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Abstract—Communication networks are prone to virus and tection against worms and error propagation in commurunati
worms spreading and cascading failures. Recently, a number petworks.
of social networking worms have spread over public Web sites. The protection of important networks in the above men-

Another example is error propagation in routing tables, such as . L : . .
in BGP tables. The immunization and error curing applied to 1ON€d cases is in practice not fast enough, and the infectio

these scenarios are not fast enough. There have been studies oasily reaches all the segments of the network. This paper
the effect of isolating and curing network elements, however, the proposes and analyzes a fast method to stop or reduce epi-

proposed strategies are limited to node removals. demic spreading on networks. When an epidemic is detected, a
This paper proposes a link isolation strategy based on the npetwork cut is performed by removing links leading to severa
quarantining of susceptible clusters in the network. This strategy disconnected clusters of nodes. This clustering allow#tdiin
aims to maximize the epidemic control while minimizing the | . LT .
impact on the clusters performance. We empirically study the intercommunity communication between nodes to continue,
influence of clustering on robustness against epidemics in severalwhile possibly quarantining the rest of the network. Many
real-world and artificial networks. Our results show an average real-world networks from on-line social networks to aidin
curing rate improvemept above 50% for the studied real-world transport networks and Internet ASes network typicallywsho
networks under analysis. . .
a strong community structure [15], [21]. Depending on the
speed of the epidemic reaction, it is possible to totallywené
any risk of infection for a number of disconnected clusters.
Epidemics on networks, from worm epidemics in computdtven with very delayed reaction, the amount of protection,
networks to information spread in P2P and ad-hoc networltsat has to be applied in the network in order to stop the
[13], [28] have recently attracted a lot of attention. spreading, can be reduced. Thus, clustering can be used in
After the scanning worms, a new challenge for networ&ddition to other protection methods.
security is posed by the strain of worms that use social The removal of links as protection against epidemics was
networking Websites to spread. Web applications for exghanproposed in mathematical epidemiology. The Equal Graph Par
of information and data introduced new vectors of spreatitioning (EGP) method uses immunization to remove specific
Many social network worms use AJAXscripts like Samy nodes that cut the graph into clusters [6]. However, the immu
[19], Yamanner [7] and Mikeyy [20]. Worm spreading usuallyization takes time, while individual nodes can stop comimun
involves user interaction in order to download worm payloaghting with other nodes immediately after receiving the siew
on the local machine as Koobface [4], but recently Web dlienabout the epidemic. Several authors have studied the ieduct
are infected simply by visiting a Web page; no user intecacti of disease spreading using air line restrictions. Goedetke
is necessary [19]. The infection risk increases since koc#l. [16] and Epsteiret al. [22] used the Susceptible Exposed
networks are not restricted only to Facebook and Twiter, butfected RecoveredS({ ER) model and dynamic time travel
are becoming embedded in other not strictly social websitesstrictions. Marcelinet al. [21] used the Susceptible Infected
like Digg and Youtube. Additionally, social networks haveSI) model together with edge betweenness and the Jaccard
power law network structure which makes them prone wpefficient to increase the spreading time [21]81y% by re-
epidemic spreading [28], [3], [17] and [26]. moving25% of the links. Due to the multicommunity structure
The epidemic algorithms for information dissemination i®f the network with most connected nodes not being the most
unreliable distributed networks such as P2P and ad-hoc neghtral, the optimal strategy for flight cancellation is tio¢
works show similar epidemic dynamics on networks [13], [5Jemoval of nodes (cities), but the removal of intercommyunit
Finally, the propagation of faults and failures can be medelflights, which introduced an increase in spreading time.[21]
as an epidemic. Coffmaat al. [18] models cascading BGPWe are interested in specific link removal such that intra-
failures on a fully connected topology. We concentrate @ prcommunty communication is preserved. We are not interested
in optimizing of clustering algorithm, but instead in thengeal
LAsynchronous JavaScript and XML improvement of protection that is possible by using a well-
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defined clustering algorithm.

Several algorithms have been proposed to find network
communities. Modularity maximization is the most popular
method. The modularity@ is a quantitative criterion to
evaluate how good a graph partition is [25]. It maximizes
links within communities, while minimizing the links betee
them. Modularity maximization is an NP problem, given the
exponential number of possible partitions. In this papes, w
use a greedy heuristic proposed by Clawesl. [8] to find
an optimal modularity clustering.

