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CONCLUDING R E M A R K S 

We have shown that the impulse response of a linear time-
invariant filter h(t) can be recovered from the covariance 
of the (nonstationary) process obtained when this filter is 
excited with a unilateral white noise of arbitrary distribu­
tion. Moreover, this is true even if the filter is not minimum 
phase or even unstable. We have also indicated how to esti­
mate the required covariance function from (multichannel) 
output data alone. 

There are still many practical difficulties that need to be re­
solved. First, it would desirable to extend our results to the 
case of non-zero initial conditions. Second, our procedure 
should simplify for filters with a rational transfer function, 
attempting to produce directly the two polynomials rather 
than the (infinite) impulse response. Third, effects of mea­
surement and computational errors need to be expUcitly 
addressed. 
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A b s t r a c t 

I n th i s paper , some geometr ica l ly insp i red concepts are s tud ied f o r the 

i d e n t i f i c a t i o n o f models f o r m u l t i v a r i a b l e l inear t i m e inva r i an t systems 

from noisy i n p u t - o u t p u t observations. S t a r t i n g from a f u n d a m e n t a l 

h i g h l y s t r u c t u r e d i n p u t - o u t p u t m a t r i x equat ion , i t is shown how the sin­

gu la r value decompos i t ion al lows t o est imate the order o f the observable 

p a r t o f the sys tem and i t s state space m o d e l mat r ices . Moreover , cond i ­

t ions f o r persistance o f e x c i t a t i o n o f the i n p u t s and the behavior o f the 

a l g o r i t h m w h e n the da ta are p e r t m b e d by noise, can easily be s tud ied 

from a geomet r i ca l p o i n t o f v iew . T h e singular values a l low to quan­

t i f y these concepts. A n example o f an i n d u s t r i a l p l a n t i d e n t i f i c a t i o n is 

presented. 

K e y w o r d s : L inear and T o t a l l inear least squares, i d e n t i f i c a t i o n , s ingular 

value decompos i t ion , observable modes. 

1 Introduction 
T h e select ion a n d the i d e n t i f i c a t i o n o f appropr ia te m a t h e m a t i c a l represen­

t a t ions are o f cen t ra l i m p o r t a n c e i n the analysis, design and con t ro l o f m u l ­

t i va r i ab l e systems. W i t h acces on ly to the ex te rna l i n p u t - o u t p u t b e h a v i o r 

o f a m u l t i v a r i a b l e d y n a m i c a l process, the i n t e r n a l s t ruc tu re (o ther t h a n a 

p r i o r i assumed t i m e invariance a n d Unear i tv be ing u n k n o w n ) , the p r o b l e m 

of cons t ruc t i ng a m o d e l is a h i g h l y n o n - t r i v i a l task. Because o f th i s com­

p lex i ty , re l iab le and robust general purpose i d e n t i f i c a t i o n schemes have 

no t yet become a s tandard t o o l . I n most cases, ( expe r imen ta l ) observa­

t ions on the i n p u t - o u t p u t behavior o f the sys tem under n o r m a l ope ra t i ng 

condi t ions are read i ly available. T h e most obvious choice fo r a m a t h e m a t ­

i ca l m o d e l is i n a l o t o f cases a state space representa t ion since the m a j o r 

p a r t o f m o d e r n sys tem and con t ro l theory, such as the design o f observers 

, filters and o p t i m a l control lers regards th is very efl[icient and compact 

representa t ion. I n th i s paper, a new geometr ica l ly insp i red i d e n t i f i c a t i o n 

scheme w i l l be presented . I t makes use o f the numer i ca l ly re l iab le key 

technique o f the singular value decompos i t ion and allows to es t imate the 

order o f the sys tem under s tudy and to i d e n t i f y i t s state space m o d e l ma­

trices, from possibly noise co r rup t ed m u l t i p l e i n p u t - o u t p u t measurements . 

