
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Inverse All Shortest Path Problem
Zhihao Qiu, Ivan Jokić, Siyu Tang, member, IEEE , Rogier Noldus, and Piet Van Mieghem, Fellow, IEEE

Abstract—Although resource management schemes and algorithms for networks are well established, we present two novel ideas,
based on graph theory, that solve inverse all shortest path problem. Given a symmetric and non-negative demand matrix, the inverse
all shortest path problem (IASPP) asks to find a weighted adjacency matrix of a graph such that all the elements in the corresponding
shortest path weight matrix are not larger than those of the demand matrix. In contrast to many inverse shortest path problems that are
NP-complete, we propose the Descending Order Recovery (DOR) that exactly solves a variant of IASPP, referred to as optimised
IASPP. The network provided by DOR minimized the number of links and the sum of the link weights among all the graphs with the
same shortest path weight matrix. Our second proposed algorithm, Omega-based Link Removal (OLR), solves the optimised IASPP by
utilising the effective resistance from flow networks. The essence of our idea is the applications of properties of flow networks, such as
electrical power grids, to compute the needed resources in path networks subject to end-to-end demands, such as telecommunication
networks where quality of service constraints specify the end-to-end demands.

Index Terms—Complex network, Inverse all shortest path problem, Graph theory, Shortest path, Effective resistance.

✦

1 INTRODUCTION

THE design, dimensioning or operation of networks is
often constrained by end-to-end limits. For example, a

telephone call requires that the voice packets travel through
a telecommunication network with a designated maximum
latency; the delay between a source and a destination is
limited to about 150ms. However, real-time control of sys-
tems over the Internet may require a lower end-to-end delay.
Thus, different services (voice, video, ftp, email, etc.) typi-
cally require a different end-to-end delay. Usually, a telecom
operator can determine the demand matrix D containing
the maximum tolerably end-to-end delay dij between node
i and node j in the network. However, given the demand
matrix D, a telecom operator is still confronted to dimen-
sion the network, both topology and link weights, so that
transport along the “best” path between any pair (i, j) of
nodes consumes less time than the maximum tolerable end-
to-end delay dij . Here, we focus on finding a solution to
the operator’s problem, which we call “inverse all shortest
path problem”(IASPP). Other applications of IASPP are the
design and construction of transportation networks, where
the goal entails creating a network that ensures commute
times between stations are constrained by specific upper
bounds. Similar challenges occur in wireless sensor and
actuator networks [1], mobile communication radio access
networks [2], etc. An exploration of practical applications is
discussed in Section 6.

While extensive research has focused on finding the
shortest paths in a given graph, limited attention is given
to the inverse direction, i.e. obtaining or recovering a graph

• Z.Qiu, I.Jokić, and P. Van Mieghem are with Faculty of Electrical
Engineering, Mathematics and Computer Science, Delft University of
Technology, 2600 GA Delft, The Netherlands.
E-mail: Z.Qiu-1@tudelft.nl

• R.Noldus is with Faculty of Electrical Engineering, Mathematics and
Computer Science, Delft University of Technology, 2600 GA Delft, The
Netherlands, and also with Ericsson, The Netherlands.

• S.Tang is with Huawei Munich Research Center, Riesstrasse 25, 80992
Munich, Germany.

based on the shortest path weights between each node pair
as IASPP. A related challenge, termed the inverse shortest
path problem (ISPP), which has garnered attention in prior
research [3], [4], [5], [6], [7], [8], [9], is reviewed in Section 2.
ISPP asks for making a set of predetermined paths in the
graph the shortest paths, after modification and/or ensuring
the shortest path weights between specific node pairs are
bounded by given demands. Applications of the ISPP occur
in the design of networks [3], [10], modelling traffic [5] and
seismic tomography [3], [4]. However, in many practical
scenarios, the topology of the network is unknown, ren-
dering existing ISPP approaches inapplicable. In contrast to
ISPP, our IASPP only requires a demand matrix as input.
Additionally, the approach we propose in Section 3 not only
furnishes a graph that satisfies specified demands, but also
stands as an effective technique of “network sparsification”
[11] and helps to better understand the importance of dif-
ferent links within a network.

Before introducing the inverse all shortest path problem
(IASPP) in Section 2, we explain the terminology. We con-
sider a graph G that possesses a set N of N nodes and a
set L of L links. The graph G can be represented [12] by
an N × N adjacency matrix A, with element aij = 1 if
there is a link in G between node i ∈ N and node j ∈ N ,
otherwise aij = 0. Each link l ∈ L has a weight wl, which is
a positive real number that specifies a property of the link,
e.g. the resistance in an electrical graph or the delay when
transmitting IP packets over that link. On the graph G, two
different types of transport are possible that lead to either
“path networks” or “flow networks”. In a path network, the
transport of items follows a single path Pij between a node
pair (i, j), whereas in a flow network, the transport from
node i to node j propagates over all possible paths from
node i to node j. Two typical examples are a communication
network, where IP packets follow most of the time a single
path Pij from source i to destination j, and a power grid,
where electrical current flows over all possible paths.

The weight w (Pij) =
∑

l∈Pij
wl of a path Pij between a

node pair (i, j) consists [13] of the sum of the weights over



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

all links that belong to that path Pij . We will denote by P∗
ij

the shortest path between a node pair (i, j). The shortest
path P∗

ij minimizes the path weight over all paths Pij and

obeys w
(
P∗
ij

)
≤ w (Pij). In most real-world networks,

there is only one shortest path P∗
ij , but, in general, there

can be many shortest paths between the same node pair
(i, j), in particular in unweighted graphs, where each link
has the same link weight1, i.e. wij = w for all elements of
the N × N link weight matrix W . The weighted adjacency
matrix is Ã = W ◦ A, where the Hadamard product ◦
means a direct elementwise multiplication, ãij = wijaij
and we use “tilde” notation for weighted graph matrices2.
In our setting, ãij = 0 means that there is no link between
node i and node j, because we exclude zero link weights,
i.e. wij > 0, as in Dijkstra’s shortest path algorithm [14],
[16], [17] and in order to avoid the complication that a zero
weight, i.e. wij = 0, would physically mean that node i
and j are the same. The separation between link weights,
represented by the link weight matrix W , and underlying
graph G, represented by the adjacency matrix A, is obvious
in unweighted graphs, where W = wJ and J = u ·uT is the
all-one matrix and u is the all-one vector. In the unweighted
case, the graph is confining. In the other extreme, where link
weights are highly variable and where the minimum link
weight wmin > 0 is orders of magnitude smaller than the
maximum link weight wmax, the underlying graph G is less
confining than the link weight structure3, which effectively
thins out the graph. Indeed, mainly links with small link
weights are relevant in a shortest path problem and large
link weights may be ignored4 from the onset, especially
if link weights are assigned per link independently of the
other links (see also [13, Chapter 16], [18], [19], [20]). In
a shortest path setting, links with low link weights are
generally more costly than links with high link weights.

Let vk denote the potential or voltage of node k in the
graph G. The effective resistance ωij between node i and
node j equals the voltage difference ωij =

vi−vj
Ic

when a
unit current Ic = 1 Ampere is injected in node i and leaves
the network at node j. The N×N effective resistance matrix
Ω with elements ωij , studied in e.g. [12], [21], [22], [23], [24]
and [12, Chapt. 5], is briefly reviewed in Sec. 1.2. If the graph
G is connected5, then the effective resistance ωij as well
as the path weight w (Pij) is finite for any node pair (i, j)
and a shortest path P∗

ij exists between each node pair (i, j).
We define the N × N matrix S, that contains all shortest
path weights with element sij = w

(
P∗
ij

)
. If the weighted

adjacency matrix Ã is known, then the matrix S is readily

1. The shortest path does not change if all weights are multiplied by
a constant α > 0.

2. The flow network is characterized by the subscript F , i.e. ÃF is
the weighted adjacency matrix of a flow network, while Ã denotes the
weighted adjacency matrix of a path network.

3. The link weight structure refers to the entire ensemble {wl}l∈L of
all link weights in the graph as one coherent set, possibly generated by
a process that takes correlations of weights over links into account. The
matrix W can then be considered as one particular realization of the
link weight structural process.

4. If their removal does not disconnect the graph.
5. The weighted adjacency matrix Ã is called irreducible when the

graph G is connected (see [13, p. 183]; [12, art. 167 on p. 235]). For a
connected graph, the (weighted) Laplacian only has 1 zero eigenvalue
and its rank is N − 1.

found via a shortest path algorithm, like Dijkstra’s shortest
path algorithm. Dijkstra’s shortest path computation is very
efficient and only requires O (N logN) elementary opera-
tions. Both the effective resistance matrix Ω and the shortest
path weight matrix S are distance matrices6.

In the sequel, we limit ourselves to connected, undi-
rected, simple7 graphs. Consequently, the N ×N symmetric
matrices A, W , Ã, Ω and S are non-negative with zero
diagonal elements.

The main contributions of this work are as follows:

1) We propose a novel problem named “Inverse all
shortest path problem” (IASPP) and its variant “the
optimised IASPP” (OIASPP). The IASPP asks for
a weighted graph whose shortest path weight be-
tween each node pair satisfies a given demand.

2) We prove that OIASPP is not NP-complete.
3) We propose the Descending Order Recovery (DOR)

algorithm that exactly solves OIASPP. The DOR
graph minimizes the number of links and the sum
of the link weights among all the graphs with the
same shortest path weight matrix.

4) We demonstrate that DOR is also an effective net-
work sparsification algorithm.

5) We propose the Omega-based Link Removal (OLR)
algorithm, which solves OIASPP by utilising the
effective resistance [12, Chapter 5]. OLR invokes
properties of flow networks, such as electrical power
grids, to compute the needed resources in path
networks subject to end-to-end demands, such as
telecommunication networks.

6) We discuss the applications of IASPP and evaluate
the performance of DOR and OLR.

The paper is outlined as follows. In Section 1.1 and
1.2, we introduce notations to describe IASPP. We formally
define IASPP and its variant OIASPP in Section 2 and review
related problems from literature. In Section 3 and Section 4,
we respectively propose two algorithms, DOR and OLR,
to solve the optimised inverse all shortest path problem
(OIASPP). Section 5 compares and evaluate the proposed
algorithms by simulations. Section 6 introduces the potential
applications of IASPP. Finally, we summarise our results in
Section 7.

1.1 The Laplacian matrix Q

The N × 1 degree vector d = A · u contains the degree
di of each node i and the corresponding diagonal matrix
∆ = diag(d) has the nodal degrees on its main diagonal.
The eigenvalue decomposition of the N ×N Laplacian Q =
∆−A,

Q = Z · diag(µ) · ZT , (1)

defines the set of N orthogonal N × 1 eigenvectors zi
contained in columns of the N × N eigenvector matrix Z ,
and the set of N eigenvalues µ1 ≥ µ2 ≥ · · · ≥ µN . Due
to double orthogonality of the eigenvector matrix Z (i.e.

6. Any element hij of a distance matrix H is non-negative hij ≥ 0,
but hii = 0 and hij obeys the triangle inequality: hij ≤ hik + hkj .

7. A simple graph has no multiple links between a same pair of nodes
and also no self-loops, i.e. aii = 0 for each node i ∈ N .



