utilising the
effective resistance [12, Chapter 5]. OLR invokes
properties of flow networks, such as electrical power
grids, to compute the needed resources in path
networks subject to end-to-end demands, such as
telecommunication networks.

6) We discuss the applications of IASPP and evaluate
the performance of DOR and OLR.

The paper is outlined as follows. In Section 1.1 and
1.2, we introduce notations to describe IASPP. We formally
define IASPP and its variant OIASPP in Section 2 and review
related problems from literature. In Section 3 and Section 4,
we respectively propose two algorithms, DOR and OLR,
to solve the optimised inverse all shortest path problem
(OIASPP). Section 5 compares and evaluate the proposed
algorithms by simulations. Section 6 introduces the potential
applications of IASPP. Finally, we summarise our results in
Section 7.

1.1 The Laplacian matrix Q

The N x 1 degree vector d = A - u contains the degree
d; of each node i and the corresponding diagonal matrix
A = diag(d) has the nodal degrees on its main diagonal.
The eigenvalue decomposition of the N x N Laplacian) =
A—A4,

Q=7 -diag(n)- Z",)

defines the set of N orthogonal IV x 1 eigenvectors z;
contained in columns of the N x IV eigenvector matrix Z,
and the set of IV eigenvalues pqy > po > --- > un. Due
to double orthogonality of the eigenvector matrix Z (i.e.

6. Any element h;; of a distance matrix H is non-negative h;; > 0,
but h;; = 0 and h;; obeys the triangle inequality: h;; < hi, + hyj.

7. A simple graph has no multiple links between a same pair of nodes
and also no self-loops, i.e. a;; = 0 for each node i € N.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Z-ZT =Tand ZT - Z = I), where I is the N x N identity
matrix, (1) can be transformed into a weighted sum of N
outer vector products

N
Q=1 i z-2.)
=1

As of any real, symmetric matrix [12], the eigenvalues of
Laplacian () are real and non-negative because Q is a
positive semidefinite matrix. From @)-u = 0, we observe that
1y = 0 and zy = v and thus det @) = 0. Consequently, the
Laplacian @ is not invertible. However, the pseudoinverse®
of the Laplacian [23]

czpe 2l ©)

QT: i
i

ZL MZ

obeys QT-Q = Q-QT = -J. In this work we consider a
weighted graph G, where a link [between node i and node
Jj is defined by its weight

1

Wij = w; = :l’

with r; denoting link [resistance and r; > 0, w; > 0.

1.2 Effective Resistance

The effective resistance w;; between node i and node j is
defined as [12]

(ei—e)) - Q1 (e;—ej), 4)

where the NV x 1 basic vector e; has only one non-zero
element (¢;); = 1. The effective resistance w;; quantifies the
dissipated power when the current of 1 Ampere is applied
between the nodes 7 and j. The equation in (4) can be
transformed into a matrix form, defining the IV x NNV effective
resistance matrix

Q=¢C-u"+u-T-2.-Q", 5)

o.)ij =

where the N x 1 vector ¢ = (QJ{I, Q£2, cey Q}LVN) contains
the diagonal elements of the pseudoinverse of the Laplacian
Q. The effective resistance w;; between directly connected
nodes i and j (i.e. a;; = 1), represents the effective resistance
of a parallel connection

o ©

Wij Tij (WG*)ij

between the resistance of a direct link r;; and the effective
resistance (we-),; between nodes i and j in the graph G* =
G\ l;j, where the link [;; is removed.

Lemma 1. A link [;; € £ of a graph G(N, £) connects two
disconnected sub-graphs G and Go, i.e. L(G1)UL(G2)U
lij = L(G) and L(G1)NL(G2) = 0 if and only if it holds

wij = Tij .

Proof: When link [;; of a graph G connects two
disconnected sub-graphs G; and Gy, the effective resistance

8. We restrict the analysis to connected simple graphs, as the number
of zero eigenvalues of Laplacian Q equals the number of connected
components in a graph. More precisely, (3) does not hold in the case of
a disconnected graph.