N o a p r i o r i p a r a m a t r i z a t i o n , w h i c h may be i l l - c o n d i t i o n e d w i t h respect 

to i d e n t i f i c a t i o n , is requi red , i n contrast to the i d e n t i f i c a t i o n techniques 

r epor t ed i n [5] [12] .The i n s p i r a t i o n fo r the i d e n t i f i c a t i o n approach der ived 

i n th is paper , can be f o u n d i n the w o r k repor ted i n [1] [4][7][9][10][11][15]. 

T h i s paper is orgaiused as fo l lows : I n section 2, an i m p o r t a n t i n p u t -

o u t p u t m a t r i x equa t ion is der ived, r e l a t ing i n p u t measurements w i t h ou t ­

p u t measurements i n a s t r uc tu r ed way. The geometr ica l i n t e r p r e t a t i o n 

i n terms o f r o w spaces o f the invo lved matr ices , is emphasized. I n sec­

t i o n 3, the m a i n proper t ies of the singular value decompos i t ion are b r i e f l y 

s immia r i zed w h i l e i n section 4, t w o d i f fe ren t versions of the i d e n t i f i c a t i o n 

technique are der ived . Some more detai ls about the results to be expected 

w h e n the i n p u t - o u t p u t observations are noisy, are r epor t ed i n sect ion 5, 

together w i t h some robustness results o f the new approach. I n sect ion 6, 

we present an example o f an i n d u s t r i a l p l an t ) i d e n t i f i c a t i o n . 

2 An important input-output matrix equa­
tion and its geometrical interpretation. 
I n th is sect ion, a c ruc ia l i n p u t - o u t p u t r e l a t i on w i l l be der ived . I t is essen­

t i a l for the i d e n t i f i c a t i o n approach to be presented f u r t h e r o n . We consider 

l inear , discrete t ime , m u l t i v a r i a b l e t i m e invar ian t systems w i t h m i n p u t s 

and I o u t p u t s , w i t h state space representat ion: 

X [ f c - f l ] n x l = A „ x n . x [ f c ] n x l + B n x m . « [ f c ] m x l ( l ) 

y[k]lxl = C , x n . x [ f c ] n x l + I ? « x m . u [ f c ] , x l (2) 

(where necessary, m a t r i x and vector dimensions w i l l be ind i ca t ed ) T h e 

matr ices A,B,C,D are rea l , the index k denotes the discrete t i m e a n d the 

vectors t i [ fc] ,y[*;] and x[k] are the i n p u t , the o u t p u t and the state at t ime 

k. Fu r the rmore , we w i l l also frequently use the set o f Markovpa rama te r s 

Hi of the l inear system, def ined by Ho = D, Hi = C.A'-'.B ( t > 0).A11 

matr ices i n th is paper are assmned to be rea l . 

F r o m m a n i p u l a t i o n o f the state space sys tem descr ip t ion , one can easily 

o b t a i n the foUowing i m p o r t a n t i n p u t - o u t p u t m a t r i x equat ion : 

YniKiJ) = T{i).XikJ) + Hti{i).UH{k,iJ) (3 ) 

( T h e subscr ipt h denotes t h a t the m a t r i x has b lock Hanke ls t ruc ture , tl is 

b lock Toep l i t z lower t r i angu la r , tu b lock Toep l i t z upper t r i angu la r . ) T h e 

matr ices have the f o l l o w i n g s t ruc tu re : 

n(fc,i,i) = 

y[k] 

y[k + 1 ] 
y[k - f 2] 

y[k + 1] 
y[k + 2] 

y[k + 3] 

[ y [ k - { - i - i ] y[fc + i] 

y[k + j - i ] 

y[k + j] 

y[k + i + 1] 

y[k + j + i - 2] 

