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A GEOMETRICAL STRATEGY FOR THE
IDENTIFICATION OF STATE SPACE MODELS
OF LINEAR MULTIVARIABLE SYSTEMS WITH

SINGULAR VALUE DECOMPOSITION

We have shown that the impulse response of a linear time-
invariant filter h(t) can be recovered from the covariance
‘ of the (nonstationary) process obtained when this filter is
‘; excited with a unilateral white noise of arbitrary distribu-

tion. Moreover, this is true even if the filter is not minimum
I phase or even unstable. We have also indicated how to esti-

mate the required covariance function from (multichannel)
output data alone.

There are still many practical difficulties that need to be re-

solved. First, it would desirable to extend our results to the
case of non-zero initial conditions. Second, our procedure

should simplify for filters with a rational transfer function,

attempting to produce directly the two polynomials rather

than the (infinite) impulse response. Third, effects of mea-
surement and computational errors need to be explicitly
addressed.
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Abstract

In this paper, some geometrically inspired concepts are studied for the
identification of models for multivariable linear time invariant systems
from noisy input - output observations. Starting from a fundamental
highly structured input-output matrix equation, it is shown how the sin-
gular value decomposition allows to estimate the order of the observable
part of the system and its state space model matrices. Moreover, condi-
tions for persistance of excitation of the inputs and the behavior of the
algorithm when the data are perturbed by noise, can easily be studied
from a geometrical point of view . The singular values allow to quan-
tify these pts. An e le of an industrial plant identification is
presented.

Keywords: Lincar and Total linear least squares, identification, singular
value decomposition, observable modes.

1 Introduction

The selection and the identification of appropriate mathematical represen-
tations are of central importance in the analysis, design and control of mul-
tivariable systems. With acces only to the external input-outputbehavior
of a multivariable dynamical process, the internal structure (other than a
priori assumed time invariance and linearity being unknown), the problem
of constructing a model is a highly non-trivial task. Because of this com-
plexity, reliable and robust general purpose identification schemes have
not yet become a standard tool. In most cases, (experimental) observa-
tions on the input-output behavior of the system under normal operating
conditions are readily available. The most obvious choice for a mathemat-
ical model is in a lot of cases a state space representation since the major
part of modern system and control theory, such as the design of observers
, filters and optimal controllers regards this very efficient and compact
representation. In this paper, a new geometrically inspired identification
scheme will be presented . It makes use of the numerically reliable key
technique of the singular value decomposition and allows to estimate the
order of the system under study and to identify its state space model ma-
trices, from possibly noise corrupted multiple input-output measurements.
No a priori paramatrization , which may be ill-conditioned with respect
to identification, is required, in contrast to the identification techniques
reported in [5] [12].The inspiration for the identification approach derived
in this paper, can be found in the work reported in [1] [4](7](9][10][11][15].
This paper is organised as follows: In section 2, an important input -
output matrix equation is derived, relating input ts with out-
put measurements in a structured way. The geometrical interpretation
in terms of row spaces of the involved matrices, is emphasized. In sec-
tion 3, the main properties of the singular value decomposition are briefly
summarized while in section 4, two different versions of the identification
technique are derived. Some more details about the results to be expected
when the input-output observations are noisy, are reported in section 5,
together with some robustness results of the new approach. In section 6,
we present an example of an industrial plant ; identification.

2 Animportant input-output matrix equa-

tion and its geometrical interpretation.

In this section, a crucial input-output relation will be derived. It is essen-
tial for the identification epproach to be presented furtheron. We consider
linear, discrete time , multivariable time invariant systems with m inputs

and [ outputs, with state space representation:

zk+1axt = Anxn2[klax1 + Baxm-u[klmx1 (1)
ylklixt = Cixn-z[k]nx1 + Dixm-u[k]ix1 (2)
(where necessary, matrix and vector di i will be indicated) The

matrices 4, B, C, D are real, the index k denotes the discrete time and the
vectors u[k], y[k] and z[k] are the input, the output and the state at time
k. Furthermore, we will also frequently use the set of Markovparamaters
H; of the linear system, defined by Ho = D, H; = C.A'"'.B (i > 0).All
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matrices in this paper are assumed to be real.
From meanipulation of the state space system description, one can easily
obtain the following important input-output matrix equation :

Ya(k,i,5) = D(E)-X (k,7) + Hu(i)-Un(k, 1, 5) (3)

