
Int. J. Internet Protocol Technology, Vol. 4, No. 1, 2009 11

Assessing the Quality of Experience of SopCast

Yue Lu*, Benny Fallica and Fernando A. Kuipers

Network Architectures and Services (NAS) Group,
Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS),
Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands
E-mail: Y.Lu@tudelft.nl E-mail: B.Fallica@gmail.com
E-mail: F.A.Kuipers@tudelft.nl
*Corresponding author

Robert E. Kooij

TNO Information and Communication Technology,
Delft, The Netherlands
E-mail: Robert.Kooij@tno.nl

Piet Van Mieghem

Network Architectures and Services (NAS) Group,
Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS),
Delft University of Technology,
P.O. Box 5031, 2600 GA Delft, The Netherlands
E-mail: P.F.A.VanMieghem@tudelft.nl

Abstract:Recently, there has been a growing interest in academic and commercial environments
for live streaming using P2P technology. A number of new P2P digital Television (P2PTV)
applications have emerged. Such P2PTV applications are developed with proprietary
technologies. Their traffic characteristics and theQuality ofExperience (QoE) providedby them
are not well known. Therefore, investigating their mechanisms, analysing their performance,
and measuring their quality are important objectives for researchers, developers and end
users. In this paper, we present results from a measurement study of a BitTorrent-like P2PTV
application called SopCast, using both objective and subjective measurement technologies. The
results obtained in our study reveal the characteristics and important design issues of SopCast,
as well as the QoE that the end users perceive.

Keywords: P2PTV; P2P digital Television; SopCast; QoE; quality of experience;
measurement; PlanetLab.

Reference to this paper should be made as follows: Lu, Y., Fallica, B., Kuipers, F.A.,
Kooij, R.E. and Van Mieghem, P. (2009) ‘Assessing the Quality of Experience of
SopCast’, Int. J. Internet Protocol Technology, Vol. 4, No. 1, pp.11–23.

Biographical notes: Yue Lu is a PhD student in the NAS group of Delft University
of Technology. She obtained her BSc Degree at Huazhong University of Science and
Technology (China) in 2004. She completed her MSc Degree from Delft University of
Technology in April, 2006. She started her PhD research in September of 2006. Since 2004,
she has been researching P2P systems and real-time internet services.

Benny Fallica has currently joined the Nokia Siemens Networks (NSN) R&D Center in
Budapest, Hungary. He obtained his BSc Degree in Computer Engineering at the University of
Palermo (Italy) in April, 2005. He received his MSc Degree in Computer Engineering at Delft
University of Technology in December, 2007.

Fernando A. Kuipers received his MSc Degree in Electrical Engineering at the Delft
University of Technology in June, 2000. He obtained his PhD Degree (cum laude) in 2004
at the same faculty. During his PhD he was a member of the DIOC (interdisciplinary research
center) on the Design and Management of Infrastructures. Currently he is an Assistant
Professor in the NAS group at Delft University of Technology. Since September 2006, he is
also staff member of the research school for Transport, Infrastructures and Logistics (TRAIL).
His work mainly focuses on algorithms for networks in general (but the internet in particular).

Copyright © 2009 Inderscience Enterprises Ltd.



12 Y. Lu et al.

Robert E. Kooij received his MSc Degree in Mathematics at Delft University of Technology
in 1988. He obtained his PhD Degree (cum laude) in 1993 at the same faculty. His thesis
dealt with qualitative theory of non-linear Dynamical Systems. Since 1997 he is employed at
TNO ICT (the former KPN Research), the largest ICT Research Institute in the Netherlands.
His main research interest is Quality of Service for IP networks. Since November 2005,
he is a part-time Associate Professor at the Delft University of Technology in the Network
Architectures and Services section. There he works on the robustness of complex networks.

Piet Van Mieghem is Professor at the Delft University of Technology and Chairman of the
Section Network Architectures and Services (NAS). His main research interests lie in new
internet-like architectures for future, broadband andQoS-aware networks and in themodelling
and performance analysis of network behaviour and complex infrastructures. He received a
Master’s and PhD in Electrical Engineering from the K.U. Leuven (Belgium) in 1987 and
1991, respectively. Before joining Delft, he worked at the Interuniversity Micro Electronic
Center (IMEC) from 1987–1991. During 1993–1998, he was amember of theAlcatel Corporate
Research Center in Antwerp. He was a visiting scientist at MIT (1992–1993) and, in 2005,
a Visiting Professor at UCLA. Currently, he serves on the editorial board of the IEEE/ACM
Transactions on Networking.