In order to quantify the improvements of the network clus-
tering in terms of epidemics, we use the epidemic threshold
concept and theV-intertwined Susceptible Infected Suscepti- 3 .
ble (S15) epidemic model [24] on a large set of networks. IS, 1, Neverk of weocgs o0, L polies Shscres neos
a SIS epidemic model, the epidemic can be stopped, prowd@éfored_
the network protection functionalities against the viresfprm
faster than the reproduction of the virus. The epidemic thus

exhibits threshold behavior. . . Further, we used an example of a social network between
In section 1I, we explain the protection algorithm anyeplogs on US politics recorded in 2005 by Adamic and
used to estimate the protection is explained in section I}ith nodes belonging to different clusters colored in difet
Results are presented in section IV, with comparison gbiors. Finally, we examine an on-line social network of
random link removal and the modularity algorithm in sectioftiends from www.digg.com, collected by the NAS at Delft

IV-C. University of Technology.

Il. QUARANTINE MODEL AND NETWORKS In disease modeling, transport networks are frequentlg.use

. - . To illustrate the influence of traveling patterns on virusesyl,
The protection method of dividing the network into clusterg, | investigate the direct airport-to-airport Americanfftea
by removing links will be referred to adusteringor quaran-

tinina. The moment when a network is quarantned determ.nnetwork maintained by the U.S. Bureau of Transportation
iNing. w IS qu ; "N&Fatistics and the European direct airport-to-airporffitra

how many nodes are completely protected, since the VINUS Brwork obtained from the European commission for stafisti

CvOt arble l;(l) TfeCt r;ggzﬁ OUtrS]'dtSv |trsk<i::]l:stelr. I? :h? f'rtStrgﬁgﬁ Eurostat. The number of links and nodes of different network
e are able to qua e a netwo o clusters faste are given in Table II,

virus is spreading, only a single cluster will contain irtést .
nodes. On the other hand, if the virus infects all the clgster In o_rder to extend our understandmg of t_he effects of
before a quarantine takes place there are still benefits;hNhFIUSterIng on the n.e.tv.vork robustnes; against virus spread,
are discussed in more details in section IV-B. Usually, tf{gclude sevgral artificial networl.<s witly = 1,000 nodes. ]
effective speed of clustering the network will be somewhere e consider three Eéd-Renyi (ER) random graphs with
in between. a different number of links. Each node in the ER random
We discuss the two boundary cases separately. In the f@&&Ph is connected to every other node with probabjlityhe
case we determine the size of the clusters, which provides fgbability p determines the number of links in the network
estimate of how many nodes will never get infected. The sigk2]: We model power law networks using the Baaab
of the clusters also affects the performance of the networklPert model (BA) of preferential attachment for different
Larger clusters mean that a larger part of the network cAfmber of links [2]. Finally, we use an artificial model of
continue exchanging information. Second, we show that tflistered networks [27]. The network is constructed in a
epidemic threshold that divides non-infected from infdatet- Similar manner as the ER random graph with two probabilities
works favorably increases in networks that display clister of link existence, one for inter-community connections and
features. the other for intra-community connections. We have geedrat
If the infection is spreading very fast and all the clusterd@veral different networks wittV = 1,000, two clusters and
get infected, the number of infected nodes in the metastai§férent modularity. Further, we have considered network
state is reduced. We discuss the improvement with the resp&fh 4,6,8,10 clusters. We choose to generate a greater
to the number of removed links. number of networks with two clusters because most of the
To illustrate the influence of clustering on epidemic spreafal-world networks consist of mainly two big clusters.
ing, we use several real-world networks. First, the InteAf We additionally consider the square lattice, line, ring and
level topology obtained by Route View in 2006 and posted Biee topologies.
the University of Oregon is used to demonstrate the effect of The networks are not weighted; however, flientertwined
clustering on the virus spread in large infrastructuralwoeks. model is extendable to a heterogeneous setting [23].




Ill. N-INTERTWINED MODEL EPIDEMIC THRESHOLD 0

T
N-intertwined model

To model epidemic spread, we use tNeintertwined S1.S
model, which was introduced and discussed in [24]SAS
model is one of the standard epidemic models: a node is
susceptible to infection (S), then it becomes infected ii,a
after curing, it is susceptible to infection (S) again.