3

of a graph G* = G \ l;; equals 7j; = oo. Therefore, (6)
transforms into w;; = 7;. O

The effective resistance w;; between adjacent nodes 7 and
J is upper bounded by the resistance r;; of the direct link

between them

Ti; - (WaG*
wij = M < min (va (wa-),))
rij + (Wa+),;
Otherwise, if a;; = 0, then the effective resistance w;; is

upper bounded by the sum of resistances of links forming
the shortest path between the nodes. In both cases, if more
paths exist connecting two nodes, then there are more pos-
sible paths for the current to flow simultaneously and thus,
the effective resistance lowers. The sum of all elements of
the N x N effective resistance matrix {2 defines the effective
graph resistance [12]

1 =
Rg =5 u'-Q u= Z (7)

1
L

2 INVERSE ALL SHORTEST PATH PROBLEM
2.1 Statements of inverse all shortest path problems

Problem 1 (Inverse All Shortest Path Problem (IASPP)).
Given an N x N symmetric demand matrix D with zero
diagonal elements but positive off-diagonal elements.
Determine an N x N weighted adjacency matrix A, such
that the corresponding shortest path weight matrix S
obeys9 S<D

Since an element in the shortest path weight matrix S can
be any positive number by scaling the weighted adjacency
matrix, the JASPP generally has infinitely many solutions.
Therefore, optimisation criteria such as the minimization of
anorm ||D — S|| are added. An instance [10] of IASPP is the
optimised inverse shortest path problem (OIASPP).

Problem 2 (Optimised Inverse All Shortest Path Problem
(OIASPP)). Given an N x N symmetric demand matrix
D with zero diagonal elements but positive off-diagonal
elements. Determine an N x IV weighted adjacency ma-
trix A, such that the corresponding shortest path weight
matrix S obeys S < D and minimizes a norm ||D — S|

Van Mieghem [10] demonstrated that any demand ma-
trix D can be transformed into a distance matrix D’ with
D’ < D, where D’ represents the (modified) demand
matrix that is also a distance matrix: If d;;, + di; < d;;
for at least one node k& € N which violates the trian-
gle inequality of a distance matrix, then we can replace
dij = minlngN(dik + dkj) and dji = d” In the fOHOWil’lg,
we assume that the demand matrix D is also a distance
matrix. A complete graph whose weighted adjacency matrix
A = D is a solution of the OIASPP with demand matrix
D. Consequently, given a demand matrix D, we can obtain
at least one solution of the OIASPP. In 1965, Hakimi and
Yau [25] proved that if a weighted graph G is an N-
node realization of an N x N distance matrix D’, i.e. the
corresponding shortest path weight matrix S of G equals
D’, and there does not exist three nodes 7, j and k such

9. The notation <
means that s;; < d;; foreachi=1,2,...

is used for componentwise inequality, i.e. S < D
,Nandeachj=1,2,...,N.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

that w;; > s;; + si;, where wyy is the link weight between
nodes a and b and s, denotes the shortest path weight,
then G is unique. Hence, if there is only one solution of the
OIASPP, then the resulting graph is a complete graph [10]
and w;; < s + sg; holds for arbitrary three nodes 7, j and
k, when the graph size N > 3. When the demand matrix
D is a shortest path weight matrix generated by a tree, Van
Mieghem [10] has solved OIASPP exactly as explained in
Section 2.2.

In this paper, we focus on general underlying graphs
rather than trees or complete graphs. We respectively pro-
pose two algorithms Descending Order Recovery (DOR)
and Omega-based Link Removal (OLR) to solve OIASPP in
Section 3 and Section 4. Since the computational complexity
of DOR is polynomial, we have incidentally proved that
OIASPP is not NP-complete.

