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In recent years there has been a shift in focus from the study of local, mostly task-related activation to the
exploration of the organization and functioning of large-scale structural and functional complex brain networks.
Progress in the interdisciplinary field of modern network science has introduced many new concepts, analytical
tools and models which allow a systematic interpretation of multivariate data obtained from structural and
functional MRI, EEG and MEG. However, progress in this field has been hampered by the absence of a simple,
unbiased method to represent the essential features of brain networks, and to compare these across different
conditions, behavioural states and neuropsychiatric/neurological diseases. One promising solution to this prob-
lem is to represent brain networks by a minimum spanning tree (MST), a unique acyclic subgraph that connects
all nodes andmaximizes a property of interest such as synchronization between brain areas.We explain how the
global and local properties of an MST can be characterized. We then review early and more recent applications
of the MST to EEG and MEG in epilepsy, development, schizophrenia, brain tumours, multiple sclerosis and
Parkinson's disease, and show how MST characterization performs compared to more conventional graph
analysis. Finally, we illustrate how MST characterization allows representation of observed brain networks in a
space of all possible tree configurations and discuss how this may simplify the construction of simple generative
models of normal and abnormal brain network organization.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction: modern brain network analysis

In the history of neuroscience two concepts for understanding the
function of the brain have played a major role. The first idea is that the
brain consists of many different parts or components and that each of
these subdivisions is likely to be responsible for a very specific function.
One example of this approach is the work by Franz Joseph Gall, who
assigned very specific functions to different regions of the cortex
based upon measurements of the overlying skull. This concept of
“phrenology” was heavily criticized, but later studies based upon the
correlation between brain lesions and cognitive deficits gave a more
scientific basis to the notion of functional localization in the brain. In
particular, Broca and Wernicke identified brain regions responsible for
motor and sensory aspects of language, and Penfield confirmed with
intraoperative stimulation experiments a highly specific topographic
physiology andMEGCenter, VU
Amsterdam, The Netherlands.
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cortical representation of motor and sensory functions. To a large
extent, modern brain imaging studies have been directed at localizing
different cognitive functions by identifying the specific brain regions
activated during cognitive tasks.

The second idea emphasizes the unitary, integrated nature of brain
function, and assumes that higher cognitive functions cannot be mean-
ingfully assigned to any specific part of the brain. This approach is
reflected by the criticisms by Flourens on the phrenological work by
Gall. Karl Lashley proposed a holistic view of brain function based
upon his discovery that memory failure in animal experiments
depended on the amount of tissue removed rather than on damage to
any specific area. Somewhat similar holistic ideas about brain function
were advocated by Karl Pribram. Donald Hebb proposed that the
elementary functional units of the central nervous system are cell
assemblies. Attempts at strict localization of brain function have been
criticized by Uttal, who referred to this type ofwork as “neophrenology”
(Uttal, 2001).

In recent years the controversy between strict localization and
holistic views of brain function has resulted in attempts to integrate
both aspects in a single framework. Many neuroscientists now think
of the brain as a complex network which reflects an optimal balance
between “segregation” and “integration” (Sporns, 2013). In addition, it
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has become clear that the complex architecture of brain networks can
be studied successfully even in a no-task resting-state (Gusnard et al.,
2001). This has led to an increased interest in the study of resting-
state functional or effective connectivity, especiallywith fMRI. However,
the complexity of the data obtained in such studies poses newproblems
for proper analysis and understanding.

An important breakthrough was achieved when graph theory was
applied to neuroscience data. Graph theory is a branch of mathematics
that describes networks at the most elementary level, as sets of nodes
(“vertices”) and links (“edges”). Graph theory originated when Euler
solved the seven bridge problem of Konigsberg in 1736. Initially,
graph theory was mainly used to study relatively small, deterministic
networks as a branch of combinatorics. This situation changed and
extended to stochastic networks, when social scientists became inter-
ested in the study of large networks, and Erdős and Rényi developed
the mathematical theory of random networks (Erdős and Rényi,
1960). The latest decisive development was the introduction of the
“small-world network” by Watts and Strogatz (Watts and Strogatz,
1998) and the “scale-free network” by Barabasi and Albert (Barabasi
and Albert, 1999), which initiated the new field of “network science”,
the theory of complex networks. The small-world network is a simple
model that combines both local connectedness (segregation) and global
integration. The scale-free network is a model of a growing network,
where a new node connects to existing nodes with probability
proportional to their degree. This type of growth, called preferential
attachment, results in a scale-free degree distribution, where the prob-
ability that a randomly chosen nodal degree D equals k, is a power-law
in k, Pr[D = k] = c k−γ, where c is a normalization constant and the
power exponent γ = 3 (in Barabasi–Albert graphs). Importantly, such
networks have a relatively large number of highly connected nodes or
hubs. The introduction of small-world and scale-free models gave rise
to an explosive growth of modern network studies in a large range of
fields, ranging from molecular and genetic networks all the way up to
economic and social systems (Estrada, 2011; Van Mieghem, 2014).

Modern network theory has been applied to the study of the brain as
well. Both structural and functional networks have been studied in a
range of organisms, from Caenorhabditis elegans to macaque, cat and
human, during development and in health and disease (Bullmore and
Sporns, 2009, 2012; Stam, 2010; Stam and van Straaten, 2012; van
den Heuvel and Hulshoff Pol, 2010; van Straaten and Stam, 2013).
Several important conclusions that have emerged from this rapidly
growing field are the following. First, all studies have confirmed that
both structural as well as functional brain networks display the typical
features of a small-world network. A high level of clustering (connect-
edness of the neighbours of a node) is combined with a short average
shortest path length (number of links in the shortest path from one
node to another node). Second, the degree distribution of brain
networks is approximately scale-free, which reflects the presence of a
large number of highly connected nodes or hubs. Third, these hubs are
preferentially connected to each other, forming a so-called “rich club”
(van den Heuvel and Sporns, 2011). Fourth, brain networks display a
hierarchical modular structure (Alexander-Bloch et al., 2010). Each
module is a subnetwork that consists of nodes that are strongly
connected to each other, but only weakly to nodes outside the module.
Hierarchy is reflected by that fact thatmodules can often be divided into
submodules, and these again into sub-submodules over several levels.
Importantly, modules typically correspond to functional systems of
the brain. Finally, brain networks display the property of mixing or
degree correlations. At the macroscopic level high degree nodes are
preferentially attached to other high degree nodes, and low degree
nodes to other low degree nodes (assortative mixing). There is some
evidence that mixing at the neuronal level is disassortative (Bettencourt
et al., 2007). The rich club is a high-degree subgraph with high
assortativity.

