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Reachability-based Robustness of Controllability in
Sparse Communication Networks
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Abstract—In this paper, we propose closed-form analytic ap-
proximations for the number of controllable nodes in sparse com-
munication networks from the aspect of network controllability,
considering link-based random attack, targeted attack, as well as
random attack under the protection of critical links. We compare
our approximations with simulation results on communication
networks. Results show that our approximations perform well
for all three attack strategies as long as the fraction of removed
links is small. Only when the fraction of removed links is
large, our approximation for targeted attacks does not fit well
with simulation results. Finally, we validate our approximations
using 200 communication networks and some synthetic networks.
Results show that our approximations perform well in most cases.

Index Terms—Network controllability, network robustness,
reachability, communication networks.

I. INTRODUCTION

IN recent years, the analysis of network controllability from
a graph theoretic point of view has become an active area

of research. Through the control of external inputs [1], a
controllable system can be driven from any arbitrary state to
any desired state in finite time . For example, a communication
network can be controlled externally through input signals
such as commands from control units connected to some of
the work stations [2].

Most work regarding the robustness of controllability has
focused on the number of controls required to maintain
network controllability after link or node failures. Lou et al.
[3] proposed a complex network model called q-snapback
network which has the strongest robustness of controllability
due to its advantageous inherent structure with many chain and
loop motifs, when compared with the multiplex congruence
network and the generic scale-free network. Pu et al. [4]
found that the degree-based node attack is more efficient
than a random failure for degrading the controllability in
random and scale-free networks. Nie et al. [5] found that the
controllability of Erdős-Rényi random graphs with a moderate
average degree is not very robust, whereas a scale-free network
with moderate power-law exponent shows a stronger ability
to maintain its controllability, when these networks are under
intentional link attack. Thomas et al. [6] identified that the
potency of a degree-based attack is directly related to the
betweenness centrality of the edges being removed. Chen et al
[7] evaluated the effect of the number of control inputs on the
controllability for random networks and scale-free networks

P. Sun, R. E. Kooij and P. Van Mieghem are with the Faculty of Elec-
trical Engineering, Mathematics and Computer Science, Delft University of
Technology, Delft, The Netherlands.

E-mail: P.Sun-1@tudelft.nl.

in the process of cascading failure. Lou et al [8] proposed a
framework of hierarchical attack by means of link- or node-
removal attacks and suggest to protect the critical links and
nodes to maintain network controllability. Xiao et al. [9]
proposed a method that modifies any given network with strict
structural perturbation to make the network homogenous and
effectively enhance its robustness against malicious attacks.
Zhang et al. [10] optimized the robustness of interdependent
network controllability by redundant design including node
backup and edge backup. Sun et al. [11] proposed closed-
form analytic approximations for the number of controls that
are needed to maintain network controllability, where links are
removed according to both random and targeted attacks.

The above work regarding the robustness of controllability
assumes that the network operator has the capability to add
additional controls at any location in the network in order
to maintain the current network controllable after attacks or
failures. In other words, the basic assumption of previous work
mentioned above is that network operators have sufficient bud-
get and quantity of resources that can be deployed in response
to an attack or failure. However, a more realistic assumption
is that network operators have a fixed budget and a limited
quantity of resources. Moreover, the increase in additional
controls is only a proxy for the most relevant information -
how much of the network is still controllable (reachable) after
an attack or failure. Parekh et al. [12] proposed the number of
controllable nodes as a new metric to quantify the robustness
of controllability under network perturbations. Thomas et al.
[6] analyzed the changes in the controllability of synthetic
networks from the perspective of reachability and found that
scale-free networks evidence higher robustness to random
failures than Erdős-Rényi networks. In this paper, we analyse
and measure the robustness of network controllability in terms
of reachability. In particular, we determine the maximum
number of nodes that are still controllable when the number
of driver nodes remains the same during the failure or attack
process. Here, the driver nodes are the nodes into which the
external control signals are directly injected.

This paper is organized as follows. In Section II, we
introduce some basic concepts and definitions in network
controllability proposed in [1]. In Section III, we analyse the
role of critical links in network controllability. In Section IV,
we compare the robustness of controllability for three cases:
random attack, random attack under protection and targeted
attack. In Section V, we propose analytic approximations for
the number of controllable nodes Nc in these three cases
and measure the accuracy of our approximations. Section VI
concludes the paper.
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II. REACHABILITY-BASED ROBUSTNESS OF
CONTROLLABILITY

A. Controllability of networks

Most real systems are driven by nonlinear dynamics. How-
ever, linear dynamics is a first step towards addressing the
controllability of real-world systems and provides sufficient
controllability conditions for particular nonlinear cases [1]. A
system is controllable if it can be driven from any initial state
to any desired final state by proper variable inputs in finite time
[13]. We consider a linear, time-invariant system G(A,B),
which is described by:

dx(t)

dt
= Ax(t) +Bu(t) (1)

where the N × 1 vector x(t) = (x1(t), x2(t), ..., xN (t))T

denotes the state of the system with N nodes at time t.
The weighted matrix A is an N × N matrix which describes
the network topology (graph) and the interaction strength
between the components as nodes in the graph. In this work,
we assume that there are no self-links in the networks,
which is also assumed in [1], [14]. The N × M matrix
B is the input matrix which identifies the M ≤ N driver
nodes controlled by outside input signals. The M × 1 vector
u(t) = (u1(t), u2(t), ..., uM (t))T is the input signal vector.
A driver node j ∈ {1, . . . ,M} has an input signal uj that is
externally fed in uj(t). In [6] and [12], the jth external source
which generates the input signal uj is named control node or
input node, while the N nodes in the network are named state
nodes. Since each driver node is injected by an input signal
generated by an external control node, the number of driver
nodes equals the number of control nodes.

