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Generating Temporal Contact Graphs Using
Random Walkers

Anton-David Almasan , Sergey Shvydun , Ingo Scholtes , and Piet Van Mieghem , Fellow, IEEE

Abstract—We study human mobility networks through time-
series of contacts between individuals. Our proposed Random
Walkers Induced temporal Graph (RWIG) model generates tem-
poral graph sequences based on independent random walkers that
traverse an underlying graph in discrete time steps. Co-location
of walkers at a given node and time defines an individual-level
contact. RWIG is shown to be a realistic model for temporal human
contact graphs, which may place RWIG on a same footing as
the Erdos–Renyi (ER) and Barabasi–Albert (BA) models for fixed
graphs. Moreover, RWIG is analytically feasible: we derive closed
form solutions for the probability distribution of contact graphs.

Index Terms—Temporal networks, generative models, network
dynamics, Markov process, random walks.

I. INTRODUCTION

IN THE past years, the study of temporal graphs has received
a surge of interest, e.g. to model how time-varying human

contact patterns impact epidemics like COVID-19 [1], [2], [3].
Empirical studies of real-world contact patterns have identified
several characteristics of temporal graphs that can influence
dynamical processes.

A first line of research has focused on the question how the
temporal distribution of interactions affects the evolution of dy-
namical processes in temporal graphs. Studies on the influence of
non-Poissonian and bursty node activity patterns [4], [5], [6], [7]
or long-lasting or concurrent interactions [8], [9] have shown that
real contact patterns can both slow down or speed up spreading
processes compared to a static graph, where all links are always
active.

A second line of research has addressed the question how
the temporal ordering of interactions influences dynamical pro-
cesses such as diffusion or epidemic spreading. In a nutshell,
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for two temporal contacts occurring between Alice and Bob at
time t and between Bob and Carol at time t′, a virus can only
spread from Alice via Bob to Carol if the contact between Alice
and Bob occurs before the contact between Bob and Carol, i.e.
iff t<t′. If the temporal ordering of contacts is reversed, no
time-respecting path exists between Alice and Carol due to the
directedness of the arrow of time. Empirical studies on social,
biological, and technical systems [10], [11], [12] have shown that
the causal topology of temporal graphs, i.e. who can influence
whom via time-respecting paths, is more complex than what we
expect from their static, time-aggregated counterparts, leading
to non-trivial effects such as a speed up or slow down of diffusion
processes compared to (randomized) temporal graphs, that lack
correlations in the temporal ordering of interactions [13], [14],
[15], [16], [17], [18].

Several temporal graph modelling and learning approaches
have been proposed that account for some of the complex
characteristics of empirical contact patterns [19], [20], [21],
[22], [23], [24]. Recently, a system theoretical approach to-
wards emulating temporal graphs is presented in [25]. Var-
ious approaches to model human mobility, which could ex-
plain some of the temporal characteristics of human contact
patterns, are discussed in [26], [27], [28], [29]. Beside epi-
demic spreading, a better understanding of temporal mecha-
nisms can also facilitate the design, management and control
of mobile opportunistic networks [30] or human mobility in
public transportation networks [31]. However, we still lack
simple generative models for temporal graphs that (i) are able
to reproduce realistic contact patterns, (ii) facilitate analytic
treatment and (iii) shed light on potential mechanisms that
shape both the topological and temporal dimension of temporal
graphs.

Addressing this research gap, we propose the Random Walkers
Induced temporal Graph (RWIG) model, which uses multiple
random walkers on a finite graph as a generative model for
temporal contact networks. Any realization of a discrete-time
Markov process on N states can be represented by a random
walk on the corresponding Markov graph with N nodes (states),
where a link between two states i and j is characterised, i.e.
both directed and weighted, by the transition probability pij .
The RWIG model considers a collection of M random walk-
ers that simultaneously traverse the Markov graph in discrete
timesteps according to the N×N Markov transition probability
matrix P with elements equal to the transition probabilities pij .
Hence, each walker executes a realization of the same Markov
process or, equivalently, each walker’s trajectory is driven by
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Fig. 1. Contact graph generation using RWIG: (a) A collection M = {w1, w2, w3, w4, w5} of random walkers simultaneously traverse the Markov graph.
The Markov states (shaded) are nodes and the directed links are the transition probabilities. (b) At each discrete time step k ∈ {1, . . . ,K}, the contact graph Gk

between walkers is formed. RWIG generates a link in the contact graph Gk between each pair of walkers found in the same Markov state at discrete time k.

the Markov process. Thus, we assume in RWIG that the Markov
process generates human mobility trajectories over a set of
places (states). Next to the Markov graph, at discrete time k, the
contact graphGk withM nodes is generated, in which the nodes
represent the random walkers. The main assumption of RWIG is
that links in the contact graph Gk are created between walkers
which visit the same state in the Markov graph at discrete time
k. Fig. 1 exemplifies M = 5 random walkers, who traverse a
Markov graph with N = 8 states (shaded) in discrete-time steps
according to the transition probabilities pij . The probabilities pij
are depicted in Fig. 1(a) on the links between Markov states. The
observation window has lengthK as displayed on the horizontal
axis and four discrete time steps are shown. In Fig. 1(b), RWIG
generates the contact graph of the 5 walkers at each timestep by
creating links between all walkers found in the same state in the
Markov graph. For instance, at time k + 2 walkers w3, w4, w5,
which were in different states at time k + 1, move to the same
state and, consequently, form a fully connected subgraph (or
clique) of size 3. Conversely, walkers w1, w2 move to different
Markov states and thus become isolated nodes in the contact
graph Gk+2.

A physical interpretation of RWIG is a collection of individu-
als moving through space. The underlying graph with adjacency
matrix A represents a city map, with nodes as various locations
(e.g. restaurants, workplaces, homes, public transport stations,
etc) and links as physical paths between locations. The random
walkers represent individuals and the transition probabilities pij
assume that all individuals behave the same.

We can regard the probabilities pij , which together form an
N×N transition probability matrix P , as a common policy,
which all individuals follow. The transition probability matrix
P can generally take the form of any function f(A) of the

adjacency matrix A which results in a stochastic matrix [35].
An example in which the probabilities of jumping from a state i
to any other adjacent state j are all equal is P = Δ−1A, where
Δ is the diagonal matrix of the degree vector of the underlying
graph with adjacency matrix A.

As a common policy is restrictive and often unrealistic (e.g.
a kindergartener would visit different locations than an office
worker), we consider that each random walker wr can have a
different policy, or transition probability matrix Pr. All policies,
however, still reflect the same underlying graph topology (e.g.
city map). Consequently, if there is no link between two states i
and j in the adjacency matrixA, then all policies must have a zero
probability for state transitions between nodes i and j (i.e. aij =
0 implies that (Pr)ij = 0, for all integers i, j ∈ {1, . . ., N}).

Although the properties of random walks have been ex-
tensively studied, the dynamics of multiple random walks on
a graph still represents an active research area. Riascos and
Sanders [32] study multiple non-interactive random walkers on
a graph and analyse the mean encounter times of walkers. A
similar model is proposed to generate contacts between indi-
viduals in [33], which are then used to study the evolution of
epidemics. Masuda et al. [34] present a detailed study of the
theory and applications of random walks. To the best of our
knowledge, RWIG is the first model which leverages multiple
random walks to generate temporal graphs. Our contribution can
be summarised:
� We propose the RWIG model based on random walkers for

generating temporal contact networks.
� We provide an analytical formula for the probability distri-

bution of the contact graphs, which are produced by RWIG
given the transition matrices {Pr}Mr=1 and the initial states
of all walkers.
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Fig. 2. Contact graphs as partitions: (a) Each contact graph is formed by the union of disconnected cliques (i.e. fully connected graphs), where an isolated node is
considered as a clique of size 1. (b) The notion of a clique is abstracted to a subset of pairwise connected walkers. Walkers that belong to different cliques represent
elements of disjoint subsets. Each contact graph is represented by disjoint subsets of the walker set M = {w1, w2, w3, w4, w5}, i.e. a partition where the cells
(i.e. subsets) of the partition indicate the cliques.

� We demonstrate how RWIG is able to generate contact
graphs that resemble real temporal networks.