The topological properties of structural and functional brain
networks discovered by modern network science are relevant for
understanding the development, normal functioning and pathology of
the brain. During normal development the topology changes from
random to a more small-world-like organization, and this process is
strongly related to genetic factors (Boersma et al., 2011; Schutte et al.,
2013; Smit et al., 2008). Brain network organization is different in
males and females, possibly due to the influence of sex hormones on
brain development (Douw et al., 2011; Gong et al., 2009b). Brain net-
work organization is also related to cognitive performance. In particular,
short average path length has been associated with higher intelligence
(Li et al., 2009; van den Heuvel et al., 2009). Functional brain networks
may also change during the performance of cognitive tasks, during sleep
and in coma (Crossley et al., 2013; Uehara et al., 2013). The optimal
architecture of structural brain networks becomes disrupted in various
neurological and psychiatric disorders. Abnormalities have been
reported in Alzheimer's disease, frontal lobe dementia, Parkinson's
disease, multiple sclerosis, brain tumours, epilepsy, schizophrenia,
depression, autism and ADHD (Bassett and Bullmore, 2009; Stam and
van Straaten, 2012). In several of these studies, network changes corre-
lated with cognitive deficits and disease severity.

However, in several cases there is considerable controversy
concerning the nature of the network changes. In a recent review of
graph theoretical studies in Alzheimer's disease, Tijms et al. (2013)
showed that different studies have reported either an increase or a
decrease of the clustering coefficient or the path length. Only the loss
of important hub nodes, especially in the posterior part of the default
mode network, seems to be a consistent finding across studies. Similar
controversies can be found for epilepsy (Kramer and Cash, 2012; van
Diessen et al., 2013). While most studies agree that functional brain
networks become more regular (higher clustering and longer path
length) during seizures, in the interictal state both increased random-
ness (reflected by a lower clustering coefficient and shorter path length)
as well as increased regularity have been reported (Kramer and Cash,
2012; van Diessen et al., 2013). With respect to the significance of
hubs in epilepsy there is more agreement: several studies suggest that
pathological hubs are more prevalent in epilepsy and that the removal
of these hub nodes is associated with a more favourable outcome of
epilepsy surgery (Ortega et al., 2008; van Diessen et al., 2013; Wilke
et al., 2011). The application of modern network theory to brain neuro-
science has thus improved our understanding of the development and
organization of brain networks and their relation to cognition. At the
same time these studies have shown conflicting results, in particular
in the case of brain disease. At least some of these problems may be
due to methodological issues. We will first discuss some of these meth-
odological factors in Section 2 and then propose theminimum spanning
tree as a possible solution in Section 3.

2. Problems with network comparison

To understand the influence of methodological issues on the out-
come of a graph theoretical analysis we will first discuss an example
in some detail. The basic steps are shown schematically in Fig. 1.
Supposewe have a resting-state EEG orMEG recordingwithN channels.
From this recordingwe select a number of artefact-free epochs. The data
are filtered in a frequency band of interest, and subsequently the
correlations between all possible pairs of EEG time series are deter-
mined with a suitable measure of functional or effective connectivity.
The results can be averaged over all epochs and represented in a single
N×Nmatrix,where each element contains the strength of synchroniza-
tion between a pair of channels. We can do a graph theoretical analysis
of this matrix in two different ways.

The first option is to consider a threshold T. The nodes in the graph
correspond to the EEG channels. Two nodes are connected in the
graph if the synchronization strength between the corresponding EEG
time series exceeds the threshold T; otherwise they are not connected.
This procedure results in a binary graph, where connections (edges)
either exist or do not exist; no weights are assigned to the edges. If



Fig. 1. Schematic illustration of graph theoretical analysis of multi channel MEG data. (A) The starting point is a multi channel recording of brain activity, either EEG or MEG, filtered in a
frequency band of interest. The same approach can be used for fMRI BOLD time series. (B) Ameasure of correlation or synchronization is computed between all possible pairs of channels.
The results are shown in a N by N matrix, where each entry contains the correlation or synchronization strength of a particular pair of channels. In this case the magnitude of the
synchronization is shown on a colour scale from 0 (blue) to 1 (red). (C) After application of a threshold T all cells with a value larger than T are given a value of 1, and all other cells a
value of 0. This step converts the weighted complete graph to a binary graph. In this case the original matrix is symmetrical and the resulting graph is undirected. (D) The binary
graph is shown in a glass brain representation. Each node corresponds to a recording site or MEG source, and nodes are connected by an edge if the synchronization strength exceeds
the threshold T. From this graph various graph theoretical measures such as the clustering coefficient and the average shortest path length can be computed.
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the original matrix was symmetric, the corresponding graph will be
undirected. If the original matrix was asymmetrical (which is the case
if the synchronization measure has a direction, for instance, granger
causality) the corresponding graph will be directed. This analysis can
be done for one threshold, or for a range of thresholds. The number of
nodes in the graph will always be N. The number of links or edges m
will depend upon the combination of the original synchronization
matrix and the selected threshold. Once a graph has been reconstructed
various graph theoretical measures, such as the clustering coefficient or
the average shortest path length or the degree distribution, can be
computed.

The second option is to apply graph theoretical analysis directly to
the original matrix. In this case the maximum number of edges m is
(N − 1)N / 2 (self connections are disregarded). Each edge is assigned
a weight that is derived from the synchronization strength in the origi-
nal matrix. This procedure results in a weighted directed or undirected
graph. Graph theoretical analysis of a weighted network requires the
use of measures specifically adapted to this type of graph (Rubinov
and Sporns, 2010). Finally, it is possible to combine both options: a
binary graph is constructed based upon some threshold, and subse-
quently all supra-threshold edges are given a weight based upon the
original synchronizationmatrix. We denote the sum of all edge weights
in the graph byW.