(The subscript k denotes that the matrix has block Hankelstructure , ¢! is
block Toeplits lower triangular, tu block Toeplitz upper triangular.) The
matrices have the following structure:

y[k] yk+1] ... ylk+i-1]
y[k +1] ylk+2] ... ylk+])
Yu(k,i,5) = y[k +2] ylk+3] ... ylk+i+1]

ylk+i—1] ylk+1] ylk+ji+i-2]

This is a li x j block Hankelmatrix constructed of i + j — 1 consecutive
output vectors. The matrix Un(k,i,7) has a similar structure with input
vectors. The matrix Hy(i) is a li x mi lower triangular block Toeplitzma-

trix that contains the i first Markovparameters :

D 0 0 0
cB D 0 0
. CAB CB D 0
Ha()=| carB  cAB  CB 0
CAi-?B CA™B CA™B ... D

»

T(i) is the il x n ’extended’ observability matrix.

c
CA
I = | c4

CcA*?

and X(k,j) = [a[k]z(k +1]...z[k + 7 — 1] is the n x j matrix contain-
ing j consecutive states. The geometrical observations to be presented
will be the key tool in the analysis of the algorithm. They will provide
insight in the mechanism of estimating the dimension of the observable
part of the state space, in the conditions for persistant excitation of the
input sequence, which has to ensure a reliable identification and in the
noise sensitivity of the results. Denote by spangow(Un),spancow(Yh) the
rowspace of the row vectors of Up, Ya. It is assumed that the dimensions
of the matrices Up and Y are chosen such that j > max(li, mi) and
(j — mi) > n. The matrix input - output relation can be interpreted as
follows: span;oy(Ys) is the sum of two rowspaces:

— the row space of the row vectors of I'(i).X(k,j):  T({) makes linear
combinations of the rows of X (k, j). It filters out the non-observable parts
of the state . Hence,

spangow(T(8). X (k, 7)) = spangow[projection of X (k, ) on observable sub-
space of state space]

— the row space of the row vectors of Hy.Us.
This geometrical visualization of the input: P
suggest the following:

— the dimension of the observab
from the dimension of the projection of the output rowspace upon the
orthogonal complement of the row space of the input block Hankel matrix
and this under some (general) conditions yet to be determined (section
5.1) The part of the rowspace of X(k, j) orthogonal to the row space of Un
can be considered as 'new’ information, caused by the dynamical action
of the system. This information is not contained in the input. Hence,
the part of the rowspace of Y; which is orthogonal to the rowspace of Un
contains information about the dynamics of the system.

—- the more orthogonal the rowspace of X(k,j) to the rowspace of Un,
the more inf tion that is ilable in the projecti Hence, it can be
expected and will be confirmed furtheron, that the inputs are satisfactory
for the identification whenever the rowspace of X(k,j) is "sufficiently”

orthogonal to spanrow(Us)-

lations i diately

le part of the state space can be estimated
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3 The singular value decomposition (SVD).

Vflhile the .geometxical visualization is crucial from a conceptual point of
view, .the smglfltu' value decomposition (SVD) is the key instrument in the
e);ﬁhcxl\; numerical solution of this identification scheme. In this paper, we
will only give a brief summary of i i ies. ) :
sy Loy Yy of its main properties. Much more details
E:le Autlonne-Eclmrt'-Young theorem (restricted to real matrices)
ery real m X n matriz A can be decomposed in three real matrices:
Amxn = Unxm.Zmxn. Vi

nxn

where U and V are orthogonal: UU* = Ut
J 2 UU =UU = = ViV =
and £ is real, pseudo-diagonal with ti -’I‘m' V.", whil

I
0 o .
with T, = diag(oi) , 01 > oy > ..
of the matriz A.
gh(e Ve)lementt; al,- t‘al-e the singular values of the matrix A4, the columns of
are the left (right) singular vectors. Th .
n e ey generate an orthonor-
:;?leb:[sls for th.et .columnlslpace (rowspace) of the matrix A. The singular
ecomposition is the most reliable wa i ’
: T : Yy to estimate the rank of
::11::?:(. It is ;er;i robust against perturbations and numerically teliabl:
1 and efficient software are nowada i i
hms e ys available in most soft
packages. The singular values can be i ntimuons
considered as a kind of ’ i
rank measures’: The smallest sin oy men
: gular value measures in Frobeni
the distance of the matrix from a matrix of lower rank reenss momm

l

g ts:

<2 0r >0 andr is the algebraic rank

4 The identification algorithm for noise-
free data.

In t.his section, 2 versions of the SVD based identification approach are
j:Ienved (section 4.2 and 4.3). They are both obtained starting from an
n'nportant property of the so-called observability space of the system (sec-
tion 4..]). For the time being, it is assumed that the input-output data
fare noisefree. However, in section 5, the effect of noise corrupting the
input-output data will be investigated. An important difference in igntcr-
pretation between the first and the second version of the identificatio:

approach will be studied there. "

4.1 The shift structure of the observability space.

:As will become clear furtheron, the observability matrix T'(¢) or rather
its columnspace, will play an important role. The space spanned by its
columns will be called the observability space. The following thcoyrem
shows that this space only depends upon the observable poles of th

tem .First we introduce some notation: <
IfUisa mxn matrix, U (U ) will be a matrix with a reduced number of
rows, obtained from U by omitting the last (first) blockrow. The precise
number of rows to be omitted will be obvious from the cont.cxt. ?

Theorem 1 If a p x g matriz Y is of the form Y = T'(¢).M with T(i)
the extended observability matriz and if rank(Y) = rank(I'({)) = n < p
and n < g and if the columns the P X n matriz U form a basis for the
c?lumnspace of Y, then the matriz T that satisfies U.T = U has the same
eigenvalues as the matriz A in I'(3). -

Proof: Straightforward but omitted.

Corolla.ry 1: Let the SVD of ¥ be : Y,y = P.5.Q" with rank(Y) =
rank(I'(:)) = n'< P anc.l n<gq. Then_P,, the first I x n block of P and
thcrzl Xn m?tnx T satisfying P.T = P are matrices similar to C and 4
in I'(7), i.e. ¢ i i i

o T),__l ;_lT:‘eRe.xxsts a nonsingular n X n matrix R such that P, =C.R
This means that matrices similar to A and C can be found if & basis for
the columnspace of I'(¢) is known. It will now be studied how such a basis
can be found using input-output data only.

4.2 Identification algorithm : versjon 1

It if no‘t difficult to see from the input - output matrix equation that the
projection of the row space of ¥} upon the orthogonal complement of the
row space of U is under general conditions a space that posesses the shift
property of the observability matrix. This observation is exploited in the
computation of the matrices 4 and C , starti i .
e cption P » starting from the input-output
i—m(lii\:\:!e the number of columns j of ¥; and U, larger than max(ms, li).
€ an overestimation of 4o, the observability ind.
to be identified, while also (5 — rru,) >n Y fndex of the system
_ 1
Denote by Uy the orthonormal matrix whose columnspace is the or-
thogonal rowcomplement of Uy, i.e. Up Ut = 0. — Postmultiply the
second input - output relation with U .(UL)

VUil (UR)' = T().X (k,).Ui (UL ) (4)

Proof: Omitted. The proof essentiall:

'SI‘I;:S is of course equivalent with orthonormalizing (e.g. with some Gram-
_c Iml.dt proc'edure) the rows of ¥}, against the rows of Us.
- t is lnot d.xfﬁcv:l.lt to see that the rank of the matrix Y;..U,;L.(U,f‘)' will
be :qua to the dunef\slon.of the projection of the observable part of the
dime s?que‘nce con.lalned in X(k,j) into the columnspace of U,f‘. This
din :;\s:on is ’Ig;ncncally equal to the dimension of the observable part of
stem. . - " [ s

e syster e precise condition for this result to be true is discussed in
— L

The ra_n!( n of ¥3.Ui" .(Ui)* can be computed from the singular value
decomposition . Let this SVD be :

Ya.Ur (UL = 51 0 Qi
w(Ui) =[P P,). o o] q (5)

Hherc Pyislixn, P, lix(li—n),Sinxn,Q jxnand Q2 7 x(j—n).

f\ow- follows ﬁonL the corollary in section 4.1. that the matrices A,
satisfying ﬂ -A¢ = P, and C, = first I x n blockrow of P; are a realization
of the matrices 4 and C of the model.
The co: tati i i i
elcg‘mtn:lpu ation of the matrices B and D is straightforward though less
L}smg {.he matrix P, defined in the SVD (5) and the pseudo-inverse U+
of Uy, it can be found from the second input. -outputrelation that

P, Y,.U* = PL.H,

D.eﬁnc .K = P;.H:l, then the matrix K can be partitioned in ¢ blocks of
dimension (Ii — n) x m, satisfying

D 0 0 0
CB D 0 0
(K ... K =[P, ... P]. CAzB CB D 0
CA’B  CAB CB 0
CA'™?B CA'—’B 5;4-’*‘3 o b'

where Py are t'he (li = n) x (1) subblocks of P{. This can be rewritten as
an ovelrdetcrmmcd set of linear equations in the unknowns B and D:

‘.
K; P P P .. P

K P, P P ... 0 I

*l=|P P A .0 |.|T O b
: - 0 r(z—l) LB
K; P, 0 0 ... 0

This can be solved for the unknown matrices B and D.