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

Z · ZT = I and ZT · Z = I), where I is the N ×N identity
matrix, (1) can be transformed into a weighted sum of N
outer vector products

Q =
N∑
i=1

µi · zi · zTi . (2)

As of any real, symmetric matrix [12], the eigenvalues of
Laplacian Q are real and non-negative because Q is a
positive semidefinite matrix. From Q·u = 0, we observe that
µN = 0 and zN = u and thus detQ = 0. Consequently, the
Laplacian Q is not invertible. However, the pseudoinverse8

of the Laplacian [23]

Q† =
N−1∑
i=1

1

µi
· zi · zTi (3)

obeys Q† ·Q = Q ·Q† = I− 1
N ·J . In this work we consider a

weighted graph G, where a link l between node i and node
j is defined by its weight

wij = wl =
1

rl
,

with rl denoting link l resistance and rl > 0, wl > 0.

1.2 Effective Resistance
The effective resistance ωij between node i and node j is
defined as [12]

ωij = (ei − ej)
T ·Q† · (ei − ej) , (4)

where the N × 1 basic vector ei has only one non-zero
element (ei)i = 1. The effective resistance ωij quantifies the
dissipated power when the current of 1 Ampere is applied
between the nodes i and j. The equation in (4) can be
transformed into a matrix form, defining the N×N effective
resistance matrix

Ω = ζ · uT + u · ζT − 2 ·Q†, (5)

where the N×1 vector ζ =
(
Q†

11, Q
†
22, . . . , Q

†
NN

)
contains

the diagonal elements of the pseudoinverse of the Laplacian
Q. The effective resistance ωij between directly connected
nodes i and j (i.e. aij = 1), represents the effective resistance
of a parallel connection

1

ωij
=

1

rij
+

1

(ωG∗)ij
(6)

between the resistance of a direct link rij and the effective
resistance (ωG∗)ij between nodes i and j in the graph G∗ =
G \ lij , where the link lij is removed.
Lemma 1. A link lij ∈ L of a graph G(N ,L) connects two

disconnected sub-graphs G1 and G2, i.e.L(G1)∪L(G2)∪
lij = L(G) and L(G1)∩L(G2) = ∅ if and only if it holds

ωij = rij .

Proof: When link lij of a graph G connects two
disconnected sub-graphs G1 and G2, the effective resistance

8. We restrict the analysis to connected simple graphs, as the number
of zero eigenvalues of Laplacian Q equals the number of connected
components in a graph. More precisely, (3) does not hold in the case of
a disconnected graph.

of a graph G∗ = G \ lij equals r∗ij = ∞. Therefore, (6)
transforms into ωij = rij .

The effective resistance ωij between adjacent nodes i and
j is upper bounded by the resistance rij of the direct link
between them

ωij =
rij · (ωG∗)ij
rij + (ωG∗)ij

≤ min
(
rij , (ωG∗)ij

)
.

Otherwise, if aij = 0, then the effective resistance ωij is
upper bounded by the sum of resistances of links forming
the shortest path between the nodes. In both cases, if more
paths exist connecting two nodes, then there are more pos-
sible paths for the current to flow simultaneously and thus,
the effective resistance lowers. The sum of all elements of
the N ×N effective resistance matrix Ω defines the effective
graph resistance [12]

RG =
1

2
· uT · Ω · u = N ·

N−1∑
i=1

1

µi
. (7)

2 INVERSE ALL SHORTEST PATH PROBLEM

2.1 Statements of inverse all shortest path problems
Problem 1 (Inverse All Shortest Path Problem (IASPP)).

Given an N ×N symmetric demand matrix D with zero
diagonal elements but positive off-diagonal elements.
Determine an N ×N weighted adjacency matrix Ã, such
that the corresponding shortest path weight matrix S
obeys9 S ≼ D

Since an element in the shortest path weight matrix S can
be any positive number by scaling the weighted adjacency
matrix, the IASPP generally has infinitely many solutions.
Therefore, optimisation criteria such as the minimization of
a norm ||D−S|| are added. An instance [10] of IASPP is the
optimised inverse shortest path problem (OIASPP).
Problem 2 (Optimised Inverse All Shortest Path Problem

(OIASPP)). Given an N ×N symmetric demand matrix
D with zero diagonal elements but positive off-diagonal
elements. Determine an N ×N weighted adjacency ma-
trix Ã, such that the corresponding shortest path weight
matrix S obeys S ≼ D and minimizes a norm ||D − S||.
Van Mieghem [10] demonstrated that any demand ma-

trix D can be transformed into a distance matrix D′ with
D′ ≼ D, where D′ represents the (modified) demand
matrix that is also a distance matrix: If dik + dkj < dij
for at least one node k ∈ N which violates the trian-
gle inequality of a distance matrix, then we can replace
dij = min1≤k≤N (dik + dkj) and dji = dij . In the following,
we assume that the demand matrix D is also a distance
matrix. A complete graph whose weighted adjacency matrix
Ã = D is a solution of the OIASPP with demand matrix
D. Consequently, given a demand matrix D, we can obtain
at least one solution of the OIASPP. In 1965, Hakimi and
Yau [25] proved that if a weighted graph G is an N -
node realization of an N × N distance matrix D′, i.e. the
corresponding shortest path weight matrix S of G equals
D′, and there does not exist three nodes i, j and k such

9. The notation ≼ is used for componentwise inequality, i.e. S ≼ D
means that sij ≤ dij for each i = 1, 2, . . . , N and each j = 1, 2, . . . , N .



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

that wij > sik + skj , where wab is the link weight between
nodes a and b and sab denotes the shortest path weight,
then G is unique. Hence, if there is only one solution of the
OIASPP, then the resulting graph is a complete graph [10]
and wij ≤ sik + skj holds for arbitrary three nodes i, j and
k, when the graph size N ≥ 3. When the demand matrix
D is a shortest path weight matrix generated by a tree, Van
Mieghem [10] has solved OIASPP exactly as explained in
Section 2.2.

In this paper, we focus on general underlying graphs
rather than trees or complete graphs. We respectively pro-
pose two algorithms Descending Order Recovery (DOR)
and Omega-based Link Removal (OLR) to solve OIASPP in
Section 3 and Section 4. Since the computational complexity
of DOR is polynomial, we have incidentally proved that
OIASPP is not NP-complete.

2.2 Literature review

Before investigating IASPP, we explain the related inverse
shortest path problem (ISPP). Both ISPP and IASPP are
“inverses” of the shortest path problem, that ask for a graph
given the shortest paths or shortest path weights between
node pairs. However, ISPP requires both the shortest paths
(or shortest path weights) and the original graph, while
IASPP only necessitates a demand matrix, that specifies the
maximum shortest path weights, as input.

Problem 3 (Inverse Shortest Path Problem (ISPP)). Given
an N×N weighted adjacency matrix Ã with link weight
matrix W and a set of paths {Pij}. Determine an N ×N
non-negative link weight matrix W ′ and the correspond-
ing graph H such that all the paths Pij belonging to
{Pij} are the shortest paths in the obtained graph H .

We will introduce several representative generalizations or
variants of ISPP below.

In 1992, Burton and Toint [3] proposed a quadratic pro-
gramming algorithm based on the Goldfarb-Idnani method
[26] to solve a variant of ISPP, which we denote by
ISPPBurton:

Problem 4 (Inverse Shortest Path Problem Burton
(ISPPBurton)). Given an N × N weighted adjacency
matrix Ã with link weight matrix W and a set of paths
{Pij}. Determine an N × N non-negative link weight
matrix W ′ and the corresponding graph H such that all
the paths Pij belonging to {Pij} are the shortest path in
the obtained graph H and minimize ||W ′ −W ||.

Burton and Toint utilised l2 norm ||W ′ − W || =√∑
i

∑
j(w

′
ij − wij)2, where w′

ij and wij represent the el-
ements of W ′ and W respectively. A specialized Goldfarb-
Idnani method can then be implied. The approach involves
iterative adjustments to the matrix W ′, leading to the even-
tual weighted graph H , in which Pij belonging to the given
path set {Pij} are the shortest paths. The method works in
both directed and undirected graphs.

Different variants and modified methods following
ISPPBurton are discussed in [5], [6], [7], [8]. In 1999, Fekete
et al. [9] considered a more general ISPP, where only the
shortest path weight between pairs of nodes is given, but not
the paths achieving them. Given a graph G with adjacency

matrix A and a demand matrix D, ISPPFekete aims to find
a “weight function” of the weighted adjacency matrix Ã
such that the demand matrix D is exactly the shortest path
weight matrix S, where the weight function describes all the
weighted adjacency matrices whose corresponding shortest
path weight matrix S = D. The demand matrix D in
ISPPFekete must be a distance matrix measuring the short-
est path weight between several pairs of nodes in graph
G. Not all the pairs of nodes in graph G are necessarily
included in the demand matrix D. Fekete et al. [9] proved
that ISPPFekete is NP-complete by reducing ISPPFekete to a
vertex-disjoint paths problem.

All mentioned variants of ISPP require the original
weighted adjacency matrix Ã or adjacency matrix A. In
contrast, Hakimi and Yau [25] investigated a “weighted
graph realization” with only an N × N demand matrix
D as input, which is also a distance matrix. Hakimi and
Yau [25] presented an algorithm to obtain a graph H on N ′

nodes by adding N ′ ≥ N nodes into the graph such that
the corresponding shortest path weight matrix S = D. If
we extract the shortest path weights between node pairs
that belonging to the first N nodes and form a shortest
path weight matrix S, then S = D. Since the input in [25]
contains all the shortest path weights in a graph, we call the
problem “inverse all shortest path problem” (IASPP).

If the given distance matrix D can be realized by a tree t,
Van Mieghem [10] proposed an elegant algorithm to recover
the tree t from D by exploiting the analogy between flow
networks and path networks. For undirected flow networks,
Fiedler [27], [28] has presented the following block matrix
relation, (

0 uT

u Ω

)−1

=

(
−2σ2 pT

p − 1
2 Q̃

)
(8)

with Ωp = 2σ2u, where Q̃ = ∆̃F − ÃF is the weighted
Laplacian matrix of a flow network and the diagonal matrix
∆̃F = diag(AFu), ÃF is the weighted adjacency matrix of
a flow network, the variance σ2 = ζT Q̃ζ

4 + RG, where RG

is the effective graph resistance [23] and u is N × 1 the
all-one vector. The vector ζ contains the diagonal elements
of pseudoinverse Q† of the Laplacian Q̃. Specifically, Van
Mieghem [10] defined the weight of a link wij = rij as
the resistance (in Ohm), then the weighted Laplacian Q̃ has
non-zero elements q̃ij = − 1

rij
and ãF = 1

rij
for i ̸= j,

where ãij = rij , but (ãF )ij = (ã)ij = 0 for i ̸= j if
there is no link between node i and node j. The diagonal
elements (ãF )ii = (ã)ii = 0 are always zero. Fiedler’s block
matrix relation (8) indicates a one-to-one relation between
the effective resistance matrix Ω and the weighted Lapla-
cian Q̃ and therefore, also between the effective resistance
matrix Ω and the weighted adjacency matrices ÃF and Ã.
By applying block inverse formulae [12] to Fiedler’s block
matrix relation, it is shown in [10] that

2σ2 =
1

uTΩ−1u
(9)

p =
1

uTΩ−1u
Ω−1u (10)

and the inverse of the effective resistance matrix is

Ω−1 =
1

2σ2
ppT − 1

2
Q̃ (11)



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

Hence, with Q̃ = ∆̃F − ÃF , the weighted adjacency matrix
follows as

ÃF = ∆̃F + 2Ω−1 − 1

σ2
ppT . (12)

If the graph G is a tree, then the shortest path matrix S
equals the effective resistance matrix Ω, because there exists
exactly one path in a tree between each pair of nodes [22].
The weighted adjacency matrix ÃF can be deduced from
(12) by replacing Ω by S. Hence, the weighted adjacency
matrix Ã follows by taking the element-wise inverse of ÃF .
The zero elements in ÃF should not be inverted, but should
instead be transferred to Ã. Indeed, the obtained Ã is an
exact solution of the OISPP for any tree: If the given demand
matrix D is a distance matrix such as the shortest path
weight matrix S, then the weighted adjacency matrix Ã can
be obtained from (12) with Ω = S. We call this method the
“flow analogue method”.