We now describe how the scenario described above can give rise to
problems when we want to compare different networks. The four
important parameters to be considered are N, T, m and W. First we
consider the comparison of unweighted graphs. If we compare two
graphs G1 and G2 with the same N and T, there is no guarantee that
theywill have the same number of linksm. The value ofmwill influence
the value of measures such as the clustering coefficient C and the path
length L computed from G1 and G2. For instance, it is likely that for
increasingm the clustering coefficient will increase and the path length
will decrease. In the limit of a complete graph, where all pairs of nodes
are connected, the clustering coefficient and the path lengthwill bothbe
1. The conclusion is that the comparison of G1 and G2 in terms of C and
L is biased if they have different m. An additional problem is that the
choice of T is essentially arbitrary. This could be addressed by consider-
ing a range of values of T, but then the choice of range is arbitrary and
the comparisons for each value of T are still biased. Furthermore, an
unfortunate choice of T could result in i) one or more of the nodes
becoming disconnected (for T too high); ii) inclusion of noisy edges
(for T too low). Consideration of a range of values of T also produces
problems with the statistical analysis, since separate tests will have to
be performed for each value of T, increasing the likelihood of type I
errors.

Two solutions have been proposed so far: fixingm and comparison
with random control networks (other solutions such as using the
union of shortest paths are the topic of current research). In the first
case we choose T for each graph to be compared such that all graphs
have the same m. This disposes of the bias due to different m, but
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introduces the new problem of choosing a proper value of m for the
comparison. Another strategy is to consider an ensemble of random
graphs with the same N, T and m as the original graph. These random
graphs are obtained by randomly reshuffling the edges of the original
graph, with or without preserving the original degree distribution.
The graph theoretical measures of interest, for instance C and L, are
computed for all random graphs and compared to C and L that were
obtained for the original graph. In this way normalized measures can
be computed: gamma = C / bCrandomN and lambda = L / bLrandomN
(bN indicates the ensemble average). Unfortunately this normalization
approach still does not solve all the bias problems (van Wijk et al.,
2010), and it also leaves open the choice of a proper m for comparing
networks.

In the case of weighted networks there are also problems. In
this case the total weight W will influence the value of the weighted
clustering coefficient Cw and weighted path length Lw, both for the
original graph as well as for the random control graphs. A higher W is
likely to result in a higher Cw and higher Lw. Thus a comparison between
two graphs will be biased if they have different values ofW, which will
typically be the case. Use of the normalized weighted gamma and
lambda reduces the bias, but still does not solve it completely. Combin-
ing a threshold with weighted networks probably makes the problems
worse since in this case one would have to compare graphs that have
both the samem and the same W.

This brief analysis has illustrated some of the most basic problems
involved in comparing graphs. It should be stressed that further
problems can be expected if a wider range of scenarios is considered.
For instance in the case of comparing networks with different N, a bias
can be expected that cannot be completely solved with normalized
measures (van Wijk et al., 2010; Zalesky et al., 2010). In addition, in
the case of EEG and MEG synchronization measures that are sensitive
to volume conduction are likely to influence the results of graph analysis
(Peraza et al., 2012). In MRI studies of structural and functional
networks manymethodological factors may also influence the outcome
of the analysis (Liang et al., 2012). With the rising interest in graph
theoretical studies of brain networks these methodological issues
become increasingly important since they complicate a comparison of
results across different studies and different brain imaging techniques.
Use of random exponential graph models, motif counts and the mini-
mum spanning tree have been proposed as possible solutions (van
Wijk et al., 2010). In the next section we will introduce the minimum
spanning tree as an approach to obtain an unbiased representation of
a weighted network.

3. Construction and theoretical properties of minimum spanning
trees

3.1. The concept of a minimum spanning tree

In graph theory a tree is defined as an acyclic connected graph
(Estrada, 2011). Acyclic means that there are no loops (of any length)
in the graph. A graph is connected if there exists a path between each
pair of nodes in the graph. A tree with N nodes has exactly m = N − 1
links or edges. A spanning tree is a subgraph that includes all nodes of
the original graph (it has the same N) but only N − 1 edges (it has no
cycles). A minimum spanning tree (MST) of a connected weighted
graph is the spanning tree of this graph that minimizes the sum of the
weights of the edges included in the tree. If all the weights in the
weighted graph are unique, its minimum spanning tree is also unique
(Mares, 2008). In other words there is only one MST that corresponds
to a weighted graph with unique weights.

Twomajor algorithms have been described to construct theMST of a
weighted graph (Kruskal, 1956; Prim, 1957). Here, we will explain
Kruskal's algorithm. Prim's method produces the same MST if the
weights of the original graph are unique. To construct the MST of a
weighted graph Gw with N nodes, we rank all the weights in the graph
from lowest to highest weight and we start with N disconnected
nodes. The lowest weight link connects two nodes and forms the
smallest possible tree. Next, we select the second lowest weight link,
which either connects two new nodes or connects the two already
included nodes to a third one. In the latter case, the original one-link
tree has grown to two links. Each separate tree is amember of the forest.
The third lowest weight link can join two separate trees in the forest.
This procedure is repeated until the forest consists of one tree, which
is a MST. If adding a new link would result in a cycle, this link is
discarded, and the procedure continues with the next in order weight
link. Another way of saying this is that all edges of Gw are sorted from
the lowest to the highest weight. Edges are added to the tree working
from the lowest weight edge upwards and avoiding cycles. The MST
will always have m = N − 1 edges. Although the weights in Gw are
used to construct the MST, the MST itself is considered to be binary. Its
edges exist or do not exist, and do not have weights. Using the same
procedure but starting with the highest edge weight and working
downwards it is possible to construct the maximum spanning tree
(MaST), studied inWang et al. (2010).Whereas theminimum spanning
tree minimizes the sum of the edge weights included, the maximum
spanning tree maximizes this sum. Otherwise both spanning trees are
equivalent. An example of a minimum spanning tree is shown in Fig. 2.