The paper is organised as follows. In Section II, we describe
the state space and topological structure of contact graphs.
Section III provides an analytical formula for the probability
distribution of the contact graph formed by a set of walkers,
conditioned on the walkers’ initial states and policies. Section IV
discusses RWIG in the steady state. To motivate the applicability
of RWIG, Section V offers simulation results illustrating the
wide variety of contact graphs produced by RWIG and compares
the RWIG generated sequences with empirical data. Finally,
we introduce the notation to the reader in Appendix A and
mathematical definitions are deferred to Appendix B.

II. RANDOM WALKERS INDUCED TEMPORAL GRAPH (RWIG)

A. Formulation of RWIG

We consider an undirected unweighted graph with N nodes
and L links that is represented by an N×N adjacency matrix A,
which is the underlying graph. A Markov graph that emulates a
random walk on that graph has the N×N probability transition
matrix P . For instance, the transition probability matrix P =
Δ−1A, whereΔ = (d1, d2, . . ., dN ) and di is the degree of node
i, describes a Markov graph [35, p. 108-110] in which there is an
equal probability to reach neighbouring states. On that Markov
graph, M random walkers, independently of each other, jump
from one state to another state per discrete time k, starting from
k = 0 until some finite time k = K, according to the N×N
probability transition matrix P . The trajectory of each random
walkerwj∈{w1, . . ., wM} across the states of the Markov graph
can be regarded as one realization of the Markov process [36],
that starts in the state described by the 1×N vector sj [0].

B. State Space of RWIG

The fundamental assumption of RWIG is that any pair of
walkers that meets at time k in the same Markov state is con-
nected in the contact graph Gk. In other words, if q walkers
reside in the same state in the Markov graph at discrete time

k, they form a fully connected subgraph, i.e. clique of size q in
the contact graph Gk. Consequently, the graph Gk consists of
the union of disconnected cliques and Gk is only connected and
equal to a complete graphKM if allM walkers meet in the same
state. The induced structure describes the contact graph through
pairwise disjoint subsets of walkers, which is exemplified in
Fig. 2.

The union of the walker subsets in the node set of
contact graph Gk equals the complete walker set M =
{w1, w2, . . ., wM}. Since the subsets are pairwise disjoint, each
possible contact graph generated by RWIG is equivalent to a
partition on the walker set M, whose number of cells is equal to
the number of disconnected cliques. Thus, we refer to partitions
on the walker set M and contact graphs interchangeably. Addi-
tionally, we also refer to m-partitions on the walker set M and
m-clique contact graphs (i.e. a contact graph with m cliques)
interchangeably.

To count the number of possible contact graphs, consider an
m-clique contact graph Gk at some time k, which is equivalent
to an m-partition πm on the walker set M. In the contact
graph, M walkers occupy m different states, where m ≤ M .
Additionally, the number of occupied states m is upper bounded
by the total number of states N in the Markov graph. Therefore,
the number of states occupied by walkersm is upper bounded by
min(N,M). The total number of contact graphs |Gk| is obtained
by summing the number of all possible m-partitions

|Gk| =
min(N,M)∑

m=0

S(m)
M , (1)

where S(m)
M are the Stirling numbers of the second kind [37].

If the number of walkers does not exceed the number of walker
states (i.e. M ≤ N ), m is upper bounded by min(N,M) = M .
Therefore, the total number of partitions on the walker set M
and consequently, the total number of contact graphs is |Gk| =∑M

m=0 S(m)
M = BM , where BM is the M -th Bell number. The

Bell numbers are explained in Appendix B. Table I illustrates
a few examples of the number of contact graphs for various
combinations of walker count M and number of Markov states
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TABLE I
EXAMPLES OF CONTACT GRAPH STATE SPACE CARDINALITY WITH RESPECT

TO M WALKERS AND N STATES

N , where the regime M ≤ N is shaded. For instance, if M = 5
and N = 3, the total number of contact graphs is 41 as there are
25 ways for 5 walkers to occupy 3 states and form a 3-clique
graph, 15 ways to occupy 2 states (Gk is a 2-clique graph) and
only 1 way to be in the same state (Gk is a complete graph).

Therefore, if the number of walkers does not exceed the num-
ber of states M ≤ N , the number of contact graphs formed by
M random walkers is equal to the Bell numberBM . Otherwise, if
M > N , then we omit m-partitions on the walker set M where
m > N because walkers cannot be found in more cliques than
there are Markov states.

C. Contact Graph Probability: Examples

After the enumeration of contact graphs in Section II-B,
we now seek to find the probability distribution of the con-
tact graphs Gk, conditioned on the initial state vector sj [0] of
walker wj and Markov transition matrices Pj for each walker
wj ∈ {w1, w2, . . . , wM}.

A contact graph realisation with m cliques is denoted as
g = {A1,A2, . . .,Am}, whereAi for all i ∈ {1, 2, . . .,m}, rep-
resent the cliques formed at a discrete time step. Due to the
equivalence between contact graphs and partitions on the walker
set M shown in Fig. 2, the cliques Ai are functionally subsets
of walkers found to be in the same state in the Markov graph at
a given time.

We also introduce the set of initial conditions for all walkers:
sM[0] = {sj [0]}Mj=1, as well as the set of N×N transition
probability matrices for all walkers PM = {Pj}Mj=1.

1) Introductory Example: The simplest contact graph exam-
ple is the complete graph Gk = {M}, where all walkers are
found in the same Markov state at discrete time k.

The random variable Xj [k] denotes the state in the Markov
graph of walker wj at discrete time k and Pr[Xj [k] = i] is the
probability that walker wj is in state i in the Markov graph at
discrete time k. The i-th element of the probability state vector
sj [k] for walker wj at time k is then (sj [k])i = Pr[Xj [k] = i].
Only if all M walkers are in the same state at discrete time
k, a complete graph KM is formed. The probability that all
M walkers are in state i equals

∏M
j=1 Pr[Xj [k] = i], because

all random walkers move independently of each other in the
Markov graph. Summing the probabilities that all walkers are in
state i over all states i ∈ {1, 2, . . ., N} results in the probability

that a complete graph Gk = {M}≡KM is created at discrete
time k:

Pr[Gk = {M}] =
N∑
i=1

M∏
j=1

Pr[Xj [k] = i] =

N∑
i=1

M∏
j=1

(sj [k])e
T
i ,

where ei is the all-zero row vector with 1 at i-th position [36].
Introducing the Hadamard product [35] of the walkers’ state
probability vectors s1[k] ◦ . . . ◦ sM [k] =

⊙M
j=1 sj [k]:

Pr[Gk = {M}] =
N∑
i=1

M∏
j=1

(sj [k])e
T
i =

N∑
i=1

⎛
⎝ M⊙

j=1

sj [k]

⎞
⎠ eTi .

Finally, introducing the all-ones vector u = [1, . . . , 1] yields:

Pr[Gk = {M}] =
⎛
⎝ M⊙

j=1

sj [k]

⎞
⎠uT =

M⊙
j=1

(
sj [0]P

k
j

)
uT ,

(2)

where we have used the k-step Markov transition probability
formula [36]: sj [k] = sj [0]P

k
j .

Equation (2) expresses the probability that the M walkers
are in the same state in the Markov graph at discrete time k.
Since M is just an example of any M size walker set, (2) is
also directly applicable to any walker subset Ai ⊆ M, where
i ∈ {1, 2, . . .,m}. We thus define σAi

[k] as the probability that
walkers of a subset Ai ⊆ M are in the same state at discrete
time k:

σAi
[k] =

⊙
wj∈Ai

(
sj [0]P

k
j

)
uT . (3)

The implementation of (3) is provided in Appendix C (Algo-
rithm 1). The definition of σAi

[k] in (3) constitutes the basis of
our further analysis, because (3) forms a compact and analyt-
ically tractable formula relating contact graph probabilities to
the transition probability matrices and initial conditions.

Equation (2) calculates the probability that all walkers are in
the same state, which is equivalent to the probability of the 1-
clique contact graph or the complete graph KM . To offer insight
into the probability of contact graphs with more than one clique,
we first calculate the probabilities of the 2-clique and 3-clique
contact graphs. We then state and prove in Section III our main
theorem for the probability of a general m-clique contact graph.