1 Introduction

The success of Peer-to-Peer (P2P) (BitTorrent, 2001–2008)
file-sharing is undisputed. Their idea of exchanging
fragments has also been applied to streaming applications
over a P2P network. In recent years, many such P2P video
streaming applications, e.g., CoolStreaming (2005–2008),
(PPLive, 2004–2006), Tribler (Pouwelse et al., 2006) and
(SopCast, 2007), have appeared and are receiving much
attention. Measurements on these systems show that more
than 100,000 concurrent users viewing a single channel is
not uncommon. In this paper, we will investigate a P2PTV
system called SopCast (Fallica et al., 2008). In order
to understand the mechanisms of this BitTorrent-based
P2PTV system and its performance, we will investigate
by means of measurements the functionalities and the
traffic characteristics of SopCast and the Quality of
Experience (QoE) perceived by its end users. QoE can be
measured through objective and subjective measurements.
Measuring quality of user experience is important for both
users and developers.

The rest of this paper is organised as follows:
In Section 2 related work is discussed. In Section 3
we investigate the basic mechanisms of SopCast
via conducted lab experiments. Section 4 describes
measurements on a much larger network (Planetlab,
2007), in order to assess performance characteristics
for end users, such as the upload and download rate
and the stream quality they experience. Besides the
objective measurements in Sections 3 and 4, subjective
measurements are also provided in Section 5.We conclude
in Section 6.

2 Related work

Hei et al. (2007) have measured PPLive via passive
packet sniffing. Their measurement study focused

on three important aspects of PPLive: streaming
performance, workload characteristics, and overlay
properties. They presented detailed session statistics, such
as sessionduration, packet size and the correlationbetween
them, and traffic breakdown among sessions. Start-up
times and video buffer dimensions were also presented.
Other work on PPLive, like Vu et al. (2007) and Wang
et al. (2008), studied specific aspects of this P2P streaming
system. The node degrees of popular vs. unpopular
channels and the stability of nodes were investigated.

Zhang et al. (2005) and Li et al. (2008) focused
on Coolstreaming, and Wu and Zhao (2008) considers
UUSee.

Ali et al. (2006) evaluated the performance of both
PPLive and SopCast. They collected packet traces of the
systems under different conditions and analysed the data
on a single host joining a system and then tuning into a
channel, and collected packet traces for these cases.

Silverston and Fourmaux (2007) analysed the
different traffic patterns and underlying mechanisms of
several P2PTV applications. The results of this study were
based on a single measurements day where two soccer
games were scheduled.

Most of the above mentioned previous work was
executed from a single point of observation, or
from few nodes within direct access and lacks an
automatic mechanism for conducting measurements.
Also, the research was mainly aimed at investigating
the user behaviour, without much analysis on the
traffic characteristics and various mechanisms of P2PTV.
Moreover, the final perception of the end user, i.e., the
QoE, is not taken into account. In our opinion, it is
important to investigate the QoE for P2PTV systems,
since P2PTV technology can be considered a promising
candidate for content distribution companies to deploy
flexible and interactive TV. In this paper we perform such
a study, through objective and subjective measurements,
for the P2PTV application SopCast.



Assessing the Quality of Experience of SopCast 13

3 Lab experiments

In this section, we are going to investigate the basic
mechanisms of SopCast by means of lab experiments.

3.1 SopCast

SopCast is a free BitTorrent-like P2PTV application, born
as a student project at Fundan University in China. The
bit rates of TV programmes on SopCast typically range
from 250 Kb/s to 400 Kb/s with a few channels as high
as 800 Kb/s. The channels can be encoded in Windows
Media Video (WMV), Video file for Realplayer (RMVB),
Real Media (RM), Advanced Streaming Format (ASF),
and MPEG Audio Stream Layer III (MP3).

The SopCast Client has multiple choices of TV
channels, each of which forms its own overlay.
Each channel streams either live audio-video feeds, or
loop-displayed movies according to a preset schedule.
The viewer tunes into a channel of his choice and SopCast
starts its own operations to retrieve the stream. After some
seconds a player pops up and the stream can be seen.
SopCast also allows a user to broadcast his own channel.

3.2 Measurements infrastructure

Figure 1 presents our local P2P measurements
infrastructure. It is composed of standard personal
computers participating in a small network. Six nodes
are running the SopCast Client and the seventh one, as a
SopCast broadcaster, is broadcasting a TV channel.

Traffic collection and decoding is done withWireshark
(Orebaugh et al., 2006). The nodes run Windows XP.
Each node is equipped with an Intel Pentium 2.4 GHz
processor, 512 MB RAM and a 10/100 FastEthernet

network interface. The network interfaces are connected
to a 100Mbit switch, which is further connected through
a router to the internet.

3.3 Results

We present some observations based on our lab
experiments.