An MST constructed from a connected weighted graph with unique
weights is unique. This implies that we can compare MSTs of different
weighted graphs directly if they all have the same N, are connected
and have unique weights. The uniqueness of the MST is important
since it discards the need to choose an arbitrary threshold or value of
m to reconstruct the graph. Compared to the analysis of the full
weighted graph the MST has the advantage that it focuses on the most
important subgraph and avoids bias due to differences in W between
different graphs. A tree is also amuch simpler structure than the original
weighted graph. This simplifies the analysis, but the downside is that a
tree does not reflect some properties, particularly those that depend
upon cycles, such as clustering. As we will show, this is less of a disad-
vantage than is often assumed. First we will describe how the topology
of a tree can be characterized with a set of relatively simple measures.
Then we will refer to theoretical studies that highlight the importance
of the MST in terms of traffic flow in a network, followed by a review
of studies where the MST was reconstructed for brain networks in
healthy subjects and patients.

3.2. Different configurations of trees

In terms of tree topology, two extreme shapes exist (Fig. 3). The first
extreme is a path. In this case all nodes are connected to two other
nodes, with the exception of the two nodes at either end, which have
only one link. Nodes with only one link (i.e. degree 1 nodes) in a tree
are referred to as “leaves” or leaf nodes. The number of such nodes in
a tree is the leaf number. A path thus has a leaf number of two. The
other extreme is a star. In a star there is one central node to which all
other nodes are connected with one link. In a star with N nodes there
are N − 1 leaf nodes, the same number as the number of edges.
Between the two extremes of a path and a star many different types
of tree configuration are possible. These configurations can be charac-
terized with various metrics in addition to the leaf number. The more
important graph metrics are discussed in Van Mieghem (2014). The
diameter of a tree is the longest distance (expressed in number of
edges) between any two nodes of the tree. In the case of a path the
diameter is equal to the number of edges m = N − 1. In the case of a
star the diameter is two. The degree of a node is defined as the number
of edges connected to it. Between any two nodes in a tree exactly one
path exists. This allows computation of the average path length
between all node pairs. It is also possible to determine the betweenness
centrality of any node as the fraction of all paths on the tree that include
(but do not stop or end at) that node. Computation of betweenness
centrality in the case of a tree is much easier and faster (and often



Fig. 2.Comparison of binary graph andminimumspanning tree. (A) Binary graph constructed fromaweighted synchronizationmatrix after application of a threshold T. Edges correspond
to node pairs with a synchronization strength above the threshold T. (B) Minimum spanning tree constructed from the same weighted synchronization matrix as used for the binary
graph shown in (A). The colour of the nodes depict the betweenness centrality (blue = 0; red = 1). The minimum spanning tree is an acyclic connected subgraph that maximizes the
synchronization strength between all node pairs.
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analytically possible, see Wang et al., 2008) than in the case of a graph
containing cycles. The eccentricity of a node is defined as the length of
the longest path from this node to any other node. Degree, betweenness
Fig. 3. Schematic illustration of trees and tree measures. Different configurations of a tree c
(maximum distance between any two edges of the tree) as a function of the leaf number (num
Dmax represents the highest possible diameter for a treewith a given leaf number L.Dmax=N
L:Dmin=2(N− 1) / L. (A) treewith L=2andDmax=Dmin=8. This type of tree is called a p
lowest possible diameter (4) for a leaf number of 4. (D) Tree with diameter of 2 and leaf num
configurations of a tree. The area between the lines corresponding to Dmax and Dmin represe
possible diameter for each leaf number.
centrality and eccentricity can all be used to quantify the centrality of a
node. A measure developed to characterize the hierarchical topology of
a tree is the tree hierarchy Th, defined as: Th= leaf number / (2m Bmax).
onsisting of N = 9 nodes and m = 8 edges. The plot in the middle shows the diameter
ber of nodes with only one edge). Leaf nodes are shown in red. All other nodes are blue.
− L+1.Dmin represents the lowest possible diameter for a treewith a given leaf number
ath. (B) Treewith the longest possible diameter (6) for a leaf number of 4. (C) Treewith the
ber of 8. This type of tree is called a star. The path and the tree represent two extreme

nt a space of different possible tree configurations, bounded by maximum and minimum
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In this formula m is the number of edges and Bmax is the highest
betweenness centrality of any node in the tree. The tree hierarchy is
2/m for a path, approaches 0.5 for a star (with large N), and can take
values between 2/m and 1 for trees with an intermediate topology
between path and star. The idea behind Th is that it captures an optimal
tree configuration characterized by a combination of short distances
and prevention of overload of any node. With the exception of the leaf
number and the Th, the measures mentioned above are equivalent to
measures defined for graphs with cycles. Some other measures defined
for graphswith cycles such as degree correlations and kappa can also be
applied to trees. Tree measures can be normalized by dividing them by
the number of nodes N. MSTs of networks with the same N can be com-
pared directly by the “survival rate” which is defined as the fraction of
edges both MSTs have in common (Onnela et al., 2002). Finally, it is
worth to mention that, for trees, some spectral metrics (see e.g. Van
Mieghem, 2011) are useful. The effective graph resistance R_G equals
N(N − 1) / 2 times the average hopcount and the spectrum (eigen-
values) of the tree's adjacency matrix is symmetric around zero.

