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One of the better studied topology metrics of complex networks is the second smallest eigenvalue of
the Laplacian matrix of a network’s graph, referred to as the algebraic connectivity µN−1. This spec-
tral metric plays a decisive role in synchronization of coupled oscillators, network robustness, consensus
problems, belief propagation, graph partitioning, and distributed filtering in sensor networks. However,
computing the graph spectra is computationally slow and its convergence greatly depends on the topology,
thus a number of lower bounds have been proposed over the years in order to find good approximations.
To date, the closest bound is the one proposed by Rad et al. [21] in 2009. The current paper proposes
new approximations for the algebraic connectivity based on three variations of the betweenness central-
ity, a popular centrality score often used in social studies to characterize the importance of a node or link
within a network. Based on numerical and a partly analytic analysis, we show that our approximations
provide accurate lower bounds for the algebraic connectivity for a wide range of graphs, including ran-
dom, power-law, small-world, and lattice graphs. In particular, we numerically show that the average
weighted Brandes betweenness can be treated as a lower bound for large enough networks, which greatly
improves state-of-the-art bounds.

Keywords: algebraic connectivity; betweenness; lower bound.

1. Introduction

The so called betweenness is one of the most frequently studied network metrics. Originally introduced
by Freeman [11], the betweenness plays a vital role at identifying communities in social networks, as
it quantifies the number of times an element (node or link in the network) acts as a relay along the
shortest path between other pairs of nodes. In other words, assuming that all nodes in a network are
exchanging information with each other, the betweenness of an element measures the fraction of pair-
wise conversations that cross such an element. Also in communication networks, betweenness is viewed
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as a measure of network robustness, that tells us how many paths will stretch when such an element is
removed from the network. For example, scale free networks display a surprisingly high degree of
vulnerability against betweenness attacks, i.e. attacks targeting elements with high betweenness score
[25]. The average path distance increases dramatically upon surgical node removal, which causes the
network to rapidly break into isolated clusters. For instance, in a social network of injecting drug users,
the removal of only 1.5% high betweenness drug dealers causes up to 50% network fragmentation [9].
Potential applications of betweenness include the study of epidemic behaviors in the world wide web
and transportation networks [19] [28], and the characterization of cascading failures due to complex
interactions among interdependent networks [6, 15, 29].

The graph spectrum or eigenvalue decomposition [27], which has already been studied for a cen-
tury, offers a powerful way to represent a network. Probably due to the lack of a tangible meaning,
the graph spectrum remains elusive, yet the properties of the largest eigenpairs have been thoroughly
studied [12, 18, 24, 28]. The spectrum of a graph is an RN2 → RN2

algebraic transformation that offers
an alternative representation of a graph with N nodes, such that the axis system is sorted by the principal
directions, specified by the graph’s eigenvectors and corresponding eigenvalues. Fiedler [10] first sug-
gested in 1975 that the eigenvector associated to the second smallest eigenvalue (the so-called Fiedler
eigenvector) could be used to find an approximate solution to the graph partitioning problem. Since then,
a wealth of efficient heuristic spectral methods have been proposed to cope with the intrinsic difficulty
of clustering a graph. Emerging partitioning algorithms provide partitions that account for the global
graph structure, as opposed to the local vicinities (such as the nodal degree). In particular, the second
smallest eigenvalue of the Laplacian matrix, (called by Fiedler the algebraic connectivity) proves to be
strongly related to synchronization dynamics and graph robustness [14, 16, 19, 23]. Graphs with high
algebraic connectivity are harder to disconnect, and synchronize quicker. In particular, if the algebraic
connectivity of a graph reaches zero, the graph is split in more than one connected component [27], i.e.
a dynamic process on the graph will never fully synchronize.