The linear system defined by equation (1) is controllable, if
and only if the N× NM controllability matrix

C = (B,AB,A2B, ..., AN−1B) (2)

has full rank, i.e., rank(C) = N . Criterion (2) is called
Kalman’s controllability rank condition [15]. The rank of
matrix C provides the dimension of the controllable subspace
of the system. The input matrix B, which determines the
location of driver nodes, needs to be chosen properly to assure
that the controllability matrix C has full rank.

So far, most of the existing studies on the robustness of
controllability have measured the increase in the minimum
number Nd of driver nodes required as a proxy for the
reduction in controllability due to a failure. This indirect
approach of measuring robustness is referred to as control-
based robustness. The robustness of network controllability
from the perspective of reachability is also considered by
a few authors, see [6] and [12]. Besides, the control-based
robustness analysis of network controllability assumes that
the network operator has the capability to attach any amount
of additional control signals to the nodes in the network.
However, network operators normally have limited budget and
resources in real life, which constrains the ability to deploy
external controls. Based on these considerations, we focus
on the reachability-based robustness of controllability, which
determines the maximum number Nc of nodes that are still

under control when failure or attack occurs, during which the
number Nd0 of driver nodes remains the same [12]. For the
reachability-based controllability, there are two cases, namely
free control and fixed control [6]. In the free control case,
only the number Nd0 of driver nodes remains the same, but
the set of driver nodes can vary. In the fixed control case,
both the number and the set of driver nodes are fixed during
attacks or failures. In this paper, we only consider the free
control case and delegate the fixed control to future research.
For convenience, we use the term reachability to represent
reachability-based controllability.

B. R-value and challenges

We inherit the framework and some definitions proposed
for network robustness [16], [17] to investigate the robustness
of reachability. The robustness of a given network determined
by a service and an underlying topology is quantified by a
robustness value, referred to as the R-value. [16]. The R-
value is normalized to the interval [0, 1]. Thus, R = 1 reflects
complete functionality in an network without failures, and
R = 0 corresponds to the complete absence functionality in
a severely damaged network. The R-value can be a metric,
which is related to network topology and service, such as
the size of the giant component [18], the effective graph
resistance [19] and network efficiency [20]. In this paper, we
use the normalized maximum number of controllable nodes
nc = Nc/N as the R-value. The number Nc of controllable
nodes satisfies Nd0 ≤ Nc ≤ N , thus Nd0/N ≤ nc ≤ 1.

An elementary challenge is an event that changes the
network and thus changes the R-value. We assume that a
sequence of changes does not coincide in time. In this paper,
we confine an elementary challenge to a link removal in a
failure process. A perturbation is a series of m elementary
changes, characterized by a sequence of m corresponding
R-values {R[k]}0<k≤1, where k = m/L is the fraction of
removed links, m ∈ {1, . . . , L} is the number of removed
links and L is the number of links in the network. In this paper,
we choose the maximum number nc of controllable nodes as
the R-value and observe the impact of link removal on nc. As
shown in Figure 1, the maximum number nc of controllable
nodes has a decreasing trend as links are removed one by one.

C. Robustness envelopes

As discussed in the previous part, any realization of failure
processes can be expressed as a sequence of R-values denoted
{R[k]}0<k≤1 where k is the fraction of removed links and
k ∈ {1/L, 2/L, . . . , 1}. Assuming that the nature of the
failures is unknown and they occur independently, R[k] is
a random variable and can be described by its probability
density function (pdf). The pdf of this R[k] is computed using
all subsets of bkLc links in all possible perturbations. The
envelope for a network G is constructed using all R[k] for
k ∈ {1/L, 2/L, . . . , 1}, where boundaries are given by the
extreme R-values

Rmin[k] ∈ {min(R[1/L]),min(R[2/L]) . . . ,min(R[1])}, (3)
Rmax[k] ∈ {max(R[1/L]),max(R[2/L]) . . . ,max(R[1])}, (4)



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, OCTOBER 2020 3

which gives the worst- and best-case of robustness metrics for
a network after a given number of challenges [17]. Besides,
the expected R-value resulting from bkLc perturbations

Ravg[k] ∈ {E(R[1/L]), E(R[2/L]) . . . , E(R[1])}. (5)

Since R[k] defines a probability density function, we are
interested in the percentiles of R[k]

Rθ%[k] ∈ {Rθ%[1/L], Rθ%[2/L] . . . , Rθ%[1]} (6)

where Rθ%[k] are the points at which the cumulative dis-
tribution of R[k] crosses θ

100 , namely if Rθ%[k] = t, then
Pr[R[k] ≤ t] = θ

100 . We refer to Rθ%[k] as a θ-percentile and
define R0%[k] = Rmin[k], R100%[k] = Rmax[k].