3.3.1 Transport protocol

The reports of Wireshark revealed that SopCast relies on
UDP traffic. We have observed two peaks in the packet
size distribution: one falls in the region below 100 bytes
and another one at 1320 data bytes. The small packets
with less than 100 bytes are considered non-video packets,
which are used for application-layer acknowledgements
of data packets delivered, requests for video chunks, or
initial connection establishment, and so on.Wewill further
explain these small packets in Section 3.3.3. The bigger
packets, with size approximately equal to the Maximum
Transmission Unit (MTU) for IP packets over ethernet
networks, are the video packets.

We also observed that SopCast faces a high overhead,
about 60% of non-video packets vs. almost 40% of actual
video data packets (see Figure 2). This was expected
since the protocol works on top of UDP, which does
not guarantee reliability in the way that TCP does. For
time-sensitive applications, UDP is a reasonable choice,
because dropped packets are considered no worse than
delayed packets. However a minimum control on the
status of the chunks must be kept. Since the chunks arrive
out of order, a scheme is needed to keep track of the
video chunks that need to be reassembled in order and
buffered, and in case a chunk is missing, to retrieve it.

Figure 1 Local measurements infrastructure (see online version for colours)



14 Y. Lu et al.

Nevertheless, various small packets are exchanged among
peers to keep the peer list up-to-date, to test the status
of peers (e.g., there is enough bandwidth available) or
to distribute the chunk availability information and the
keep-alivemessages.This explains theoverhead in this kind
of mesh-based P2PTV system.

Figure 2 SopCast packet size distribution (see online version
for colours)

3.3.2 Peer exchange and architecture

When SopCast first starts, it requires some time to search
for peers and subsequently it tries to download data from
the active peers. We recorded two types of start-up delay:
the delay from when one channel is selected until the
streaming player pops up, and the delay from when the
player pops up until the playback actually starts. The
playerpop-updelay is in general 20–30 s.This is the time for

SopCast to retrieve the peer list and the first video packets.
The player buffering delay is around 10–15 s, which can
vary from player to player and is not related to SopCast.
Therefore, the time that passes for a user to enjoy the live
streaming ranges between 30 s and 45 s.

Examining the traffic generated by each node we found
that the first task of each viewer node is sending out a
query message to the SopCast channel server to obtain
an updated channel list. This server has been identified,
with an IP locator, to be located in China. After a peer
selects one TV channel to watch, it sends out multiple
query messages to some root servers (trackers) to retrieve
an online peer list for this TV channel.

After contacting the tracker, thenodes formarandomly
connected mesh that is used to deliver the content among
individual peers. The content of a TV channel is divided
into video chunks, each with equal size. A video chunk
is delivered from a parent to a child peer. Except for
the source, each peer in the overlay has multiple parents
and multiple children. The delivery is performed with pull
requesting by child peers, meaning that the chunks that a
node has are notified periodically to the neighbours. Then
each node explicitly requests the segments of interest from
its neighbours according to their notification.

3.3.3 Traffic pattern

Wehave captured the traffic at peers and analysed how two
peers communicate with each other and set up the video
transmission session.

Figure 3 displays this process. First, Peer A requests
to establish a link connection with Peer B (using a

Figure 3 Flow graph between two peers (see online version for colours)



Assessing the Quality of Experience of SopCast 15

Figure 4 Traffic pattern during a video session between two peers (see online version for colours)

non-video packet with 52 bytes of data). After receiving
the acknowledgement from Peer B, Peer A requests video
chunks (using a non-video packet with 46 bytes of data)
from Peer B, based on the chunk availability information.
Afterwards, Peer B transmits a sequence of video packets
to Peer A (shown as bold arrows in Figure 3). Similarly,
Peer A can also upload the packets requested by Peer B.

In the trace, we noticed that the non-video packet
with 46 data bytes are transmitted periodically. Within
the transmission of two consecutive 46-byte packets, a
sequence of video packets with 1320 data bytes are sent
to and acknowledged (using a non-video packet with
28 data bytes) by another peer. After the 1320-byte
packets sequence, there is a smaller-sized video packet
(with 377, 497, 617, 1081 or 1201 data bytes) following at
the end for making up a rounding size of one or multiple
video chunks (we observed that a video chunk size is equal
to 10 Kbytes). The SopCast traffic pattern during a video
session between any two peers is shown in Figure 4.

3.3.4 Buffering techniques

Received chunks are stored in the SopCast buffer. The
buffer is responsible for downloading video chunks from
the network and streaming the downloaded video to a local
media player. The streaming process in SopCast traverses
two buffers: the SopCast buffer and the media player
buffer, as shown in Figure 5.

Figure 5 The SopCast buffer (see online version for colours)

When the streaming file length in the SopCast buffer
exceeds a predefined threshold, SopCast launches a media
player, which downloads video content from the localWeb
server listening on port 8902. Most media players have
built-in video buffering mechanisms. After the buffer of
the media player fills up to the required level, the actual
video playback starts.