T h i s is a Zi X j b lock H a n k e h n a t r i x cons t ruc ted o f i -|- j - 1 consecutive 

o u t p u t vectors . T h e m a t r i x Uh{k,i,j) has a s imi l a r s t ruc ture w i t h i n p u t 

vectors. T h e m a t r i x Hti{i) is a x mi lower t r i angu l a r b lock ToepUtzma-

t r i x t h a t contains the t first Markovparamete r s : 

Hu{i) 

D 0 0 . 0 

CB D 0 . 0 

CAB CB D . 0 

CA^'B CAB CB . . 0 

CA'-^B CA'-*B . .. D 

r(t) is the il xn ' ex tended ' observabi l i ty m a t r i x . 

r(̂ ) 
c 
CA 

CA' 

and X { k J ) = [x[k]x[k +l]...x[k + j - 1]] is the n x j m a t r i x con ta in­

i n g j consecutive states. T h e geometr ica l observations to be presented 

w i l l be the key t o o l m the analysis o f the a l g o r i t h m . T h e y w i l l p rovide 

ms igh t i n the mechanism o f e s t i m a t i n g the d imens ion of the observable 

pa r t o f the state space, i n the condi t ions f o r persis tant exc i t a t i on o f the 

i n p u t sequence, w h i c h has to ensure a rel iable i d e n t i f i c a t i o n and i n the 

noise sens i t iv i ty o f the results . Denote by spaurowl^^^) . span rowl^ ' ^ ) 

rowspace o f the row vectors o f UH^YH^ I t is assumed t h a t the dimensions 

of the matr ices UH and YK are chosen such t ha t j > m a x ( f i , m t ) and 

( j - m t ) > n . T h e m a t r i x i n p u t - o u t p u t r e l a t i o n can be in t e rp re t ed as 

fo l lows : spaUrowC^'^) the s u m of two rowspaces: 

- the row space o f the row vectors o f T{i).X{kJ): T{i) makes l inear 

combina t ions o f t h e rows o f X ( f c , j ) . I t filters out the non-observable par ts 

of the state . Hence, 

s p a n , o w ( r ( t ) - ^ ( f c . » ) = s p a n r o w [ p r o j e c t i o n o f X ( f c , i ) on observable sub-

space o f state space] 
— the row space of the row vectors o f HU-UH-

T h i s geomet r ica l v isuaUzat ion o f the i n p u t - o u t p u t r e l a t i o n s i m m e d i a t e l y 

suggest the f o l l o w i n g : ^ 

- the d imens ion o f t h e observable p a r t o f t h e state space can be es tmia ted 

from the d imens ion o f the p r o j e c t i o n of the o u t p u t rowspace u p o n the 

o r thogona l complement o f the r o w space of the i n p u t b lock H a n k e l m a t r i x 

and th i s under some (general) condi t ions yet t o be de te rmined (sect ion 

5 1) T h e p a r t o f the rowspace o f X{k, j ) o r thogona l t o the row space o f UH 

can be considered as ' new ' i n f o r m a t i o n , caused by the d y n a m i c a l ac t i on 

o f the sys tem. T h i s i n f o r m a t i o n is no t conta ined i n the i n p u t . Hence, 

the p a r t of the rowspace o f YK w h i c h is o r thogona l to the rowspace o f UH 

contains i n f o r m a t i o n abou t the dynamics o f the sys tem. 

— the more o r thogona l the rowspace of X { k J ) to the rowspace o f UH, 

the more i n f o r m a t i o n t h a t is avaUable i n the p r o j e c t i o n . Hence, i t can be 

expected a n d w i l l be c o n f i r m e d f u r t h e r o n , t h a t the i n p u t s are sa t i s fac tory 

fo r the i d e n t i f i c a t i o n whenever the rowspace o f X { k J ) is " s u f f i c i e n t l y " 

o r thogona l t o s p a n j o w i ^ h ) -
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3 The singular value decomposition (SVD), 
While the geometrical visualization is crucial from a conceptual point of 

view, the smgular va ue decomposition ( S V D ) is the key instrument in the 

exphcx numerical solution of tliis identification scheme. I n this paper we 

— ^ - ^ i i ^ 

T h e A u t o n n e - E c k a r t - Y o u n g t h e o r e m (restricted to real matrices) 