2) 2-Clique Contact Graph: Let g be a 2-clique contact
graph realisation g = {A1,A2}. We consider that the walkers
in cliques A1 and A2 are in Markov states i and j respec-
tively. Summing over all states i, j where i �= j, the probability
Pr[Gk = g] is:

Pr[Gk = g] =
N∑
i=1

N∑
j=1
j �=i

( ∏
wu∈A1

su[k]e
T
i

)( ∏
wv∈A2

sv[k]e
T
j

)

=

N∑
i=1

( ∏
wu∈A1

su[k]e
T
i

)
N∑
j=1
j �=i

( ∏
wv∈A2

sv[k]e
T
j

)
.

(4)
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We rewrite the second sum-product term as:

N∑
j=1
j �=i

∏
wv∈A2

sv[k]e
T
j =

N∑
j=1

( ∏
wv∈A2

sv[k]e
T
j

)
−
∏

wv∈A2

sv[k]e
T
i .

Introducing the definition of σA[k] in (3) yields:

N∑
j=1
j �=i

∏
wv∈A2

sv[k]e
T
j =

⊙
wv∈A2

(
sv[0]P

k
v

)
uT −

∏
wv∈A2

sv[k]e
T
i

= σA2
[k]−

∏
wv∈A2

sv[k]e
T
i . (5)

Substituting (5) into (4):

Pr[Gk = g] = σA2
[k]

N∑
i=1

( ∏
wu∈A1

su[k]e
T
i

)

−
N∑
i=1

( ∏
wu∈A1

su[k]e
T
i

∏
wv∈A2

sv[k]e
T
i

)
.

Since A1 and A2 are complements w.r.t. the walker set M, then
A1 ∪ A2 = M and thus:∏

wu∈A1

su[k]e
T
i

∏
wv∈A2

sv[k]e
T
i =

∏
wu∈M

su[k]e
T
i .

Finally, by (2) and (3):

Pr[Gk = g] = σA2
[k]

N∑
i=1

∏
wu∈A1

su[k]e
T
i −

N∑
i=1

∏
wu∈M

su[k]e
T
i

= σA1
[k]σA2

[k]− σM[k]. (6)

The intuition behind (6) is the inclusion-exclusion princi-
ple [36, p. 10-12], where the probability of 2 cliques is equal to
the probability that walkers from the subsetsA1 andA2 are each
found in the same states minus (hence, excluding) the probability
that all walkers are in the same state.

3) 3-Clique Contact Graph: Let g be a 3-clique contact graph
realisation g = {A1,A2,A3}. We consider that the walkers in
clique A1 are in Markov state i1, the walkers in clique A2 are in
Markov state i2 and that the walkers in clique A3 are in Markov
state i3. Summing over all states i1, i2, i3 where i1 �= i2 �= i3,
the probability of the realisation g is:

Pr[Gk = g] =
N∑

i1=1

N∑
i2=1

i2/∈{i1}

N∑
i3=1

i3/∈{i1,i2}

3∏
j=1

∏
wu∈Aj

su[k]e
T
ij
. (7)

Expanding (7) is possible by observing that the probability
Pr[Gk = g] is equal to the product of clique probabilities minus
the probability of any contact graph obtained by amassing
cliques (e.g. A1∪A2 or A1∪A2∪A3). In other words, the event
that walkers from each of the cliques A1, A2, A3 are found
in the same state, which has probability σA1

[k]σA2
[k]σA3

[k],
encompasses the 3 events: walkers occupy the same state, walk-
ers occupy two different states, walkers occupy three different

states. The probability of a contact graph with three cliques
g = {A1, A2, A3} is

Pr[Gk = g] = σA1
[k]σA2

[k]σA3
[k]− Pr[Gk = {M}]

− Pr[Gk = {A1 ∪ A2,A3}]
− Pr[Gk = {A1 ∪ A3,A2}]
− Pr[Gk = {A2 ∪ A3,A1}].

Denoting amassed cliques as Ai ∪ Aj = Aij :

Pr[Gk = g] = σA1
[k]σA2

[k]σA3
[k]− Pr[Gk = {M}]

− Pr[Gk = {A12,A3}]
− Pr[Gk = {A13,A2}]
− Pr[Gk = {A23,A1}]. (8)

The sigma notation in (3) extends to amassed cliques as
σAi1,i2,...,im

[k] = σAi1
∪Ai2

∪...∪Aim
[k] and yields:

Pr[Gk = g] = σA1
[k]σA2

[k]σA3
[k]− σM[k]

− (σA12
[k]σA3

[k]−σM[k])

− (σA13
[k]σA2

[k]−σM[k])

− (σA23
[k]σA1

[k]−σM[k])

= σA1
[k]σA2

[k]σA3
[k]−σA12

[k]σA3
[k]

−σA13
[k]σA2

[k]−σA23
[k]σA1

[k] + 2σM[k]. (9)

The probability of a 4-clique contact graph is provided in
Appendix F.

III. CONTACT GRAPH PROBABILITY DISTRIBUTION

Let g be anym-clique contact graph: g = {A1,A2, . . . ,Am}.
Equations (4) and (7) can be extended to compute the probability
of an m-clique contact graph.

Theorem 1: The probability of an m-clique contact graph
g = {A1,A2, . . .,Am} at discrete time k is

Pr[Gk = g] =

N∑
i1=1

N∑
i2=1

i2 �∈{i1}

. . .

N∑
im=1

im �∈{il}m−1
l=1

m∏
j=1

∏
wu∈Aj

(su[k])ij .

(10)

Proof: The probability that M walkers form a contact graph
g = {A1, . . .,Am} at discrete time k in m states i1, . . ., im,
where |{i1, . . ., im}| = m, is equal to

∏m
j=1(

∏
wu∈Aj

(su[k])ij ).
Summing over all different m states {ij}mj=1 yields the proba-
bility of the realisation g. �

Theorem 1 offers the probability of an m-clique contact
graph from a combinatorial perspective. However, (10) requires
to consider N !

(N−m)! combinations of states where M walkers
may form cliques A1, . . . ,Am, which lead to a combinatorial
explosion for a large number of states N . Therefore, we derive
a closed form for Pr[Gk = g].
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Fig. 3. Process of creating amassed clique contact graphs.

A. Amassed Clique Contact Graphs

We offer a formal definition of amassed clique graphs in-
troduced in Section II-C3, and subsequently illustrate how the
process of amassing cliques allows us to formulate our main
theorem and expand (10).

Equation (8) offers insight into the recursive nature of contact
graphs probabilities and partitions: amassed clique graphs are a
result of partitioning the contact graph Gk and taking the union
of walkers.

Example 1: By taking a 2-partition π2 = {C1, C2} = {{A1,
A2}, {A3}} on the realisation g = {A1,A2,A3} and taking the
union of cliques A1 ∪ A2 = A12, we obtain the amassed-clique
contact graph g(π2) = {A12,A3}. Schematically, the genera-
tion of amassed clique contact graphs is shown in Fig. 3.

We call g(π) the contact graph associated with partition π on
g. Naturally, the singleton partition π3 = {{A1}, {A2}, {A3}}
has associated contact graph g(π3) = g = {A1,A2,A3}. The
rationale behind contact graphs generated by amassing
cliques holds for any m-clique contact graph realisation g =
{A1,A2, . . .,Am}, thus generalising (8) to:

Pr[Gk = g] =

m∏
k=1

σAk
−
∑
π∈P∗

g

Pr[Gk = g(π)], (11)

where Pg is the set of all possible partitions on g and P∗
g =

Pg\{{A1}, {A2}, . . ., {Am}} excludes the singleton partition
πm.

We emphasize the distinction between partitions on a walker
set and partitions on a contact graph. Recall from Section II-B the
equivalence relationship between contact graphs and partitions
on the walkers set M. Similarly, amassed clique graphs are
a special class of contact graphs, which are obtained through
partitioning cliques. We denote the difference by the symbol
C for the cells of a partition on cliques and by A for the cells
of a partition on the walker set M. The caveat is illustrated in
Fig. 3 of Example 1, where the cells of the 2-partition π2 are:
C1 = {A1,A2}, C2 = {A3} and will be used in the proof of our
main theorem.