In order to quantify reduction of the number of infected
nodes gained by clustering in the case of slow separation
of the network, we use results of th€-intertwined model.
A network is modeled as a connected, bidirectional graph
G(N,L). a

By separately observing each node, the infection spread is g i i : .
modeled in a bidirectional network specified by a symmetric
adjacency mat!‘IXA. A nqde ¢ at tlm(f.' t can be in one of Fig. 2. Fraction of infected nodes as a function of the efffecinfection
the two statesinfected with probability v;(t) = Pr[X; = rater. The epidemic threshold is denoted hy.

1] or susceptiblewith probability 1 — v;(¢). The sum of the

probabilities of being infected and susceptible are equal t N N

because a node can only be in one of these two states. _ 1 ] ; _ _ 1 ]

state of a node is specified by a Bernoulli random variable:ws B N];UJ (f) and in the steady-staie, = NJ;UJOO'

X; € {0,1}: X; = 0 for a susceptible node ani; = 1 for For a fixed curing rate and spreading rate, the fraction of
an infected node. We assume that the protection process ipéected nodes as a function of the effective spreading rate
nodei is a Poisson process with raigand that the infection is given in Fig. 2. The model as well as the real epidemic
per link is a Poisson process with raewhich is imminent process have a threshold value rat The threshold can be
for all nodes and thus constant in the network. For a nigdedefined as follows: for effective spreading rates (rate oéag

we can formulate the following differential equation divided by rate of protection) below some critical value the
virus in the network withN nodes dies out before a large

fraction y.

, N population is infected with a mean epidemic lifetime of the

dv;(t) . :

a s —vi(t))E aijv;(t) — 6v;(t) order of O(log N). For effective spreading rates above the
j=1 critical value 7., the epidemic persists and the number of

wherea;; is the element of the adjacency matrixand it is infected nodes is large, with a mean epidemic lifetime [14]

e
equal tol if the nodes and; are connected, otherwise itds Of the order ofO(e™ ) for a SIS model. The state above the
A node is not considered connected to itself, i.g.= 0. The epidemic threshold is referred to as theetastable stateln

probability of a node being infected depends on the protmbilf‘he metastable state, some constant mean portion of nodes is

that it is not infected 1 —v; (#)) multiplied with the probability infected [24]. , )

that a neighboyj is infecteda;;v;(¢) and that it tries to infect ~ 1he epidemic threshold is equal t© = -y, where

the nodei with the rates. Detailed derivations are given inAmax(4) is the largest eigenvalue of the matrik [14], [29]

[24] and [23]. and similar results exist for Susceptible Infected Removed
In the steady-state, where it holds thdt® — 0, and S/ model [11], [10]. We denotéax(A) with Amaxc-

limy_oo v5(t) = i for each nodel < i < N, we have If = < 1, the infection will eventually be cured, and for>

that 7. the infection persists with the average number of infected

nodes equal t@.

N For example, the largest eigenvalue of a line graph is
5];%;-%00 Amaxc =~ 2, while that of a star topology iS\maxq =
Vieo = —p (1) /N —1. These two graphs are interesting examples, because
B> aijvjeo + 8 both have the same number of links= N — 1. Thus, the
J=1 spreading in a star topology is significantly higher than in a

line topology with the same number of nodes and links.
Figure 2 shows the threshold behavior for the steady-state
apd an infected network.

This system of equations ha#’ solutions with one positive
solution and one solution equal @d24]. The positive solution
gives the probability that nodes are in the infected st
during the steady-state of the model. The model gives a good
approximation of the real epidemic process and the metastab
state [24] for a wide range of effective spreading rates % In this section, we examine the case of instant clustering
Thus, we will refer to the metastable state as a steady-stat@here a network is clustered faster than the worm is sprgadin

The fraction of infected nodes at any given timhean be resulting in a single infected cluster. Further, we consttie
calculated as a sum of probabilities that the nodes aretadeccase where all the clusters are infected before the quaeanti

IV. RESULTS



process clustered the network. Finally, we compare the-quar N vy
antined networks with networks where the same number of I -
links has been randomly removed. 08}~ B ) I

*
A. Early clustering 2 +euo
0.6~ x >1< EZ?abasimZ

Defending the network and performing quarantines provides f
important advantages. First of all, if a network is cut onetim .
and the infection is limited to one cluster, only a perceatag : o4 + 0
of nodes will eventually be exposed to infection. Second, + xg
from the interlacing theorem of graph theory [9], the latges
eigenvalue of a subgraph is always smaller than that of the ' b %
graph. Thus, the thresholds = 1/, will always increase + ;2%
for any subgraph, making the subgraphs more robust against ook ‘
epidemic spreading. The case that all the clusters arallyiti '
infected is discussed in section IV-B. Finally, the life@inof
the metastable state depends on the number of nodes [14Fias 3. Relative largest eigenvalue of the each cluster
Q(eN"), for a > 0. The number of removed links using the e ﬁ;\;\;‘s;l(/s’\g;]‘lcf G e od ';]‘f;ztécl’g of the modularin@ for real-
modularity algorithm ranges frorf% to 58% of the links. The
values for different networks are given in Table II.