As explained in Appendix B, the algebraic flow analogue
method is hard to extend from a tree graph to a general
graph. In the sequel, we solve OIASPP for general graphs.

3 DESCENDING ORDER RECOVERY ALGORITHM

In this section, we propose the Descending Order Recovery
algorithm (DOR) that solves OIASPP exactly. If a demand
matrix D is the shortest path weight matrix S of an arbitrary
graph G, then DOR retrieves the graph H satisfying the
norm ||D − S′|| = 0, where S′ is the shortest path weight
matrix of H . For a given demand matrix D, the graph H
obtained by DOR is unique and reaches a minimum number
of links and a minimum sum of the link weights among all
OIASPP solutions with the same demand matrix D. The
resulting graph H generally has less links than graph G. If
graph G is unweighted, the resulting graph H is the same
graph as G.

3.1 Properties of DOR

Our main idea of DOR is:

1) Given a demand matrix D, find the minimum
spanning tree of the complete graph GD , whose
weighted adjacency matrix Ã = D;

2) Add a link between two nodes i and j whose
shortest path weights sij > dij , with link weight
wij = dij ;

3) Repeat 2 until sij ≤ dij for each i, j ∈ N .

If we remove a link l in graph G and obtain graph H , then
the link l either (a) belongs or (b) does not belong to the
shortest path P∗

ij between two nodes i and j. In case (a),
removing link l does not change the shortest path P∗

ij nor
the shortest path weight sij . In case (b), the shortest path
between nodes i and j is changed, but the shortest path
weight s′ij in H cannot be smaller than sij , otherwise, the
shortest path weight s′ij would also be the shortest path
weight in G. Thus, the shortest path weight sT (ij) between
arbitrary nodes i and j in the minimum spanning tree T of a
graph G is not smaller than the shortest path weight sG(ij)
in the graph G and step 1 ensures that the lower bound of
the shortest path weight matrix of our obtained graph H is
D. The upper bound of the shortest path weight matrix of

1

3

2

4

8

9

76

5

1

1

1

1

1

1 1

1

11

1

1

3

2

4

8

9

76

5

1

1

1
1

1

1

1

1

11

1

3

2

9-node toy graph Graph obtained by DOR

Fig. 1. Visualization of redundant links in the graph obtained by DOR.
We generate a 9-node toy graph and obtain the corresponding shortest
path weight matrix as the demand matrix D. A graph is then obtained
by DOR with the demand matrix D as input. The redundant links are
highlighted.

the obtained graph is also D after performing step 2 and 3.
DOR obtains a graph H satisfying the norm ||D − S′|| =
0. We present the pseudo code of DOR initialised with a
minimum spanning tree as Algorithm 4 in Appendix F.

The graph H obtained by DOR may have more links
than the original graph G. In the worst case, the resulting
H is a complete graph, whose weighted adjacency matrix
equals the demand matrix D. We call lij a “redundant” link
if we can find another node k, besides i and j, in the graph
such that ãij = wijaij ≥ sik + skj . For example, as shown
in Fig. 1, link l19 can be replaced by l12, l24 and l49 when
calculating the shortest path between nodes 1 and 9 in the
graph obtained with DOR, since ã19 = s14 + s49. Removing
link l19 would not change the shortest path weight matrix S
nor the connectivity of the original graph.

Algorithm 1 Descending Order Recovery (DOR)
Input: N×N demand matrix D = S: a shortest path weight

matrix of a graph G
Output: N ×N weighted adjacency matrix Ã

1: Ã← D and Ã specifies graph G
2: ∀ positive link weights in G and any node k ̸= i, j
3: if ãij ≥ sik + skj then
4: ãij ← 0, ãji ← 0
5: end if
6: return Ã

If a link lij is redundant in a weighted adjacency matrix
Ã obtained by DOR, i.e. if there exists a node k such that
sik + skj ≤ ãij , we then remove the link between nodes i
and nodes j and let aij = 0. Hakimi and Yau [25] proved
that there is only one graph which does not have redundant
links among all the graphs with the same shortest path
weight matrix S. Therefore, the graph H obtained by DOR
is unique for a given demand matrix D after removing
all redundant links. Hence, DOR can be further simplified:
After removing all redundant links in the complete graph
GD whose weighted adjacency matrix equals the demand
matrix D, we obtain the solution graph H , which solves
OIASPP exactly. The pseudo code for simplified DOR is
shown in Algorithm 1.

Property 1. Given a demand matrix D, the obtained graph
H by DOR reaches a minimum number of links among
all the OIASPP solutions.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

Proof: By contradiction: Suppose that there exists a
graph H ′ such that the corresponding shortest path weight
matrix S = D and the graph H ′ has fewer links than the
graph H obtained by DOR. The graph H ′ should have
redundant links because both graph H ′ and graph H have
the same shortest path weight matrix S and the graph H
does not have redundant links. In that case, we construct a
graph H ′′ by removing redundant links in graph H ′. Since
removing redundant links does not change the correspond-
ing shortest path weight matrix, graph H ′′ and graph H
have the same shortest path weight matrix S and do not
have redundant links, which is impossible because there is
only one graph that does not have redundant links among
all the graphs with the same shortest path weight matrix S.
Hence, the obtained graph H by DOR reaches a minimum
number of links among all the solutions to an OIASPP given
a demand matrix D.

Because the graph H obtained by DOR minimizes the
number of links among all the graphs with the same shortest
path weight matrix S, we can only obtain a graph H ′ that
has the same shortest path weight matrix S by adding
redundant links. We thus have:

Property 2. Given a demand matrix D, the obtained graph
H by DOR reaches a minimum sum of the link weights
among all OIASPP solutions.

Given a demand matrix D that is a shortest path weight
matrix S of an arbitrary “original” graph G. While the
shortest path weight matrix S of the graph H obtained by
DOR is identical to the shortest path weight matrix of the
original graph G, the two graphs H and G themselves may
not be the same. Specifically, when the demand matrix D
is computed from an unweighted graph G, fortunately, we
can remove all the redundant links by removing links whose
weights are larger than 1 in the complete graph GD . Since
all the link weights in unweighted graphs are exactly 1, the
shortest path weight sij between two nodes equals 1 if and
only if nodes i and j are neighbours. Thus the adjacency
matrix A of the graph after removing redundant links in the
complete graph GD is precisely the same as the adjacency
matrix of the original unweighted graph G.

3.2 Examples

In Fig. 2, we respectively examine the number of links LG

and LH of the original graph G and the DOR graph H . For
each simulation, we generate an Erdős–Rényi (ER) random
graph Gp(N), where N is the number of nodes and p is
the probability of connecting two nodes. The link weights
of the ER graph Gp(N) are uniformly distributed in (0, 1).
The N ×N shortest path weight matrix S is calculated and
equal to the demand matrix D. For different N and p, 1000
iterations are carried out.

Fig. 2 illustrates that DOR produces graphs H with
fewer links than the original ER graphs G, provided the link
density p is sufficiently large. An interesting phenomenon is
that the resulting graph H seems to have a similar number
of links, irrespective of the number LG of links in the
original graph. Hence, for a dense original graph G, DOR
provides a sparser graph with the same shortest path weight
matrix, but with a different adjacency matrix A, which can

Fig. 2. The differences of number of links between the original graph and
the graph obtained by DOR.

be regarded as “network sparsification” [11] that preserves
all shortest path weights.

An instance of network sparsification is investigated by
Simas, et al. [29]. Given a graph G with weighted adjacency
matrix Ã, Simas, et al. [29] focuses on obtaining a graph
H , which they call the “distances backbone”, with the same
shortest path weight matrix S of graph G, but fewer links.
The main idea is that the off-diagonal elements of the
resulting weighted adjacency matrix Ã′ are computed by{

ã′ij = sij if ãij = sij
ã′ij = 0 if ãij > sij

(13)

for i = 1, 2, . . . , N , j = 1, 2, . . . , N, j ̸= i. However, the
method proposed by Simas et al. [29] always includes the
redundant links such that wij = sik + skj , where wij is the
weight of link lij . Thus, DOR can return a sparser graph
than the distances backbone.

Van Mieghem and Wang [20] investigated the union of
all shortest path trees G∪spt

, where the shortest path tree
(SPT) rooted at some node is the union of the shortest paths
from that node to all the other nodes. If a link lij is the
shortest path P∗

ij between i and j, then lij must belong to
the G∪spt

, because the G∪spt
is the union of shortest paths

between all possible source and destination nodes [20]. All
the links in the graph H obtained by DOR belong to at least
one shortest path P∗

ij and the graph H thus belongs to the
G∪spt

. The inverse does not hold, because the union G∪spt

may have redundant links lij in which wij = sik + skj .

3.3 Computational complexity of DOR
For each possible link lij , DOR determines whether the link
is redundant by comparing the link weight wij with the sum
of the shortest path weights sik+skj , where k ∈ N is a node
different from node i and j. Hence, each link lij needs to be
compared with the sum of the shortest path weights sik+skj
for N−2 nodes k in the worst case. The computational com-
plexity of the worst case of DOR (Algorithm 1) is O(N3),
because the demand matrix D = O(N2). OIASPP is thus not
NP-complete! The main differences between OIASPP and
three NP-complete variants of ISPP introduced in Section 2
and Appendix E lie in the given constraints. While the three
NP-complete variants of ISPP restrict the resulting graph to



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

a predetermined graph topology, OIASPP can be solved by
changing both topology and link weights to meet the given
constraints about shortest path weights.

4 OMEGA-BASED LINK REMOVAL ALGORITHM

The Omega-based Link Removal (OLR) algorithm recovers
an as sparse as possible graph, with elements of the shortest
path weight matrix sij ∈ [bdij , dij ], where dij is the given
demand and b ∈ [0, 1] is an input parameter. OLR leverages
information captured by the effective resistance between
pairs of nodes. Equation (6) enables us to determine the
impact on the effective resistance between two neighbouring
nodes when the shared link between them, denoted as lij ,
is eliminated. By targeting the removal of the link with the
highest value of 1

(ωG∗ )ij
, we achieve the smallest possible

increase in the effective graph resistance RG of the network.
To enhance the efficacy of this approach for solving OIASPP,
we introduce a refinement, which involves scaling the quan-
tity 1

(ωG∗ )ij by the difference between the provided upper
bound dij and the current shortest path weight sij for the
pair of nodes (i, j). This strategic adjustment allows us to
combine insights from the effective resistance measurements
and the upper bound values supplied by the N×N demand
matrix D.