B. Main Theorem

In (11), each m-clique graph realisation g = {A1, . . .,Am}
probability depends on its associated sigma product∏m

l=1 σAl
[k], which allows us to reduce (11) to a closed form

that depends only on sigma terms. Additionally, Pr[Gk = g]
also depends on the probability of graphs associated with all
partitions on g. Thus, we are motivated to reduce (11) to a

closed form:

Pr[Gk = g] =
∑
π∈Pg

βm(π)
∏

A∈g(π)
σA[k], (12)

whereA is a clique in the amassed clique graph g(π) (associated
with partition π on g), βm(π) ∈ Z is the number of sigma
product terms associated with contact graph g(π) and subscript
m is the number of cliques in g. We call (12) the sigma expansion
of (11) for contact graph g. We now state our main theorem:

Theorem 2: The probability of an m-clique contact graph
g = {A1,A2, . . .,Am} at discrete time k is

Pr[Gk = g] =
∑
π∈Pg

(∏
C∈π

(−1)|C|−1(|C|−1)!

) ∏
A∈g(π)

σA[k],

(13)

where |C| denotes the number of cliques A in cell C of partition
π on g = {A1,A2, . . .,Am}.

Our proof of Theorem 2 stems directly from Lemmas 1 and 2,
presented below.

Lemma 1: Let π1 = {M} be the 1-partition on the walker set
M. The number βm(π1) of sigma product terms σM[k] in the
sigma expansion formula (12) for the probability of an m-clique
contact graph depends only on the number of cliques m as

βm(π1) = (−1)(m−1)(m− 1)! (14)

Lemma 2: Let g be a m-clique contact graph. Let πq =
{C1, . . ., Cq} be a q-partition on g, with q < m. Let the cardinal-
ity of each cell Ci be ci. Let the number of sigma product terms∏q

i=1 σCi [k] in the sigma expansion formula of g be βm(πq).
Then

βm(πq) =

q∏
i=1

(−1)ci−1(ci − 1)! (15)

Lemma 1 offers a formula for the weight βm(π1) of the sigma
product σM[k] (associated with the trivial partition π1 = {M},
i.e. the complete graph KM ). We build Lemma 2 from Lemma 1
as a generalisation from the trivial partition to any q-partition πq

on the walker setM. More precisely, we find the weight βm(πq)
of the sigma product associated with any q-partition on g, where
q < m. The proofs of Lemmas 1 and 2 are provided in Appendix
E.

The proof of Theorem 2 is immediate by applying Lemma 2
to all partitions on g.

Theorem 1 considers all possible combinations of walker
states in order to calculate the probability distribution of a
contact graph Gk which involves performing redundant, re-
peated operations. The adoption of a clique-centric view and
the computation of the probability of cliques via Hadamard
products leads to a more efficient calculation of the probability
of a contact graph realisation. Therefore, Theorem 2 offers a
considerable advantage in terms of the runtime. Furthermore,
because different realisations in the contact graph sample space
of Gk may use the same clique probability (i.e. sigma product),
we can precompute all sigma products to further speed up the
calculation of the probability distribution ofGk. Both Theorem 1
and 2 thus attest the elegant mathematical tractability of the
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Fig. 4. Most probable 4 realisations of the contact graph G∞ formed by 4
walkers.

RWIG model. To compare time complexities, we record the
execution time of calculating the probability distribution of
RWIG graphs using both (10) and (13) and present the results in
Appendix D. The pseudocode for (13) in Theorem 2 is provided
in Appendix C (Algorithm RWIG-pmf). 1

IV. STEADY-STATE CONTACT GRAPHS

We assume that the sameN ×N Markov transition matrixP ,
which is common for all walkers, possesses a steady-state dis-
tribution s̃, obeying s̃ = s̃P . Then, the steady-state probability
vector of each walker w ∈ M reduces to

lim
k→∞

sw[k] = s̃. (16)

For a cliqueA of size |A| = q and recalling the k-step Markov
transition probability sj [k] = sj [0]P

k, taking the limit in (3)
as k → ∞ and invoking the existence of a steady-state in (16)
yields

lim
k→∞

σA[k] = lim
k→∞

⊙
wj∈A

(
sj [0]P

k
j

)
uT

=

⎛
⎝⊙

wj∈A
s̃

⎞
⎠uT =

N∑
i=1

(s̃i)
q. (17)

The combinatorial nature of Theorem 2 does not permit an an-
alytical simplification of (13) in the steady state. However, (17)
illustrates that cliques of the same size have the same probability,
because all walkers have the same steady-state distribution s̃.
Therefore, the probability of a steady-state contact graph does
not depend on the labelling of walkers inside cliques, but rather
only on clique sizes and the steady-state vector s̃.

Example 2: Let M = 4 walkers be in the steady-state s̃ =
[0.1 0.1 0.1 0.7]T . Using Theorem 2, we calculate the probability
distribution of the steady-state contact graph G∞ formed by the
walkers. In Fig. 4 , we plot the most probable 4 realisations
and illustrate that the second, third and fourth most probable
realisations have equal probabilities and the same topologies.

Consequently, allm-clique steady-state contact graphs, which
have the same m clique sizes, have equal probability and we are
thus motivated to study the probability of unlabelled steady-state
contact graphs.

1The code is available at: https://github.com/DavidAlmasan/rwig

A. Unlabelled Contact Graphs

Consider a steady-state m-clique contact graph realisation
g∞ = {A1, . . .,Am} with clique sizes |A1| = q1, ..., |Am| =
qm. Additionally, denote by Q = {q1, . . ., qm} a set of m posi-
tive integers which sum to M , i.e.

∑m
i=1 qi = M .

We seek the number γ(Q) of different steady-state m-clique
contact graph realisations with M walkers where the set formed
by clique sizes of each realisation is equal to the set Q. The
number γ is equal to the solution to the combinatorial problem
of counting how many ways there are to arrange M identical
objects into m bins with sizes {q1, . . ., qm}. If we denote by cj
the number of cliques of size j i.e. cj = |{i ∈ {1, . . .,m}:qi =
j}|, for all 1 ≤ j ≤ M , the solution to the problem is, by [38,
equation (13.3)],

γ(Q) =
M !∏m

i=1 qi!
∏M

j=1 cj !
. (18)

Any realisation g with equal clique size set has the same
structure. Hence, removing the node labels of any contact graphs
with clique size set Q results in the unlabelled graph gu which is
equivalent to the set Q. We consider unlabelled contact graphs
when all walkers are found in the same steady-state because, as
discussed in the beginning of Section IV, all realisations with
equal clique size set have equal probability.

Unlabelled contact graphs allow us to scale RWIG to higher
walker counts M by reducing the contact graph state space. For
instance, Table I shows that the total number of contact graphs for
M = 9 walkers and N = 10 states is 21,147. However, the total
number of unlabelled contact graphs for M = 9 and N = 10
is only 30, which is the number of partitions of the positive
integer M = 9 into a multiset of positive integers, such that the
elements sum toM . Hence, as we increase the number of walkers
M considerably above the number of states N in the Markov
graph, we avoid the combinatorial Bell numbers explosion of the
contact graph state space by omitting fine grained information
on the walkers’ clique assignment (i.e. which walker belongs to
which clique) and allow for practical analysis of the clique sizes
distribution.

Consider any labelled contact graph realisation g which re-
sults in an unlabelled graph gu. Then the probability of an
unlabelled graph gu is defined by Lemma 3.

Lemma 3: The probability of a steady-state unlabelled m-
clique contact graph gu with clique sizes Q = {q1, . . ., qm} and
M walkers is

Pr[Gu
∞ = gu] = γ(Q) Pr[G∞ = g], (19)

where γ(Q) is defined by (18), g = {A1, . . .,Am} is a contact
graph realisation obtained by any labelling of the nodes in the
unlabelled realisation gu with distinct labels from the walker set
M and

Pr[G∞=g] =
∑
π∈Pg

(∏
C∈π

(−1)|C|−1(|C|−1)!

) ∏
A∈g(π)

(
N∑
i=1

s̃
|A|
i

)

(20)
with all walkers traverse the same Markov graph with N states
and steady-state vector s̃.
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Fig. 5. Probability density of the unlabelled contact graph Gu∞ formed by 4
walkers.

Example 3: Let M = 4 walkers be in the steady-state s̃ =
[0.1 0.1 0.1 0.7]T . Using Lemma 3, we calculate the probability
distribution of the steady-state unlabelled contact graph Gu

∞
formed by the walkers and plot it in Fig. 5 .