The experiments presented in this section were carried
out in order to understand the basic mechanisms of
SopCast. In the next section we extend our measurement
scenario to a global one, to learn more about the QoE of
SopCast in a larger network.

4 PlanetLab experiments

In this section we present the results obtained via the
PlanetLab network, using 70 PlanetLab nodes.

4.1 Measurement set-up

We have used a standard personal computer located
in our campus network, as the Source Provider (SP)
of a TV channel content. With the SP, we registered
and broadcasted a dedicated TV channel to the SopCast
network. In this channel, a videowith 480 × 384 resolution
and at 45 KB/s is continuously broadcast in a loop.

On the other hand, we have used scripts not only to
remotely control 70 PlanetLab nodes (as our peers) to view
the TV channel we released, but also to monitor the QoE
at them.

Thus, our experiment resembles a streaming system, as
shown in Figure 6.

Each of the 70 PlanetLab nodes under consideration
runs the following software:

• SopCast in its Linux version, with command line
control

• Tcpdump

• Perl Scripts.

Passive monitoring by its nature is limited to information
acquired from the communications that are visible to the
monitoring stations. By accessing all of our PlanetLab
nodes, we attempt to capture data that is as complete as
possible and use it for our characterisations.

We make use of traced files of this SopCast network
captured during ten months (May 2007–November 2007;
August 2008–October 2008). In particular, we collected the
traffic logs for several one-hour intervals from the 70 peers
under investigation.

4.2 Upload and download rate

Comparing the video data upload and download rates
(the rate here is the average value over one hour trace),
we noticed that only few nodes have higher upload rate
compared to their download rate. In Figure 7 the four
nodes that have higher upload than download rates have
been identified as ‘supernodes’.

The average download rate at each node is almost the
same. This suggests that the download rate at a peer seems
to be confined by SopCast.

4.3 Parent’s upload rate to one child

Wedefine a parent as a peer that is uploading video packets
and define one child as a receiver of video packets.

The best choice for a peer is to download from the
parent who has enough ‘parent upload rate’ per peer



16 Y. Lu et al.

Figure 6 The SopCast player at the peer side (left); The window of the SP interface (right) (see online version for colours)

Figure 7 Upload and download rates of the peers at 17 of the 70 PlanetLab nodes (see online version for colours)

(the rate is the average value over one hour trace).
However, from Figure 8 it can be seen that the majority of
the parents keeps the same amount of upload rate per peer,
which is approximately 24 KB/s. This behaviour does not
change with the addition of more peers.

Figure 8 Parent’s upload rate per peer when the network
size is 70. u represents a parent and U represents
a child of the parent (see online version for colours)

Based on the results of Figures 7 and 8, we can imagine
that a parent with larger upload rate probably has more
children than a parent with smaller upload rate.

4.4 Blocking

In Figure 9, we consider the download rate without any
buffering. We can notice the fluctuations in the download
rate andwe compare themwith the steady playback rate of
the video (45 KB/s). If the download rate is smaller than
the playback rate and no data has been buffered, the end
user is facing blocking or freezing of the video. In practice
buffering is used, so this can be considered as a worst-case
study (Lu et al., 2008).

The worst-case blocking probability is calculated
counting the time tblock, where the download rate is smaller
than the playback rate, divided by the total amount t of
the observed time.

Pr[block] =
tblock

t
.



Assessing the Quality of Experience of SopCast 17

Figure 9 Download rate of the video packets (see online
version for colours)

From this assumption we calculated that blocking without
buffering happens during 22% of the time. Such a value is
too high for a smooth playback, which clearly illustrates
the need for a buffer.

Figure 9 proposed a scenario without a buffer, meaning
that thedatawill havebeenprocessedas soonas it arrives at
the destination. Of course such assumption is impractical
since the video packets are not arriving in order. And for
the pull-architecture of SopCast a buffer is needed to map
video chunks available and from that requesting the ones
that are missing.

Sentinelli et al. (2007) observed that the SopCast buffer
contains one minute of video. We made the assumption
that the media player uses a buffer of m seconds, where
m is usually smaller than 10. When an end user starts up
a SopCast TV channel, basically once the SopCast buffer
is full, it injects m seconds of streaming content into the
mediaplayerbuffer.By the time themediaplayer consumes
those m seconds of video SopCast is downloading new
video packets to refill the buffer.

If the SopCast buffer fails to collect enough data to feed
the media player buffer, blocking occurs.