We apply the envelope to present the influence of the failure
process on a network [16], [17]. The envelope profiles the
pdf of the random variables of the R-value, which is the
probability of a random variable to fall within a particular
region. The area of the envelope can be regarded as the
variation of the robustness impact of a certain series of
challenges, which quantifies the uncertainty or the amount of
risk due to perturbations. The effectiveness of attack strategies
can also be measured by comparing with the worst-, best- and
average performance provided by robustness envelopes.

Fig. 1. The impact of link removal on the normalized maximum number
nc of controllable nodes in a communication network DFN (German optical
backbone X-WiN network) with N = 58 and L = 87.

III. ANALYSIS OF CRITICAL LINKS

Liu et al. [1] proved that the minimum number Nd of driver
nodes needed for structural controllability, where the external
signals are injected to control the directed network, can be
obtained through the “maximum matching” of the network.
Define the source node of a directed link as the node from
which the link originates and the target node as the node
where the link terminates. A maximum matching of a directed
network is a maximum set of links that do not share source
or target nodes [21], which is illustrated in Figure 2(a). Such
links are coined “matching links”. Target nodes of matching
links are matched nodes and the other nodes are unmatched
nodes. In order to find the maximum number of matching
links, so as to determine the minimum number Nd of driver
nodes, a directed network G with N nodes and L links can

be converted into a bipartite graph BN,N with 2N nodes and
L links, as shown in Figure 2(b). A maximum matching in
a bipartite graph can be obtained efficiently by the Hopcroft-
Karp algorithm [22]. The unmatched nodes in a maximum
matching constitute a minimum set of driver nodes.

A. The role of critical links in maximum matching

Links in a network can be classified into three categories:
critical, redundant, and ordinary [1]. A link is critical if its
removal increases the minimum number of driver nodes Nd
by 1 to remain in full control of the system. A link is redundant
if it never belongs to a maximum matching. A link is ordinary
if it is neither critical nor redundant. In Figure 2(a), link a,
b, c and d (highlighted in red) are critical links, the removal
of any one of them will increase the number of driver nodes
by 1, while link e is redundant. The influence of the removal
of critical links can be explained by the maximum matching.
As shown in 2(b), all the critical links a, b, c, d belong to the
maximum matching of size 4. If any one of them is removed,
there is no alternative link to take its place in the maximum
matching. Thus, a new unmatched node will appear and the
number of driver nodes will increase by 1. Besides, critical
links are conditional and should be updated during attacks.
For example, link c is no longer a critical link in the resulting
network after link b is removed.

In our previous work [11], we proposed closed-form ana-
lytic approximations for the minimum number Nd of driver
nodes needed to fully control networks, where links are
removed according to both random and targeted attacks.

a

b

c

d

e

b c

dea

(a) (b)

Source Target

Fig. 2. Driver nodes and matching links in a directed network G. (a)
An example network G with N = 5 nodes and L = 5 directed links.
Matching links are denoted in red. Unmatched nodes are denoted in green.
(b) The corresponding bipartite graph with 10 nodes and 5 links. By using
the Hopcroft-Karp algorithm, a maximum set of matching links {a, b, c, d}
can be found in the bipartite graph. The target nodes {2−, 3−, 4−, 5−} of
the matching links are matched nodes. The other target node {1−} is an
unmatched node, therefore it is also driver node.

B. The role of critical links in the structure of control

Parekh et al. [12] found the control structure which consists
of a backbone of directed paths, called stems, each driven by
an independent control . These paths can then control cycles
that are inherently self-regulatory. However, ultimately these
stems dictate the need for controls: There must be one control
node for each stem in the system in order to guarantee that
all nodes in the network are controllable (reachable). In this
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paper, we use the algorithm proposed in [6] to find the control
structure in the network:

1) Determine the number M of control nodes by the
maximum matching introduced in Section III.A.

2) Preprocess the network by adding the fixed number of
control nodes and then placing links from each control
node to every state node, after which there are N nodes
and E links in the network. Then, for all i, j = 1, ..., N
and k = 1, ...,M :

a) Split the nodes into a pair of positive and negative
nodes xi ⇒ x+i , x

−
i , uk ⇒ u+k , u

−
k .

b) Add unit-weight links (x+i , x
−
j ) and (u+k , x

−
j ) if

the link (xi, xj) and (uk, xj) exist in the network,
respectively.

c) Add zero-weight links (x+i , x
−
i ) and (u+k , u

−
k ).

d) Add zero-weight links (x+i , u
−
k ).

e) Add a weight W ≥ E to all links.
3) Use the weighted maximum matching on the bipartite

graph generated by step 2 and find a set of matched
links. The control structure is then formed by mapping
the matched links in the original network.

Finally, the number of controllable nodes equals the number
of matched nodes in the control structure. Although the
concept of critical links was first proposed in control-based
controllability analysis which focuses on the number Nd of
driver nodes, critical links also play an important role in
reachability-based controllability. We found that the removal
of a critical link usually decreases the number of controllable
nodes by 1 in most cases when the network is sparse. In
this paper, we use the concept of critical links to derive
analytical approximations for the decrease in the number Nc
of controllable nodes upon link removal.