Every real m x n matruc A can be decomposed in three real matrices: 

Arr 

where U and V are orthogonal: U.U' = U\U = I VV^ = V* V = I 

and E is real, pseudo-diagonal with nonnegative diagonal elements: ^ 

, ̂  r S l 0 • 

[ 0 0 

^^^Inlt^^:"' > 0 e n . . . the algebraic ran. 

llvlZlt Ul ^^^f.'"^^^ ^ ^ ^ - ^ ° f - t r i x A, the colunuis of 

nia basi for th ^ " " ' ^ " ^^^^^ ^^""^^^ ^ -^^onor-
mal basis for the columnspace (rowspace) of the matr ix A. T h e singular 

iiia^rix r'̂ " °"K' "^'^'^^ '^''^^'^ the rank of a 
X o U h n ^ a T m T T " ^ ' ' P - t - b a t i o n s and numerically reliable 

rank m^" ^ ' - " " - o u s 

the distance of the matrix from a matrix of lower rank . 

4 The identification algorithm for noise-
free data. 

I n tWs section, 2 versions of the S V D based identification approach are 

derived (section 4.2 and 4.3). T h e y are both obtained starting from an 

important property of the so-caUed observabiUty space of the system (sec­

tion 4.1). For the time being, it is assumed that the input-output data 

are noisefree. However, in section 5, the effect of noise corrupting the 

input-output data wUl be investigated. A n important difference in inter­

pretation between the first and the second version of the identification 

approach will be studied there. 

4.1 The shift structure of the observability space. 
As wiU become clear furtheron, the observability matrix r { i ) or rather 

its columnspace, will play an important role. T h e space spanned by its 

columns wil l be caUed the observability space. T h e following theorem 

shows that this space only depends upon the observable poles of the sys­

tem .Firs t we introduce some notation: 

UUisHTuxn matrix , U (U ) wil l be a matrix with a reduced number of 

rows, obtained from U by omitting the last (first) blockrow. T h e precise 

number of rows to be omitted wil l be obvious from the context. 

T h e o r e m 1 If a p x q matrix Y is of the form Y = r{i).M with T{i) 

the extended observability matrix and if r a n k ( F ) = rank(r(t-)) = n < p 

andn < q and if the columns the p x n matrix U form a basis for the 

columnspace of Y, then the matrix T that satisfies U.T = U has the same 

eigenvalues as the matrix A in r ( i ) . 

P r o o f : Straightforward but omitted. 

C o r o l l a r y 1: L e t the S V D of F be : F , , , RS.Q^ with r a n k ( r ) = 

r a n k ( r ( t ) ) = n < p and n < q. Then_P,, the first I x n block of P and 

the n X n matrix T satisfying P.T = P are matrices similar to C and A 

m r ( t ) , i.e. there exists a nonsingular nxn matrix R such that Px = C R 

findT = R-^A.R. 

T h i s means that matrices similar to A and C can be found if a basis for 

the colunmspace of r ( t ) is known. It wil l now be studied how such a basis 

can be found using input-output data only. 

4.2 Identiflcation algorithm : version 1 

It is not difficult to see from the input - output matrix equation that the 

projection of the row space of YH upon the orthogonal complement of the 

row space of UK is under general conditions a space that posesses the shift 

property of the observability matrix . T h i s observation is exploited in the 

computation of the matrices and C , starting from the input-output 

matrix equation (3): f f 

- Choose the number of columns j of and UK larger than max(mt , li). 
. must be an overestimation of to, the observability index of the system 
to bc identified, while also { j - mi) > n 

- Denote by Uit the orthonormal matrix whose columnspace is the or­

thogonal rowcomplement of U^ i.e. U^.U^ = o. - Postmultiply the 

second mput - output relation with Ut.{U^y 

YK.ut.{uity: 

T h i s IS of course equivalent with orthonormalizing (e.g. with some G r a m -

Schmidt procedure) the rows of YH against the rows of UH. 