2.2 Literature review

Before investigating IASPP, we explain the related inverse
shortest path problem (ISPP). Both ISPP and IASPP are
“inverses” of the shortest path problem, that ask for a graph
given the shortest paths or shortest path weights between
node pairs. However, ISPP requires both the shortest paths
(or shortest path weights) and the original graph, while
IASPP only necessitates a demand matrix, that specifies the
maximum shortest path weights, as input.

Problem 3 (Inverse Shortest Path Problem (ISPP)). Given
an N x N weighted adjacency matrix A with link weight
matrix W and a set of paths {P;;}. Determine an N x N
non-negative link weight matrix W’ and the correspond-
ing graph H such that all the paths P;; belonging to
{P;;} are the shortest paths in the obtained graph H.

We will introduce several representative generalizations or

variants of ISPP below.

In 1992, Burton and Toint [3] proposed a quadratic pro-
gramming algorithm based on the Goldfarb-Idnani method
[26] to solve a variant of ISPP, which we denote by
ISPPBurton:

Problem 4 (Inverse Shortest Path Problem Burton
(ISPPBUHOH)). Given an N x N weighted adjacency
matrix A with link weight matrix W and a set of paths
{Pi;}. Determine an N x N non-negative link weight
matrix W’ and the corresponding graph H such that all
the paths P;; belonging to {P;;} are the shortest path in
the obtained graph H and minimize ||[W' — W]|.

Burton and Toint utilised ls norm |[[W/' — W] =
\/Zi >, (wi; — wij)?, where w;; and w;; represent the el-

ements of W’ and W respectively. A specialized Goldfarb-
Idnani method can then be implied. The approach involves
iterative adjustments to the matrix W/, leading to the even-
tual weighted graph H, in which P;; belonging to the given
path set {P;; } are the shortest paths. The method works in
both directed and undirected graphs.

Different variants and modified methods following
ISPPgurton are discussed in [5], [6], [7], [8]. In 1999, Fekete
et al. [9] considered a more general ISPP, where only the
shortest path weight between pairs of nodes is given, but not
the paths achieving them. Given a graph G with adjacency

4

matrix A and a demand matrix D, ISPPrekete aims to find
a “weight function” of the weighted adjacency matrix A
such that the demand matrix D is exactly the shortest path
weight matrix S, where the weight function describes all the
weighted adjacency matrices whose corresponding shortest
path weight matrix S = D. The demand matrix D in
ISPPrekete must be a distance matrix measuring the short-
est path weight between several pairs of nodes in graph
G. Not all the pairs of nodes in graph G are necessarily
included in the demand matrix D. Fekete et al. [9] proved
that ISPPpekete is NP-complete by reducing ISPPrekete to a
vertex-disjoint paths problem.

All mentioned variants of ISPP require the original
weighted adjacency matrix A or adjacency matrix A. In
contrast, Hakimi and Yau [25] investigated a “weighted
graph realization” with only an N x N demand matrix
D as input, which is also a distance matrix. Hakimi and
Yau [25] presented an algorithm to obtain a graph H on N’
nodes by adding N’ > N nodes into the graph such that
the corresponding shortest path weight matrix S = D. If
we extract the shortest path weights between node pairs
that belonging to the first NV nodes and form a shortest
path weight matrix S, then .S = D. Since the input in [25]
contains all the shortest path weights in a graph, we call the
problem “inverse all shortest path problem” (IASPP).