B. A Combinatorial Computation of the Steady-State Graph

Another way to compute the probability of a steady-state
unlabelled m-clique contact graph, where each walker has the
same2 steady-state vector s̃, can be obtained from Theorem 1.
For a labelled contact graph g = {A1, . . .,Am}, the probability
of realisation g becomes

Pr[G∞ = g] = lim
k→∞

Pr[Gk = g] =

=

N∑
i1=1

N∑
i2=1

i2 �∈{i1}

. . .

N∑
im=1

im �∈{i1,...,im−1}

m∏
j=1

s̃
qj
ij
. (21)

where the clique sizes qi = |Ai|, for all 1 ≤ j ≤ m, form the
clique size setQ = {q1, . . ., qm}. The number of labelled graphs
with clique size set Q is given by (18), and thus the probability
of an unlabelled steady-state contact graph gu with clique size
set Q is

Pr[Gu
∞=gu]=

M !
∑N

i1=1

∑N
i2=1

i2 �∈{i1}
. . .
∑N

im=1
im �∈{il}m−1

l=1

∏m
j=1 s̃

qj
ij∏m

i=1 qi!
∏M

j=1 cj !
.

(22)

where cj is the number of cliques of size j, for all 1 ≤ j ≤ M .

V. EMPIRICAL ANALYSIS

The assumption of RWIG, that all walkers found in the same
Markov state at discrete-time k are connected in the contact
graph, implies that the contact graph Gk is formed by the union
of disconnected cliques. In this section, we analyse various
empirical temporal networks to validate our assumption and we
demonstrate that RWIG is able to reproduce contact graphs with
similar topological properties.

A. Datasets

We inspect a series of empirical datasets collected through the
SocioPatterns sensing platform (http://www.sociopatterns.org).
Génois and Barrat [39] study how co-location graphs can be used

2If not all walker’s probabilities are the same, then we must again compute
all possible partitions as in Theorem 2.

Fig. 6. Clique size distribution (top) and clique count distribution (bottom)
for three co-location datasets.

as a proxy for face-to-face contacts. Similar to our fundamental
assumption in RWIG, individuals are considered connected in
a co-location graph if they are found to be in the same spatial
location. Consequently, the co-location datasets are snapshots
at discrete time steps of graphs. Our analysis of the datasets
released in [39] found that all co-location samples consist of
unions of disconnected cliques, in complete accord with the
topology of the contact graphs generated by RWIG.

We study the clique size distribution and the clique count
distribution in co-location graphs. The clique size distribution
is defined as the probability of observing a clique of a certain
size and offers insight into possible patterns of typical clique
sizes. The clique count quantifies the connectivity of the contact
graph. Fig. 6 depicts the clique size and count distributions
for three co-location datasets from [39]: InVS15 (219 nodes),
LyonSchool (242 nodes) and Thiers13 (328 nodes). For the
clique size distribution, we only consider cliques formed of at
least two individuals.

As shown in Fig. 6, most cliques for all datasets are small
in size and consist mainly of two nodes. However, the clique
count distribution indicates that some datasets exhibit stronger
connectivity. For instance, the co-location graphs in LyonSchool
have on average fewer cliques than the graphs in InVS15 while
having a larger number of nodes. Hence, there is a comparably
higher propensity for larger clique sizes in the graphs from
LyonSchool, which is supported by Fig. 6. Overall, there is
significant variability in the structure of co-location graphs.

Finally, we investigate the impact of the number of Markov
states N and the walkers’ Markov transition probability ma-
trices Pr on the accuracy of modelling empirical contact
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TABLE II
STEADY-STATE VECTORS

Fig. 7. Clique size distribution (top) and clique count distribution (bottom)
for unlabelled steady-state contact graphs.

graph distributions using RWIG. An ablation study is found in
Appendix G.

B. Simulations of Steady-State Contact Graphs

We now show how RWIG is able to generate both sparse
and dense contact graphs with minimal parameter tuning. As
the unlabelled steady-state contact graph distribution Pr[Gu]
depends only on the steady-state distribution s̃, we compute
the clique size and clique count distributions for a range of
different steady-state distributions. We consider M = 10 walk-
ers and a Markov graph with N = 15 states which admits a
steady-state vector s̃. We consider three different steady-state
vectors (see Table II). The first two steady-state vectors s̃ =
[s1 s2 . . . sN ]T have equal probability s1 = s2 = . . . = sN−1

for the the first N−1 states while the probability sN of state
N takes values sN > s1 and sN  s1. We also consider the
steady-state vector with the last three elements equal to each
other s̃ = [ 1

1200 . . . 1
1200 0.32 0.32 0.32], which we call the

Multimodal steady-state vector.
Fig. 7 illustrates the clique size and clique count distributions

for M = 10 walkers on a N = 15 state Markov graph. We
overlay a smooth Kernel Density Estimate (KDE) line plot on
top of the histograms for better visualisation.

VI. CONCLUSION

We present RWIG, a temporal contact graph model generated
by independent random walkers on a Markov graph. A random
walk on a Markov graph is a realisation of a Markov process,
which is specified in discrete time by a transition probability
matrix Pr and an initial condition sr[0] for each walker wr. By
choosing the matricesPr as well the vectors sr[0], any collection
of discrete-time Markov processes can generate a corresponding
temporal contact graph sequence consisting of disjoint cliques,
which makes RWIG general.

We derive the probability distribution (Theorem 2) of the
RWIG contact graphs under the assumption of known initial
walker states and transition probabilities in the Markov graph.
In Section V, we show that many real temporal network datasets
consist of disconnected cliques, in complete accord with the
graph configurations implied by the co-location principle of
RWIG. We further demonstrate that RWIG is capable of pro-
ducing diverse contact graphs including graphs with many small
cliques (e.g. sN = 0.33) or few large cliques (e.g. sN = 0.96).
Moreover, we illustrate how clique size variety is already im-
posed by only tuning the steady-state vector s̃.

In general, the accuracy of RWIG depends on the number of
states N in the Markov graph. Hence, we perform an ablation
study in Appendix G to illustrate the trade-off between model
complexity and accuracy. When all walkers follow the same
Markov transition probability matrix P , RWIG’s accuracy in
generating realistic contact graph distributions increases with the
number of Markov statesN . However, the additional complexity
of different Markov policies is enough to instill RWIG with su-
perior modelling performance. RWIG perfectly reproduces (i.e.
with zero average error) the empirical contact graph distributions
from the LyonSchool dataset even when the Markov graphs have
only a few states (Appendix G, Fig. 9).

The analytical tractability of the model, along with the capa-
bility to create a wide variety of contact graphs, renders RWIG
a promising basis for temporal graphs generative modelling.

VII. FURTHER WORK

We will explore extensions to the RWIG model:
First, we plan to address the inverse problem, that consists of

finding the class of transition probability matrices P that gener-
ates a given K-length sequence of contact graphs G1, . . ., GK .
While statistical methods such as maximum likelihood esti-
mation lie at the heart of the problem, the complexity of the
parameter search space and scarcity of similarity measures for
temporal graphs make this task non-trivial.

Second, given that a link in Gk occurs, what is the probability
that that link still exists at time l > k in Gl? Alternatively, can
RWIG’s transition probability matrix be tuned to generate a
“link burst” (i.e. the existence of a link over multiple time slots).
Many other questions or assumptions made in the temporal graph
community may be addressed from the “process point of view”
of RWIG.

Third, motivated by the importance of higher-order correla-
tions in time-respecting paths [20], [24], can RWIG be used to
analytically calculate the probability of time-respecting paths of

Authorized licensed use limited to: TU Delft Library. Downloaded on April 26,2025 at 09:34:54 UTC from IEEE Xplore.  Restrictions apply. 



1658 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 12, NO. 3, MAY/JUNE 2025

length k? The answer would not only unravel which mechanisms
(in terms of the underlying Markov graph and the transition
probability matrixP ) can lead to temporal graphs, whose causal
topology –i.e. which nodes can indirectly influence each other
via time-respecting paths– differs from that of the corresponding
static graph, but it would also shed light on the question why
many human contact patterns exhibit second-order correlations,
which has been shown to strongly influence the dynamics of
diffusion and epidemic spreading [13], [14].