The shortest path weight between two nodes is the
sum of the link weights (i.e. corresponding elements of the
weighted adjacency matrix Ã) belonging to that path. On the
contrary, a link weight in a “flow network ”(defined by the
adjacency matrix ÃF ) has a dimension of the inverse of the
resistance. Therefore, to utilise the analogy between shortest
paths and effective resistance, we additionally define the
N × N link weight matrix Ŵ containing the inverse link
weights10

ŵij =

{
1
ãij

if ãij > 0,

0 otherwise,
(14)

where i, j ∈ N . The corresponding N × N effective resis-
tance matrix computed with Ŵ instead of Ã = A ◦ W is
denoted as Ω̂.

In Algorithm 2, we propose an iterative algorithm that
solves the IASPP problem by invoking the effective re-
sistance between pairs of nodes. The OLR algorithm is
initialised in line 1 by the complete graph with the adjacency
matrix A = J − I , while the link weights equal (line 2) the
corresponding shortest path weights in the demand matrix
D = S, scaled by the input parameter b,

Ã = b · (A ◦D) ,

which ranges between 0 and 1. Link weights are scaled
in line 2 for two reasons. Assume the demand matrix D
is derived from an original graph. In case b = 1, if the
proposed OLR algorithm recovers the exact topology as
in the original graph G, then the link weights would also
be the same. In general, OLR ensures the shortest path
weight between directly connected nodes to be equal to the
corresponding element of the provided upper bound in D,

10. Link existence overrules the link weight. Equation (14) shows that
if a link lij does not exist in graph G (i.e. ãij = 0), than w̃ij = 0,
although 1

ãij
→ ∞.

Algorithm 2 Omega-based Link Removal (OLR)
Input: N×N demand matrix D = S: a shortest path weight

matrix of a graph G; input parameter b ∈ [0, 1]
Output: N ×N weighted adjacency matrix Ã

1: AN×N ← JN×N−IN×N adjacency matrix of a complete
graph

2: Ã← b · (A ◦D) weighted adjacency matrix
3: SN×N ← Shortest path weight matrix of Ã
4: ŴN×N ← Inverse link weight matrix of Ã
5: do
6: Ω̂N×N ← Effective resistance matrix of Ŵ
7: R←

(
Ω̂− Ŵ

)
◦ (D − S) ◦A

8: (i, j)← Indices of the maximum element in R
9: A← A− ei · eTj − ej · eTi

10: Ã← b · (A ◦D)
11: SN×N ← Shortest path weight matrix of Ã
12: ŴN×N ← Inverse link weight matrix of Ã
13: while (S ≼ D) ∧ (Rij > 0)
14: A← A+ ei · eTj + ej · eTi
15: Ã← b · (A ◦D)
16: return Ã

scaled by the input parameter b. Therefore, b < 1 allows
OLR to achieve sparser graphs even from the original graph
G, at the cost of increased norm 11 of ||D−S||, still satisfying
the bound S ≼ D. To determine which link should be
removed in each iteration, in line 7 we compute the N ×N
matrix

R =
(
Ω̂− Ŵ

)
◦ (D − S) ◦A,

where the N × N inverse link weight matrix Ŵ contains
inverse link weights, as defined in (14). whose elements are
dimensionless and denote the inverse effective resistance(
Ω̂− Ŵ

)
ij

between a pair of neighbouring nodes (i.e.

aij = 1), in case the direct link between them is removed (as
in (6)), multiplied by the gap (dij−sij) between the shortest
path weight between them and the given upper bound in
D. We remove the existing link with the highest value in
R (line 8), because the adjacent nodes are easily reachable
via the rest of the graph when the link is removed, and the
margin between the current shortest path weight and the
upper bound is relatively high. After updating the adjacency
matrix A (line 9), we redistribute the link weights (line 10)
as Ã = b · (A ◦D) and update (line 11) the N ×N shortest
path weight matrix S.

Link removal is performed until at least one shortest
path weight in the obtained graph H exceeds the given
upper bound in the N ×N demand matrix D. At that point,
the last removed link is returned (line 14), while the N ×N
weighted adjacency matrix Ã is provided as output.

OLR initialises the topology with a complete graph and
iteratively removes links until at least one upper bound on
the shortest path weight between node pairs is exceeded.
In general, OLR can return any connected topology, even a

11. For any pair of connected nodes i and j we observe sij = b · dij .
In addition, for non-adjacent nodes m and n we reason smn > b · dmn,
because D is a distance matrix. Combining these two observations, we
conclude S ≤ b ·D, which yields ||D − S|| < 1− b.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

tree. Therefore, there are generally up to N ·(N−1)
2 − (N − 1)

iterations. The effective resistance and the shortest path
weight between all node pairs are computed within each
iteration. Within each iteration in our OLR, the effective
resistance and the shortest path weight between any pair of
nodes are computed. Both operations require computational
complexity O(N3). In addition, we initialise OLR with a
complete graph. The number of iterations in worst case
scales as O(N2). Therefore,the overall complexity of our
OLR is O(N5). Alternatively, DOR can streamline OLR’s
computational complexity. DOR ensures the retrieval of a
graph with the minimum necessary links, accurately align-
ing the shortest path weight matrix S with the demand
matrix D. Instead of initializing OLR with a complete graph,
we employ DOR as the initial phase within OLR. Subse-
quently, we iteratively refine the graph until the shortest
path weights fall within a predefined range, as dictated
by the input parameter b. Consequently, the number of
removed links within OLR reduces significantly, lowering
its computational complexity to be O(N3L′), where L′ is
the number of links in graph obtained by DOR.

Fig. 3 shows the differences between the number of links
in the OLR graph H and the original graph G with different
b and the norm ||D − S|| = 1

N(N−1)

∑
i

∑
j

dij−sij
dij

of the
graph obtained by OLR with different input parameter b.
For each simulation, we generate a 20-node Erdős–Rényi
(ER) random graphs Gp(20) and compute the correspond-
ing shortest path weight matrix as the input demand matrix
D, where p is the probability of connecting two nodes
(link density). The link weights of the ER graph Gp(20)
are uniformly distributed in (0, 1). For each link density
p, 1000 realizations are carried out. Fig. 3(a) illustrates that
a smaller b generates a graph H with fewer links, while
Fig. 3(b) shows that a smaller b corresponds to a large norm
||D − S||.

5 PERFORMANCE EVALUATION OF DOR AND OLR
In this section, we evaluate the performance of DOR and
OLR 12. in random graphs and an empirical network. The
performance of the DOR and OLR is assessed by three
complementary criteria: (i) the number LH − LG of ad-
ditional links in the resulting graph H , (ii) the number

1
2LH

· uT · (A ◦AH) · u of common links in the original
graph G and the resulting graph H and (iii) the norm
||D − S|| = 1

N(N−1)

∑
i

∑
j

dij−sij
dij

of the demand matrix
D and the shortest path weight matrix S.

Fig. 4 illustrates the results of DOR (red line) and OLR
(blue line) in ER graphs Gp(N) with N = 10 nodes and
different link density p. We uniformly assign a random
weight from (0, 1) to each link in G, thus defining the
weighted adjacency matrix Ã. For each generated ER graph,
we provide the shortest path weight matrix of G as the input
demand matrix D to the algorithm DOR and OLR. The input
parameter of OLR b = 0.7. We then obtain the resulting
graph H , whose shortest path weight matrix is denoted as
S. For each number N of nodes and different link density p,
100 simulation instances are executed and the average over
100 times of each criterion is computed.

12. Matlab code is on https://github.com/qzhszl/IASPP.git

(a) Number of additional links in obtained graph H

(b) Number of common links in G and H

Fig. 3. (a) Differences between number of links in the graph obtained
by OLR and the original graph with different input parameter b. The x-
axis denotes the link density p of the underlying 20-node ER graphs,
while the y-axis is the difference between number of links in the graph
H obtained by OLR and in the original graph G. (b) The norm ||D−S|| of
the graph obtained by OLR with different input parameter b. The x-axis
denotes the link density p of the underlying 20-node ER graphs, while
the y-axis is the norm ||D − S||.

Fig. 4(a) depicts the difference in the number of links
LH − LG between the obtained graph H and the original
graph G. For a small link density p, the obtained graph H
contains almost the same number of links LH as that of
the original graph LG, while LH − LG decreases with the
increment of link density p. As for the number of common
links in the original graph G and the resulting graph H , our
simulation (details are shown in Appendix G) shows that

1
2LH
· uT · (A ◦AH) · u = 1 holds for both DOR and OLR

with different link density p, which informs us that links
of graph H obtained by both DOR and OLR belong to the
original graph G. Fig. 4(b) illustrates the norm ||D − S||,
where DOR always returns an exact solution ||D − S|| = 0
to the OIASPP. In contrast, for OLR, the norm ||D − S|| is
not zero but bounded by 1− b.

A similar pattern in performance is visible for a different
number of nodes N , as presented in Fig. 12 (for the case
N = 20) and in Fig. 13 (where the graph consists of
N = 50 nodes) in Appendix G. The feasibilities of DOR
and OLR are also verified in Barabási–Albert (BA) networks
[30] with 500, 1000 and 10000 nodes, Watts–Strogatz (WS)
small world network [31] with 100, 1000 and 10000 nodes



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

(a) Number of additional links in obtained graph H

(b) Norm ||D − S||

Fig. 4. Performance of the DOR and OLR on ER graphs with N = 10
nodes and different link density p. The input parameter b = 0.7.

and an empirical network USAir [32]. The details are shown
in Appendix G.

In summary, the performance of DOR and OLR are
stable with arbitrary demands on both small-size and large-
size networks. Specifically, our simulation results verify that
DOR provides a sparse graph that solves OIASPP exactly,
while OLR exhibits a capacity to obtain a graph with fewer
links compared with the DOR algorithm, at the cost of
increased norm of ||D − S||. The norm for DOR is always
||D − S|| = 0, while for OLR ||D − S|| < 1 − b, where
b ∈ [0, 1] is the input parameter.

6 APPLICATION

In this section, we discuss various IASPP applications and
present a simulation example to validate the feasibility of
our proposed DOR and OLR algorithms.

6.1 Application of IASPP
The IASPP methodology is useful in Wireless Sensor and
Actuator Network (WSAN) [1]. Industrial WSAN (IWSAN)
standards such as WirelessHART [33] have gained popu-
larity in process automation, e.g., gas production, electric
power generation and smelting plants. An IWSAN con-
sists of a gateway, multiple access points and hundreds
of thousands of field devices (i.e., sensors and actuators)
that operate at low-power, forming a multi-hop wireless
network, where the link weight wij between node i and
node j denotes the latency bound that a link lij should
provide. In a WSAN network, IASPP considers the end-to-
end (E2E) latency as a demand matrix. The WSAN gateway

Fig. 5. A conceptual diagram of a RAN as found in the 5G mobile
communications network.

collects network topology and flow demand information
[34]. If there is topological change (e.g., node failure, new
joining nodes) or change of the traffic pattern that makes
current link weight configuration inappropriate13, then the
WSAN gateway can use DOR or OLR to (re-)computes the
weighted adjacency matrix Ã. The updated link weights will
then be communicated with devices in the network. With
the set of newly computed shortest paths, E2E latency of
an arbitrary pair of nodes is guaranteed. A further step
is to consider scheduling, power consumption and path
redundancy into the problem.