It IS not difficult to see that the rank of the matr ix YH.Uft.{U^)' wiU 

be equal to the dimension of the projection of the observable part of the 

state sequence contained in X { k J ) into the columnspace of U^. T h i s 

dimension is genericaUy equal to the dimension of the observable part of 

the system. T h e precise condition for this result to be true is discussed in 

section 5. 

- T h e rank n of YK.U^.{U^)' can be computed from the singular value 
decomposition . Let this S V D be : 

YH.Uit.iu^y = [P,P,]\^^^ 0 1 • (5) 

where Px is li x n , P2 It X (li - n) , n x n , Q, j x n and j x ( j - n ) . 

It now foUows from_the corollary in section 4.1. that the matrices At 

satisfying P^.A^ = P^ and = first I x n blockrow of A are a realization 

of the matrices A and C of the model. 

T h e computation of the matrices B and D is straightforward though less 
elegant : 

Using the matrix P, defined in the S V D (5) and the pseudo-inverse U+ 

of UH, it can be found from the second input.-outputrelation that 

PIYH.U^ = PlHa 

Define K = P^.Hu, then the matrix K can be partitioned in i blocks of 
dimension (It - n) x m , satisfying 

R'i] = [Pr . . . Pi] 

D 0 0 . . 0 
CB D 0 . . 0 
CAB CB D . . 0 
CA^'B CAB CB . 0 

CA'-^B CA'-^B CA^-*B . . D 

where P, are the (li - n) x (li) subblocks of P,'. T h i s can be rewritten as 
an overdetprniJn..rl 1: -̂ • . „ . _ 

P l 

P2 

P3 

p . 

P2 

P3 
0 

r ( i -

T h i s can be solved for the unknown matrices P and D . 

Although the computational requirements of the above identification scheme 

seem formidable, in reality, the computational complexity is moderate. 

T h i s issue is discussed in section 5.3. 

4.3 Identification algorithm : version 2 

While the identification approach derived in section 4.2. essentially makes 

computations on the input block Hankel matrix C/fc(ifc,t,j), the identifi­

cation algorithm derived in this section will operate on the concatenated 

matrix ^) ' 

Here UH (YH ) is a mt' x j block Hankel matrix where m (Z) is the number 

of system inputs (outputs) . It is assumed from now on that j > {m + l).i 

T h e o r e m 2 If the matrices UH ( n i i x j ) andYn ( l i x j ) with j > nmx{mi,li) 

contatnjnput and output vectors of the system., then the concatenated ma­

trix 

P ^ " ^—^u,,, J UJ me sysiem-

ix will satisfy the following propertii 

1/ rank _ rni + n if the condition for rank-cancellation is 

satisfied (see section 5.1). n is the order of the observable system part. 

2/ Partition the SVD of ] } as • 

L '̂̂  

-- [ A P2] 
5 i 0 

where 

The dimensions are : Si {mi -f- n) x (mi -f- n) ; P n (li) x {mi -|- n ) ; P12 

(/t) X {It - n) ; P21 (mt) X (mt -f- n ) ; P22 (li) x {li - n) ; Qt {mi -\-n)xj 

; Q2 { j - mt - n ) X j . Let P^\ be such that P j i - P j i = 0 with P^^ a 

(mt - n) X n matrix then: 

PIIPTI P12.T 

0 P22.T 

r ( t ) r( t ) -^ 

0 -K.r{i)^ 

--m.X{kJ).Uit.{Uit)' ( 4 ) 

"^onZl n- ° ,~ " '''^''''''y non-singular matrix and Tii)^ 

''"auat'^o'^rsf V̂ '̂ 'r̂ '""""""̂  - P - ' - - t P » t matrix 

theorem 1 ̂ ' " ° ' '''' ^^"«^^^ decomposition and 
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Theorem 2 is a key tool in the identification of a state space model 

AyB,C,D from input-output data: 

For the estimation of the order n and the computation of the matri ­

ces >l, P , C , D , all we need is the left singular vectors of the concatenated 

matrix , which is a ( m -h l)i x j matrix wi th j > ( m -f l)i T h e 
UH J 

singular values allow to estimate the observable order of the system. 