Finally, we outline that RWIG fundamentally represents a
framework for analysing the co-occurence in time and sample
space of any set of possibly different stochastic processes. It
would be fruitful to examine the applicability of RWIG to
temporal graphs which are not inspired by human mobility. For
example, if we consider the action space of reinforcement learn-
ing agents, RWIG could model the co-occurence in space and
time of the same action taken by agents which follow possibly
different policies. RWIG would thus be able to offer insight into
how different agent policies converge towards optimal actions.
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APPENDIX A
LIST OF SYMBOLS

N ∈ N Number of states
K ∈ N Discrete time
M ∈ N Number of random walkers
Pw ∈ RN×N Transition probability matrix of

walker w
ei ∈ {0, 1}1×N The all zero vector with one at

position i
u ∈ {1}1×N The all ones vector
wi Label of walker i
xj [k] ∈ {1, . . ., N} State of walker wj at discrete

time k
Xj [k] Random variable of the state of

walker wj at discrete time k
si[k] ∈ R1×N Markov states probability distri-

bution of walker wi at discrete
time k

M∈ {w1, . . ., wM} The complete set of M walkers
|M| = M The cardinality of setM
Ai ∈M Clique i of walkers (i.e. a subset

of the walker setM)
sM[k] ∈ RM×N Markov states probability distri-

bution of all walkers M at dis-
crete time k

sAi [k] ∈ R|Ai|×N Markov states probability distri-
bution of walkers belonging to
clique Ai

PA ∈ RN×N×|A| Tensor with transition probabili-
ties of all walkers from subset A
found in the same Markov state
at time k

πm m-partition on the walker setM
g Contact graph (i.e. partition on

the setM) realisation
Gk Random variable of the contact

graph at discrete time k
KM Complete graph with M nodes
S(k)M ∈ N Stirling number of the second

kind
BM ∈ N M th Bell number
σAi

[k] The probability that all walkers
in the subset Ai are in the the
same Markov state at time k (i.e.
at the same node in the underly-
ing graph)

Pg The set of all possible partitions
on the contact graph g

C Cell of a partition on a contact
graph (i.e. a subset of cliques or
a subset of subsets of walkers)

g(π) The contact graph associated
with partition π on the contact
graph g (i.e. the amassed-clique
contact graph formed by coalesc-
ing cliques in g)

γ(Q) The number of labelled contact
graphs with clique size set Q

βm(π) The weight of the sigma product
associated with partition π on
a contact graph g in the sigma
expansion formula for the prob-
ability of contact graph g

APPENDIX B
PREREQUISITE ON COMBINATORICS

B.1 Partitions and Stirling numbers

Partition [1], [2]. A splitting of the elements of the set
M = {1, 2, ...,M} into m non-empty disjoint subsets is an
m-partition πm. The subsets of πm are called cells. We refer
to a partition π where we do not know the number of cells
by omitting the subscript m.

Example 4. LetM = {1, 2, 3, 4, 5}. A 3-partition π3 onM is
{{1, 2}, {3}, {4, 5}}. The subsets C1 = {1, 2}, C2 = {3}, C3 =
{4, 5} are the 3 cells of π3.

Stirling number of the second kind [2], [3]. The Stirling
number of the second kind S(k)M counts the number of
k-partitions possible on a set with M elements. Hence,
S(k)M = 0 for k > M and S(0)M = δ0,M , where δ is the
Kronecker delta. A few examples of Stirling numbers are
presented in Table 3.

TABLE 3
Examples of S(k)

N .

N
k 5 6 7 8 9 10

1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21
8 1 127 966 1701 1050 266
9 1 255 3025 7770 6951 2646
10 1 511 9330 34105 42525 22827

B.2 Bell numbers

Bell number [2], [3]. The number of all possible partitions
π on a set with M elements is the Bell number BM ,
which equals the sum of the number of k-partitions, for all
k = {0, 1, ...,M}. In terms of Stirling numbers of the second
kind, the Bell Number BM is:

BM =
M∑
k=0

S(k)M .

The first few Bell numbers are presented in Table 4.

TABLE 4
Bell numbers BM .

M 1 2 3 4 5 ... 10
BM 1 2 5 15 52 ... 115975
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The k-th Bell number Bk equals the number of graphs on
k-nodes whose subgraphs consists of disconnected cliques.
The Bell numbers satisfy the recursion

Bn+1 =
n∑

k=0

(
n

k

)
Bk, (23)

where B0 = B1 = 1. Since the binomial coefficients
(n
k

)
are

integers, the recursion (23) indicates that the Bell numbers
are also integers. For example, apart B0 = B1 = 1, we find
that B2 = 2, B3 = 5, B4 = 15, B5 = 52, B6 = 203, B7 = 877,
B8 = 4140, B9 = 21147 and B10 = 115975. Another form of
the recursion (23) is

Bn+1

n!
=

n∑
k=0

Bk
k!

1

(n− k)!
,

which motivates us to consider the generating function
F (z) =

∑∞
k=0

Bk

k! z
k of the Bell numbers. We multiply both

sides of the rewritten recusion by zn and summing over all
non-negative integer n ≥ 0,

∞∑
n=0

Bn+1

n!
zn =

∞∑
n=0

(
n∑

k=0

Bk
k!

1

(n− k)!

)
zn.

The Cauchy product of two power series (see e.g. [4])
∞∑

n=0

anz
n

∞∑
n=0

bnz
n =

∞∑
n=0

(
n∑

k=0

akbn−k

)
zn

indicates that
∞∑

n=0

Bn+1

n!
zn =

∞∑
k=0

Bk
k!

zk
∞∑
k=0

1

k!
zk = F (z) ez.

Differentiating the generating function yields dF (z)
dz =∑∞

k=1
Bk

(k−1)!z
k−1 =

∑∞
n=0

Bn+1

n! zn which shows that the
generating function obeys

dF (z)

dz
= F (z) ez

or 1
F (z)

dF (z)
dz = d

dz logF (z) = ez . After integration with
respect to z from 0 to z, we find

logF (z)− logF (0) = ez − 1

which equals
F (z) = F (0) e(e

z−1).

Since F (0) = B0 = 1, we finally arrive at the explicit form
of the generating function of the Bell numbers

F (z) =
∞∑
k=0

Bk
k!

zk = e(e
z−1) =

1

e
ee

z

. (24)

The Taylor expansion of ee
z

around z0 = 0 is ee
z

=∑∞
n=0

enz

n! =
∑∞

n=0
1
n!

∑∞
k=0

nk

k! z
k and

ee
z

=
∞∑
k=0

( ∞∑
n=0

nk

n!

)
zk

k!
.

Equating corresponding powers in the above and (24) gives
the infinite series for the Bell numbers

Bk =
1

e

∞∑
n=0

nk

n!
. (25)

B.3 Bell numbers and Stirling numbers
The “double” generating functions of the Stirling numbers
of the first kind S

(k)
m and of the second kind S(k)m are [4]

(1 + x)
u
=

∞∑
m=0

m∑
k=0

S
(k)
m

m!
ukxm, (26)

eu(e
x−1) =

∞∑
m=0

m∑
k=0

S(k)m

m!
ukxm.

Comparing with (24) shows that
∞∑

m=0

Bm
m!

zm = e(e
z−1) =

∞∑
m=0

(
m∑

k=0

S(k)m

m!

)
zm.

Equating corresponding powers in z results in

Bm =
m∑

k=0

S(k)m . (27)

Finally, invoking the closed form of the Stirling numbers of
the second kind S(k)m (see e.g. [5, sec. 24.1.4.C])

S(k)m =
1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jm (28)

then leads to the finite sum

Bm =
m∑

k=0

1

k!

k∑
j=0

(−1)k−j

(
k

j

)
jm.

Simplifying Bm =
∑m

k=0

∑k
j=0(−1)k−j jm

j!(k−j)! =∑m
j=0(−1)j

jm

j!

∑m
k=j

(−1)k

(k−j)! becomes

Bm =
m∑
j=0

jm

j!

m−j∑
k=0

(−1)k

k!
, (29)

where we observe that
∑m−j

k=0
(−1)k

k! rapidly tends to 1
e with

large m. In summary, with (25), we find that

Bm =
m∑
j=0

jm

j!

m−j∑
k=0

(−1)k

k!
=

1

e

∞∑
j=0

jm

j!
.

which is quite remarkable.