Although t.hc P ational requir ts of the above identification scheme
sce{n.fon’m.dable, in reality, the computational complexity is moderate.
This issue is discussed in section 5.3.

4.3 Identification algorithm : version 2

While the identification approach derived in section 4.2. essentially makes
conllputations on the input block Hankel matrix Un(k,1,5), the identifi-
cation algorithm derived in this section will operate on the concatenated
Ya(k,1,5)

Un(k,4,5)

Here Uy, (Yp. ) is & mi x j block Hankel matrix where m (1) is the number
of system inputs (outputs) . It is assumed from now on that J>(m+).4

matrix

Theo.refn 2 If the matrices U, (mixj) and Yy, (lixj) with j > max(ms, li)
contain input and output vectors of the system , then the concatenated ma-

; Ya : . 1
triz U will satisfy the following properties:

1/ rank N 3 iti
U, | =™ + n if the condition for rank-cancellation is
satisfied (see section 5.1). n is the order of the observable system part.

2/ Partition the SVD of [ T ] as :
Us ’
Yo | _ S1 0
[U,.]‘[P‘P’]‘[o 0"

P, P,
P P = 11 12
(P 2] [le Pzz]
Tl‘{ze dintlensions are : Sl (mi+n) x (mi+n); Py (i) x (mi+n); P,
( i) x (lt - n)‘,’ Py (nu) x(midn); Py (li)x(li—-n); Q (mi+n)xj
i Qz (J—mi—n)xj. Let Pj; be such that Py. P& = 0 with PE a
(mé —n) x n matric then: "

[ Pu.Psi  Pu.T ] _ [ I'()  T@E)* ]

fe
—

where

0 Py, T 0 —H,yT()*
h : . . ;
Z):;:{Z: t:. a(li = n) x (¥ — n) arbitrary non-singular matriz and I'(:)*
° (li—n) linear independent column vectors of the orthogonal
P t of the col op ofI‘(i) gonal com-

y follows from the input- output matrix

cquation (3), from the properties of the singular value decomposition and

theorem 1.
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Theorem 2 is a key tool in the identification of a state space model

A, B,C, D from input-output data:
For the estimation of the order n and the computation of the matri-
ces A,B,C, D , all we need is the left singular vectors of the concatenated

matrix g" , which is a (m + )i x j matrix with j > (m +1)i The
3
singular values allow to estimate the observable order of the system.

If the left singular matrix of g" ] is partitioned as:
A

Py P
Py Py
as in theorem 2

then A and C can be computed from the shiftstructure of Pi1.P;i B and
D follow from a similar observation as was used in section 4.2.:

— Partition P = (T(:))! ds [K; ... K:] where the K are (li—n)x (li)
blocks.

— Partition —P; = (['(§)*)".Hy as [Z1 ... Zi] where the blocks Zj are
each (li — n) X m matrices

then, a set of equations in the unknown matrices B and D can be written

as:

Z K, K, Ks ... K
Z2 K, Ky Ky ... O I 0 D
Zy | =| Ks K« Ks ... 0O orii-1) || B

Z; K: 0 0 sew O
The computational requirements for this second version of the identi-
fication algorithm are even less than for the first one (section 5.3)

5 Properties of the new identification

approach.

As will be explained in this section, the optimal choice for the matrix
block dimensions i and j to be used in the construction of the block
Hankel matrices Ux(k,%,5) and Yi(k,1,5) is essential.

For the identification version 1 (section 4.2.) the following inequalities
should be satisfied:

— i > i, where io is the system observability index

— j > max(mi, li) (it will be assumed that rank(U,) = mi, which can
be interpreted as a persistant excitation dition for the input-seq

(but this will not be further pursued here )) — (j —mi) > n : (j —mi) is
the dimension of the orthogonal row complement of Up.