3.3. The minimum spanning tree and traffic in weighted networks

While the minimum spanning tree is a simple subgraph of the
original weighted network that facilitates direct comparison of
networks with the same N and simplifies network characterization, it
is not a priori given that it will still capture most of the important topo-
logical information in the original network. In viewof this it is important
that theoretical studies suggest the importance of the MST. A thorough
review of the theoretical background of the MST is given in two papers
by Jackson and Reid (Jackson and Read, 2010a, 2010b; Mares, 2008). A
detailed discussion of this work is outside the scope of this review.
Instead, herewewill mention a few studies that relate theMST to traffic
inweighted networks, since this relationmay be relevant for interpreta-
tion of the significance of the MST of brain networks (since information
processing is a fundamental objective of the brain). An important notion
is that under certain conditions (as elaborated in VanMieghem and van
Langen, 2005; Van Mieghem and Magdalena, 2005; Van Mieghem and
Wang, 2009) transport in weighted networks is dominated by the
MST. Further analysis based upon node centrality has shown that the
MST can be divided into two components, the “superhighways” or
infinite incipient percolation cluster (IIPC) and the “roads” (Wu et al.,
2006). Nodes of the superhighways have high centrality with a power
law distribution, while nodes of the roads have low centrality. The
implication is that small changes in the superhighways are likely to
have a large impact on traffic flow in the system. In line with this,
Wang et al. (2008) have shown that traffic in a weighted network is
mainly limited to the MST in the strong disorder limit, with a high
variability of link weights. They found a power law distribution for the
betweenness centrality with an exponent related to the degree
variance. The betweenness centrality distribution P(B) of the MST and
infinite incipient percolation cluster (IIPC) of random and scale-free
networks were also studied by Choi et al. (2013)). The exponent delta
of the P(B) was 1.6 for MSTs close to criticality and 2.0 for supercritical
MSTs. For the IIPC the exponent deltawas 1.5, i.e. the superhighways are
close to critical. This theoretical work lends further support to the
interpretation of the MST of empirical networks in terms of a subgraph
that is responsible for most of the information flow in certain weighted
networks. The relation of theMST to traffic flowhas also been studied in
a model of a spatial network where a cost was related to wiring length
(Louf et al., 2013). Here, a model of a growing spatial network with
topologies ranging from a star to a minimum spanning tree was
introduced. They showed that a large number of interesting “global”
properties, including a hierarchical organization, could emerge from a
simple (local) cost assumption. Their new model was applied to the
railway system to show how this network may be close to optimal.
These results may be relevant for understanding brain networks,
where connection cost has to be minimized in space and information
transport has to be optimized at the same time (Bullmore and Sporns,
2012).

4. Applications to neuroscience data

As argued above, network comparison is a central problem in
modern brain network analysis based upon graph theory. Weighted
networks can be represented in a unique simplified way by the mini-
mum spanning tree, which allows unbiased comparison in the case of
networks with the same number of nodes. Furthermore, theoretical
studies suggest that most of the traffic in a weighted network may
flow through the MST. However, these considerations do not answer
the question whether the MST is also a sensitive and practical tool for
the comparison of empirical brain networks. Here we discuss in some
detail experimental studies that have used the MST to characterize in
one way or another functional brain networks. Since our focus at this
stage is primarily on the methodological aspects we discuss the studies
in three groups: (i) pioneering work; (ii) more extensive characteriza-
tion of the MST in EEG studies; and (iii) application of the MST to
MEG source space data.

4.1. Pioneering work

The first application of the minimum spanning tree as a tool to
analyse complex functional brain networks on the basis of EEG record-
ings was published in 2006 (Lee et al., 2006). Lee et al. investigated 11
epilepsy patients, 6 with left temporal lobe epilepsy (LTLE) and 5 with
right temporal lobe epilepsy (RTLE). In their study five epochs, each
containing 43 EEG channels and of 1 minute duration, and separated
from other epochs by 5 min, were studied. The last epoch was chosen
just before seizure onset. Connectivity matrices were derived from
broadband (0.5–70 Hz) EEG signals by computing correlation coeffi-
cients between all possible pairs of channels for overlapping 10 second
windows in the 1 minute epochs. For each of these windows an MST
was derived from the correlation matrix with Kruskal's algorithm.
Differences between MSTs of subsequent windows were quantified
with a distance or dissimilarity measure Dx,y of the MST (derived from
the simpler survival rate described by Onnela et al., 2002). In addition,
hierarchical clustering and a dendrogram were used to characterize
the MSTs. The raw correlation matrix did not show a significant effect
of time, nor did it reveal differences between the LTLE or RTLE groups.
In contrast, LTLE and RTLE patients could be separated using the MST
(at a time scale of 1 min, but also for the 10 second windows) in the
epoch preceding seizure onset. Lee et al. suggested that this might
reflect recruitment of surrounding ipsilateral regions by a seizure
focus, which is not reflected by an increase or decrease in connectivity
per se, but rather by a re-organization of the network. These results
indicate that MST analysis can be sensitive in picking up these subtle
changes in topology that precede the emergence of an epileptic seizure.

The same group applied a slightly modified version of the MST EEG
analysis in a later study concerning network changes in states of altered
consciousness (Lee et al., 2010). Ten healthy male volunteers were
investigated before, during and after Propofol-induced anesthesia.
MSTs were based upon correlation matrices derived from moving
windows of 7 s of 21 channel EEG data, either broad band or filtered
in the delta, theta, alpha or beta band. In addition, the complexity of
the spatial temporal data was quantified by computing a connection
entropy based upon the survival rates of all possible connections.
Results were compared with those obtained from random control
datasets. MST analysis was able to distinguish between the three states
of consciousness (before, during and after anesthesia). During anesthe-
sia loss of network connections, alteration in connection duration, and
lower connection entropy were found, especially in the delta band.
Furthermore, connection entropy of the empirically observed networks
was always lower than for the random data. The distribution of connec-
tion survival times showed a power law, but did not change during the
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three different states, which was interpreted as reflecting adaptive
reconfiguration of functional brain networks. Of particular interest, as
can be seen in Fig. 3 in (Lee et al., 2010), a subgroup of connections
was much more stable over time. This subset could correspond to a
stable backbone, and perhaps to the superhighways reported in theo-
retical work (Wu et al., 2006).

The same approach based upon the connection entropy of the MST
was applied in a more recent study in schizophrenia (Schoen et al.,
2011). In this study 30patientswith acute schizophrenia and30matched
controls were investigatedwith 18 channel EEG 1 and 6 weeks after the
start of treatment with antipsychotics in the patient group. MSTs were
determined from Pearson correlation matrices of 5 min of EEG
segmented in moving windows of 8 s. Untreated schizophrenics and
schizophrenics after 6 week treatment had greater connection entropy
in the gamma band. Only before treatment PANSS (positive and
negative symptoms scale) and negative symptoms were negatively
correlated with connection entropy (as defined in Lee et al., 2006).
One problem with this study is that results in the gamma band
derived from scalp EEG may be severely affected by muscle artefact
(Whitham et al., 2007). Of note, this was explicitly considered in the
study of Lee et al. (2010) where the gamma band was left out of the
analysis.