B.4 Stirling recursion lemma
Lemma 4. The solution to the recursive equation

xm = −
m−1∑
l=1

S(l)m xl (30)

with initial conditions x1 = 1 is

xm = S(1)
m = (−1)m−1(m− 1)!

where S
(1)
m and S(l)m are the Stirling numbers of the first and

second kind.

Proof. Since S(k)m is the Stirling number of the second kind
with S(m)

m = 1 and S(1)m = 1, equation (30) is equivalent to

xm +
m−1∑
l=1

S(l)m xl = S(m)
m xm +

m−1∑
l=1

S(l)m xl =
m∑
l=1

S(l)m xl = 0.

(31)
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Substitution of the initial condition x1 = 1 and S(1)m = 1 into
(31) yields

m∑
l=2

S(l)m xl = −1. (32)

Multiplying both sides of (32) by the Stirling number of the
first kind S

(m)
q

S(m)
q

m∑
l=2

S(l)m xl = −S(m)
q

and summing over the integers m yields

b∑
m=2

m∑
l=2

S(m)
q S(l)m xl = −

b∑
m=2

S(m)
q .

We reverse the summations
b∑

m=2

m∑
l=2

S(m)
q S(l)m xl =

b∑
l=2

(
b∑

m=l

S(m)
q S(l)m

)
xl.

The second orthogonality formula of the Stirling numbers
[2, equation (13.14)]

q∑
m=l

S(m)
q S(l)m = δlq (33)

suggests to choose b = q so that, for q ≥ 2,

−
q∑

m=2

S(m)
q =

q∑
l=2

(
q∑

m=l

S(m)
q S(l)m

)
xl =

q∑
l=2

δlqxl = xq.

The generating function of the Stirling numbers of the first
kind, m!

(x
m

)
= Γ(x+1)

Γ(x+1−m) =
∏m−1

k=0 (x− k) =
∑m

k=0 S
(k)
m xk,

shows that
q∑

m=2

S(m)
q =

q∑
k=0

S(k)
q − S(1)

q = −S(1)
q .

Finally, S(1)
q = (−1)q−1

(q − 1)! and we arrive, for q ≥ 1, at

xq = S(1)
q = (−1)q−1

(q − 1)!

which proves Lemma 4.

APPENDIX C
ALGORITHM FOR THE PROBABILITY DISTRIBUTION
OF RWIG GRAPHS

Algorithm 1 CalcSigma
Input: sA[0] - initial states of walkers from set A,

PA - Markov transition matrices walkers from set
A,

k - discrete time.
Output: σ - the probability that walkers from set A are in
the same state at discrete time k.
h← [1 1 · · · 1]
for each w ∈ A do

sw[k]← sw[0]P
k
w

h← h ◦ sw[0]
end for
σ ← h · [1 1 · · · 1]T
return σ

Algorithm 2 RWIG-pmf
Input:M The set of M random walkers,

sM[0] - initial states of M walkers,
PM - Markov transition matrices of M walkers,
k - discrete time,
g - contact graph realisation (partition of the walker

setM).
Output: p - the probability of g at discrete time k.
p← 0
P∗
g ← NonTrivialPartitions(g)

for each πg ∈ P∗
g do

β(πg)← 1
σ ← 1
for each C ∈ πg do

β(πg)← β(πg)× (−1)|C|−1(|C| − 1)!
for each A ∈ C do

σ ← σ × CalcSigma(A,PA, sA[0], k)
end for

end for
p← p+ σβ(πg)

end for
return p

We use the Python programming language for our code-
base. For the NonTrivialPartitions(g) function, we use a
Python implementation of enumerating l-partitions using
the more-itertools library. For all l = {1, 2, ..., |g| −
1}, we generate a list of l-partitions on g using the
set_partitions function from the more-itertools li-
brary and concatenate the lists to create the set of non-trivial
partitions P∗

g .

APPENDIX D
COMPUTATIONAL COMPLEXITY

For a random choice of discrete time k and transition rate
matrix P , we record the computational complexity of the
entire probability distribution for an RWIG contact graph
calculated using both Theorems 1 and 2. The ratio r = t1

t2
between the execution time t1 using Theorem 1 and the
execution time t2 using Theorem 2 is used to quantify the
r-fold decrease in execution time when using Theorem 2
instead of Theorem 1.

We tabulate in Figure 8 the speedup ratio r for various
combinations of number of states N and number of walkers
M , and average the execution times over multiple itera-
tions of calculating the probability distribution of the RWIG
graph. We use Python’s inbuilt time.time() function to
record execution time. The reduction in time complexity
quickly becomes relevant for small values of M,N , where
for M = N = 7 the 35-fold decrease in execution time
speeds up the probability distribution calculation from 18.29
seconds to 0.52 seconds.

APPENDIX E
SIGMA PRODUCTS WEIGHTS

E.1 1-partition weight βm(π1)

Lemma 1. Let π1 = {M} be the 1-partition on the walker set
M. The number βm(π1) of sigma product terms σM[k] in the
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Fig. 8. Speedup ratio heatmap for various combinations of M and N

sigma expansion formula (12) for the probability of an m-clique
contact graph depends only on the number of cliques m as

βm(π1) = (−1)(m−1)(m− 1)! (34)

Proof. In (6), we show that any 2-clique contact graph prob-
ability has the same σM[k] weight β2(π1) = −1, because

Pr[Gk = {A1,A2}] = σA1
[k]σA2

[k]− σM[k]

= β2({{A1}, {A2}})σA1
[k]σA2

[k]

+ β2(π1)σM[k]. (35)

Similarly, equation (9) indicates that β3(π1) = 2. Naturally,
β1(π1) = 1, because the probability Pr[Gk = {M}] =
Pr[all walkers in same Markov state at time k] := σM[k].
We prove the general case for βm(π1) by induction.

Consider all non-singleton l-partitions on a m-clique
contact graph g = {A1,A2, ...,Am}, where l < m. Splitting
the summation over all non-singleton partitions P∗

g in (11)
into l-partitions yields:

Pr[Gk = g] =
m∏
i=1

σAi
[k]−

m−1∑
l=1

∑
π∈Pg(l)

Pr[Gk = g(π)], (36)

wherePg(l) is the set of l-partitions on g. Consequently, each
amassed-clique contact graph g(π) is an l-clique contact
graph.

Assume that the number of terms σM in the
sigma expansion (12) of any l-clique contact graph is
βl(π1), for each positive integer l < m. Appendix B.1 shows
that the Stirling number of the second kind S(l)m is equal to
the number of l-partitions on a set with m. Therefore, the
number of elements in the set Pg(l) is |Pg(l)| = S(l)m . We
perform a sigma expansion for each amassed contact graph
g(π) in (36). Since we are interested in equating σM[k] terms

in (12) and the sigma expansions in (36), we omit all terms
except for σM[k],

Pr[Gk = g] =
m∏
i=1

σAi
[k]−

m−1∑
l=1

∑
π∈Pg(l)

Pr[Gk = g(π)]

= −
m−1∑
l=1

S(l)m βl(π1)σM[k] + ... (37)

Equating σM[k] terms in (12) and (37) yields the recursion

βm(π1) = −
m−1∑
l=1

S(l)m βl(π1). (38)

Lemma 4 in Appendix B.4 gives the solution of recur-
sion (38) with initial condition β1(π1) = 1 as βm(π1) =
(−1)(m−1)(m− 1)!, which demonstrates Lemma 1.

E.2 General q-partition weight βm(πq)

Lemma 2. Let g be a m-clique contact graph. Let πq =
{C1, ..., Cq} be a q-partition on g, with q < m. Let the cardinality
of each cell Ci be ci. Let the number of sigma product terms∏q

i=1 σCi
[k] in the sigma expansion formula of g be βm(πq).

Then

βm(πq) =

q∏
i=1

(−1)ci−1(ci − 1)! (39)

Proof. Consider q distinct sets of walkers {Ci}qi=1. Each set Ci
forms a ci-clique contact graph g(i) = {A1(i), ...Aci(i)}. For
each set Ci, the sigma expansion formula (12) for the prob-
ability Pr[Gk(i) = g(i)|PCi

, sCi
[0], k] contains βci({Ci}) =

βci(π1) = (−1)ci−1(ci − 1)! terms σCi
[k] by Lemma 1.