IV. NUMBER OF CONTROLLABLE NODES UNDER ATTACKS

In this section, we analyze the normalized number of
controllable nodes for three different attack scenarios: (a)
random attack, (b) targeted attack and (c) random attack under
protection. In a random attack, links are removed from the
network uniformly at random. In a targeted attack, we assume
that the attacker knows the location of critical links and
removes critical links uniformly at random. After all critical
links are removed, the attacker randomly removes other links.
In a random attack under protection, the network operator
takes measures to protect the critical links such that only non-
critical links are removed randomly.

We compare the normalized number nc of controllable
nodes for these three attacks in 10 sparse communication
networks [23] [24]. Table I presents the properties of the 10
communication networks: the number N of nodes, the number
L of directed links, the initial minimum number Nd0 of driver
nodes and the number Lc of critical links. For a directed
network, the average degree E[D] = 2L/N , which also equals
the sum of the mean out- and in-degree per node. The first
8 networks are small. The other two networks are relatively
large, which are an order larger than the average size of the
other 8 communication networks. Besides, the last network
has a higher average degree, which is more than twice that

of the other networks. The number Lc of critical links can be
determined by applying the Hopcraft-Karp algorithm L times,
by considering all L networks that are obtained by removing
exactly one link from the original network. As expected,
Figure 3 shows that random attack under protection performs
the best among the three attack scenarios in maintaining the
reachability of the networks. Moreover, we also conclude from
Figure 3:

1) In the case of random attack under protection, the slope of
the decrease in nc is almost 0 in the beginning for all networks.
This emphasizes the importance of protecting critical links.

2) The targeted attack is the most harmful: when the fraction
of removed links is smaller than the fraction of critical links,
the decrease in nc is almost linear in the fraction of removed
links. When all the critical links are removed, the slope of
the decrease in nc is almost 0 in all 8 networks. Considering
the set of critical links is determined from the initial network,
this indicates that the set of critical links of a network does
not significantly change during the attack process when the
fraction of removed links is small.

3) The performance of random attack is between targeted
attack and random attack under protection. After all links are
removed, the normalized number of controllable nodes equals
Nd0/N .

4) Critical links have a significant impact on the number Nc
of controllable nodes upon link removal, which plays a key
role to derive analytical approximations for the number Nc of
controllable nodes.

We also use robustness envelopes to evaluate the effective-
ness of the three attack strategies. As shown in Figure 3, the
curves for random attack under protection are quite close to the
boundaries represented by the 90-percentile R90%[k] among all
networks, which means that random attack under protection
outperforms 90% realizations of random attack. The curves
for targeted attack are much lower than the lower bound of
envelopes especially when the fraction of removed links is
small in all networks, which again underlines the harm of
targeted attack.

TABLE I
PROPERTIES OF THE 10 CONSIDERED COMMUNICATION NETWORKS

Networks N L E[D] Nd0 Lc

DFN 58 87 3.0 25 14
Colt 153 177 2.3 81 38

Deltacom 113 161 2.8 37 43
GtsCe 149 193 2.6 58 49

TataNld 145 186 2.6 52 48
UsCarrier 158 189 2.4 53 66
Cogentco 197 243 2.5 71 72

Uninett2010 74 101 2.7 26 27
Kdl 754 895 2.4 272 287

Web [24] 643 2280 7.0 324 108

V. APPROXIMATIONS FOR THE NUMBER OF
CONTROLLABLE NODES

In the previous section, we compared the number of con-
trollable nodes for the three attack scenarios by using a large
amount of simulations. In this section, we deduce analytical



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, OCTOBER 2020 5

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(a) DFN

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(b) Colt

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(c) Deltacom

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(d) GtsCe

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(e) TataNld

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(f) UsCarrier

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(g) Cogentco

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of removed links

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

n c Random attack
Protect critical links
Targeted attack
K0%-K10% , K90%-K100%
K10%-K20% , K80%-K90%
K20%-K30% , K70%-K80%
K30%-K40% , K60%-K70%
K40%-K50% , K50%-K60%

(h) Uninett2010
Fig. 3. Performance of the normalized number nc of controllable nodes as a function of the fraction of removed links l for three attack scenarios. The
results for each fraction l is based on 1000 simulations. Each envelope of the challenges for the normalized number nc of controllable nodes is based on
104 realizations. In order to compare the scenario for random attack under protection with the other two scenarios in the same sub-figure, we remove critical
links uniformly at random after all the other links are removed .

approximations to quantify the robustness of reachability, ex-
pressed in terms of the normalized number nc of controllable
nodes, for the three attack scenarios. Then, we evaluate the
accuracy of the analytical approximations in 8 small networks,
2 large networks as well as more sparse communication
networks. Lastly, we also use synthetic networks to measure
the performance of our analytical approximations. Our ap-
proximations will be based upon the concept of critical links
introduced in [1].

A. Number of controllable nodes under random attacks

1) The fraction l of removed links is less than the fraction
lc of critical links
Given a network with N nodes and L links, the initial number
Nc of controllable nodes equals N . The number Lc of critical
links can be determined by the method we introduced in
Section IV.