The first application of MST analysis to EEG by Lee et al. in 2006
suggested its usefulness for epilepsy research. This idea was taken up
by another group who applied MST analysis to intra operative EEG
recordings in five patients with epilepsy (Ortega et al., 2008). In this
study the focus was different however, since the authors used the MST
derived from Pearson correlation matrices of 28 channels to identify
electrodes of special significance for the epileptic network. They distin-
guished between three different types of nodes characterized by: (i) the
highest local synchronization power (weighted node strength); (ii) the
highest MST degree; and (iii) the highest interaction load (MST node
betweenness). Ortega et al. investigated whether removal of any of
these three node types (or combinations of node types) correlated
with surgical outcome (as defined with the Engel scale). They found
that removal of nodes with high local synchronization strength was a
sufficient but not necessary condition for a good outcome. Outcome
did not depend on the number of nodes removed. In this study epilepsy
originated in the mesial temporal lobe in 4 of 5 patients; network
analysis however revealed critical nodes in lateral temporal cortex in
five patients. Thus network analysis shows that the epileptic network
may extend beyond the epileptic focus, and this could have implications
for epilepsy surgery: removal of a critical node, even if it is not in or near
the focus, could abort the seizures. A similar result, obtained with more
conventional network analysis, has been reported more recently by
another group (Wilke et al., 2011).

Two studies have used the MST for the investigation of functional
brain networks derived from fMRI. In the first study resting-state fMRI
was performed in 13 patients with childhood onset schizophrenia
(COS) and 19 healthy controls (Alexander-Bloch et al., 2010). The
focus of this study was on modularity, and the MST and the k nearest
neighbour graph were used only to force connectedness of the graphs
to guarantee unbiased comparison between groups. Modularity and
local clustering and small-worldnesswere reduced and global efficiency
and robustness were increased in the COS group. These results were
taken to support the concept of “dysmodularity” in schizophrenia. It
should be noted that results of this study, in contrast to the three studies
mentioned above, were not based upon an analysis of the MST proper.
Although Alexander-Bloch et al. stress the importance of forcing
connectedness of the graphs, and having the same edge density when
comparing graphs, the analysis is performed for a large range of edge
densities. It is unclear whether a hierarchical clustering analysis of the
MST itself, as described by Lee et al. (2006) would also have revealed
the dysmodularity in the COS group. Recent work has shown that
trees can be used to reveal the modular structure of complex networks
(Bagrow, 2012).
The first fMRI study that analysed theMST itself was performed on a
data set (#2-2000-1118W) from an international repository of raw
fMRI data (www.fmridc.org) (Ciftçi, 2011). This data set consists of
fMRI recordings in 14 healthy young subjects, 14 healthy elderly con-
trols and 13 patients with “clinical dementia” during a simple sensory
motor task. The network was defined as 32 nodes, all regions from the
AAL atlas belonging to the default mode network. MSTs were derived,
both at the individual level as well as the group level from correlation
matrices of fMRI BOLD signals. The analysis involved the MST degree
distribution and agglomerative hierarchical clustering of the group
level MSTs. The mean level of connectivity was highest in the young
controls, and lower in both elderly controls and Alzheimer patients.
The degree distributions of the empirical data showed a peak at degree
2, reflecting a more chainlike MST, while random surrogate data
showed a maximum at degree 1, reflecting a more starlike topology.
No differences in degree distribution were found between the three
groups. Ciftçi (2011) noted a distinction between highly persistent
and less consistent edges, somewhat in line with the results of Lee
et al. (2010). Hierarchical clustering analysis of the MST showed that
the connection between the hippocampus/parahippocampal gyrus on
the one hand to the precuneus and posterior cingulate gyrus on the
other hand, that is normally mediated by the angular gyrus and the
inferior temporal gyrus, was disrupted in Alzheimer patients. Ciftçi
(2011) concluded that theMST carries information about the clustering
of the network.

4.2. More extensive characterization of the MST in EEG studies

The pioneering studies described above revealed two important
points. Firstly, they showed that MST analysis could indeed be used
for an unbiased comparison of brain networks between groups and
conditions. Secondly, they demonstrated that MST analysis could reveal
significant effects that were not always evident from an analysis of the
raw connectivity matrices. However, in all the studies described above
the actual analysis of the MST itself was rather limited: the focus was
either on quantifying the overlap between different MSTs, the degree
distribution, or the hierarchical structure. While these approaches to
MST characterization are certainly promising, it is possible to extract
more topological information from the MST than has been done in
these earlier studies. In fact, almost all measures that are normally
applied to unweighted graphs can be used for the analysis of MSTs as
well. The most important exceptions are those measures, such as for
instance the clustering coefficient, that depend upon the presence of
cycles of any length. In contrast, there is at least one measure that is
especially useful in the case of trees: the leaf number. This measure is
particularly useful to quantify the extent to which a tree is more
chainlike or more starlike. A more extensive description of tree mea-
sures can be found in Section 3. Here we discuss briefly two EEG studies
that have implemented amore extensive characterization of theMST. In
the next section we show how such an extensive characterization can
be combined with MEG source space networks.

In the study of Boersma et al., eyes-closed resting state 14 channel
EEGs recorded in 227 children at age 5, with a second recording two
years later, were analysed with the synchronization likelihood, a
measure of generalized synchronization (Boersma et al., 2013). In the
alpha band a number of significant changes in MST measures were
found. At age 7 the MST showed a larger diameter, higher eccentricity,
a lower leaf number and a lower tree hierarchy. A detailed explanation
of these measures can be found in Section 3. Here, the important thing
to note is that a larger diameter, higher eccentricity and lower leaf
number all point to a more chainlike, elongated shape of the MST at
age 7. In addition, this study showed a remarkable difference between
boys and girls. Compared to girls, boys had a higher leaf number,
betweenness centrality, maximum degree and a smaller diameter and
eccentricity in the theta band. This suggests that the MST topology of
boys was more starlike, and the MST topology of girls more chainlike.

http://www.fmridc.org
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If we compare this pattern to the changes observed between age 5 and
age 7, one could argue that brain networks in girls show amore mature
pattern. The same EEG dataset has been analysed before with more
classical graph theoretical techniques (Boersma et al., 2011), showing
that the clustering coefficient increased in the alpha band, and the
path length in all bands, between age 5 and 7. Clustering was higher
in girls compared to girls in the alpha and beta bands. These two studies
allow us to compare the patterns obtained with more classical graph
theoretical analysis and MST analysis. Higher clustering and longer
path length, characteristic of girls andmaturation, seem to be the equiv-
alent of a more elongated, chainlike MST topology with large diameter,
high eccentricity and low leaf number. Tentatively, onemight also argue
that a more regular network topology corresponds to more chainlike
trees, whereas more random networks correspond to more starlike
trees.