Mobile communication radio access network [2] (RAN)
is another application domain. Fig. 5 provides a conceptual
diagram of a RAN as found in the 5G mobile communica-
tions network. The lower part of Fig. 5 depicts that the com-
munication between the logical components [2] of the RAN
(DU, CU-CP etc.) is formed by IP infrastructure [35]. Data
transmission latency between the RAN logical components
is bound by demands, i.e. maximum permissible E2E la-
tency. With predetermined E2E latency demands, DOR and
OLR can provide guidance in constructing a RAN network,
such as installing base stations at different locations of a city.

Transportation networks constitute another potential ap-
plication domain. For example, urban planners and cus-
tomers may have demands on the commute time for each
pair of bus or train stations. DOR can offer a transportation
network such that the commute time between every two
nodes (which denotes stations) exactly equals the prescribed
demand and reaches a minimum number of links of all the
networks with the same shortest path weight matrix. OLR
can deal with more specific scenarios. Imagine urban plan-
ners have defined maximum allowable travel times as the
demands for specific node pairs, accounting for variables
like passenger density along these routes. The link weights
represent the time needed when travelling between adjacent
nodes. These maximum travel time constraints can span
from 100% to about 200% of the calculated minimum travel
time. OLR can shape the network into an ideal structure,
while choosing a relatively small input parameter b value.
This strategy seeks to mould the network’s topology in a
manner that caters to all essential routes while conforming
to the stipulated upper travel time limits. By applying the

13. Inappropriate in this context means latency bound violation.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

OLR algorithm, we can intelligently eliminate links, while
preserving the network’s overall connectivity and function-
ality. This process facilitates the creation of an optimised
railway system that ensures both efficiency and adherence
to travel time constraints. In the resultant graph generated
by OLR, each link signifies the potential introduction of a
direct line, further enhancing the network’s efficiency and
structure.

6.2 Simulation on E2E latency
In this section, we apply our IASPP methods to an E2E
latency instance. Since the IASPP methods begin with a
demand matrix which is also a distance matrix, the given
demand matrix D is required to be modified so that we can
imply our algorithm. If the E2E constraint of a node pair
(i, j) is not specified, we assume that there is no constraint
and that dij = ∞, which means there is no upper bound
for the shortest path weight sij between node i and j. In
many practical scenarios, not every pair of nodes necessarily
has a demand. We first symmetrize the demand matrix (see
explained in Section 2.1) following line 2−4 of Algorithm 3.
We then focus on the triangle inequality of a demand matrix.
Consider the following example of a demand matrix:

D =


0 1 ∞ ∞ 1
1 0 1 1 ∞
∞ 1 0 3 ∞
∞ 1 3 0 5
1 ∞ ∞ 5 0

 (15)

The demand d34 > d32+d24 is a typical case of the violation
of the triangle inequality. However, the infinite dij = ∞
may lead to complicated cases. Aside from demands that
violate the triangle inequality (e.g. d34), there could be other
demands that are unattainable. For instance, d45 does not
breach the triangle inequality as d45 < d14 + d15, d45 <
d24 + d25 and d45 < d34 + d35. Nevertheless, d45, d42, d21
and d15 form a cycle structure and d45 > d42 + d21 + d15.
Consequently, s45 must be smaller than d45, that is, d45 is
not achievable.

To ensure all the demands are possible to achieve, we
modify the demand matrix according to line 5 − 13 of
Algorithm 3. Our main idea is to calculate the shortest
path weight matrix S of a graph whose weighted adjacency
matrix equals the given demand matrix D, because the
resulting demand matrix D′ = S reserves all the constraints
in D except for the E2E demands not achievable. We can
now transform an arbitrary non-negative demand matrix to
a distance matrix and apply our DOR and OLR algorithms
with the demand matrix D′ as input.

We present an example in Fig. 6. Consider an E2E de-
mand matrix:

D =



0 100 500 ∞ ∞ 5000 ∞ ∞ ∞ 100
100 0 ∞ ∞ 20 500 20 ∞ ∞ ∞
500 ∞ 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ 0 ∞ ∞ ∞ 50000 ∞ ∞
∞ 20 ∞ ∞ 0 1000 ∞ ∞ 20 ∞
5000 500 ∞ ∞ 1000 0 ∞ ∞ ∞ ∞
∞ 20 ∞ ∞ ∞ ∞ 0 500 100000 100
∞ ∞ ∞ 50000 ∞ ∞ 500 0 ∞ ∞
∞ ∞ ∞ ∞ 20 ∞ 100000 ∞ 0 ∞
100 ∞ ∞ ∞ ∞ ∞ 100 ∞ ∞ 0


(16)

We first transform the given demand matrix D to D′ fol-
lowing the method introduced by Algorithm 3. Our DOR

Algorithm 3 Demand Modification
Input: Demand matrix D whose unspecified demands are

represented by∞
Output: Modified demand matrix D′

1: D′ ← D
2: while symmetry of D′ is violated, i.e. dij ̸= dji do
3: d′ij ← min(dij , dji), d′ji ← min(dij , dji)
4: end while
5: while d′ij =∞ do
6: d′ij ← 0
7: end while
8: GD′ ← Graph whose weighted adjacency matrix equals

D′

9: S ← Shortest path weight matrix of GD′

10: while sij =∞ do
11: sij ←Maximum finite element in S
12: end while
13: D′ ← S
14: return D′

20000

1

3

2

4

8
9

7

6 5

10

200

40 40
200

200

8
88

OLR, 𝑏 = 0.4

50000

1

3

2

4

8
9

7

6 5

10

500

100
100

500
500

20
2020

DOR

100

Fig. 6. Visualization of the graph H obtained by DOR and OLR, respec-
tively. The input E2E demand matrix is (16).

and OLR algorithms were applied to the demand matrix D′.
Each algorithm produced a graph H and the corresponding
shortest path weight matrix S1 for DOR and S2 for OLR.
These results are depicted in Fig. 6, Equation (17) and (18),
respectively.

S1 =



0 100 500 50620 120 600 120 620 140 100
100 0 600 50520 20 500 20 520 40 120
500 600 0 51120 620 1100 620 1120 640 600

50620 50520 51120 0 50540 51020 50500 50000 50560 50600
120 20 620 50540 0 520 40 540 20 140
600 500 1100 51020 520 0 520 1020 540 620
120 20 620 50500 40 520 0 500 60 100
620 520 1120 50000 540 1020 500 0 560 600
140 40 640 50560 20 540 60 560 0 160
100 120 600 50600 140 620 100 600 160 0


(17)

S2 =



0 88 200 20280 96 288 80 280 104 40
88 0 288 20208 8 200 8 208 16 48
200 288 0 20480 296 488 280 480 304 240

20280 20208 20480 0 20216 20408 20200 20000 20224 20240
96 8 296 20216 0 208 16 216 8 56
288 200 488 20408 208 0 208 408 216 248
80 8 280 20200 16 208 0 200 24 40
280 208 480 20000 216 408 200 0 224 240
104 16 304 20224 8 216 24 224 0 64
40 48 240 20240 56 248 40 240 64 0


(18)

As demonstrated in (17), we highlight the shortest path
weights which are different from the given specific E2E
demands in (16). When we use DOR, all the shortest path
weights are equal to the given E2E demands except for those
that are not achievable. The OLR algorithm necessitates the
input parameter b in addition to the demand matrix D′,
defining the allowed deviation of the norm of ||D − S||
from 0. For the example illustrated in Fig. 6, we adopted
b = 0.4. Lower values of b necessitate a reduced allocation



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 11

of resources across the same set of links, culminating in
diminished shortest path weights between all conceivable
pairs of nodes. This outcome engenders sparser topologies
due to the lowered link weights employed. Conversely,
higher values of b impose greater link weights, which in
turn lead to quicker breaches of the upper shortest path
weight bounds provided in D during the iterative pro-
cess. Therefore, a higher b value results in a higher-density
topologies. Consequently, selecting the input parameter b
represents a compromise between reducing the sparsity of
the graph H topology and maximising the corresponding
shortest path weights.

7 CONCLUSION

This work focuses on inverse all shortest path problem
(IASPP), which is a novel problem with promising applica-
tions, such as network modelling and design, in transporta-
tion networks, wireless sensor and actuator networks, con-
nected vehicle applications, smart factory networks, etc. We
present the Descending Order Recovery (DOR) algorithm
to solve the optimised inverse all shortest path problem
(OIASPP) and prove that OIASPP is not NP-complete. The
graph obtained by DOR does not have redundant links and
reaches a minimum number of links and a minimum sum
of the link weights among all OIASPP solutions given a
demand matrix D. DOR can also be regarded as an effective
method when solving network sparsification that preserves
all shortest path weights. Additionally, we utilise the infor-
mation captured by the effective resistance between node
pairs and propose Omega-based Link Removal (OLR) algo-
rithm that solves the OIASPP. Both DOR and OLR provide
solutions to the OIASPP: the solution obtained by DOR has
the shortest path weight matrix S = D, while OLR focuses
on solving OIASPP by providing sparser graphs, at the cost
of the norm ||D − S|| > 0. The ideas of DOR and OLR are
different: DOR focuses on the shortest paths and the shortest
path weights in a graph, while OLR investigates the shortest
path weights from the perspective of the effective resistance.

ACKNOWLEDGEMENT

The authors would like to thank Massimo Achterberg for
his valuable comments on earlier versions of this paper.

PVM is supported by the European Research Council
under the European Union’s Horizon 2020 research and
innovation program (Grant Agreement 101019718).

REFERENCES

[1] A. Nayak and I. Stojmenovic, Wireless sensor and actuator networks:
algorithms and protocols for scalable coordination and data communica-
tion. Wiley Online Library, 2010.

[2] S. K. Singh, R. Singh, and B. Kumbhani, “The evolution of radio
access network towards open-ran: Challenges and opportunities,”
in 2020 IEEE Wireless Communications and Networking Conference
Workshops (WCNCW), pp. 1–6, 2020.

[3] D. Burton and P. L. Toint, “On an instance of the inverse shortest
paths problem,” Mathematical programming, vol. 53, no. 1, pp. 45–
61, 1992.

[4] D. Burton, W. Pulleyblank, and P. L. Toint, “The inverse shortest
paths problem with upper bounds on shortest paths costs,” in
Network Optimization, (Berlin, Heidelberg), pp. 156–171, Springer
Berlin Heidelberg, 1997.

[5] J. Zhou, F. Yang, and K. Wang, “An inverse shortest path problem
on an uncertain graph,” Journal of Networks, vol. 9, no. 9, p. 2353,
2014.

[6] D. Burton and P. L. Toint, “On the use of an inverse shortest paths
algorithm for recovering linearly correlated costs,” Mathematical
Programming, vol. 63, no. 1, pp. 1–22, 1994.

[7] J. Zhang, Z. Ma, and C. Yang, “A column generation method for
inverse shortest path problems,” Zeitschrift für Operations Research,
vol. 41, no. 3, pp. 347–358, 1995.