— Ii > n : li is the number of rows of the matrix Y4.Ui.(Ui)*

For the identification version 2 (section 4.3.) the following inequalities
should be satisfied:

— i > ig, where 1o is the system observability index.

—Ji>(m+1).i

In both cases, the conditions are such that i is sufficiently large, in order to
allow enough ’space’ to estimate the observable dynamical order n. Once
i is fixed, j should be sufficiently large for orthogonal row compl ts
to exist.

From hereon, it is assumed that these weak requir ts for the di
sions i and j are satisfied. There are however strong additional reasons
to require that j and i be chosen such that the block Hankel matrices
Ya(k,4,7) end Un(k, 1, j) are largely overdetermined, i.e. have much more
columns than rows.

In this paper, we discuss the three most important without mentioning too
much detail : the so-called condition of ’rank-c llation’, di d in
section 5.1., the robustness of the identification scheme with noisy obser-
vations n section 5.2. and the computational efficiency, which is discussed

in section 5.3.

5.1 The condition of rank-cancellation.

The succes of the order estimation procedure via the singular value de-
composition in both versions of the SVD identification approach, depends
upon the geometrical situation of the row space of the matrix I'(¢).X (k, j)
with respect to the row space of the input block Hankel matrix Un(k,t,7),
or better with respect to the ortogonal complement of the row space of
U’l.

The dimension of the projection of the row space of I'(i).X(k,j) on the
orthogonal complement Uit of the row space of the matrix Uy, should be
equal to the correct observable dimension n. Ideally, the row space of
[(i)-X (k,5) (or that of X(k,5)) should be as orthogonal as possible to
the row space of Un(k,i,j) Loosely speaking, no dimension may be ’lost’
in the projection. The phenomenon where one or more dimensions of the
observable part of the state space are lost in the projection on the orthog-
onal complement of the row space of Uy will be called 'rank-cancellation’.
The precise geometrical situation can rigorously be described via the con-
cept of principal angles between subspaces, which is a generalization of
the angle between two vectors [3]. Interesting enough, the computation
of these principal angles also makes use of the singular value decompo-
sition. The larger the principal angles between spanpow(X(k,j)) and
spangow (Un(k, ,7)), the more information is contained in the dynamical

behavior of the state sequence X(k,j) = [z[k] ... z[k + j — 1]], which
was not yet present in the row space of the input Hankel matrix Us.
For single input, single output systems, excited by an impulse, it can
be demonstrated that these principal angles are always orthogonal. This
corresponds precisely to the intuitive idea of an impulse as being the op-
timal identification excitation signal. The main conclusion is that both
mathematically and via extensive simulations, it can be proven that rank-
cancellation is not generic. Moreover, it can be influenced by choosing j
sufficiently large. Using a qualitative statement, one can say that for a
fixed input sequence, generically, the probability that rank cancellation
occurs, decreases for fixed i, with increasing j. Since in a lot of iden-
tification experiments, the input sequence cannot be freely chosen, this

result is important.
A critical ple is now considered. In figure 1. the largest principal

angle between the orthogonal complement Uit of spangow(Un(k, 1, 7)) and
spanpow (X (k, 7)) is depicted for & SISO second order system as a function
of the number of columns j and for a fixed number of blockrows i=5.
The smallest canonical angle is approximately constant (10° and is not

shown).

o

28 s

3 10 20 30 40 so €0

Figure 1
Observe that the largest canonical angle décreases with increasing overde-

termination j/i.
that this behavior is generic. It constitutes one of the reasons to choose

7/t large.

5.2 Overdetermination j/i decreases noise sen-
sitivity.

Till now, it was assumed that the available input-output data are noise-
free. In most practical circumstances however, measurement noise cor-
rupts the data. It is assumed in this paper that this can be modeled
as unobservable additive perturbations of the ’exact’ data. Denoting by

~ exact, by ~ pure noise quantities, the measured’irfput-output data are
stored in their respective block Hankel matrices that can be written as:

Un = Un(krir5) = Un(kyi, 3) + Un(k,5,5) = Un + Un

Ya = Ya(kivd) = Va(kiin i) + Ya(kiini) = Ta + Y
Three effects for this noisy situation can be observed as a function of

the overdetermination j/i:
— 1. It can rigorously be proven [14], that , the probability that the pure

noise row space spanyow(Us) is orthogonal to the exact data row space

spanmw(ﬁ;), increases with increasing overdetermination j/i. (Thisis by

the way the same reason why in the solution of inconsistent linear equa-
tions a large overdetermination is advocated, be it in least squares or in
total linear least squares approaches [2] [13], because the orthogonality of
noise and exact spaces then allows to separate them).