Consider now the union of all walker setsM = ∪qi=1Ci.
By definition (3), the probability that all walkers from Ci are
in the same state equals σCi [k]. Since walkers are all inde-
pendent, the contact graphs g(i), formed by the walker sets
Ci, for all i ∈ {1, 2, ..., q} are also independent. Therefore,
the probability of the contact graph realisation g generated
by all walkers inM is

Pr[Gk = g] =

q∏
i=1

Pr[Gk(i) = g(i)|PCi , sCi [0], k]. (40)

Performing a sigma expansion for each contact graph prob-
ability term Pr[Gk(i) = g(i)|PCi , sCi [0], k] in (40) and omit-
ting all terms, which are not

∏q
i=1 σMi [k], yields

Pr[Gk = g] =

q∏
i=1

βci({Ci})σCi
[k] + ...

But βci({Ci}) = (−1)ci−1(ci − 1)! and thus:

Pr[Gk = g] =

(
q∏

i=1

(−1)ci−1(ci − 1)!

)(
q∏

i=1

σCi
[k]

)
+ ...

(41)

Since the sets {Ci}qi=1 represent the cells of a q-partition
on the walker set M, equation (41) states that the weight
β|M|(πq) of the sigma product term

∏q
i=1 σCi

[k] associ-
ated with a general q-partition πq = {C1, ..., Cq} on g is∏q

i=1(−1)ci−1(ci − 1)!.
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APPENDIX F
4-CLIQUE CONTACT GRAPH PROBABILITY

Let g = {A1,A2,A3,A4}. The formula for the probability
Pr[Gk = g] is

Pr[Gk = g] =σA1 [k]σA2 [k]σA3 [k]σA4 [k]

− Pr[Gk = {A12,A3,A4}]
− Pr[Gk = {A13,A2,A4}]
− Pr[Gk = {A14,A2,A3}]
− Pr[Gk = {A23,A1,A4}]
− Pr[Gk = {A24,A1,A3}]
− Pr[Gk = {A34,A1,A2}]

− Pr[Gk = {A12,A34}]
− Pr[Gk = {A13,A24}]
− Pr[Gk = {A14,A23}]

− Pr[Gk = {A123,A4}]
− Pr[Gk = {A124,A3}]
− Pr[Gk = {A134,A2}]
− Pr[Gk = {A234,A1}]

− Pr[Gk = {M}].

Introducing the sigma terms definition (3) yields

Pr[Gk = g] = σA1
[k]σA2

[k]σA3
[k]σA4

[k]

− σA12
[k]σA3

[k]σA4
[k]− σA13

[k]σA2
[k]σA4

[k]

− σA14
[k]σA2

[k]σA3
[k]− σA23

[k]σA1
[k]σA4

[k]

− σA24
[k]σA1

[k]σA3
[k]− σA34

[k]σA1
[k]σA2

[k]

+ 2(σA123
[k]σA4

[k] + σA124
[k]σA3

[k] + σA134
[k]σA2

[k]

+ σA234
[k]σA1

[k])

+ σA12
[k]σA34

[k] + σA13
[k]σA24

[k] + σA14
[k]σA23

[k]

− 6σM[k].

APPENDIX G
ABLATION STUDY

We investigate RWIG’s capability to generate empirical con-
tact graph distributions present in co-presence datasets. We
study ablation (i.e. systematically removing components or
features from the model) at two levels via various consid-
erations for the random walkers: first, for the same number
of Markov states N , we enforce the walkers to follow the
same Markov transition probability matrix. Second, we vary
the number of Markov states N of the Markov graphs.
The experimental setup and methodology are described as
follows.

To create the ground truth data, we consider a subset of
nodes (and consequently the respective contact subgraph
sequence) from the LyonSchool dataset. To calculate the
probability distribution of the contact graph Gdata formed
by the subset of nodes at any time step, we first identify
the unique occurrences within the contact graph sequence
and count how often each unique graph sample appears.

Let K represent the total length of the sequence and ni

be the number of times each unique contact graph sample
gi occurs. The probability Pr[Gdata=gi] of observing the
unique sample gi is then given by the ratio of its occurrences
to the total length of the sequence, i.e. Pr[Gdata=gi] =

ni

K .
By repeating this procedure for all unique samples, we
obtain the complete probability distribution Pr[Gdata].

The contact graph distribution distribution at time k,
Pr[Gk], generated by RWIG is parametrised by the initial
states sM = {si[0]}Mi=1 of the walkers and the (possibly
different) Markov transition matrices PM = {Pi}Mi=1 (which
admit steady-state distributions s̃ = {limk→∞ si[0]P

k
i =

s̃i}Mi=1. In practice, the distribution Pr[Gk] at any discrete
time k can be approximated by the steady-state distribution
Pr[G∞] due to the exponential convergence rate towards
the steady state of Markov chains. We thus denote the RWIG
contact graph distribution generated by the steady-state vec-
tors s̃ by Pr[G∞|s̃]. In other words, RWIG is parametrised
by the steady-state vectors s̃.

To quantify how close the distribution Pr[G∞|s̃] is
to the empirical contact graph distribution Pr[Gdata],
we employ the Kullback-Leibler (KL) divergence [6], de-
noted DKL(Pr[G∞|s̃] || Pr[Gdata]), or simply DKL(s̃).
The KL divergence between two probability distributions
Pr[G∞|s̃],Pr[Gdata] defined on the same contact graph sam-
ple space G is

DKL(s̃) =
∑
g∈G

Pr[G∞ = g|s̃] log
(
Pr[G∞ = g|s̃]
Pr[Gdata=g]

)
. (42)

The KL divergence measures the surplus of information (i.e.
surprise) needed to describe a distribution Pr[Gdata] when
using a distribution Pr[G∞|s̃], or in other words, how well
does Pr[G∞|s̃] approximate Pr[Gdata].

For a given number of Markov states N , the number of
parameters of our model is a constant equal to MN (i.e. the
number of walkers multiplied by the size of the steady-state
vectors). We are thus able to perform an optimisation over
the parameter space s̃ in order to find the set of optimal
parameters ŝ which minimises the KL divergence (42), i.e

ŝ = argmin
s̃

DKL(s̃)

= argmin
s̃

∑
g∈G

Pr[G∞ = g|s̃] log
(
Pr[G∞ = g|s̃]
Pr[Gdata=g]

)
. (43)

We compute the KL divergence DKL(s̃) for different val-
ues of the number of Markov states N = {3, 6, 9, 12, 15, 18}
(i.e. different sizes of the parameter space) for both cases
of walkers having possibly different and the same Markov
probability transition matrices (and therefore the same
steady-state vectors). To avoid spurious results from an ex-
periment involving a single subset of nodes, we consider 100
different samplings of node subsets from the LyonSchool
dataset and repeat the ablation study for each node subset.
We plot average KL divergence E[DKL(s̃)] against the num-
ber of Markov states N for both cases of walkers having
possibly different and the same steady-state vectors. The
spread of ±2 standard deviations from the mean E[DKL(s̃)]
is shown using vertical bars. The results are displayed in
Figure 9.
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Fig. 9. KL divergence between the generated Pr[G] and empirical
Pr[Gdata] contact graph distributions

When all walkers follow the same Markov graph, we
observe an expected decrease in error (i.e. KL divergence)
as we increase the number of Markov states N , and conse-
quently the number of parameters. However, the KL diver-
gence values converge slowly towards zero as we increase
the number of states N , which indicates that either 1) the
Markov state space is very large, or 2) the modelling assump-
tion that all walkers follow the same Markov graph is insufficient
for accurate reproduction of empirical contact graph distributions .
We conjecture the second case to be the reason for a large KL
divergence, and show in Figure 9 that when we allow the
walkers to follow different walker policies, RWIG always
achieves zero KL divergence even for very small values
of N = M = 3. Even more remarkable, by allowing the
walkers to follow different Markov graphs, we achieve a
lower KL divergence even if the number of parameters is
considerably smaller (N = 3 and 9 parameters) than in
the case of a common Markov graph (N = 18 and 18
parameters because all the steady-state vectors are equal).
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