In Figure 10 the buffer behaviour of one peer is
depicted. We consider the SopCast buffer size as the
streaming rate of the video (45 KB/s) times one minute
(Sentinelli et al., 2007), equal to about 2700 Kbytes, which
can be seen in Figure 10. We can observe that after
the start-up phase, the buffer maintains stable and the
playback is continuous. The average download rate for this
node is with 127KB/s far higher than the streaming rate of
the video (45 KB/s). Hence, it was expected that blocking
would not happen. However, due to the fluctuation of the
download rate with time, the data stored in the buffer
has major drops in the intervals between 1040–1150 s,
1660–1730 s, 1840–1920 s. During these drops (meaning
that in these periods the data stored in the buffer is much
less than the full buffer size 2700 Kbytes), end users may
face blocking (e.g., image freezing or loss), because in the
worst case, the lacked video chunks may be the ones which
need to be displayed in the next m seconds.

4.5 Overall video packet loss

As mentioned before, every peer can be downloading data
from other peers and at the same time be uploading data
to others. For instance, we have four peers viewing our TV
channel, PlanetLab nodes A, B, C and D. After analysing
the trace file of node A, we know that he downloads data
from nodes B, C and D during the whole trace. We can
calculate how much video packets A received from B by
analysing the trace file of A, as well as how much video
packets B sends to A by analysing the trace file of B. Then
in the video session betweenA andB, we can get its packet
loss ratio (same for thevideo sessionsbetweenAandC, and
between A and D). To summarise the number of packets
lost in all video sessions of the receiver A, we can get the
overall video packet loss ratio at node A during the whole
trace. The same approach is applied to the other nodes
and the distribution of the overall video packet loss ratio
is plotted in Figure 11.

Figure 10 SopCast buffer content in bytes of node planetlab1.diku.dk (see online version for colours)



18 Y. Lu et al.

Figure 11 The overall video packet loss ratio during the whole trace (see online version for colours)

In Figure 11, the x axis represents the overall packet loss
ratio during the whole trace at an end user and the y axis
represents the percentage of end users in our network. The
meanvalueof thepacket loss ratio at an enduser is over 4%,
which is high compared to the baseline SDTV packet loss
ratio requirement in IPTV of 0.4% (Agilent-Technologies,
2006). Besides, we observed that the packet loss at a peer is
mainly caused in the beginning period of this peer entering
this TV channel network (maybe because the connections
between him and his parents are not optimised and not
stable yet). However, thanks to the buffer, this high video
packet loss does not havemuch affect on the video quality,
which can be seen in Section 4.6.2.

4.6 Video quality

In this section, we assess the video quality at the end user
with respect to their start-up freezing time, overall frame
loss ratio, image quality and audio-video synchronisation.

4.6.1 Start-up freezing time

Many video decoders use ‘copy previous’ error
concealment to hide missing frames in the video stream
from users. This means that in the event of not receiving a
certain frame, the last correctly rendered frame is displayed
on the screen, resulting in the frame freezes that are often
seen in internet video playback.

Through our experiments on PlanetLab, we observed
that 97.17% of nodes always first face a freezing image
for a period of time at the beginning of viewing the

TV channel. The reason could be that the node has just
started downloading chunks from other peer nodes and
the video buffer of the local SopCast webserver is created
but not filled enough for the media player to access.
Therefore in the beginning of viewing the TV channel,
there usually exist severe frame losses with frame loss ratio
approaching 100%. During this period, the media player
handles the position of dropped frames by displaying the
nearest good frame (the first good frame in this case) as a
stagnatingpicture.Thedurationof this period (the start-up
freezing time) indicates, after the user sees the first image,
for how long (s)he has to wait before the video playback
starts playing smoothly.

Figure 12 shows that very few end users face a start-up
freezing time of more than 10 s. On average, end users see
the first freezing image for 4.07 s before seeing the actual
stream of the TV channel.

Figure 12 Start-up freezing time (see online version for colours)



Assessing the Quality of Experience of SopCast 19

4.6.2 Overall frame loss

The frame loss discussed here only considers lost frames,
not damaged frames (frames downloaded partially with
some bytes lost) after the start-up freezing phase.

In Figure 13, the x axis represents the overall frame loss
ratio during the whole trace at an end user and the y axis
represents the percentage of end users in our network. The
mean value of the frame loss ratio is 0.82%. It means that
end users could have a good video quality with low frame
loss ratio after experiencing the start-up freezing time.

4.6.3 Image quality

In this section, after the start-up freezing phase of peers,
we cut the received video and synchronised each frame
of the captured video with the original video to get the
objective Mean Opinion Score (MOS) (ITU-T, 1996),
using VQM (Pinson and Wolf, 2004).

Video Quality Metric (VQM) is a software tool
developed by the Institute for Telecommunication Science
to objectivelymeasure perceived video quality. It measures
the perceptual effects of video impairments including
blurring, jerky/unnatural motion, global noise, block
distortion and colour distortion, and combines them into
a single metric.