If the given distance matrix D can be realized by a tree t,
Van Mieghem [10] proposed an elegant algorithm to recover
the tree ¢ from D by exploiting the analogy between flow
networks and path networks. For undirected flow networks,
Fiedler [27], [28] has presented the following block matrix

relation,
0 o7\ [=207 pT g

(vo) =03 5e) @
with Qp = 202u, where @ = Ap — Ap is the weighted
Laplacian matrix of a flow network and the diagonal matrix
Af = diag(Aru), AF is the weighted adjacency matrix of
a flow network, the variance o2 = CT4Q S R¢g, where Rg
is the effective graph resistance [23] and u is N x 1 the
all-one vector. The vector (contains the diagonal elements
of pseudoinverse Q' of the Laplacian (. Specifically, Van
Mieghem [10] defined the weight of a link w;; = r;; as
the resistance (in Ohm), then the weighted Laplacian () has
non-zero elements g;; = —% and ap = % for ¢ # j,
where ?iij = Tij, but (ap)ij = (5)7] =0 %01‘ 7 7&] if
there is no link between node ¢ and node j. The diagonal
elements (ap);; = (@);; = 0 are always zero. Fiedler’s block
matrix relation (8) indicates a one-to-one relation between
the effective resistance matrix {2 and the weighted Lapla-
cian) and therefore, also between the effective resistance
matrix 2 and the weighted adjacency matrices Ar and A.
By applying block inverse formulae [12] to Fiedler’s block
matrix relation, it is shown in [10] that
1

2 _
20° = T 1y)
1
=———0"! 10
p uTQ-1y “ (10)
and the inverse of the effective resistance matrix is

1 1~

Q= _——pp" - -Q (11)

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Hence, with @ =A F— A r, the weighted adjacency matrix
follows as 1
Ap =Ap+207" = ﬁppT. (12)

If the graph G is a tree, then the shortest path matrix S
equals the effective resistance matrix 2, because there exists
exactly one path in a tree between each pair of nodes [22].
The weighted adjacency matrix Ar can be deduced from
(12) by replacing €2 by S. Hence, the weighted adjacency
matrix A follows by taking the element-wise inverse of Ap.
The zero elements in A should not be inverted, but should
instead be transferred to A. Indeed, the obtained A is an
exact solution of the OISPP for any tree: If the given demand
matrix D is a distance matrix such as the shortest path
weight matrix S, then the weighted adjacency matrix A can
be obtained from (12) with 2 = S. We call this method the
“flow analogue method”.

As explained in Appendix B, the algebraic flow analogue
method is hard to extend from a tree graph to a general
graph. In the sequel, we solve OIASPP for general graphs.

3 DESCENDING ORDER RECOVERY ALGORITHM

In this section, we propose the Descending Order Recovery
algorithm (DOR) that solves OIASPP exactly. If a demand
matrix D is the shortest path weight matrix S of an arbitrary
graph G, then DOR retrieves the graph H satisfying the
norm ||D — S’|| = 0, where S’ is the shortest path weight
matrix of H. For a given demand matrix D, the graph H
obtained by DOR is unique and reaches a minimum number
of links and a minimum sum of the link weights among all
OIASPP solutions with the same demand matrix D. The
resulting graph H generally has less links than graph G. If
graph G is unweighted, the resulting graph H is the same
graph as G.

3.1 Properties of DOR
Our main idea of DOR is:

1) Given a demand matrix D, find the minimum
spanning tree of the complete graph Gp, whose
weighted adjacency matrix A = D;

2) Add a link between two nodes i and j whose
shortest path weights s;; > d;;, with link weight
wij = dij;

3) Repeat 2 until s;; < d;; for each i,j € N.

If we remove a link [in graph G and obtain graph H, then
the link [either (a) belongs or (b) does not belong to the
shortest path P;; between two nodes i and j. In case (a),
removing link / does not change the shortest path P;; nor
the shortest path weight s;;. In case (b), the shortest path
between nodes ¢ and j is changed, but the shortest path
weight sgj in H cannot be smaller than s;;, otherwise, the
shortest path weight s}, would also be the shortest path
weight in G. Thus, the shortest path weight sp(ij) between
arbitrary nodes 7 and j in the minimum spanning tree T" of a
graph G is not smaller than the shortest path weight s (ij)
in the graph G and step 1 ensures that the lower bound of
the shortest path weight matrix of our obtained graph H is
D. The upper bound of the shortest path weight matrix of

o~
@

900 ©

000 00O

9-node toy graph Graph obtained by DOR

Fig. 1. Visualization of redundant links in the graph obtained by DOR.
We generate a 9-node toy graph and obtain the corresponding shortest
path weight matrix as the demand matrix D. A graph is then obtained
by DOR with the demand matrix D as input. The redundant links are
highlighted.