As discussed in Section III.B, the number Nc of controllable
nodes decreases by at least one when a critical link is removed.
However, we found that the number Nc of controllable nodes
only decreases by one for every critical link that is removed
in each of the 10 sparse communication networks in Table I.
Thus, we heuristically assume that after removing a critical
link, the number Nc of controllable nodes decreases by one.
If we denote the number of removed links by m, then the
fraction of removed links l = m

L , while the fraction of critical
links lc satisfies lc = Lc

L . We consider the case l ≤ lc, where
m links are removed uniformly at random under the condition
that the number of removed links obeys m ≤ Lc. Now assume
that of these m links i links are critical (i ≤ m) and, hence,
m− i links are non-critical. We assume that the set of critical

links is nearly unchanged when the fraction of removed links is
small. Invoking the fact that after removing a critical link, the
number Nc of controllable nodes decreases by one, thus, when
i critical links are iteratively removed one by one, the number
Nc of controllable nodes decreases by one in each iteration.
For the m − i removed non-critical links, the number Nc of
controllable nodes remains the same based on our assumption
that the set of critical links is unchanged when the fraction
of removed links is small. Since there are

(
Lc

i

)
possible ways

to choose i critical links from Lc critical links and there are(
L−Lc

m−i
)

possible ways to choose m− i non-critical links from
L − Lc non-critical links, the contribution to the decrease in
Nc is i

(
Lc

i

)(
L−Lc

m−i
)
. The average decrease N∗

c of the number
Nc of controllable nodes after randomly removing m links, is
the sum of this expression for all i = 1, 2, . . . ,m divided by(
L
M

)
.

N∗
c =

∑m
i=1 i

(
Lc

i

)(
L−Lc

m−i
)(

L
m

) (7)

Using i
(
Lc

i

)
= Lc

(
Lc−1
i−1

)
and Vandermonde’s formula∑k

j=0

(
a
j

)(
b

k−j
)
=
(
a+b
k

)
for any number a and b, we obtain

Lc
∑m−1
i=0

(
Lc−1
i

)(
L−Lc

m−1−i
)
= Lc

(
L−1
m−1

)
. Finally, dividing this

expression by
(
L
m

)
, leads to the average decrease of control-

lable nodes

N∗
c = lLc (8)

When the fraction of removed links is less than, or equal to
lc, we obtain

Nc = N − lLc (9)
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We then normalize the number Nc of controllable nodes to
the fraction Nc

N of the minimum number of controllable nodes
and denote the obtained approximation as nc,rand,

nc,rand =
N − lLc

N
(10)

2) The fraction l of removed links is larger than the
fraction lc of critical links
Considering that in most cases lc is quite small, we also
estimate the normalized maximum number nc of controllable
nodes when the fraction l of removed links is larger than the
fraction lc of critical links. For l ≥ lc, we heuristically propose
a simple closed-form approximation for nc,rand:

nc,rand = al2 + bl + c (11)

where the parameters a, b and c will be determined by
boundary conditions. For the first two boundary conditions
we assume that, for l = lc, Eq.(11) has the same value and
the same derivative as Eq. (10). This leads to the equations
N − lcLc = N(al2c + blc + c) and −Lc = N(2alc + b),
respectively. Finally, if we remove all links, i.e. l = 1,
only Nd0 nodes can be controlled. This gives the boundary
condition Nd0/N = a + b + c. Solving for a, b and c and
combining with the approximation Eq.(10), we obtain the
following approximation for nc,rand for all values of l:

nc,rand =

{
N−lLc

N l ≤ lc
al2 + bl + c l ≥ lc

(12)

with, a = −N−Nd0−Lc

N(lc−1)2
, b = −Lc/N − 2alc, and

c = (Nd0 + Lc)/N + a(2lc − 1). Eq.(12) respresents a
closed-form approximation for nc, which only depends
on N,L,Nd0 and LC . The computational complexity of
the approximation is O(

√
NL2), which is needed for the

computation of Lc.

We compare the approximation Eq.(12) with simulation
results for the 8 communication networks. Figure 4 illustrates
that the approximation both under- and overestimates the value
of nc. For moderate values of the fraction of removed links,
the approximation exhibits a very good fit for the commu-
nication networks. For some networks, such as Deltacom,
GtsCe, TataNld and Uninett2010, our approximation Eq.(12)
fits well with the simulation results regardless of the fraction
of removed links.

The performance of our approximations are also measured
by three performance indicators:

1) r∗ denotes the absolute value of the relative error at
l = 0.2. We choose the value 0.2 reflecting a relatively large
fraction in terms of link-based failures or attacks.

2) l∗ represents the smallest value of l, where the relative
error between the approximation and the simulated mean
exceeds 5%.

3) γ denotes the fraction of the interval [0, lc] for which the
absolute value of the relative error between the approximation
and the mean simulated value does not exceed 5%. The value
of γ is computed by K different values of the fraction of
removed links, i.e., v1, v2, ..., vK , are evenly determined in

the interval [0, lc]. Let n∗c(vi) and nc(vi) denote the mean
simulated nc and the approximation (10) at the fraction of
removed links l = vi, respectively. Thus, in terms of the
indicator function 1x that equals 1 if the condition x is true,
otherwise it is zero,

γ =

∑K
i=1 1

∣∣n∗
c (vi)−nc(vi)

n∗
c (vi)

∣∣≤5%

K
.

Table II gives the three performance indicators for Eq.(12).
As shown in the table, when the fraction of removed links is
less than 0.2, the absolute relative error between Eq.(12) and
the simulated mean is less than 5% for all 8 networks. For
most networks, such as Deltacom, GtsCe, TataNld, UsCarrier,
Cogentco and Uninett2010, Eq.(12) still fits well with simu-
lation results regardless of the fraction of removed links. For
the worst performing networks, DFN and Colt, 87% and 81%
of the links can be removed before the absolute relative error
exceeds 5%, respectively. When the fraction of removed links
is less than the fraction lc of critical links, the absolute value
of the relative error between the approximation and the mean
simulated value is always less than 5%. Thus, γ euqals 100%
for all networks.