If the left singular matrix of is partitioned as: 

Pu 

P21 

as in theorem 2 ^ 

then ^ and C can be computed from the shiftstructure of P n . P 2 i B and 

D follow from a similar observation as was used in section 4.2.: 

— Part i t ion P / j = {r{i)^y f s [Ki . . . Ki] where the Kk are ( l i - n ) x (li) 

blocks. 

— Part i t ion - P 2 2 = {T{i)^y.Hu as [Zi . . . Zi] where the blocks are 

each (Zt - n ) X m matrices 
then, a set of equations in the unknown matrices B and D can be written 

Zl ' • Kl K2 Ki . . Ki 

Z2 K2 K , . . . 0 

Zi = Ki K, K , . . . 0 

Zi . Ki 0 0 . . 0 

0 

or{i 

T h e computational requirements for this second version of the identi­

fication algorithm are even less than for the first one (section 5.3) 

5 Properties of the new identification 
approach. 
A s will be explained in this section, the optimal choice for the matrix 

block dimensions i and j to be used in the construction of the block 

Hankel matrices Uh{k,iJ) and YH{k,iJ) is essential. 

For the identification version 1 (section 4.2.) the following inequalities 

should be satisfied: 
— i > to, where to is the system observability index 

— j > max(mt,Zt) (it will be assumed that rank( ï7h) = mt, which can 

be interpreted as a persistant excitation condition for the input-sequence 

(but this wil l not be further pursued here )) — ( ; - mt ) > n : { j - mi) is 

the dimension of the orthogonal row complement o£ UH-

— Zt > n : Zt is the number of rows of the matrix YH.U^-{U^)^ 

For the identification version 2 (section 4.3.) the following inequalities 

should be satisfied: 

— t > to, where to is the system observability index. 

— j > {m-\- l).i 

In both cases, the conditions are such that t is sufficiently large, in order to 

allow enough 'space' to estimate the observable dynamical order n . Once 

t is fixed, j should bc sufficiently large for orthogonal row complements 

to exist. 

F r o m hereon, it is assumed that these weak reqtdrements for the dimen­

sions t and j are satisfied. There are however strong additional reasons 

to require that j and t be chosen such that the block Hankel matrices 

YH{k,iJ) and UH{k,iJ) are largely overdetermined, i.e. have much more 

columns than rows. 

In this paper, we discuss the three most important without mentionmg too 

much detail : the so-called condition of 'rank-cancellation', discussed in 

section 5.1., the robustness of the identification scheme with noisy obser­

vations n section 5.2. and the computational efficiency, which is discussed 

in section 5.3. 

5.1 The condition of rank-cancellation. 

T h e succes of the order estimation procedure via the singular value de­

composition in both versions of the S V D identification approach, depends 

upon the geometrical situation of the row space of the matrix r(t) .A'(fc , j ) 

with respect to the row space of the input block Hankel matrix Z7h(A;,t, j ) , 

or better with respect to the ortogonal complement of the row space of 

UH. 

The dimension of the projection of the row space of T{i).X{k,j) on the 

orthogonal complement U^ oi the row space of the matrix I7h, should be 

equal to the correct observable dimension n. Ideally, the row space of 

T{i).X{k,j) (or that of X{k,i)) should be as orthogonal as possible to 

the row space of UH{k,iJ) Loosely speaking, no dimension may be 'lost' 

in the projection. T h e phenomenon where one or more dimensions of the 

observable part of the state space are lost in the projection on the orthog­

onal complement of the row space of UH wil l be called 'rank-cancellation'. 