Albeit the algebraic connectivity and the betweenness seem to tell two different stories, they are
closely related. From a data-communication point of view, link betweenness can be seen as a measure of
congestion. For example, when a data link with high betweenness is subject to failure, a high percentage
of routes are bound to be disrupted, and parts of the network may even become isolated. In the same way,
networks with high algebraic connectivity prove to be harder to disconnect. At a first glance, the issues
of congestion and disconnectivity may seem distant. However, one could argue that the betweenness
and the algebraic connectivity are inversely proportional, because the more bottlenecks a network has,
the more likely disconnectivity occurs. This intuition proves to be right: Comellas, and Rad et al. [7, 21]
proved that the algebraic connectivity is lower bounded by the reciprocal of the link betweenness. This
novel bound not only underlines the tight relation between these two metrics, but also proves to be the
most accurate lower bound for the algebraic connectivity known to date. This paper further investigates
this relation, in the search for more accurate answers, tighter bounds, and better interpretations for
spectral metrics.

The remainder of the paper is structured as follows. Section 2 introduces the necessary notation and
a bound for the algebraic connectivity as a function of the weighted link betweenness. Section 3 studies
the relation between the two metrics, by means of theoretical results. Section 4 presents an extensive
numerical analysis based on classic graph models. Conclusions are drawn in Section 5.
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2. Definitions and Theory

2.1 Graph Notation

A graph G(N ,L ) consists of a set N of N nodes and a set L of L links. Connections among the set
of nodes are characterized by an adjacency matrix A. The Laplacian matrix Q = ∆ −A, in which ∆ is
the degree diagonal matrix of graph G, has eigenvalues ranked as µN = 0 6 µN−1 6 . . .6 µ1.

The algebraic connectivity, denoted as µN−1, is the smallest non-zero eigenvalue of Q, which is
greater than zero if and only if the graph G is connected. From a robustness standpoint, the magnitude
of µN−1 reflects how many nodes should be removed in order to disconnect a graph [8]. The larger
the algebraic connectivity is, the harder a graph is to disconnect. To date, the problem of how the
structural properties of a network influence the convergence and stability of its synchronized states
has been extensively investigated and discussed, both numerically and theoretically [2, 3], with special
attention given to networks of coupled oscillators [1, 14, 20]. In general, networks with high algebraic
connectivity are desirable; these networks spread information faster and are more resilient to random
failures.

2.2 Betweenness and Weighted Betweenness

The betweenness of a link Bl (or node Bn) is defined as the total number of shortest paths that traverse
such link l (or node n),

Bl = ∑
i∈N

∑
j∈N

1{l∈P (i, j)} (2.1)

where 1{x} is the indicator function and equal to 1 if the condition x is true, and where the shortest hop
path P (i, j) between two nodes i and j is an ordered sequence of links, such that (a) two consecutive
links are incident to the same node, and (b) no links are repeated. The node betweenness proposed by
Freeman [11] has been heavily used in the past as a centrality measure in social networks.

Although the subset of links P (i, j) is generally defined as the shortest path between the node pair
(i, j), the shortest path is not necessarily unique, because there may exist multiple paths with equal hop
count. Hence, the path P(i, j) in (2.1) may not be uniquely defined, causing Bl to be undetermined. We
solve this indeterminacy by introducing the set of all shortest paths SP(i, j)

SP(i, j) =
{
P1(i, j),P2(i, j), . . . ,Pϕ(i, j)(i, j)

}
(2.2)

where ϕ(i, j) is the number of different shortest paths between the node pair (i, j). The set SP allows
us to conceive three variations of link betweenness, which we name Full link betweenness B(F)

l , Empty

link betweenness B(E)
l , and Brandes link betweenness B(B)

l . The latter is defined as

B(B)
l = 1

2 ∑
i∈N

∑
j∈N

1
ϕ(i, j) ∑Z∈SP (i, j) 1{l∈Z}

where 1
ϕ(i, j) ∑Z∈SP (i, j) 1{l∈Z} represents the fraction of shortest paths between nodes i and j that cross

link l. The Brandes Betweenness B(B)
l is the de facto standard for betweenness in most scientific publica-

tions. It was first introduced by Freeman [11] and further studied extensively as a node centrality metric
in the last decades [5]. The contribution to link l’s betweenness of a node pair (i, j) is the proportion of
shortest paths that cross the link l over the total number of existing shortest paths ϕ(i, j), as illustrated
in Figure 1. This value is then added over all