A similar type of more extensive MST analysis was applied in the
study of Demuru et al. (2013). Demuru et al. analysed a publicly avail-
able dataset ((http://physionet.org/pn4/eegmmidb/) of 64 channel
EEG recordings of 109 subjects. EEG was recorded under three condi-
tions: imagined right hand movement, imagined left hand movement
and rest. Functional connectivity, assessed with the phase lag index
(Stam et al., 2007), increased in both imagined hand movement condi-
tions compared to the rest condition, and regional analysis showed that
this effect was different for both hemispheres depending on the side
of imagined hand movement. The normalized clustering coefficient
and path length did not reveal significant condition effects. In the
beta band significant effects of condition and side were found for MST
eccentricity and diameter, and a significant effect of condition for MST
hierarchy. In this particular study both the raw functional connectivity
and the beta bandMSTmeasuresweremore sensitive than theweighted
normalized clustering coefficient and path length. Compared to the
study of Boersma et al. (Boersma et al., 2013), a strength was the use
of the PLI, which is less sensitive to the confounding effects of volume
conduction and active reference electrodes compared to the synchroni-
zation likelihood. This study suggests that network analysis based upon
the MST might be a candidate for the development of brain computer
interfaces.

4.3. Application of the MST to MEG source space data

A limitation of the EEG studies reported above is the fact that the
relation between the recording electrodes and the location of the under-
lying sources is not a priori known. In addition, in the case of scalp
recordings considerable blurring of the signal could occur due to current
spread in intervening tissues. These problems can be addressed by the
use of MEG source space as a starting point of the network analysis
(Hillebrand et al., 2012). Compared to EEG, MEG is hardly affected by
the conductivity of the skull and does not require the use of a reference
electrode. With beamformer methods recorded MEG signals can be
projected to sources based upon an anatomical atlas fitted to the MRI
of the experimental subjects (Hillebrand et al., 2005). It is important
to note that source space analysis does not completely solve the prob-
lem of field spread, and still requires the use of a functional connectivity
estimator, such as the phase lag index, that reduces the resulting biases
in estimated connectivity. Three recent studies applied minimum span-
ning tree analysis to connectivity matrices based upon MEG source
space and the PLI. In all cases 78 cortical regions of the AAL atlas were
used as nodes of the network (Gong et al., 2009a.

The first study investigated MEG source space functional networks
in 20 patients with lesional epilepsy at baseline and at two time points
postoperatively (van Dellen et al., 2013). Higher PLI in the alpha band
correlated with higher seizure burden. In seizure free patients an
increase in leaf number, decrease in eccentricity and decrease in
betweenness centrality were observed between baseline and follow
up. Connectivity and network measures also showed a relation to the
location of the lesion. This study showed that MST analysis is sensitive
to patterns of plasticity and brain network reorganization that are
related to clinical outcome.

Tewarie et al. (2014) investigated the MST of MEG source space
brain networks in 21 early MS patients and 17 matched healthy con-
trols. They used the tree dissimilarity measure introduced by Lee et al.
to compare controls and patients with a reference MST based upon
the average PLI matrix of the control group (Lee et al., 2006). When
the MSTs were dissimilar, then the MSTs were further characterized
and compared. This revealed a loss of network integration in alpha2
and beta bands, and an increase in the theta band. Alpha 2 MST charac-
teristics, in particular the tree hierarchy, correlated with impaired cog-
nition in the MS patients. This study confirms that cognitive problems
in MS may be correlated with changes in global network organization.
In addition it was shown that the distribution of PLI values was close
to a strong disorder state. This is important since it suggests that the
MST is likely to reflect most of the traffic in the underlying network
(Wang et al., 2008).

In a longitudinal study of resting-state functional brain network
organization in Parkinson patients and healthy controls conventional
graph analysis based upon weighted normalized clustering coefficient
and path length showed for the Parkinson patients a loss of clustering
which progressed over time, and a shorter path length at later stages
(Olde Dubbelink et al., 2014). Minimum spanning tree analysis revealed
a shift from more integrated (“star like”) to more disintegrated (“path
like”) networks in Parkinson patients, and these changes also
progressed over time. Importantly, changes in network organization in
the PD group were correlated with motor and cognitive impairment.
This study is again a good illustration of the ability of network analysis
to pick up clinically relevant changes in brain network organization,
even in early stage disease.

5. Conclusion and future prospects

We have shown that modern network analysis is a rapidly growing
field in neuroscience, but the lack of a proper methodology for network
comparison between studies, and between conditions within studies, is
increasingly becoming an important obstacle to further progress. This is
especially clear for diseases such as dementia, schizophrenia and
epilepsy, where many network studies have already been performed.
Contradictory results such as either increased randomness or excessive
regularity of functional networks have been reported in Alzheimer's
disease and epilepsy (Tijms et al., 2013; van Diessen et al., 2013). In
this review, we investigated whether the minimum spanning tree
could be useful to overcome some of these problems. The minimum
spanning tree allows a unique, simplified representation of a weighted
network, provided all the weights are unique. Theoretical studies sug-
gest that the MST represents most of the traffic in a weighted network,
and can be used to detect the hierarchical structure. A detailed investi-
gation of empirical studies employing the MST showed that the MST
was often effective in detecting group differences and condition effects,
and even rapid network changes over time. In most studies, the MST
analyses were at least as sensitive as, or more sensitive than, analyses
of raw connectivity data or analyses using more a conventional graph
theoretical approach. These findings suggest that the minimum
spanning tree is a promising approach for network comparison and
characterization.