T h e precise geometrical situation can rigorously be described via the con­

cept of principal angles between subspaces, which is a generalization of 

the angle between two vectors [3]. Interesting enough, the computation 

of these principal angles also makes use of the singular value decompo­

sition. T h e larger tht principal angles between spanj.Qyf{X{k,j)) and 

8panrow(^^'i(*:'»'i))' the more information is contained in the dynamical 

behavior of the state sequence X ( f c , j ) = [x[k] . . . i[fc - f - j - 1]], which 

was not yet present in the row space of the input Hankel matrix UH-

For single input, single output systems, excited by an impulse, it can 

be demonstrated that these principal angles are always orthogonal. T h i s 

corresponds precisely to the intuitive idea of an impulse as being the op­

timal identification excitation signal. T h e main conclusion is that both 

mathematically and via extensive simulations, it can be proven that rank-

cancellation is not generic. Moreover, it can be influenced by choosing j 

sufficiently large. Using a qualitative statement, one can say that for a 

fixed input sequence, generically, the probability that rank cancellation 

occurs, decreases ,for fixed t, wi th increasing j . Since in a lot of iden­

tification experiments, the input sequence cannot be freely chosen, this 

result is important. 

A crit ical example is now considered. I n figure 1. the largest principal 

angle between the orthogonal complement U^ oi spanj.oyf{Uh{k,i, j ) ) and 

s p a n r o w ( ^ ( f c . i ) ) ^ depicted for a S I S O second order system as a function 

of the number of columns j and for a fixed number of blockrows t = 5. 

T h e smallest canonical angle is approximately constant (10° and is not 

shown). 

Figure 1 

Observe that the largest canonical angle decreases with increasing overde-

termination j / i . Extensive simulations on several systems have shown 

that this behavior is generic. It constitutes one of the reasons to choose 

j / i large. 

5.2 Overdetermination j / i decreases noise sen­
sitivity. 
T i l l now, it was assumed that the available input-output data are noise-

free. I n most practical circumstances however, measurement noise cor­

rupts the data. It is assumed in this paper that this can be modeled 

as unobservable additive perturbations of the 'exact' data. Denoting by 

* exact, by ' pure noise quantities, the measured irfput-output data are 

stored in their respective block Hankel matrices that can be written as: 

UH = UH{k,iJ) = U~H{k,iJ) + C ^ ( f c . i , i ) = (^-{-1^ 

YH = YH{k, i, j ) = K { k , i , j ) + K(fc, iJ)=YH-\-YH 

Three effects for this noisy situation can be observed as a function of 

the overdetermination j / i : 

— 1. It can rigorously be proven [14], that , the probabiUty that the pure 

noise row space spanrow(f^O orthogonal to the exact data row space 

spanjo^(Z7h), increases with increasing overdetermination j / i . ( T h i s is by 

the way the same reason why in the solution of inconsistent linear equa­

tions a large overdetermination is advocated, be it in least squares or in 

total linear least squares approaches [2] [13], because the orthogonaUty of 

noise and exact spaces then allows to separate them). 

— 2. For increasing overdetermination j / i , the singular values that are 

used to determine the order of the observable part of the system, grow 

towards certain 'asymptotic' levels, which aUows to distinguish clearly 

the system singular values from those caused by only the noise. A fuU 

explanation and mathematical demonstration of this observation is now 

available [14]. As an illustration, consider the following simple example: 

I n fig.2, the smallest canonical angles between spanrow(^fc) spanrow(^h 

are shown as a function of the number of columns j for a second order 

S I S O system, where the output measurements are corrupted by 1% noise. 

T h e nmnber of blockrows i = 5. T h e largest singular value is not shown. 