the obtained graph is also D after performing step 2 and 3.
DOR obtains a graph H satisfying the norm ||[D — S’|| =
0. We present the pseudo code of DOR initialised with a
minimum spanning tree as Algorithm 4 in Appendix F.

The graph H obtained by DOR may have more links
than the original graph G. In the worst case, the resulting
H is a complete graph, whose weighted adjacency matrix
equals the demand matrix D. We call /;; a “redundant” link
if we can find another node k, besides i and j, in the graph
such that a;; = w;;a;; > s;1 + ;. For example, as shown
in Fig. 1, link l;9 can be replaced by l2, l24 and l49 when
calculating the shortest path between nodes 1 and 9 in the
graph obtained with DOR, since @19 = $14 + S49. Removing
link /19 would not change the shortest path weight matrix .S
nor the connectivity of the original graph.

Algorithm 1 Descending Order Recovery (DOR)

Input: N x N demand matrix D = S: a shortest path weight
matrix of a graph G B

Output: N x N weighted adjacency matrix A

1: A<+ D and A specifies graph G

2: V positive link weights in G and any node k # ¢, j

3 if a;; > si1 + si; then

4. 6ij +~ 0, @»i +~— 0

5

6

end if
: return A

_ Ifalink /;; is redundant in a weighted adjacency matrix
A obtained by DOR, i.e. if there exists a node k such that
Sik + Sk < i, we then remove the link between nodes i
and nodes j and let a;; = 0. Hakimi and Yau [25] proved
that there is only one graph which does not have redundant
links among all the graphs with the same shortest path
weight matrix S. Therefore, the graph H obtained by DOR
is unique for a given demand matrix D after removing
all redundant links. Hence, DOR can be further simplified:
After removing all redundant links in the complete graph
G p whose weighted adjacency matrix equals the demand
matrix D, we obtain the solution graph H, which solves
OIASPP exactly. The pseudo code for simplified DOR is
shown in Algorithm 1.

Property 1. Given a demand matrix D, the obtained graph
H by DOR reaches a minimum number of links among
all the OIASPP solutions.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

Proof: By contradiction: Suppose that there exists a
graph H’ such that the corresponding shortest path weight
matrix S = D and the graph H’ has fewer links than the
graph H obtained by DOR. The graph H’ should have
redundant links because both graph H' and graph H have
the same shortest path weight matrix S and the graph H
does not have redundant links. In that case, we construct a
graph H" by removing redundant links in graph H’. Since
removing redundant links does not change the correspond-
ing shortest path weight matrix, graph H" and graph H
have the same shortest path weight matrix S and do not
have redundant links, which is impossible because there is
only one graph that does not have redundant links among
all the graphs with the same shortest path weight matrix S.
Hence, the obtained graph H by DOR reaches a minimum
number of links among all the solutions to an OIASPP given
a demand matrix D. O

Because the graph H obtained by DOR minimizes the
number of links among all the graphs with the same shortest
path weight matrix S, we can only obtain a graph H’ that
has the same shortest path weight matrix S by adding
redundant links. We thus have:

Property 2. Given a demand matrix D, the obtained graph
H by DOR reaches a minimum sum of the link weights
among all OIASPP solutions.