VQM takes the original video and the processed video
and produces quality scores that reflect the predicted
fidelity of the impaired video with reference to its
undistorted counterpart. To do that, the sampled video
needs to be calibrated. The calibration consists of

estimating and correcting the spatial and temporal shift of
the processed video sequence with respect to the original
video sequence. The final score is computed using a
linear combination of parameters that describe perceptual
changes in video quality by comparing features extracted
from the processed video with those extracted from the
original video. The final score is scaled to an objective
MOS value, a measure for user perceived quality, defined
on a five-point scale; 5 = excellent, 4 = good, 3 = fair,
2 = poor, 1 = bad. MOS here does not take the audio
quality, zapping time, etc., into account.

We captured at selectednodes the streamretrieved from
the SopCast buffer with VLC (VideoLan-Client, 2008).

We broadcasted two videos at different data rates: one
at 45 KB/s (the most common data rate used in SopCast)
and another one at 1 Mb/s. VQM provided the following
scores per node (see Figure 14).

The minimum threshold for acceptable quality
corresponds to the line MOS = 3.5. The average MOS
scores are high for both streaming rates, only a negligible
degradation has been observed. This also suggests that
SopCast does not provide any kind of encoding to the
broadcasted video.

4.6.4 Audio-video synchronisation

Audio-video synchronisation refers to the relative timing
of sound and image portions of a television programme,
or movie.

Figure 13 The overall frame loss ratio during the whole trace (see online version for colours)



20 Y. Lu et al.

Figure 14 Objective MOS scores for the received videos (see online version for colours)

The International Telecommunications Union
(ITU-R, 1998) recommendation states that the tolerance
from the point of capture to the viewer/listener shall be
no more than 90 ms audio leading video to 185 ms audio
lagging behind video.

We decided to analyse the A/V synchronisation in
SopCast with an ‘artificially generated’ video test sample.
The test sample includes a video component and an
audio component. The video component and the audio
component contain a marker. The video marker displays
between a first video state and a second video state,
a red full screen image. Similarly, the audio waveform
alternates between a first audio state and a second audio
state, an audio ‘beep’. The video and audio waveforms are
temporally synchronised to transition from one state to
another at the same time.

Thevideo is broadcastedwithSopCast.When the audio
and video tracks were extracted and compared, it turned
out that there was an average difference in time between
the two tracks of about 210 ms, which exceeds the ITU
recommendation. The reasons are twofold:

• We believe that the main contribution to this time
shift is caused by the network. When the video is sent
into the network, due to its transport protocol
(UDP), some packets might get lost. Since the system
is displaying in real time, a loss of a video packet can
cause the decoder to adjust buffer allocations
affecting the synchronisation of audio and video
tracks.

• The direct digital-to-digital conversion from one
(usually lossy) codec to another. We needed to
convert from the original video format to the
streamed one, passing through a final reconversion
of the received file to extract the tracks. This
(re)conversion may also have affected the
synchronisation.

4.7 Peer synchronisation

While watching a football match it could be disturbing
to hear the neighbours scream ‘GOAL’ while still
watching the pre-goal action (Sentinelli et al., 2007).
Such phenomena are common in P2PTV systems and are

referred to as peer lags. While watching the same channel,
peers’ content might not be synchronised. We measured
the different lag delays by injecting in the SopCast
network another artificial video that mainly reproduced
a timer. Each second a sequential number is shown.
Since SopCast builds a webserver that feeds the player’s
buffer, we connected six instantiations of VLC to the
webservers of the representative nodes and we gathered
the visualisation on a PC, see Figure 15.

Figure 15 The video at different nodes (see online version
for colours)

Clearly, some peer’s content lags behind that of others.
In the environment of PlanetLab, the lag went up to 3 s.
In reality, the lag is expected to grow even further. Hence,
we can conclude that SopCast clients are not likely to
view an exactly same frame of the stream at the same
time. We can say that SopCast nowadays is not yet
suitable to distribute a football-like content due to the low
synchronisation level among users.

4.8 Zapping time

While watching TV a common behaviour is to change
from on channel to the other, the so-called ‘zapping’.
If P2PTV applications want to gain popularity in the field
of home entertainment it is necessary to look at the zapping
performance of P2PTV applications.While for analog TV,
zapping consists of scanning through different television
channels or radio frequencies, in P2PTV the initial list of



Assessing the Quality of Experience of SopCast 21

hosts must be retrieved, and the system tries to connect to
some of the hosts to get data.

To measure the SopCast zapping time we needed to
calculate the time that SopCast requires to fill its buffer
and build the local web server. To do that we developed a
Perl script that starts a counter when a channel is clicked
and it stops when enough data to be displayed has been
fetched.

We let the script run when zapping among 20 popular
and less popular channels. Figure 16 shows the distribution
of the zapping times. It turns out that the zapping time in
SopCast is very high.