(N
2

)
node pairs to find the betweenness B(B)

l of link l. The
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Brandes betweenness B(B)
l can be interpreted as an automatic load balancing, where a communicating

node pair (i, j) splits its bandwidth fairly over all shortest paths between i and j.
As opposed to the load balancing policy assumed in Brandes betweenness, any node may also choose

to transmit its full load though a single path. Given a link l, a random path selection may lead to a worst
case scenario where all node pairs

(N
2

)
transmit their full load over l. This maximum offered load is

quantified by the Full betweenness of link l, or B(F)
l , which represents the highest possible load that link

l may offer (assuming all-to-all node transmission). On the contrary, one may contemplate the opposite
scenario for link l, where every node pair has chosen an alternate route not including l, whenever
possible. The Empty betweenness B(E)

l of link l represents the lowest possible load that link l may offer
(again, assuming all-to-all node transmission). The Full and Empty betweenness are defined as,

B(F)
l = 1

2 ∑
i∈N

∑
j∈N

maxZ∈SP (i, j) 1{l∈Z}

B(E)
l = 1

2 ∑
i∈N

∑
j∈N

minZ∈SP (i, j) 1{l∈Z}

respectively. Where maxZ∈SP (i, j) 1{l∈Z} equals 1 if there is at least one path Z in the set SP(i, j) that
crosses link l, and minZ∈SP (i, j) 1{l∈Z} equals 1 only if every path in the set SP(i, j) crosses link l, as
illustrated in Figure 1.

We additionally define weighted versions of the Full link betweenness r(F)
l , the Brandes link between-

ness r(B)l , and the Empty link betweenness r(E)l , as

r(F)
l = 1

2 ∑
i∈N

∑
j∈N

h(P(i, j))maxZ∈SP (i, j) 1{l∈Z}

r(B)l = 1
2 ∑

i∈N
∑

j∈N
h(P(i, j)) 1

ϕ(i, j) ∑Z∈SP (i, j) 1{l∈Z}

r(E)l = 1
2 ∑

i∈N
∑

j∈N
h(P(i, j))minZ∈SP (i, j) 1{l∈Z}

(2.3)

where h(P(i, j)) is the hopcount of path P(i, j). The weighted link betweenness is more closely related
to the the algebraic connectivity than the raw link betweenness, as we will show in the next section. By
definition, r(F)

l > r(B)l > r(E)l , and they are lower bounded by 1, because the node pair (l+, l−) at both
ends of link l always contributes to the Empty link betweenness of l.

2.3 Bounds for the Algebraic Connectivity

If x is the eigenvector of the Laplacian matrix Q belonging to µN−1, and x(i) is the component of x
corresponding to the i-th node, then [27, p. 81]

µN−1 =
2N ∑l∈L (x(l+)− x(l−))2

∑u∈N ∑v∈N (x(u)− x(v))2 (2.4)

The bound µN−1 > 1
ρN was derived in [27, p. 84], where ρ is the diamter or the maximum hopcount

between any pair of nodes of a given graph. This bound can be improved by considering the Cauchy-
Schwarz bound [27, p. 84]

(x(v)− x(u))2 6 h(P (v,u)) ∑
l∈P(v,u)

(
x
(
l+
)
− x

(
l−
))2 (2.5)
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FIG. 1: Contribution of a single pair(s, t) to the Full betweenness (left), the Brandes betweenness (cen-
ter), and the Empty betweenness (right) of all links. There exist a total of three shortest paths between
node s and t: SP(s, t) = {{a,b,c},{d,b,c},{e, f ,c}}. The Brandes betweenness equally weights each
path (upper, middle and bottom paths) by 1

3 ; the Full betweenness equally contributes to every link that
lies in any shortest path; the Empty betweenness only contributes to the betweenness of link l if and only
if a link appears in all shortest paths, link (c, t) in this example.

which holds for any randomly chosen shortest path P(u,v) ∈ SP(u,v). However, if we were to sum
(2.5) over all node pairs, there will exist a set of particular paths that minimizes (or maximizes) the
right hand side of the equation. To avoid this indeterminacy, we generalize the previous expression by
considering all ϕ(v,u) shortest paths joining the node pair (u,v) by extending (2.5) into