Given a demand matrix D that is a shortest path weight
matrix S of an arbitrary “original” graph G. While the
shortest path weight matrix S of the graph H obtained by
DOR is identical to the shortest path weight matrix of the
original graph G, the two graphs H and G themselves may
not be the same. Specifically, when the demand matrix D
is computed from an unweighted graph G, fortunately, we
can remove all the redundant links by removing links whose
weights are larger than 1 in the complete graph G p. Since
all the link weights in unweighted graphs are exactly 1, the
shortest path weight s;; between two nodes equals 1 if and
only if nodes ¢ and j are neighbours. Thus the adjacency
matrix A of the graph after removing redundant links in the
complete graph G p is precisely the same as the adjacency
matrix of the original unweighted graph G.

3.2 Examples

In Fig. 2, we respectively examine the number of links L¢
and Ly of the original graph G and the DOR graph H. For
each simulation, we generate an Erd6s—Rényi (ER) random
graph G,(N), where N is the number of nodes and p is
the probability of connecting two nodes. The link weights
of the ER graph G,(N) are uniformly distributed in (0, 1).
The N x N shortest path weight matrix S is calculated and
equal to the demand matrix D. For different N and p, 1000
iterations are carried out.

Fig. 2 illustrates that DOR produces graphs H with
fewer links than the original ER graphs G, provided the link
density p is sufficiently large. An interesting phenomenon is
that the resulting graph H seems to have a similar number
of links, irrespective of the number Lg of links in the
original graph. Hence, for a dense original graph G, DOR
provides a sparser graph with the same shortest path weight
matrix, but with a different adjacency matrix A, which can

6
0.2
0 L
Z2.0.2
~
g 04]
[—F N=6 f
‘j -0.6 H—F—N =10
= N = 50
0.8 | —F—N = 100
—F—N =200
_1 L L L L
0 0.2 0.4 0.6 0.8 1

p

Fig. 2. The differences of number of links between the original graph and
the graph obtained by DOR.

be regarded as “network sparsification” [11] that preserves
all shortest path weights.

An instance of network sparsification is investigated by
Simas, et al. [29]. Given a graph G with weighted adjacency
matrix A, Simas, et al. [29] focuses on obtaining a graph
H, which they call the “distances backbone”, with the same
shortest path weight matrix S of graph G, but fewer links.
The main idea is that the off-diagonal elements of the
resulting weighted adjacency matrix A’ are computed by

{Zi’u = Sij
a; =0
fori = 1,2,...,N,j = 1,2,...,N,j # i. However, the
method proposed by Simas et al. [29] always includes the
redundant links such that w;; = s;; + si;, where w;; is the
weight of link /;;. Thus, DOR can return a sparser graph
than the distances backbone.

Van Mieghem and Wang [20] investigated the union of
all shortest path trees G, where the shortest path tree
(SPT) rooted at some node is the union of the shortest paths
from that node to all the other nodes. If a link [;; is the
shortest path P;; between ¢ and j, then [/;; must belong to
the G,,,, because the G, , is the union of shortest paths
between all possible source and destination nodes [20]. All
the links in the graph H obtained by DOR belong to at least
one shortest path P;; and the graph H thus belongs to the
Gu,,,- The inverse does not hold, because the union G,
may have redundant links /;; in which w;; = si, + sp;.

if El-j = Sij (13)
if 'dij > Sij

3.3 Computational complexity of DOR

For each possible link /;;, DOR determines whether the link
is redundant by comparing the link weight w;; with the sum
of the shortest path weights s, + s, where k € A is a node
different from node ¢ and j. Hence, each link /;; needs to be
compared with the sum of the shortest path weights s;,+5y;
for N —2 nodes k in the worst case. The computational com-
plexity of the worst case of DOR (Algorithm 1) is O(N?),
because the demand matrix D = O(N?). OIASPP is thus not
NP-complete! The main differences between OIASPP and
three NP-complete variants of ISPP introduced in Section 2
and Appendix E lie in the given constraints. While the three
NP-complete variants of ISPP restrict the resulting graph to

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

a predetermined graph topology, OIASPP can be solved by
changing both topology and link weights to meet the given
constraints about shortest path weights.