Figure 16 Distribution of zapping time (see online version
for colours)

Changing channels in an analog TV network usually takes
about 1

2 to 1 s compared to Digital TV where zapping
times of more than 2 s might be experienced. Note that
according to the DSL Forum the zapping time should
be limited to a maximum of 2 s (DSL-Forum, 2006).
In the IPTV environment changing channels or zapping,
has great importance as this is very often regarded as the
most important parameter used to judge the overall quality
of the network seen from the end user perspective. With
an average zapping time of 50 s, SopCast (P2PTV) faces
an unacceptable delay. Customers expect information
being delivered to their screen as soon as possible. Hence,
much improvement is needed in the start up phase of
SopCast.

5 Subjective measurements

Subjective video quality is concerned with how video is
perceived by a viewer and designates his or her opinion
on a particular video sequence. Subjective video quality
tests are quite expensive in terms of time and human
resources. To evaluate the subjective video quality, a video
sequence is chosen. Under typical settings of the system,
the sequence is presented to the users and their opinions are
collected. The opinions are scored and an average value is
computed.

5.1 Approach

The following steps were used for the subjective
evaluation:

• 22 persons participated in the evaluation by viewing
SopCast TV channels and completing a
questionnaire.

• The questionnaire contained ten questions each
addressing the expected quality problems of
SopCast.

The ten questions were:

• How fast was the login process?

• How long did you have to wait before seeing the
stream after you started the channel?

• How long did you have to wait before seeing a stable
stream?

• Was the size of the video screen satisfactory
(resolution, stream bit rate)?

• During the observation period, did the video
unexpectedly stop?

• Did you observe any bad frames in the video (a bad
frame refers to a mosaic-like image)?

• Did you observe any freezing frames in the video
(a freezing frame refers to a brief stop, say a second,
in the video playback after which it resumes to a
normal playback)?

• How was the voice quality (cuts, clarity, volume) of
the channel?

• Were the audio and video synchronized throughout
the playback time?

• Are TV channels provided by SopCast interesting
and is the amount of TV channels enough?

The questionnaire used the standard MOS scale. The
subjective MOS does not only consider the quality of
video, but also the start-up time, the extent of the usage
convenience, and the feeling about the TV channel content
itself.

• Every question had a weight (the weights of the
questions are also decided by end users) depending
on the severity of the issue and its influence on the
QoE of SopCast. Based on the weight given to each
question, the overall MOS of each questionnaire was
calculated as follows:

MOS =
∑10

x=1 WeightxScorex∑10
x=1 Weightx

where Weightx represents the weight of question x
and Scorex represents the score of question x.

5.2 Result

The mean MOS over all the participants is 4.08
(see Figure 17). Thismeans that the channel’s video quality
is good. The subjective MOS score is and was expected to
be lower than the objective score in Section 4.6, because
more measures than only video quality play a role.



22 Y. Lu et al.

Figure 17 Subjective MOS scores (see online version for colours)

6 Conclusions

The aim of this work was to understand, with a series of
experiments, the behaviour of a popular P2P streaming
system called SopCast. Throughpassivemeasurements, we
characterised SopCast’s behaviour and evaluated users’
QoE.

Based on our measurement results on the traffic
characteristics of SopCast, the main conclusions are:

• there is a lot of overhead in the form of non-video
packets

• the average video download rate is almost the same
at each peer

• peers’ upload rate differs substantially, but the
majority of the parents keeps the same amount of
upload rate per peer

• in the worst case, a peer will face video blocking very
frequently, but the situation can be much improved
with the help of buffers

• overall packet loss ratio is high.

For QoE metrics, in other related works, researchers
usually only look at the video quality when making
claims on the QoE. However, in our work we have
shown that more measures should be taken into account,
such as the blocking, the audio-video synchronisation,
synchronisation level among peers, the TV channel
zapping time, etc. Based on our measurement results on
the QoE of SopCast, the main conclusions are:

• SopCast can provide good quality video to peers:
low overall frame loss ratio and high MOS scores

• audio and video for SopCast can be out-of-sync, and
may even exceed the requirements from the ITU

• SopCast suffers from peer lags, i.e., peers watching
the same channel might not be synchronised

• the zapping time in SopCast is extremely high.

The innovative measurement methods and scripts
mentioned in our paper can also be applied to
other measurement studies and for other streaming
applications.

Acknowledgements

We would like to thank Siyu Tang and Javier Martin
Hernandez for helping to analyse the traffic pattern
of SopCast. We would also like to thank the students
Vijay Sathyanarayana Rao, S.S. Gishkori, Dyonisius
DonyAriananda, RemyDavid,DeboraUzoamakaEbem,
Bruhtesfa E. Godana and L. Travnicek for doing the
subjectivemeasurements. Thisworkhas been supportedby
theTrans sectorResearchAcademy for complexNetworks
and Services (TRANS) and the European Network of
Excellence (NoE) CONTENT.