[8] S. Xu and J. Zhang, “An inverse problem of the weighted shortest
path problem,” Japan journal of industrial and applied mathematics,
vol. 12, no. 1, pp. 47–59, 1995.

[9] S. P. Fekete, W. Hochstättler, S. Kromberg, and C. Moll, “The
complexity of an inverse shortest path problem,” in Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the
Future, vol. 49, pp. 113–127, 1999.

[10] P. Van Mieghem, “A tree realization of a distance matrix: the
inverse shortest path problem with a demand matrix generated
by a tree,” Delft University of Technology, Report20211012, pp. 1–15,
2021.

[11] A. M. Mercier, S. V. Scarpino, and C. Moore, “Effective resistance
for pandemics: Mobility network sparsification for high-fidelity
epidemic simulation,” arXiv preprint arXiv:2111.02449, 2021.

[12] P. Van Mieghem, Graph Spectra for Complex Networks. Cambridge
University Press, second ed., 2023.

[13] P. Van Mieghem, Performance analysis of complex networks and sys-
tems. Cambridge, U.K.: Cambridge University Press, 2014.

[14] P. Van Mieghem, Data Communications Networking. Piet Van
Mieghem, ISBN 978-94-91075-01-8, third ed., 2018.

[15] P. Van Mieghem and F. Kuipers, “On the complexity of qos
routing,” Computer Communications, vol. 26, no. 4, pp. 376–387,
2003. Quality of Future Internet Services.

[16] E. W. Dijkstra, “A note on two problems in connexion with
graphs,” Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduc-
tion to algorithms. MIT press, 2022.

[18] P. Van Mieghem and S. M. Magdalena, “Phase transition in the
link weight structure of networks,” Phys. Rev. E, vol. 72, p. 056138,
Nov 2005.

[19] P. Van Mieghem and S. van Langen, “Influence of the link weight
structure on the shortest path,” Phys. Rev. E, vol. 71, p. 056113,
May 2005.

[20] P. Van Mieghem and H. Wang, “The Observable Part of a Net-
work,” IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 93–
105, 2009.

[21] A. Ghosh, S. Boyd, and A. Saberi, “Minimizing effective resistance
of a graph,” SIAM Review, vol. 50, no. 1, pp. 37–66, 2008.

[22] W. Ellens, F. M. Spieksma, P. Van Mieghem, A. Jamakovic, and
R. E. Kooij, “Effective graph resistance,” Linear algebra and its
applications, vol. 435, no. 10, pp. 2491–2506, 2011.

[23] P. Van Mieghem, K. Devriendt, and H. Cetinay, “Pseudoinverse
of the Laplacian and best spreader node in a network,” Physical
Review E, vol. 96, no. 3, p. 032311, 2017.

[24] K. Devriendt, “Effective resistance is more than distance: Lapla-
cians, simplices and the schur complement,” Linear Algebra and its
Applications, vol. 639, pp. 24–49, 2022.

[25] S. L. Hakimi and S. S. Yau, “Distance matrix of a graph and
its realizability,” Quarterly of applied mathematics, vol. 22, no. 4,
pp. 305–317, 1965.

[26] D. Goldfarb and A. Idnani, “A numerically stable dual method
for solving strictly convex quadratic programs,” Mathematical pro-
gramming, vol. 27, no. 1, pp. 1–33, 1983.

[27] M. Fiedler, “Some characterizations of symmetric inverse M-
matrices,” Linear algebra and its applications, vol. 275-276, pp. 179–
187, 1998.

[28] M. Fiedler, Matrices and graphs in geometry. Cambridge, U.K.:
Cambridge University Press, 2011.

[29] T. Simas, R. B. Correia, and L. M. Rocha, “The distance backbone
of complex networks,” Journal of Complex Networks, vol. 9, 10 2021.

[30] R. Albert and A.-L. Barabási, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, pp. 47–97, Jan 2002.

[31] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[32] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 12

[33] “Industrial communication networks-wireless communication
network and communication profiles-WirelessHART™,” IEC stan-
dard 62591: Geneve, Switzerland, p. 944, 2010.

[34] J. Schönwälder, M. Björklund, and P. Shafer, “Network configura-
tion management using netconf and yang,” IEEE communications
magazine, vol. 48, no. 9, pp. 166–173, 2010.

[35] S. Rommel, R. Thiago Raddo, and I. T. Monroy, “The fronthaul in-
frastructure of 5g mobile networks,” in 2018 IEEE 23rd International
Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pp. 1–6, 2018.

Zhihao Qiu is pursuing his PhD degree since
October 2021 at Delft University of Technology,
The Netherlands. He obtained the M.Sc. degree
in Information Physics and the B.Sc. degree in
Electronic Information Science and Technology
at the University of Electronic Science and Tech-
nology of China, Chengdu, China. His main re-
search interests include network science, short-
est path problem, vital node identification and
science of science.

Ivan Jokić is pursuing his PhD degree since
February 2019 at Delft University of Technology,
The Netherlands. He obtained the M.Sc. degree
in Control Theory at the University of Montene-
gro, Podgorica, Montenegro, in 2018. In 2015, he
obtained a B.Sc. degree in Energetics and Con-
trol Theory at University of Montenegro, Podgor-
ica, Montenegro. His main research interests in-
clude graph theory, network dynamics, systems
theory and networked systems identification.

Siyu Tang received her M.Sc. and Ph.D. degree
in Electrical Engineering from Delft University
of Technology, The Netherlands, in 2006 and
2010 respectively. Since then, she was with Bell
Labs, Alcatel-Lucent (later merged with Nokia),
Antwerp, Belgium, working on novel algorithms
and network protocols for ultra-low latency net-
works. From 2017, she joined Huawei Munich
Research Center, Germany, as a senior principal
researcher. She leads several research activities
in the field of Telecommunication networks (e.g.,

future Internet architecture and protocols) and Industrial Communication
Networks (e.g., time sensitive networks, DetNet).

Rogier Noldus is principal solution architect at
Ericsson Telecommunicatie, Rijen, Netherlands.
His main line of work is (mobile) communication
network architecture and services. He is the (co-
) author of the books “CAMEL: Intelligent Net-
works for the GSM, GPRS and UMTS Network”
and “IMS Application Developer’s Handbook”.
He is in addition part-time lecturing at the TU
Delft (Mobile network architecture), where he is
also pursuing (part-time) a PhD in the area of
network topology optimization. Rogier holds a

BSc (electrical engineering) from the Hogeschool Utrecht, Netherlands,
and an MSc (telecommunications) from the University of the Witwater-
srand, Johannesburg, South Africa.

Piet Van Mieghem Piet Van Mieghem is pro-
fessor at the Delft University of Technology and
chairman of the section Network Architectures
and Services (NAS) since 1998. He is the au-
thor of four books: Performance Analysis of
Communications Networks and Systems, Data
Communications Networking, Graph Spectra for
Complex Networks and Performance Analysis of
Complex Networks and Systems. He is a board
member of the Netherlands Platform of Complex
Systems, a steering committee member of the

Dutch Network Science Society , an external faculty member at the
Institute for Advanced Study (IAS) of the University of Amsterdam and
an IEEE Fellow. He was awarded an Advanced ERC grant 2020 for
ViSiON, Virus Spread in Networks. Professor Van Mieghem received a
Master degree and a Ph.D. degree in Electrical Engineering from the
K.U.Leuven (Belgium) in 1987 and 1991, respectively. Before joining
Delft, he worked at the Interuniversity Micro Electronic Center (IMEC)
from 1987 to 1991. During 1993 to 1998, he was a member of the Alcatel
Corporate Research Center in Antwerp. He was a visiting scientist at
MIT (1992-1993) and a visiting professor at UCLA (2005), at Cornell
University (2009), at Stanford University (2015) and at Princeton Uni-
versity (2022). Currently, he serves on the editorial board of the OUP
Journal of Complex Networks. He was member of the editorial board
of Computer Networks (2005-2006), the IEEE/ACM Transactions on
Networking (2008- 2012), the Journal of Discrete Mathematics (2012-
2014) and Computer Communications (2012-2015).



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

A NOMENCLATURE

TABLE 1
Nomenclature

Symbol Definition

G Graph
N Set of nodes
N Number of nodes
L Set of links
L Number of links
Pij Path from node i to node j
P∗
ij Shortest path from node i to node j

D Demand matrix
GD Complete graph whose weighted adjacency matrix

equals the demand matrix D
A Adjacency matrix
W Link weight matrix
Ã Weighted adjacency matrix
ÃF Weighted adjacency matrix of a flow network
Ω Effective resistance matrix
rl Link l resistance
RG Effective graph resistance
S Shortest path weight matrix
Q Laplacian matrix
Q† Pseudoinverse Laplacian matrix
∆̃ Weighted degree matrix
∆̃F Weighted degree matrix of a flow network
di Degree of node i
u All-one vector
J All-one matrix
I Identity matrix
ei N × 1 basic vector has only one

non-zero element (ei)i = 1

B FLOW ANALOGUE METHOD FOR GENERAL
GRAPHS

As demonstrated in Section 2.2, Van Mieghem [1] proposed
the “flow analogue method” to recover the weighted ad-
jacency matrix Ã from a demand matrix D, which is also
a shortest path weight matrix S, by exploiting the analogy
between flow and path networks, when the given shortest
path weight matrix S derived from a tree graph. The crux
of the “flow analogue method” lies in the strategic employ-
ment of the equivalence existing between the shortest path
matrix S and the effective resistance matrix Ω. Since the
equality between the shortest path weight matrix S and
the effective resistance matrix Ω only holds for the tree
graph, the given demand matrix must be transformed into
an effective resistance matrix first.

Unfortunately, it remains an open question how to con-
struct an effective resistance matrix whose corresponding
weighted adjacency matrix is non-negative. In Appendix C,
we try to extend the flow analogue method utilizing pertur-
bation theory. We first obtain a perturbed effective resistance
matrix of a tree graph by adding an effective resistance
matrix of a different tree graph. The resulting perturbed
effective resistance matrix is then imported into (8) and
we can obtain a weighted Laplacian and the corresponding
weighted adjacency matrix Ã. Appendix C demonstrates
that even an extremely tiny perturbation of an effective
resistance matrix of a tree graph may lead to negative off-
diagonal elements in the obtained weighted adjacency ma-
trix Ã computed with (12). Hence, the sum of two effective

resistance matrices is not necessarily an effective resistance
matrix.

The difficulty of constructing an effective resistance ma-
trix with a non-negative corresponding weighted adjacency
matrix can also be explained from the perspective of the
inverse simplex [2] of a graph. The details of simplex and
inverse simplex are provided in Appendix D. Any undi-
rected, weighted graph G can be uniquely represented by a
simplex V or an inverse simplex V+ in the N−1 dimensional
Euclidean space [2]. The reverse also holds: Every simplex
with non-obtuse angles, i.e. smaller than or equal to 90
degrees, between all pairs of facets is the inverse simplex V+

of a connected, undirected graph with positive link weights
[2]. Fiedler [2], [3] demonstrated that the angle ϕ+

ij between
two facets F+

ī
and F+

j̄
in an inverse simplex V+ is related

to the graph G by

cos(ϕ+
ij) = −

q̃ij√
q̃iiq̃jj

(20)

where q̃ii and q̃ij are the diagonal and off-diagonal elements
of the weighted Laplacian matrix Q̃. As shown in (20), if
there is no link between node i and j, then q̃ij = 0 and the
dihedral angle ϕ+

ij exactly equals 90 degrees. For an inverse
simplex of tree graph, there are N(N−1)

2 − (N −1) 90-degree
dihedral angles. Moreover, a positive off-diagonal element
q̃ij , which leads to a negative link weight, corresponds to
an obtuse dihedral angle with more than 90 degrees. When
we perturb the effective resistance matrix of a tree, the
corresponding inverse simplex has a high probability of
having obtuse dihedral angles because each 90-degree angle
may become obtuse even with a tiny perturbation. This
explains why a tiny perturbation on an effective resistance
matrix of a tree graph may lead to negative off-diagonal
elements in the obtained weighted adjacency matrix Ã.