A barabasim3

N + erdos 0.02

v erdos 0.006

* erdos 0.002

vV lattice 32x32

v lattice 75x75
line

NN TN B owN

ring
tree 2ch

X tree 5¢ch
Internet AS

MU M4 4 4

122 gi=>>

A Pol. blog
O digg

| H
0.6 0.8 1.0

| 2

=}
[N}
I
IS

Q

w T

One of the improvements introduced by clustering is a : * ﬁ‘s
reduction of the largest eigenvalng, ., of the smaller clusters + ’
with respect to the original graph. This increases the tuigs o8 % 7
7., the border between infected and non-infected networks. y i S
The ratio between the largest eigenvalue of a cluster and the ¢ os- . + 7 X st mea Q)
largest eigenvalue of the whole network versus the modulari f@ N +  dustionQ
Q for several networks is shown in Fig. 3 and 4. 3 ol N N % custigh | |

The behavior of \pnaxciuster fOr the different network < = * Zausthion @
is diverse. For networks with high modularity, such as the * dolustiigh Q
lattice and tree topologies, the improvement, a lowering of 02}~ § Bclstign |-
AmexClusier g not SO significant. For the same type of networks * : x %gﬁg‘sﬂg@%
e.g. "BA or ER with different number of links, a reduced modu- ool ‘ ‘ ‘ 10lusthigh @ |
larity results in a reduced,,.., which is an improvement. For 00 02 04 06 0.8 10
both cases, the modularity is reduced by generating topsdog Q

with a larger number of links (by respectively increasing th_.

4. Relative largest eigenvalue of the each cluster
parametern in the BA model and the parametgrin the ER Amaz Cluster/Amaz ¢ @s a function of the modularityQ for cluster
model). In addition, the difference between the two largesttwork models.
eigenvalues of different clusters is greater for BA thanE&.

The effect can be caused by the homogeneity of the degree
distribution of clusters in the ER case, while BA shows ®ith a small number of removed links, but show no significant

significantly heterogeneous cluster degree distribution. ~ improvement in7.. The artificial, clustered graph with low
The threshold 7. ciuster = 7) increases as a Modularity shows the worst performance in the number of

Amax Cluster

function of the number of links removed between a clustégmoved links, as in Figure 4.
and the rest of the network, as shown in Fig. 5 and 6. In The size of the clusters after cutting is an important vagiab
order to preserve as much network communication as possifsie the performance of the network. Large clusters will allo
upon link removal, a small number of links should be removddr node communication after a quarantine. But on the other
during the quarantine. On the other hang, is inversely hand smaller clusters will be more robust to virus sprea@. Th
proportional t0\nax crusier- HeNce the networks with bestsize of the clusters is decided by the modularity algorithm.
performance show clusters with both oW, .x ciuster @nd Another parameter to consider is the size of the largest
low L,.:, close to the poinf0,0) in the figures. Real-world cluster after the quarantine. The distribution of the f@tt
networks such as the airline networks and AS network perforofi cluster sizes% is shown in Fig. 7. In the case of early
well, while artificial networks perform much better the staal clustering, the network is cut into clusters before the syican
the number of clusters in the graph is. reach any other cluster except for the one it starts to spread
For individual graphs, the dependency of threshold inin. The worst case scenario is when the virus starts to spread
provement versus the number of links removed is close ito the largest cluster. Most of the networks have one cluster
linear, which is indicated by change in lower bound on largethat contains half of the nodes. In the case of the European
eigenvalue\ ,,,, > % Sparse ER graphs are clustered easilgjr network, the three clusters pop up, thus leaving more tha
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for cluster network models.

to have a larget\,.x ciuster than the smaller clusters. This

two thirds of network protected. A BA graph has many smai$, however, not true for any graph: compare the path graph
clusters of the size one fifth of network, which leaves fousf any size with the complete graph of any smaller size.
fifths of network protected, as shown in Fig.7. .