Several studies have already employed both MST analysis and
analysis of raw connectivity data and conventional graph measures,
often the clustering coefficient and the average shortest path length.
In those studies where connectivity data or conventional graph analysis
showed an effect, an effect was always present in the MST analysis as
well (Boersma et al., 2011; 2013; Olde Dubbelink et al., 2014; van
Dellen et al., 2013). In other studies MST analyses succeed in demon-
strating an experimental effectwhile othermethodswere less successful
(Demuru et al., 2013; Lee et al., 2006). The empirical evidence so far sug-
gests that changes in the clustering coefficient and average shortest

http://physionet.org/pn4/eegmmidb/


137C.J. Stam et al. / International Journal of Psychophysiology 92 (2014) 129–138
path length cannot be translated in a simple way into MST measures.
The studies of Boersma et al. suggested that more regular networks
with higher clustering and longer path length correspond with more
line like MSTs with longer diameter and smaller leaf number, while
more random networks show low clustering and short path length
and the corresponding MSTs' shorter diameters and higher leaf
numbers. However, an opposite pattern was shown in the study of
Olde Dubbelink et al. (2014). In this study, a lower clustering coefficient
and shorter path lengthwere associated with amore line likeMSTwith
large diameter and lower leaf number. These studies differ in a number
of methodological aspects, such as the use of EEG versus MEG, synchro-
nization likelihood versus phase lag index and signal space versus
source space analysis. It is important to note however that in both
cases, given the connectivity matrix, the MST was unique while the
clustering coefficient and path length could have been computed in
many different ways as discussed in detail in Section 3. Of interest,
even when changes in the clustering coefficient were a prominent
part of the conventional graph analysis the MST, which does not
measure clustering, still showed significant effects. What is needed
here is a systematic comparison of the most important conventional
as well as MST-based measures in a model study using various types
of typical complex networks.

In recent years there has been a proliferation of new measures for
the characterization of complex networks (Rubinov and Sporns, 2010).
In a similar way it is also possible to use a large variety of different mea-
sures to characterizeminimum spanning trees. It is very likely however,
that these measures are highly correlated and can be replaced by a
smaller number of more independent measures. A simulation study
showed that most graph measures can be clustered into 2 to 4 groups,
depending upon the topology of the underlying network (Li et al.,
2011). For example, in the case of Erdős Rényi random graphs a strong
correlation between the clustering coefficient and the average shortest
path length can be expected.While a systematic study ofMSTs from this
point of view is currently lacking, many correlations between MST
measures can be understood relatively easily by considering the two
extreme forms of a tree: either a path or a star (Fig. 3). If an MST is
more similar to a path, it will have a longer diameter, higher eccentric-
ity, lower leaf number and lower maximum betweenness centrality. If
an MST is more similar to a star it will have a shorter diameter, lower
eccentricity, large leaf number and higher maximum betweenness
centrality. Thus MST analysis of network changes usually allows an
interpretation in terms of a shift toward a more line like (“less
integrated”) or a more star like (“more integrated”) configuration. A
challenge for the future is to find a minimum set of MST measures
that captures most of the relevant changes in MST morphology.

From the point of view of neuroscience an important question is
whether MST changes can be interpreted in a meaningful way in
terms of the structure and function of the underlying neural networks.
Theoretical studies suggest that in the strong disorder limit the MST
may reflect most of the traffic in the underlying network (Wang et al.,
2008). Furthermore the MST might be divided into a core, the super-
highways, and more peripheral roads (Wu et al., 2006). In the study of
Tewarie et al. (2014) it was shown that brain network data might
indeed correspond to the strong disorder state, in which case the MST
would represent most of the shortest paths in the network. This could
explain why a simple subgraph of a weighted network can still capture
relevant changes in the case of disease or disturbed consciousness. It
might also explain why MST changes correlate with cognition and
motor function (Demuru et al., 2013; Olde Dubbelink et al., 2014).
One very interesting empirical observation is that the MST seems to
consist of a stable core and more variable periphery (Lee et al., 2006).
It would be very interesting to study whether these components
are somehow related to the superhighways and roads described in the-
oretical work. Another important question for future studies is to what
extent the MST, and in particular its more stable core, corresponds to
the default mode network and/or the rich club of highly interconnected
hubs. The MST also provides a good starting point for hierarchical
clustering of complex networks. This approach has already been proven
useful for distinguishing between sub groups of epilepsy patients and
identification of disconnected clusters in Alzheimer's disease (Ciftçi,
2011; Lee et al., 2006). A more systematic use of hierarchical clustering
in combination with theMST could showwhether clusters identified in
this way correspond to different cognitive domains.

Future studies should also address the impact of limitations of the
MST approach on network characterization. One question that needs
to be addressed is the influence of noise in the assessment of correla-
tions between time series. Small changes in the underlying weighted
matrix from which the MST is constructed might imply a different
choice of edges, and thus a different organization of the MST. To some
extent, the early work of Lee et al. already shows that some edges in
the MST are more stable, while others, possible more peripheral nodes
with weaker connections, are more variable (Lee et al., 2006; 2010).
While the sensitivity to noise needs closer examination, it might also
provide information about constantly changing weak links, and give
indirect information about a stable core network that does not change.
Furthermore, in the studies reported in this review the sensitivity to
noise of the MST has not resulted in worse performance compared to
more conventional types of network analysis. Perhaps the method
recently introduced by Stephen et al. could be combinedwithMST anal-
ysis to assess the statistical significance of its individual edges (Stephen
et al., 2014).

Modern network analysis provides a natural general framework for
the integration of data obtained with different techniques and across
different spatial and temporal scales. As we have shown MST analysis
has already been applied to different techniques such as EEG, electro-
corticography, MEG and fMRI. An important question for future
research is whether the MST could be helpful for cross modal compari-
son of networks. Another important issue in network analysis is the
temporal evolution of network organization. The studies of Lee et al.
have shown that the MST can be used for this type of analysis (Lee
et al., 2006; 2010). Perhaps the most interesting challenge of all is to
find a good generative model of complex brain networks. Many studies
have attempted to explain properties of structural and functional brain
networks, as well as their relation, in terms of a few underlying princi-
ples such as optimization in the face of connection cost and speed of
information processing (Bullmore and Sporns, 2012; Goñi et al., 2014;
Vértes et al., 2012). Since the minimum spanning tree allows a highly
simplified, but still meaningful representation of a complex network,
it might also facilitate the task of finding a generative model of complex
brain networks.
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