TABLE II
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc,rand FOR THE

8 COMMUNICATION NETWORKS

Networks r∗ l∗ γ

DFN 0.78% 0.87 100%
Colt 1.23% 0.81 100%

Deltacom 1.08% 1.00 100%
GtsCe 1.20% 1.00 100%

TataNld 0.45% 1.00 100%
UsCarrier 1.17% 1.00 100%
Cogentco 0.98% 1.00 100%

Uninett2010 1.24% 1.00 100%

B. Number of driver nodes under targeted attacks

1) The fraction l of removed links is smaller than the
fraction lc of critical links
We assume that, as long as the number of removed links
m ≤ Lc, the removal of each link decreases the number Nc
of controllable nodes by one. Consequently, when the number
of removed links is smaller than Lc (the fraction l of removed
links is smaller than lc), the approximation for the minimum
number Nc of driver nodes decreases linearly with the fraction
l of removed links. When the number of removed links equals
the number Lc of critical links, the minimum number Nc of
driver nodes equals N − Lc. Thus, when the fraction l of
removed links is no more than the fraction lc of critical links,
we obtain the following approximation for nc:

nc,crit =
N − lL
N

(13)

2) The fraction l of removed links is larger than the
fraction lc of critical links
We now construct an approximation when the number of
removed links is larger than Lc (the fraction l of removed
links is larger than lc), in a similar way as in the previous
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Fig. 4. The normalized maximum number of controllable nodes nc as a function of the fraction of removed links l in communication networks under random
attacks. The results for each fraction l is based on 1000 simulations. In each sub-figure, the vertical dashed line marks the position where l = lc.

section. Again assuming that for l ≥ lc it holds that nc is
quadratic in l, we obtain nc,crit = dl2 + el + f . Boundary
conditions are now obtained from the assumptions that the
parabola passes through (1, Nd0/N) and (lc, (N − Lc)/N)
and has a zero derivative at the latter point. This leads to the
following approximation for nc for all values of l:

nc,crit =

{
N−lL
N l ≤ lc

dl2 + el + f l ≥ lc
(14)

with, d = −N−Nd0−lcL
N(lc−1)2

, e = −2dlc, and f = Nd0/N+d(2lc−
1).

In Figure 5, we compare our approximation Eq.(14) with
simulation results. Simulation results show that the difference
in the curve trend at l = lc, is due to the fact that until
l = lc only critical links are targeted causing a faster
descent in the number of controllable nodes. We observe that
the approximation Eq.(14) fits well with simulation results
when the fraction of removed links is sufficiently small in
these communication networks. In some networks, such as
DFN and UsCarrier, Eq.(14) is close to simulation results
even when the fraction of removed links is relatively large.
When the fraction of removed links is getting larger, the
difference between our approximation Eq.(14) and simulation
results is relatively large. However, approximation Eq.(14)
always seems to overestimate the impact of targeted attack on
the normalized maximum number nc of controllable nodes,
hence, approximation Eq.(14) can be considered a worst-case
approximation.

Comparing with the targeted attack, we quantify the perfor-
mance of the approximation Eq.(14) in Table III. For DFN and
Colt, Eq.(14) is a very good approximation when the fraction
of removed links is less than lc. Eq.(14) performs the best for
DFN, 23% of the links can be removed before the absolute

relative error exceeds 5%. Eq.(14) does not perform well for
TataNld.

TABLE III
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc,crit FOR THE 8

COMMUNICATION NETWORKS

Networks r∗ l∗ γ

DFN 4.53% 0.23 100%
Colt 4.88% 0.21 97.81%

Deltacom 7.52% 0.18 67.42%
GtsCe 5.06% 0.19 74.80%

TataNld 10.11% 0.12 46.51%
UsCarrier 3.26% 0.22 63.04%
Cogentco 8.75% 0.18 60.81%

Uninett2010 8.86% 0.19 71.08%

C. Number of driver nodes under random attacks with pro-
tection

For this scenario, we assume that a fraction of links lc is
protected, then we can only attack a fraction 1−lc of the links.
We now construct an approximation for the number Nc,prot of
controllable nodes when the attack is random under protection.
We heuristically assume that the fraction nc,prot of control-
lable nodes is quadratic in l, we obtain nc,prot = pl2+ ql+ r.
Boundary conditions are now obtained from the assumptions
that the parabola passes through (1, Nd0/N) and (0, 1) and has
a zero derivative at the latter point. This leads to the following
approximation for nc for all values of l:

nc,prot = pl2 + ql + r (15)

with, p = Nd0/N − 1, q = 0, and r = 1.
We compare the approximation Eq.(15) with simulation

results for the 8 communication networks. The fraction l of
removed links in our approximation Eq.(15) is from 0 to 1.
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Fig. 5. The normalized maximum number of controllable nodes nc as a function of the fraction of removed links l in communication networks under targeted
attacks. The results for each fraction l is based on 1000 simulations. In each sub-figure, the vertical dashed line marks the position where l = lc.