L l the noiseless case (under the conditions described in 5.1), only 2 canon­

ical angles would differ from 0. Observe that the three canonical angles 

caused by the 'pure' noise reach a 'saturation' level, w h ü e those coming 

from the 'true' system keep increasing. Hence it becomes more easy to 

determine the true order of the system for increasing overdetermination 

Figure 2 



496 B. De Moor et al. 

— 3. Strong consistency results can be proven that allow to conclude that 

m both identification algorithms (version 1 and 2), the correct colunmspace 

of the extended observability matrix r ( t ) is identified with increasing prob­

ability for increasing overdetermination j / i . B y theorem 1, the shiftstruc­

ture of this columnspace aUows a realization of the model matrices A and 

C 

I n the case where the data are corrupted by additive noise, one can 

now make a meaningful distinction between the two identification versions 

(section 4.2 versus section 4.3). 

If the input data are noise free, but the output data are considered to 

be noisy, the first identification approach, which projects the row space 

of the output Hankel matrix upon the orthogonal complement of the row 

space of the input Hankel matr ix should be preferred. Thi s correspond to 

a linear least squares projection interpretation of the identification [2]. 

When both input and output measurements are noisy (corrupted by the 

same absolute amount of noise), the second version of section 4.3. should 

be used. T h i s corresponds to a total linear least squares interpretation of 

identification [2]. 

5.3 The computational requirements. 

Although computational details w ü l be reported elsewhere, we briefly 

summarize in this paper some important observations. 

Identification approach version 1 (section 4.2) 

— T h e orthogonaUzation of the row space of the block Hankel matrix 

n with respect to that of the block Hankel matr ix UH requires a G r a m -

Schmidt orthogonaUzation procedure. Preferably, the Hankel structure 

could be exploited. 

— T h e resulting matrix YH-U^.U^' is (for reasons to be discussed in sec­

tion 5) a largely overdetermined matrix, with much more columns than 

rows. Hence, its singular value decomposition can be computed very ef­

ficiently by first performing a R.Q decomposition {R lower triangular, Q 

orthonormal) and then computing the S V D of the matrix R 

Identification approach version 2 (section 4.3) 

— T h e singular value decomposition of a largely overdetermined concate­

nated matrix is required. T h i s can again be achieved by first 

computing the R.Q factorization, foUowed by the S V D of R. 

— A n adaptive version of the presented identification algorithms that 

may be used for the identification of time-varying linear systems, is 'aclu-

aUy bemg implemented and tested. It exploits both the Hankel structure 

and a rank one updating mechanism of the S V D via the R.Q factorization. 

Prel iminary results are promising. 

6 Some real life examples. 

The performance of the algorithms has been evaluated on both simulated 

and industrial data sets, fri tliis section, an example is presented that is 

adopted from [6] [7] [8]. 

T h e model has been identified from sequences regarding normal operating 

conditions of an ethane - ethylene distillation colmim. White Gauss ian 

noise with standard deviation equal to 10 % of the standard deviation 

observed on the single (exact) input-output components was added before 

identification was carried out. A 6-th order model was selected from the 

singular spectrum of YH-U^.U^'. T h e identification was carried out using 

the second version, presented in section 4.2. T h e identified model was 

then vaUdated by comparing original and simulated outputs, using the 

exact original mputs. Fig.3 shows the exact inputs while fig.4 shows both 

the exact and simulated outputs. 

0 50 100 ' \ 50 100 

Figure 3. 
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7 Conclusions 

tmc^Ln'rat! ' " 7 K geometrical concepts for a new iden-

Ife elToi d ^^"^"^^^ decomposition 

observadon T " " ' " ^ ^ ' ^'^'^ '^^'^ ^ P " ' output 

l Ï e a r T T ' . " " ^ ^ ^ ^ ^ e e n derived: One wliich aUows for a 

I T In 'T" " ^ ' ^ ^ P " * - * - - . « - - n d which has m o r e the character 

o f total hnear least squares. Future work will b e directed to a complete 

numencal miplementation o f adaptive versions o f the singular value d e ­
composition for structured matrices. 
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