— 2. For increasing overdetermination j/{, the singular values that are
used to determine the order of the observable part of the system, grow
towards certain ’asymptotic’ levels, which allows to distinguish clearly
the system singular values from those caused by only the noise. A full
explanation and mathematical demonstration of this observation is now
available [14]. As an illustration, consider the following simple example:

In fig.2. the smallest canonical angles between spangow(Ya) and spanyow (Un)
1

7 for a second order

are shown as a function of the ber of ¢
SISO system, where the output measurements are corrupted by 1% noise.

The number of blockrows i = 5. The largest singular value is not shown.
In the noiseless case (under the conditions described in 5.1), only 2 canon-
ical angles would differ from 0. Observe that the three canonical angles
caused by the ’pure’ noise reach a ’saturation’ level, while those coming
from the ’true’ system keep increasing. Hence it becomes more easy to
determine the true order of the system for increasing overdetermination

il

Extensive simulations on several systems have shown

e UL
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— 3. Strong consistency results can be proven that allow to conclude that

in both identification algorithms (version 1 and 2), the correct columnspace
of the extended observability matrix I'(i) is identified with increasing prob-
ability for increasing overdetermination 7/t . By theorem 1, the shiftstruc-
ture of this columnspace allows a realization of the model matrices 4 and

In the case where the data are corrupted by additive noise, one can
now make a meaningful distinction between the two identification versions
(section 4.2 versus section 4.3).

If the input data are noise free, but the output data are considered to
be noisy, the first identification approach, which projects the row space
of the output Hankel matrix upon the orthogonal complement of the row
space of the input Hankel matrix should be preferred. This correspond to
a lincar least squares projection interpretation of the identification [2].
When both input and output measurements are noisy (corrupted by the
same absolute amount of noise), the second version of section 4.3. should
be used. This corresponds to a total linear least squares interpretation of
identification [2]. )

5.3 The computational requirements.

Although computational details will be reported elsewhere, we briefly
summarize in this paper some important observations.

Identification approach version 1 (section 4.2)

— The orthogonalization of the row space of the block Hankel matrix
Y, with respect to that of the block Hankel matrix Uh requires a Gram-
Schmidt orthogonalization procedure. Preferably, the Hankel structure
could be exploited.

— The resulting matrix Y3, .Ut .Ut is (for reasons to be discussed in sec-
tion 5) a largely overdetermined matrix, with much more columns than
rows. Hence, its singular value decomposition can be computed very ef-
ficiently by first performing a R.Q decomposition (R lower triangular, Q
orthonormal) and then computing the SVD of the matrix R
Identification approach version 2 (section 4.3)

— The singular value decomposition of a largely overdetermined concate-

Y; i . , . .
nated matrix Uh is required. This can again be achieved by first
3

computing the R.Q factorization, followed by the SVD of R.

— An adaptive version of the presented identification algorithms, that
may be used for the identification of time-varying linear systems, is actu-
ally being implemented and tested. It exploits both the Hankel structure
and a rank one updating mechanism of the SVD via the R.Q factorization.
Preliminary results are promising.

6 Some real life examples.

The performance of the algorithms has been evaluated on both simulated
and industrial data sets. In this section, an example is presented that is
adopted from [6] [7] (8].

The model has been identified from sequences regarding normal operating
conditions of an ethane - ethylene distillation column. White Gaussian
noise with standard deviation equal to 10 % of the standard deviation
observed on the single (exact) input-output components was added before
identification was carried out. A 6-th order model was selected from the
singular spectrum of Y, .U .U;t*. The identification was carried out using
the second version, presented in section 4.2. The identified model was
then validated by comparing original and simulated outputs, using the
exact original inputs. Fig.3 shows the exact inputs while fig.4 shows both
the exact and simulated outputs.
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7 Conclusions

In this paper, a survey was given of geometrical concepts for a new iden-
tification strategy. The properties of the singular value decomposition
are exploited to compute a state space model from noisy input -output
observations. Two versions have been derived: One which allows for a
linear least squares interpretation, a second which has more the character
of total linear least squares. Future work will be directed to a complete
g trical treat t of the identification scheme and to exploit efficient
numerical implementation of adaptive versions of the singular value de-
composition for structured matrices.
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