The Digg network has one large cluster which covers half & Delayed clustering
the network and many significantly smaller ones. The USA air We examine the number of infected nodes using Me
network and the political blog network haelarge clusters, intertwined model. In order to clean the infected netwotk, i
while the European air network hadarge clusters and severalis necessary to apply a protection/cleaning fageich that the
small ones. The Internet AS topology is more differentiatedffective spreading rate = g is below the threshol
There are8 clusters with 1,000 — 1,500 nodes and two If the network is completely infected and then clusteree th
larger ones with3, 000 and 6, 000. Art|f|C|aI networks show amount of cleaning is reduced becavsgx ciuster < Amax G
different behavior. The ER and BA network have a lot otherefore 7.(G) < 7.(Cluster). Thus, if the network is
smaller clusters comparable in size. In Fig. 8, the number clistered, it will be easier to clean the network from inif@ct
nodes in the cluster is given as a function of the number ofFig. 11 presents the percentage of infected nodes as a
removed links between the cluster and the rest of the netwoflnction of the effective spreading ratefor different clusters
The air network of USA airports has the largest cluster witim the artificial, cluster network with low modularit§.
the smallest number of deleted links, while the European airwe calculate the fraction of infected nodes in the clustered
network has3 clusters. network y.,s; for the effective spreading rate for which

In Fig. 9 and 10, for the same network, larger clusters tetide number of infected nodes in the original network 5o,
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when50% and80% of nodes are infected in original network.
Fig. 10. Relative number of nodes in the clusdég;,ster-/N as a function
of the relative largest eigenvalue of the clusief o, ciuster/Amaz ¢ fOr
cluster network models. L L
world networks do not show a significant reduction in number

of infected nodes.
Ytot,80% reaches0% and80%. Then, we calculate the differ-
ence between the original value and the improved one: €. Random removal of nodes

In this section, we compare the threshotd between
guarantined networks with networks where the same number
We calculate the fraction of infected nodes for sever&f links has been randomly removed. We give the largest
networks. Larger networks as the Internet AS and the Digdgenvalue of the original graphm...c, the size of the
network are computationally more demanding and are left dd@nt connected componertzezitiscone its |argest eigen-
of the analysis. In Fig. 12, the upper bound on the reductioalue Ay, ax rand, the sizem“;\[‘i:““ and the largest eigenvalue
of infected nodes exhibits the tendency to decrease with thg.x;.ciust Of the largest cluster in the clustered network
modularity of the graph. The improvement is different whem Table I. Links are removed at random and the average
there are50% and 80% of infected nodes in the original over many simulations of the largest eigenvalue of the kirge
network. Air travel networks and ER networks with smaltonnected component is calculated together with the vegian
average degree do not show significant difference betweathe largest eigenvalue.
improvements and have generaly small improvements. The results are presented in Table I. A large part of the
The number of infected nodes decreases with the increamwork remains connected and can transmit infection, lvhic
of the number of removed links in the hole network, showis an expected result of random link removal. Betw&6f%
in Fig. 13. This is not surprising because the power @nd90% of the network can be affected compared with at most
spreading in a network decreases with links removal. ReaB% in case of clustering. Further, the largest eigenvalue@f th

150% = Ytot,50% — Yelusts 180% = Ytot,80% — Yclust
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Fig. 13. The difference between the number of infected nauléise original  question is also how good its resulting clustering is. Weehav

network and the clustered network as a function of the seatiumber of not examined other algorithms that may perform differently

removed links in the case wheit% and 80% of nodes are infected in the . o

original network. _betzca:Jse we have concentrated on keeping the communities
intact.

The largest eigenvalue improvement using the modularity
largest cluster is still smaller than that of the large congru  algorithm is comparable with random links removal for saver
in the case of random link removal. networks; however, in this case the worm can sprea@bfé