Fiedler [3] proposed that the effective resistance matrix
Ω of a weighted graph G equals the squared Euclidean
distance matrix DE , for which dE(ij) = ||dE(i) − dE(j)||2
for the vertices coordinates {v1, v2, . . . , vN} of the corre-
sponding inverse simplex V+ in the Euclidean space. Con-
structing an effective resistance matrix whose correspond-
ing weighted adjacency matrix is non-negative can thus be
regarded as a problem in a graph: “Obtain the criterion for
the edges in a simplex that does not have obtuse angles
between arbitrary two facets”, which is complicated.

C FIRST-ORDER PERTURBATION

Given two effective resistance matrices Ω1 and Ω2 that are
derived from tree graphs, we deduce the effect of perturbing
the effective resistance matrix Ω1 by εΩ2, where ε is an
arbitrary positive real number. By scaling Ω with ε, the
relations 2σ2 = 1

uTΩ−1u and the vector p = 1
uTΩ−1uΩ

−1u
indicate that only σ2 is multiplied by ε, but not the vector p.

After combining

Ω−1 =
1

2σ2
ppT − 1

2
Q̃ (21)

in [1] with Ω = Ω1 + εΩ2, we find

Ω−1 = (Ω1 + εΩ2)
−1

=
(
Ω1

(
I + εΩ−1

1 Ω2

))−1

=
(
I + εΩ−1

1 Ω2

)−1
Ω−1

1



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

where (AB)
−1

= B−1A−1 (see e.g. [4, p. 93]) is used.
Invoking (I + εR)

−1
=
∑∞

k=0 (−1)
k
εkRk for sufficiently

small ε < 1
λmax(R) ,

Ω−1 =

(
I +

∞∑
k=1

(−1)k εk
(
Ω−1

1 Ω2

)k)
Ω−1

1

= Ω−1
1 +

∞∑
k=1

(−1)k εk
(
Ω−1

1 Ω2

)k
Ω−1

1

= Ω−1
1 − ε

(
Ω−1

1 Ω2

)
Ω−1

1 + ε2
(
Ω−1

1 Ω2

)2
Ω−1

1 +O
(
ε3
)

and ignoring higher order terms O
(
ε2
)

yields

Ω−1 ≈ Ω−1
1 − εΩ−1

1 Ω2Ω
−1
1

Then
1

2σ2
= uTΩ−1u ≈ uTΩ−1

1 uT − εuTΩ−1
1 Ω2Ω

−1
1 u

=
1

2σ2
1

(
1− ε

2σ2
1

pT1 Ω2p1

)
and

p = 2σ2Ω−1u ≈ 2σ2Ω−1
1 u− ε2σ2Ω−1

1 Ω2Ω
−1
1 u

=
σ2

σ2
1

(
p1 − εΩ−1

1 Ω2p1
)

≈ 1

1− ε
2σ2

1
pT1 Ω2p1

(
p1 − εΩ−1

1 Ω2p1
)

≈
(
1 +

ε

2σ2
1

pT1 Ω2p1

)(
p1 − εΩ−1

1 Ω2p1
)

= p1 + ε

(
pT1 Ω2p1
2σ2

1

− Ω−1
1 Ω2

)
p1

Finally, to first order in ε, we obtain (22) with Ω−1 =
1

2σ2 p.p
T − 1

2 Q̃. Then (23) relates the perturbed Laplacian
with the effective resistance matrices Ω1 and Ω2, which is
fairly complicated.

Consider two trees T1 and T2 with the same number of
nodes N . Since T1 and T2 are trees, it holds that the effective
resistance matrix equals to the shortest path weight matrix,
i.e. S1 = Ω1 and S2 = Ω2. Therefore, Fiedler’s block matrix
relation (8) applies to these effective resistance matrices
and shortest path matrices. We assume that T2 is a small
perturbation on the original graph T1, which is reflected by
the small perturbation strength ε. Then the total effective
resistance matrix Ω = Ω1 + εΩ2. From (23), we derive the
weighted Laplacian Q̃ corresponding to Ω, which equals in
terms of Ω1 and Ω2 as

Q̃ = Q̃1 + ε∆Q̃+O
(
ε2
)

(24)

where the first-order term in the perturbation ε is

∆Q̃ =
pT1 Ω2p1
2σ4

1

p1p
T
1 −

1

σ2
1

(
Ω−1

1 Ω2p1p
T
1 + p1p

T
1 Ω

T
2

(
Ω−1

1

)T)
+ 2Ω−1

1 Ω2Ω
−1
1

(25)
where σ1 and p1 are calculated by (9) and (10). Equation in
(24) is accurate if ε is sufficiently small. If we neglect the
higher-order terms O

(
ε2
)
, a corresponding element in (24)

is
q̃ij = (q̃1)ij + ε∆q̃ij (26)

For any tree T1 with N > 2, there exist zero values in
the off-diagonal elements of the weighted Laplacian matrix
Q̃1, because these zero values correspond to non-existing
links. Consider such an element (i.e. q̃ij = 0), such that
(26) simplifies to q̃ij = ε∆q̃ij . Since ε > 0, the sign of
∆q̃ij will determine the sign of q̃ij . Equation (25) tells us
that ∆q̃ij is determined by the topology and the link weight
structure of tree T1 and tree T2, which means that only the
tree T1 and T2 determine the sign of q̃ij , irrespective of the
perturbation strength ε. However, the off-diagonal elements
q̃ij in a weighted Laplacian Q̃ = ∆̃ − Ã should be non-
positive, because all the off-diagonal elements in a weighted
adjacency matrix Ã are non-negative. The appearance of
a positive off-diagonal q̃ij or, equivalently, a negative off-
diagonal ãij indicates that the addition of an extremely
small, but non-zero perturbation in Ω = Ω1 + εΩ2 does
not create an effective resistance matrix Ω.

D SIMPLEX AND INVERSE SIMPLEX

Besides the adjacency matrix A, the Laplacian matrix Q
and the effective resistance matrix Ω, which represent a
graph in the topology domain, an undirected graph can be
represented in the geometric domain by its corresponding
simplex or inverse simplex [2]. Any undirected, weighted
graph G can be uniquely represented by a simplex V or
an inverse simplex V+ in the N − 1 dimensional Euclidean
space [2]. Both simplex V and inverse simplex V+ are ge-
ometric objects that generalizes triangles and tetrahedrons
to any dimension [2]. For example, 0−simplex, 1−simplex,
2−simplex and 3−simplex respectively correspond to a
point, a line segment, a triangle and a tetrahedron, as shown
in Fig. 10. The vertex matrix V =[v1, v2, . . . , vN ], where vi
is a N − 1 dimensional vector including the coordinates
of the vertex i in an simplex V+, can be obtained from
Q̃ = V TV . In an inverse simplex V+, the vertex matrix
V † = [v+1 , v

+
2 , . . . , v

+
N ], where v+i is a N − 1 dimensional

vector including the coordinates of the vertex i, can be calcu-
lated by Q̃† = V †TV †, where Q̃† is the weighted pseudoin-
verse Laplacian matrix of G. The surface or boundary of a
simplex V (or an inverse simplex V+) is called a face, which
is a lower dimensional simplex [2]. A face in a simplex
(or an inverse simplex) is denoted by FE (or F+

E ), where
vector E is a subset of vertex indices of a simplex V (or an
inverse simplex V+). If we use Ē as the complementary set
of vertex indices, FE and FĒ are then called complementary
faces. For example, in a 3-dimensional simplex (known as a
tetrahedron), a 0-dimensional face corresponds to a vertex,
while its complementary face is a triangle (2-dimensional
face). Furthermore, a N−2 dimensional face is called a facet
and the dihedral angles between two facets of a simplex V
(or an inverse simplex V+) are denoted by ϕ (or ϕ+).

E THREE NP-COMPLETE ISPP
E.1 A general inverse shortest path problem studied by
Fekete et al.

In 1999, Fekete et al. [5] consider a general ISPP (ISPPFekete),
where only the shortest path weight between pairs of nodes
are given, but not the paths achieving them.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

Q̃ ≈ 1

σ2
ppT − 2Ω−1

1 + 2εΩ−1
1 Ω2Ω

−1
1

≈ 1

σ2
1

(
1− ε

2σ2
1

pT1 Ω2p1

)(
p1 + ε

(
pT1 Ω2p1
2σ2

1

− Ω−1
1 Ω2

)
p1

)(
p1 + ε

(
pT1 Ω2p1
2σ2

1

− Ω−1
1 Ω2

)
p1

)T

− 2Ω−1
1 + 2εΩ−1

1 Ω2Ω
−1
1

=
1

σ2
1

(
1− ε

2σ2
1

pT1 Ω2p1

)
p1p

T
1 +

ε

σ2
1

{
pT1 Ω2p1

σ2
1

p1p
T
1 − Ω−1

1 Ω2p1p
T
1 − p1p

T
1 Ω

T
2

(
Ω−1

1

)T}− 2Ω−1
1 + 2εΩ−1

1 Ω2Ω
−1
1

=
1

σ2
1

p1p
T
1 − 2Ω−1

1 +
ε

σ2
1

{
pT1 Ω2p1
2σ2

1

p1p
T
1 − Ω−1

1 Ω2p1p
T
1 − p1p

T
1 Ω

T
2

(
Ω−1

1

)T}
+ 2εΩ−1

1 Ω2Ω
−1
1

(22)

Q̃ = Q̃1 + ε

{
pT1 Ω2p1
2σ4

1

p1p
T
1 −

1

σ2
1

(
Ω−1

1 Ω2p1p
T
1 + p1p

T
1 Ω

T
2

(
Ω−1

1

)T)
+ 2Ω−1

1 Ω2Ω
−1
1

}
+O

(
ε2
)

(23)

Fig. 10. Examples of low-dimensional simplices

A general inverse shortest path problem studied by
Fekete et al. (ISPPFekete): Given a N -node graph G with
adjacency matrix A and a N × N symmetric and non-
negative demand matrix D. Determine the link weight
matrix W and the weighted adjacency matrix Ã such that
the corresponding shortest path weight matrix S equals D.

In ISPPFekete, the demand matrix D does not necessarily
include all the shortest path weights of the pairs of nodes
in graph G. Fekete et al. [5] prove that ISPPFekete is NP-
complete by reducing ISPPFekete to a vertex-disjoint paths
problem, which is NP-complete. Specifically, ISPPFekete is
polynomial solvable if the distance graph Gd(V,Ed, wd) is
a star (in which all the links are incident to a node) or
the union of complete star (which is a star include all the
nodes in the graph). The problem becomes NP-complete
if slightly more complicated distance graphs Gd(V,Ed, wd)
are considered.