4 OMEGA-BASED LINK REMOVAL ALGORITHM

The Omega-based Link Removal (OLR) algorithm recovers
an as sparse as possible graph with elements of the shortest
path weight matrix s;; € [bd;;,d;;], where d;; is the given
demand and b € [0, 1] is an input parameter. OLR leverages
information captured by the effective resistance between
pairs of nodes. Equation (6) enables us to determine the
impact on the effective resistance between two neighbouring
nodes when the shared link between them, denoted as [;;,
is eliminated. By targeting the removal of the link with the
highest value of ﬁ, we achieve the smallest possible

increase in the effective graph resistance R of the network.
To enhance the efficacy of this approach for solving OIASPP,
we introduce a refinement, which involves scaling the quan-
tity (w ; by the difference between the provided upper
bound dlj 'and the current shortest path weight s;; for the
pair of nodes (i, 7). This strategic adjustment allows us to
combine insights from the effective resistance measurements
and the upper bound values supplied by the N x N demand
matrix D.

The shortest path weight between two nodes is the
sum of the link weights (i.e. corresponding elements of the
weighted adjacency matrix A) belonging to that path. On the
contrary, a link weight in a “flow network ”(defined by the
adjacency matrix Ar) has a dimension of the inverse of the
resistance. Therefore, to utilise the analogy between shortest
paths and effective resistance, we additionally define the
N x N link weight matrix 1/ containing the inverse link

weights!?
1
UA]Z‘]* = {gu

where i,j € N. The corresponding N x N effective resis-
tance matrix computed with W instead of A = Ao W is
denoted as €.

In Algorithm 2, we propose an iterative algorithm that
solves the IASPP problem by invoking the effective re-
sistance between pairs of nodes. The OLR algorithm is
initialised in line 1 by the complete graph with the adjacency
matrix A = J — I, while the link weights equal (line 2) the
corresponding shortest path weights in the demand matrix
D = S, scaled by the input parameter b,

A=b-(AoD),

if&ij > 0,

(14)
otherwise,

which ranges between 0 and 1. Link weights are scaled
in line 2 for two reasons. Assume the demand matrix D
is derived from an original graph. In case b = 1, if the
proposed OLR algorithm recovers the exact topology as
in the original graph G, then the link weights would also
be the same. In general, OLR ensures the shortest path
weight between directly connected nodes to be equal to the
corresponding element of the provided upper bound in D,

10. Link existence overrules the link weight. Equation (14) shows that
if a link I;; does not exist in graph G (ie. a;; = 0), than w;; = 0,

Algorithm 2 Omega-based Link Removal (OLR)

Input: N xN demand matrix D = S: a shortest path weight
matrix of a graph G; input parameter b € [0, 1]

Output: NV x N weighted adjacency matrix A

1: Anyxn < Jnxn —Inxn adjacency matrix of a complete
graph

. A+ b- (Ao D) weighted adjacency matrix

: SnNx N ¢ Shortest path weight matrix of A

: WNX N < Inverse link weight matrix of A

do
QO ~Nx N < Effective resistance matrix of W
Re(Q—W)MD—SpA
(i,) + Indices of the maximum element in R
A<—A—ei~ef—ej~e?
Ab- (Ao D)
Snxn 4 Shortest path weight matrix of A
WNX N < Inverse link weight matrix of A

: while (S < D) AN (RZ] > 0)

14: AeA+ei~eJT+ej~eT

15: A« b- (Ao D)

16: return A

DN S U S

e e
@ N 22

i

scaled by the input parameter b. Therefore, b < 1 allows
OLR to achieve sparser graphs even from the original graph
G, at the cost of increased norm !! of || D — S||, still satisfying
the bound S < D. To determine which link should be
removed in each iteration, in line 7 we compute the N x N
matrix

R:(Q—W)O(D—S)OA,

where the N x N inverse link weight matrix W contains
inverse link weights, as defined in (14). whose elements are
dimensignless and denote the inverse effective resistance
(Q— W) between a pair of neighbouring nodes (i.e.