In USA airlines network, ER graphs with = 0.002 and of the network.
p = 0.006 some smaller cluster have larg®f, .« ciuster- IN
ER graphs and the political blog, two or more components
similar in size have almost the same largest eigenvalue. InThis paper combines the diverse concepts of network clus-
the case of the political blog the advantage of clusteringr ovtering, graph spectra and epidemic spread in order to ingprov
random link removal lies in the fact that the other half of théhe protection against the spread of malware. We have found
nodes will not get infected if the clustering is performedooe  that real-world networks tend to show a better epidemic
the virus has spread. In the case of the AS Internet topologfyfesholdr, after clustering than artificially generated graphs.
the smaller cluster ofV = 3,600 nodes also has a larger For all the networks under study, the curing rate can improve
Amax Cluster than the largest cluster 6f 200 nodes. The Digg between29% an 83% for the largest connected component
network also has smaller cluster &f = 36,491 nodes with Wwith respect to the original graph. This wide range of val-
the largest eigenvalug,,.. cruster = 701.61, while all the rest ues demonstrates the effect of the network topology on the
of the network has significantly smaller largest eigenvaloe Virus spread. Regarding the network clustering features, a
the case of cluster 28s and 49s, two disconnected compon&asily clustered graph does not guarantee a slower epidemic
have the same largest eigenvalue, which is the same astfgeshold, but the way the links intertwine between interd a

V. CONCLUSION

random removal. intra-communities are key.
The variance of the largest eigenvalue for different simula Overall, network protection against cascading failures ca
tions of random link removal is less th&m® in all cases. be improved for any kind of graph. However, the number
) ) of removed links is, in practice, unacceptably high. The
D. Discussion of results advantages of early quarantine are shadowed by the fact that

When dividing the network into clusters, a virus can bap to half of the links must be shut down for the quarantine
stopped and annihilated faster. However, protection coniestake effect.
with a cost. Shutting down links from the network reduces The real-world networks have typically two or three big
the communication and reachability of nodes in the networ&lusters and several smaller ones, while BA and ER graphs
Assuming that the graph is disconnected only temporally, irkave several smaller ones comparable in size. BA and ER
calculate the price of quarantine as the number of linksahat graphs are assumed to model the real-world complex networks
removed from the graph as a result of a modularity clusteringowever, in respect of the size of the clusters, BA and ER fail
The number of removed links varies frof4% to 60%. to match real-world networks.
Most of the considered networks have arosnt of removed  Additional to the epidemic spread analysis, this diversity
links which is significant. In networks where a small numbeén results appears valuable to create a general classificati
of links is removed, no significant improvement in the latge®f types of networks. The degree distribution of the graph
eigenvalue and the number of infected nodes is found in thas been so far widely used for this purpose. For instance, a
steady-state. network classification could be generated by taking thesktrg
Although the modularity maximization algorithm is populaeigenvalue of the adjacency matrix of ClUSt&rS.x cruster VS.
[25], it has not passed a rigorous theoretical examinafitie. links that are removed.,,; as an input.



N,

Network H Amax G ‘ %chomp% Amax rand waNi;luét% Amax I.Clust
Euro 80.92 83.23 53.48 31.99 43.07
USA 144.61 96.51 118.67 47.54 42.36
BA 2m 16.09 85.50 12.01 10.08 8.22
BA 3m 28.11 88.40 20.41 16.30 13.24
Cluster 0.17s|| 22.88 100 11.77 37.9 13.17
Cluster 0.28s|| 23.51 100 18.41 50.0 18.77
Cluster 0.49s|| 25.32 100 25.23 50.00 25.26
ER 0.002 3.59 83.41 3.29 6.68 2.67
ER 0.006 7.23 93.2 4.29 13.7 4.03
ER 0.02 20.93 100 10.05 30.4 10.77
AS '06 71.61 90.59 58.49 27.27 51.22
Pol. Blog 74.08 99.01 69.88 51.88 62.11
Digg 775.33 92.7 582.11 48,13 317.32
TABLE |

COMPARISON OF THE RANDOM LINKS REMOVAL STRATEGY WITH CLUSTERNG STRATEGY - LARGEST EIGENVALUE OF LARGEST CONNECTED
COMPONENT AND LARGEST CLUSTER

The clustering with random removal of links has led us tho]
conclude that the largest eigenvalue of the largest clustar
be less or comparable to the largest eigenvalue of the Higggs
component generated by random links removal. However,
other clusters have a significantly smaller largest eigerva
which leads to a smaller amount of cleaning necessary (g,
completely remove the worm from the network. Furthermore,
if only the largest cluster is infected, only up 0% of the
network will need cleaning.

This paper considers modularity to be the partitioning
algorithm, but there exists a large number of partitionitgpa
rithms that try to optimize different variables. The invgation
of how different clustering algorithms affect the epidemic
dynamics stands on the agenda for future work.
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