However, only a fraction 1 − lc of links are removed in the
simulation for this scenario. Thus, we still remove critical links
uniformly at random after all non-critical links are removed,
in order to compare the simulation results and our approx-
imation Eq.(15) in the same interval [0, 1]. Figure 6 shows
that for moderate values of the fraction of removed links, the
approximation exhibits an excellent fit for simulation results.
For some networks, such as TataNld, UsCarrier and Cogentco,
our approximation Eq.(15) fits well with the simulation results
regardless of the fraction of removed links.

Similarly, the performance of our approximation Eq.(15)
is measured by three performance indicators. As shown in
Table IV, when the fraction of removed links is less than 0.2,
the absolute relative error between Eq.(15) and the simulated
mean is less than 5% for all 8 sparse communication networks.
For some networks, such as UsCarrier and Cogentco, even
when the fraction of removed links is large (0.62 and 0.58,
respectively), Eq.(15) still fits well with simulation results.
Even for the worst performing network, DFN, 28% of the links
can be removed before the absolute relative error exceeds 5%.

TABLE IV
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc,prot FOR THE 8

COMMUNICATION NETWORKS

Networks r∗ l∗ γ

DFN 2.65% 0.28 100%
Colt 1.89% 0.32 100%

Deltacom 1.15% 0.37 100%
GtsCe 1.09% 0.38 100%

TataNld 0.84% 0.42 100%
UsCarrier 0.32% 0.62 100%
Cogentco 0.56% 0.58 100%

Uninett2010 1.22% 0.47 100%

D. Verification by large networks

We use the last two large networks, Kdl and Web, from
Table I to further evaluate the accuracy of our approximations.
The simulations setting is slightly different from the previous
part. The fraction l of removed links is ranging from 0.1 to 1
with a step 0.1, considering the high computational complexity
by using all fraction l ranging from 0 to 1. As shown in
Figure 7, the approximation Eq.(12) for the random attack
and Eq.(15) for the random attack with protection perform
well in estimating the fraction nc of driver nodes. We also
find that the approximation Eq.(14) for targeted attack fits
well with simulation results when the fraction of removed
links is sufficiently small. Though the approximation Eq.(14)
does not perform well when the fraction of removed links is
large, approximation Eq.(14) can be considered a worst-case
approximation. Considering the Kdl network and the 8 small
networks have similar average degree, the above observation
implies that the size of the network does not significantly
influence the performance of our approximations. By contrast,
Figure 8(a) and (c) show that the approximation Eq.(12) for
the random attack and Eq.(15) for the random attack with
protection do not perform well for the Web network which has
a larger average degree than the above networks. In a network
with a higher average degree, there are more alternate match-
ings which make it more likely for the critical links to change
as links are removed. As a result, our approximations do not
perform well since our assumption is that the set of critical
links is nearly unchanged when the fraction of removed links
is small. However, since most communication networks are
sparse [25] [26] [27], we can expect that our approximations
are applicable for most communication networks.

We then quantify the performance of the approximations
for the network Kdl and Web in Table V and VI, respectively.
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Fig. 6. The normalized maximum number of controllable nodes nc as a function of the fraction of removed links l in communication networks under random
attacks under protection. The results for each fraction l is based on 1000 simulations. In each sub-figure, the vertical dashed line marks the position where
l = 1− lc. In order to compare the simulation results for random attack under protection with our approximation in the same sub-figure, we remove critical
links uniformly at random after all the other links are removed .

Results show that the network Web has larger r∗ values than
the network Kdl in all three attacks, which also indicates that
our approximation perform better in the networks with lower
average degree.

TABLE V
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc FOR KDL

Types of attacks r∗ γ

Random attack 2.36% 100%
Targeted attack 7.54% 53.65%

Random attack with protection 3.67% 92.84%

TABLE VI
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc FOR WEB

Types of attacks r∗ γ

Random attack 13,78% 100%
Targeted attack 9.21% 54.16%

Random attack with protection 5.25% 100%

E. Verification by more communication networks

We further use the dataset available at a specialized database
- the Internet Topology Zoo [23] to select more communication
networks and verify the accuracy of our approximations. The
networks in the dataset initially are not directed, however, we
use the information available in two attributes, i.e., source
node and target node, to make these networks directed. After
excluding networks with extremely small size, we have 200
communication networks.

For each attack strategy, we calculate the values of the three
performance indicators for all 200 communication networks
and then get the average value for each indicator. As shown

in Table VII, the approximation Eq.(12) for the random attack
and Eq.(15) for the random attack with protection perform well
in estimating the fraction nc of driver nodes. For the targeted
attack, the approximation Eq.(14) fits well with simulation
results when the fraction of removed links is sufficiently small.