E.2 Forth path cut problem

B. A. Miller et al. [6] investigated an ISPP aiming to obtain
a graph, such that a given path is the shortest path, by
removing links of the given graph. This problem is referred
as Forth Path Cut problem (FPCP).

Forth path cut problem: Given a weighted graph G
with link weight matrix W and a path Pij for node i and
j, determine a new weighted graph G′ by removing links,
such that P is the shortest paths in the graph and the sum
of the weights of removed links does not exceed a given

limitation b. B. A. Miller et al. [6] proved that the Force
path cut problem is an NP-complete problem by reducing
FPCP to 3-Terminal Cut problem, which is NP-complete.
Given a graph G with weights matrix W and three terminal
nodes, the 3-Terminal cut problem asks for removing a set
of links LR ∈ L such that the terminals are disconnected
(there is no path connecting any two terminals) in the
resulting graph G′ and the sum of weights of removed links
l ∈ LR does not exceed a given limitation b. The success
condition of Force Path Cut is that all paths from nodes i
to j aside from P must be strictly longer than P , which is
an example of the Weighted Set Cover problem. In Force
Path Cut, the elements of the universe to cover are the
paths and the sets represent links: each link corresponds
to a set containing all paths from s to t on which it lies.
Including this set in the cover implies removing the edge,
thus covering the elements (i.e., cutting the paths). While
the weighted cover is computationally intractable, there are
established approximation algorithms. B. A. Miller et al. [6]
then proposed an algorithm called path attack, which uses a
natural oracle to generate only those constraints needed to
execute the approximation algorithm.

E.3 ISPP with upper bound

Burton et al. [7] posed an ISPP with upper bound con-
straints, i.e. the weight of the shortest path sij = w(P∗

ij) ≤
dij , where dij is the element of the demand matrix D



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

between nodes i and j, which is called “upper bound”. The
problem is described as

The inverse shortest path problem with upper bound
constraints(ISPPupperbound): Given a graph G with link
weight matrix W and an N ×N symmetric demand matrix
D with zero diagonal elements, but positive off-diagonal
elements. Determine a new link weight matrix W ′, such
that the corresponding shortest path weight matrix S obeys
S ≼ D and minimizes a norm ||W ′ −W ||.

In this case, the “upper bound” dij are allowed to be
infinite, i.e. the constraint of “upper bond” is not necessary
for all the shortest path weights. Burton et al. [7] choose
l2 norm and consider ISPPupperbound as a least squares
problem

min
w′

l∈L′

1

2

L∑
l=1

(w′
l − wl)

2 (27)

where wl and w′
l denote the weight of link l ∈ L and l ∈ L′

respectively, subject to

wl ≥ 0, l ∈ L (28)

and the bound constraints on the shortest paths,∑
l∈P∗

ij

wl ≤ dij (29)

Equation (29) only consider the shortest path weight
and the definition of the path P∗

ij is implicit. For example,
as the link weight matrix W is modified, the nodes and
links belonging to the shortest path P∗

ij between nodes i
and nodes j may vary. Burton et al. [7] illustrated the non-
convex nature of the “upper bound” constraints and the
least squares problem describing ISPPupperbound is proved
to be non-convex. The quadratic programming algorithm
introduced in [8] thus cannot be utilized directly to solve
ISPPupperbound.

Burton et al. [7] then proved that finding a global solu-
tion of ISPPupperbound is NP-complete through a decision
problem ISP: Given an ISPPupperbound with a bound k,
does there exists a solution with objective value at most k?
Burton et al. demonstrate that (a) the decision question ISP
is in NP. (b) a transformation from 3-SAT problem [9] to ISP
can be constructed (c) the transformation is proved to be
polynomial. The decision question ISP is thus NP-complete
and ISPPupperbound is NP-hard.

Since the ISPPupperbound is non-convex and NP-hard,
Burton et al. [7] proposed a local optimum algorithm to
solve the shortest path problem. A feasible starting point
is computed first. Then at each iteration, with a modified
weight matrix W ′, the explicit definition of the shortest path
constraints( 29) is revised and the resulting convex problem
is solved by the algorithm introduced in [7], which leads
a new modified weight matrix W ′. The calculation stops
when no further progress can be obtained. The algorithm
terminates in a finite number of iterations.

F PSEUDOCODE OF DOR INITIALISED WITH A
TREE

In this section, we supplement the pseudocode of DOR algo-
rithm initialised with a tree, which is shown in Algorithm 4.

Algorithm 4 Descending Order Recovery (DOR) initialised
with a tree graph
Require: N × N demand matrix D = S: a shortest path

weight matrix of a graph G
Ensure: N ×N weighted adjacency matrix Ã

1: ÃD ← D
2: GD ← Complete graph whose weighted adjacency ma-

trix is ÃD

3: TD ←Minimum spanning tree of GD

4: Ã←Weighted adjacency matrix of TD

5: S′ ← Shortest path weight matrix of TD

6: while C ← D−S′ has at least one negative element, i.e.
(cab)max > 0 do

7: (i, j)← Indices of the maximum element in C
8: ãij ← dij , ãji ← dij
9: GA ← Graph whose weighted adjacency matrix is Ã

10: S′ ← Shortest path weight matrix of GA

11: end while
12: return Ã

G PERFORMANCE OF THE DOR AND OLR ALGO-
RITHM

In this section, we supplement the performance of DOR
and OLR in ER random network Gp(N), Barabási–Albert
(BA) network [10], Watts–Strogatz(WS) small world net-
work [11] and an empirical network USAir [12]. The per-
formance of the DOR and OLR is assessed by three com-
plementary criteria: (i) the number LH − LG of additional
links in the resulting graph H , (ii) the number LC =

1
2LH

· uT · (A ◦AH) · u of common links in the original
graph G and the resulting graph H and (iii) the norm
||D − S|| = 1

N(N−1)

∑
i

∑
j

dij−sij
dij

of the demand matrix
D and the shortest path weight matrix S.

Fig. 11 (for the case N = 10), Fig. 12 (for the case N = 20)
and Fig. 13 (where the graph consists of N = 50 nodes)
illustrate the results for ER graphs. We uniformly assign a
random weight from (0, 1) to each link in G, thus defining
the N×N weighted adjacency matrix Ã. For each generated
ER graph, we provide the N×N shortest path weight matrix
of G as the input demand matrix D to the algorithm DOR
and OLR. The input parameter of OLR b = 0.7. We then
obtain the resulting graph H , whose N × N shortest path
weight matrix is denoted as S. For each number N of nodes
and different link density p, 100 simulation instances are
executed and the average over 100 times of each criterion is
computed.

TABLE 2
Performance of the DOR

Network N LG LH − LG LC ||D − S||
BA1 500 994 -72 1 0
BA2 500 1979 -750 1 0
BA3 1000 1993 -76 1 0
BA4 10000 19989 0 1 0
WS1 100 200 -9 1 0
WS2 100 300 -65 1 0
WS3 1000 3000 -244 1 0
WS4 10000 30000 0 1 0

USAir 332 2126 -279 1 0



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

TABLE 3
Performance of the OLR

Network N LG LH − LG LC ||D − S||
BA1 500 994 -181 1 0.6736
BA2 500 1979 -853 1 0.6938
BA3 1000 1993 -140 1 0.6961
BA4 10000 19989 -36 1 0.6939
WS1 100 200 -39 1 0.6865
WS2 100 300 -157 1 0.6642
WS3 1000 3000 -995 1 0.6850
WS4 10000 30000 -7 1 0.6999

USAir 332 2126 -1658 1 0.6481

(a) Number of additional links in obtained graph H

(b) Number of common links in G and H

(c) Norm ||D − S||

Fig. 11. Performance of the DOR and OLR on ER graphs with N = 10
nodes and different link density p. The input parameter b = 0.7.

Table 2 and Table 3 respectively show the performances
of DOR and OLR in BA network, WS network and an empir-
ical network USAir. The node number N and link number
L are shown in the tables. For each graph, the shortest path
weight matrix are computed as the input demand matrix D
for DOR and OLR. The input parameter of OLR b = 0.3. For

(a) Number of additional links in obtained graph H

(b) Number of common links in G and H

(c) Norm ||D − S||

Fig. 12. Performance of the DOR and OLR on ER graphs with N = 20
nodes and different link density p. The input parameter b = 0.7.

BA networks, the degree of node Pr [d = k] ∝ k−γ , where
γ = 2.75, 2.36, 2.48 and 2.37 in BA1, BA2, BA3 and BA4,
respectively. The link weights are uniformly distributed in
(0, 1). We generate WS networks as follows:

1) Create a ring lattice with N nodes of the mean
degree 2k.

2) Each node is connected to its k nearest neighbors on
either side.

3) For each edge in the graph, rewire the target node
with probability p = 0.5

For WS1, WS2, WS3 and WS4, the corresponding k = 2, 3, 3
and 3, respectively. The link weights are uniformly dis-
tributed in (0, 1).



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

(a) Number of additional links in obtained graph H

(b) Number of common links in G and H

(c) Norm ||D − S||

Fig. 13. Performance of the DOR and OLR on ER graphs with N = 50
nodes and different link density p. The input parameter b = 0.7.

REFERENCES

[1] P. Van Mieghem, “A tree realization of a distance matrix: the
inverse shortest path problem with a demand matrix generated
by a tree,” Delft University of Technology, Report20211012, pp. 1–15,
2021.

[2] K. Devriendt and P. Van Mieghem, “The simplex geometry of
graphs,” Journal of Complex Networks, vol. 7, no. 4, pp. 469–490,
2019.

[3] M. Fiedler, Matrices and graphs in geometry. Cambridge, U.K.:
Cambridge University Press, 2011.

[4] L. Mirsky, An introduction to linear algebra. Dover Publications,
Inc., 1982.

[5] S. P. Fekete, W. Hochstättler, S. Kromberg, and C. Moll, “The
complexity of an inverse shortest path problem,” in Contemporary
Trends in Discrete Mathematics: From DIMACS and DIMATIA to the
Future, vol. 49, 1999, pp. 113–127.

[6] B. A. Miller, Z. Shafi, W. Ruml, Y. Vorobeychik, T. Eliassi-Rad,
and S. Alfeld, “Pathattack: Attacking shortest paths in complex
networks,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2021, pp. 532–547.

[7] D. Burton, W. Pulleyblank, and P. L. Toint, “The inverse shortest
paths problem with upper bounds on shortest paths costs,” in Net-
work Optimization. Berlin, Heidelberg: Springer Berlin Heidelberg,
1997, pp. 156–171.

[8] D. Burton and P. L. Toint, “On an instance of the inverse shortest
paths problem,” Mathematical programming, vol. 53, no. 1, pp. 45–
61, 1992.

[9] M. R. Garey and D. S. Johnson, Computers and intractability. New
York: W. H. FREEMAN AND COMPANY, 1979.

[10] R. Albert and A.-L. Barabási, “Statistical mechanics of complex
networks,” Reviews of Modern Physics, vol. 74, pp. 47–97, Jan 2002.

[11] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-
world’networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[12] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015.