=1), in case the direct link between them is removed (as
in (6)), multiplied by the gap (d;; — s;;) between the shortest
path weight between them and the given upper bound in
D. We remove the existing link with the highest value in
R (line 8), because the adjacent nodes are easily reachable
via the rest of the graph when the link is removed, and the
margin between the current shortest path weight and the
upper bound is relatively high. After updating the adjacency
matrix A (line 9), we redistribute the link weights (line 10)
as A =b- (Ao D) and update (line 11) the N x N shortest
path weight matrix .S.

Link removal is performed until at least one shortest
path weight in the obtained graph H exceeds the given
upper bound in the N x N demand matrix D. At that point,
the last removed link is returned (line 14), while the N x N
weighted adjacency matrix A is provided as output.

OLR initialises the topology with a complete graph and
iteratively removes links until at least one upper bound on
the shortest path weight between node pairs is exceeded.
In general, OLR can return any connected topology, even a

11. For any pair of connected nodes i and j we observe s;; = b - d;;.
In addition, for non-adjacent nodes m and n we reason smn > b - dmn,
because D is a distance matrix. Combining these two observations, we
conclude S < b- D, which yields ||D — S|| <1 —b.

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING

tree. Therefore, there are generally up to W -(N-1)
iterations. The effective resistance and the shortest path
weight between all node pairs are computed within each
iteration. Within each iteration in our OLR, the effective
resistance and the shortest path weight between any pair of
nodes are computed. Both operations require computational
complexity O(N?). In addition, we initialise OLR with a
complete graph. The number of iterations in worst case
scales as O(N?). Thereforethe overall complexity of our
OLR is O(N°®). Alternatively, DOR can streamline OLR’s
computational complexity. DOR ensures the retrieval of a
graph with the minimum necessary links, accurately align-
ing the shortest path weight matrix S with the demand
matrix D. Instead of initializing OLR with a complete graph,
we employ DOR as the initial phase within OLR. Subse-
quently, we iteratively refine the graph until the shortest
path weights fall within a predefined range, as dictated
by the input parameter b. Consequently, the number of
removed links within OLR reduces significantly, lowering
its computational complexity to be O(N3L’), where L’ is
the number of links in graph obtained by DOR.

Fig. 3 shows the differences between the number of links
in the OLR graph H and the original graph G with different
b and the norm ||D — S|| = mzl > d’d% of the
graph obtained by OLR with different input parjameter b.
For each simulation, we generate a 20-node Erd&és-Rényi
(ER) random graphs G,(20) and compute the correspond-
ing shortest path weight matrix as the input demand matrix
D, where p is the probability of connecting two nodes
(link density). The link weights of the ER graph G,(20)
are uniformly distributed in (0,1). For each link density
p, 1000 realizations are carried out. Fig. 3(a) illustrates that
a smaller b generates a graph H with fewer links, while
Fig. 3(b) shows that a smaller b corresponds to a large norm
ID=5|.

5 PERFORMANCE EVALUATION OF DOR AND OLR

In this section, we evaluate the performance of DOR and
OLR 2. in random graphs and an empirical network. The
performance of the DOR and OLR is assessed by three
complementary criteria: (i) the number Ly — Lg of ad-
ditional links in the resulting graph H, (ii) the number
ﬁ -uT - (Ao Ay) - u of common links in the original
graph G and the resulting §raph H and (iii) the norm
1D -S| = mzl > % of the demand matrix
D and the shortest path weight matrix S.

Fig. 4 illustrates the results of DOR (red line) and OLR
(blue line) in ER graphs G,(NN) with N = 10 nodes and
different link density p. We uniformly assign a random
weight from (0,1) to each link in G, thus defining the
weighted adjacency matrix A. For each generated ER graph<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>