TABLE VII
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc FOR 200

COMMUNICATION NETWORKS

Types of attacks r∗ l∗ γ

Random attack 4.26% 0.47 98.47%
Targeted attack 10.44% 0.11 47.81%

Random attack with protection 3.52% 0.23 99.36%

F. Verification by synthetic networks

In this section, we test our approximations on two types
of synthetic networks, the directed Erdős-Rényi (ER) random
network Gp(N) and the Barabási-Albert (BA) scale-free net-
work BA(N,M0,M). When generating the directed Erdős-
Rényi random network Gp(N) with N nodes, the probability
that every node has an outbound link to the other nodes is p.
We generate the scale-free network BA(N,M0,M) by using
the Barabási-Albert (BA) model, where N is the number of
nodes, M is the number of out-going links for each new node
added to the current network. We assume that initially the
network consists of a complete digraph on M0 nodes, where
M0 equals M . In the initial complete digraph, every pair of
distinct nodes is connected by a pair of unique links (one in
each direction). New nodes are added to the network one at a
time. Each new node is connected to M existing nodes with
a probability that is proportional to the number of links that
the existing nodes already have.
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Fig. 7. Performance of the normalized number nc of controllable nodes as a function of the fraction of removed links l for three attack scenarios in the
Kdl network. The results for each fraction l is based on 1000 simulations. For random attack and targeted attack, the vertical dashed line marks the position
where l = lc. For random attack with protection, the vertical dashed line marks the position where l = 1− lc.
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Fig. 8. Performance of the normalized number nc of controllable nodes as a function of the fraction of removed links l for three attack scenarios in the
Web network. The results for each fraction l is based on 1000 simulations. For random attack and targeted attack, the vertical dashed line marks the position
where l = lc. For random attack with protection, the vertical dashed line marks the position where l = 1− lc.

In our simulations, we generate Erdős-Rényi (ER) random
networks Gp(N) with N = 100, p = 0.05 and N = 10000,
p = 0.0003, Barabási-Albert (BA) networks with N = 200,
M =M0 = 2 and N = 10000, M =M0 = 1. Figure 9 shows
that the approximation Eq.(12) for the random attack performs
well in estimating the fraction nc of controllable nodes in
both types of synthetic networks when the fraction of removed
links is small. Figure 10 shows that the approximation Eq.(14)
for the targeted attack performs well as long as the fraction
of removed links is sufficiently small. Figure 11 shows that
Eq.(15) for the random attack with protection perform well
in both types of synthetic networks when the fraction l of
removed links is less than the fraction lc of critical links.
For the large ER and BA networks, Eq.(15) fits well with
simulation results even when the fraction l of removed links
is large. The approximation Eq.(14) does not perform well if
the fraction l of removed links is large. However, Eq.(14) can
be considered an approximation for the worst-case scenario.

Next we quantify the performance of each approximation
for synthetic networks. As shown in Table VIII, IX and X,
the approximation Eq.(12) for random attack and Eq.(15) for
random attack with protection fit well with simulation results
even when the fraction l of removed links is relatively large

(l = 0.2).

TABLE VIII
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc,rand FOR

SYNTHETIC NETWORKS

Types of networks r∗ γ

ER: G0.05(100) 3.27% 100%
BA: N=200, E[D]=4 6.78% 100%
ER: G0.0003(10000) 8.95% 85.54%

BA: N=10000, E[D]=2 7.63% 96.23%

TABLE IX
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc,crit FOR

SYNTHETIC NETWORKS

Types of networks r∗ γ

ER: G0.05(100) 12.64% 71.97%
BA: N=200, E[D]=4 17.36% 63.91%
ER: G0.0003(10000) 23.56% 34.28%

BA: N=10000, E[D]=2 16.28% 46.76%

VI. CONCLUSION

In this study, we analyzed the role of critical links in
network controllablity. Simulation results on communication



IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. XX, NO. XX, OCTOBER 2020 11

TABLE X
PERFORMANCE INDICATORS FOR THE APPROXIMATION nc,prot FOR

SYNTHETIC NETWORKS

Types of networks r∗ γ

ER: G0.05(100) 5.21% 100%
BA: N=200, E[D]=4 8.63% 100%
ER: G0.0003(10000) 4.16% 100%

BA: N=10000, E[D]=2 6.94% 100%
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Fig. 9. The normalized maximum number of controllable nodes nc as a
function of the fraction of removed links l in synthetic networks under random
attacks. The results for each fraction l is based on 10000 simulations.
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Fig. 10. The normalized maximum number of controllable nodes nc as a
function of the fraction of removed links l in synthetic networks under targeted
attacks. The results for each fraction l is based on 10000 simulations.

networks have suggested analytical closed-form approxima-
tions for the number Nc of controllable nodes. We derived
closed-form approximations for the number Nc of controllable
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Fig. 11. The normalized maximum number of controllable nodes nc as a
function of the fraction of removed links l in synthetic networks under random
attacks with protection. The results for each fraction l is based on 10000
simulations. In each sub-figure, the vertical dashed line marks the position
where l = 1− lc

nodes as a function of the fraction of removed links, for
random attacks, targeted attacks and random attack under
protection. Both for random and targeted attacks, our approx-
imation is linear in the fraction l of removed links when this
fraction is smaller than the fraction of critical links. When the
fraction of removed links is larger than the fraction of critical
links, our approximation is quadratic in l. We validated our
approximation through simulations on sparse communication
networks and synthetic networks. Both for random attacks and
random attacks under protection, our approximations for these
two cases are always very good, as long as the fraction of
removed links is smaller than the fraction of critical links.
For some cases, the approximation is still accurate for larger
fractions of removed links. For targeted attack, our approx-
imation performs well as long as the fraction of removed
links is sufficiently small, whereas our approximation does
not perform well when the fraction of removed links is large.
However, the approximation for the targeted attack always
serves as a worst-case estimate.
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