(x(v)− x(u))2 6
1

ϕ(u,v) ∑
Z∈SP (u,v)

h(Z)∑
l∈Z

(
x
(
l+
)
− x

(
l−
))2 (2.6)

where each path Z in the set SP(u,v) has the same hopcount, thus h(Z) = h(P(u,v)). Summing (2.6)
over all node pairs yields

∑
u∈N

∑
v∈N

(x(u)− x(v))2 6 ∑
u∈N

∑
v∈N

h(P(u,v))
ϕ(u,v) ∑

Z∈SP (u,v)
∑
l∈Z

(
x
(
l+
)
− x

(
l−
))2

= ∑
u∈N

∑
v∈N

h(P(u,v))
ϕ(u,v) ∑

Z∈SP (u,v)
∑

l∈L

(
x
(
l+
)
− x

(
l−
))21{l∈Z}

= ∑
l∈L

(
x
(
l+
)
− x

(
l−
))2

∑
u∈N

∑
v∈N

h(P(u,v))
ϕ(u,v) ∑

Z∈SP (u,v)

(
1{l∈Z}

)
Using the definition (2.3) of the weighted Brandes betweenness r(B)l , we obtain

∑
u∈N

∑
v∈N

(x(u)− x(v))2 6 2 ∑
l∈L

(
x
(
l+
)
− x

(
l−
))2r(B)l (2.7)

Introducing the last equation into Fiedler’s expression (2.4) for the algebraic connectivity yields the
lower bound

µN−1 >
N ∑l∈L (x(l+)− x(l−))2

∑l∈L (x(l+)− x(l−))2 r(B)l

(2.8)
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In general, the denominator of (2.8) can be bounded as

min
l∈L

r(B)l ∑
l∈L

(
x
(
l+
)
−x

(
l−
))2

6 ∑
l∈L

(
x
(
l+
)
−x

(
l−
))2 r(B)l 6 max

l∈L
r(B)l ∑

l∈L

(
x
(
l+
)
−x

(
l−
))2 (2.9)

which simplifies (2.8) down to

µN−1 >
N

maxl∈L r(B)l

(2.10)

which is the tightest lower bound for the algebraic connectivity known to date, proposed by Rad et
al. [21]. While the minimum of ∑l∈L (x(l+)− x(l−))2 r(B)l would yield the largest lower bound for
µN−1, we cannot guarantee that it equals minl∈L rl ∑l∈L (x(l+)−x(l−))2, nor that N

minl∈L r(B)l

will still

lower bound µN−1. Intuitively though, we may expect that µN−1 can be expressed as a function of the
weighted betweenness, thus we are interested in studying the validity of the following nine inequalities:

Empty Betweenness: µN−1
?
>

N

minr(E)l

µN−1
?
>

N

E[r(E)l ]
µN−1

?
>

N

maxr(E)l

Brandes Betweenness: µN−1
?
>

N

minr(B)l

µN−1
?
>

N

E[r(B)l ]
µN−1>

N

maxr(B)l

Full Betweenness: µN−1
?
>

N

minr(F)
l

µN−1
?
>

N

E[r(F)
l ]

µN−1>
N

maxr(F)
l

(2.11)

where the min and max indicators iterate over all links in L . We know that the two framed inequalities,
i.e. the ones based on the maximum Brandes and the maximum Full betweenness, hold for any graph.
The purpose of the present article is to study the validity of (2.11), and more generally, the relation
between µN−1 and various measures of the weighted betweenness, such as minl∈L r(F)

l , maxl∈L r(E)l ,

and the average E[r(B)l ] = 1
L ∑

L
l=1 r(B)l .