References

Agilent-Technologies (2006) IPTV QoE: Understanding
and Interpreting MDI Values, White Paper, USA, p.4,
URL: http://cp.literature.agilent.com/litweb/pdf/5989-
5088EN.pdf

Ali, S., Mathur, A. and Zhang, H. (2006) ‘Measurement
of commercial peer-to-peer live video streaming’, ICST
Workshop on Recent Advances in Peer-to-Peer Streaming,
Waterloo, ON, Canada.

BitTorrent (2001–2008) URL: http://www.bittorrent.com/



Assessing the Quality of Experience of SopCast 23

CoolStreaming (2005–2008) URL: http://www.coolstreaming.
us/hp.php?lang=nl

DSL-Forum (2006) Triple Play Services Quality of Experience
(QoE) Requirements and Mechanisms, Technical Report
TR-126.

Fallica, B., Lu, Y., Kuipers, F.A., Kooij, R.E. and
Van Mieghem, P. (2008) ‘On the Quality of Experience
of SopCast’, 1st IEEE International Workshop on Future
Multimedia Networking FMN’08, Cardiff, Wales, UK.

Hei, X., Liang, C., Liang, J., Liu, Y. and Ross, K.W.
(2007) ‘A measurement study of a large-scale P2P IPTV
system’, IEEE Transactions on Multimedia, Vol. 9, No. 8,
pp.1672–1687.

ITU-R (1998) ‘Relative timing of sound and vision for
broadcasting’, BT.1359-1, IHS Standards Store.

ITU-T (1996) Methods for Subjective Determination of
Transmission Quality, IHS Standards Store, pp.800–838.

Li, B., Xie, S., Qu, Y., Keung, G.Y., Lin, C., Liu, J.C.
and Zhang, X.Y. (2008) ‘Inside the new coolstreaming:
principles, measurements and performance implications’,
IEEE INFOCOM’08, Phoenix, AZ, USA, pp.1031–1039.

Lu, Y., Kuipers, F.A., Janic, M. and Van Mieghem, P. (2008)
‘E2E blocking probability of IPTV and P2PTV’, IFIP
Networking, Singapore, pp.445–456.

Orebaugh, A., Ramirez, G. and Beale, J. (2006) Wireshark
and Ethereal Network Protocol Analyzer Toolkit
(Jay Beale’s Open Source Security), Syngress Media
Publishing, USA.

Pinson, M.H. and Wolf, S. (2004) ‘A new standardized method
for objectively measuring video quality’, IEEE Transactions
on Broadcasting, Vol. 50, No. 3, pp.312–322.

Planetlab (2007) URL: http://www.planet-lab.org/

Pouwelse, J.A., Garbacki, P., Wang, J., Bakker, A.,
Yang, J., Losup, A., Epema, D.H.J., Reinders, M.J.T,
Van Steen, M.R. and Sips, H.J. (2006) ‘Tribler: a social
based peer to peer system’, 5th International Workshop on
Peer-to-Peer Systems IPTPS, Santa Barbara, CA, pp.16–21.

PPLive (2004–2006) URL: http://www.pplive.com/en/
index.html

Sentinelli, A., Marfia, G., Gerla, M., Kleinrock, L. and
Tewari, S. (2007) ‘Will IPTV ride the peer-to-peer stream?’,
Communications Magazine, Vol. 45, No. 6, pp.86–92.

Silverston, T. and Fourmaux, O. (2007) ‘Measuring P2P IPTV
systems’, Network and Operating Systems Support for
Digital Audio and Video NOSSDAV, Urbana-Champaign,
IL, USA.

SopCast (2007) URL: http://www.sopcast.org/
VideoLan-Client (2008) URL: http://www.videolan.org
Vu, L., Gupta, I., Liang, J. and Nahrstedt, J. (2007)

‘Measurement of a large-scale overlay for multimedia
streaming’, 16th International Symposium on High
Performance Distributed Computing, Monterey, CA,
pp.241–242.

Wang, F., Liu, J. and Xiong, Y. (2008) ‘Stable peers:
existence, importance, and application in peer-to-peer live
video streaming’, IEEE Infocom’08, Phoenix, AZ, USA,
pp.1364–1372.

Wu, C., Li, B. and Zhao, S. (2008) ‘Multi-channel live P2P
streaming: refocusing on servers’, IEEE INFOCOM’08,
Phoenix, AZ, USA, pp.1355–1363.

Zhang, X., Liu, J., Li, B. and Yum, T.S.P. (2005)
‘Coolstreaming/donet: a data-driven overlay network for
peer-to-peer live media streaming’, 24th IEEE INFOCOM,
Miami, FL, USA, pp.2102–2111.