The average Brandes betweenness can be rewritten as

E[r(B)l ] =
1
L

L

∑
l=1

r(B)l =
1
2 ∑

i∈N
∑

j∈N
h(P(i, j))

1
ϕ(i, j) ∑

Z∈SP (i, j)

1
L

L

∑
l=1

1{l∈Z}

and with ∑
L
l=1 1{l∈Z} = h(P(i, j)),

E[r(B)l ] =
1

2L ∑
i∈N

∑
j∈N

h2(P(i, j)) =
N(N−1)

2L
E[H2] = (N−1)

E[H2]

E[D]

where H is the hopcount of an arbitrary path and D is the degree of an arbitrary node in the graph G.

The corresponding inequality µN−1
?
> N

E[r(B)l ]
, which is promising as shown below, becomes

µN−1
?
>

NE[D]

(N−1)E[H2]
>

E[D]

E[H2]
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where E[H2] = Var[H] + (E[H])2. For example, in the complete graph KN , the variance Var[H] = 0,
since the hopcount of any shortest path equals H = 1, the average degree E[D] = N−1 and the algebraic
connectivity µN−1 = N, so that equality is achieved in the first inequality, whereas E[D]

E[H2]
= N−1.

2.4 Time Complexity

This section briefly exposes the time complexity of both spectral and betweenness computation state-
of-the-art algorithms.

2.4.1 Spectral Complexity Computing the exact spectra of a given graph G is equivalent to calculat-
ing the eigenvalues and eigenvectors of its corresponding adjacency matrix [13]. The matrix multipli-
cations of the eigenvalue decomposition lead to a time complexity of O(N3). Heuristic algorithms have
been proposed to accelerate the product of sparse matrices, but this upper bound remains immutable.

Computing pseudo-spectra (i.e. approximations instead of exact values) has successfully been
approached by a number of heuristics: first, the QR and later Arnoldi-Lanczos (know as IRAM, Iterative
Restarted Arnoldi Method [22]), which have been implemented in popular libraries such as LAPACK
and Matlab. The advantage of these methods over raw eigenvalue decomposition is two fold. First,
they can compute only a portion of the spectra, and second they can approximate the spectra up to a
relative error margin, thus speeding the computations by orders of magnitude. The disadvantage of
pseudo-spectral algorithms resides in their iterative nature, i.e. the convergence time highly depends
on the topology and the desired relative error margin. Using state of the art algorithms, eigenvalues of
200,000 node networks can be computed within one minute [30].

2.4.2 Betweenness Complexity The simplest variant of the link betweenness, i.e. the weighted Bran-
des betweenness, can be computed in order O(NL). Proposed by Brandes [4], the fastest algorithm
known takes advantage of the fact that dependency fractions are propagated at every bifurcation between
a source-destination pair. Thus, one only requires a single iteration over all links to compute a single
node’s contribution to the Brandes betweenness of a node.

The Empty and Full weighted betweenness, as opposed to the Brandes weighted betweenness, (2.11)
do not retain the propagation property. Path fractions cannot be merged at bifurcations, thus additional
information is needed to know whether the crossing paths belong to the same source-destination pair
or not. If not, the algorithm requires up to O(N) additional floating point operations, i.e. the time
complexity of the algorithm increases with the number of bifurcations along any shortest path. To
date, there is no general expression for the average number of bifurcations, which means that we cannot
estimate an average time complexity. The slowest, worst case scenario corresponds to the network where
every single node bifurcates into two or more paths, which scales as O(logN). Hence, the computational
complexity of Empty and Full betweenness of small-world networks is upper bounded by O(NLlogN).

To conclude, exact spectral metrics are slower to compute than betweenness metrics in sparse net-
works (where L = O(N)). However, depending on the type of topology, the number of links in the
network and the diversity factor of shortest paths, pseudo-spectral algorithms may outperform Full and
Empty betweenness algorithms.

3. Analytic Results

In this section we provide exact results for the the Full link betweenness of the complete graph, the
complete bipartite graph, the star graph, and the lattice graph. We exclusively focus our analysis on the
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Full link betweenness because r(F)
l represents the worst case scenario, i.e. r(F)

l is always greater than

both the Brandes r(B)l and the Empty r(E)l link betweenness.

3.1 Complete Graph

The complete graph KN is a graph in which every node pair is connected with a link. In a complete
graph, the algebraic connectivity is proven [27] to be µN−1 = N. By definition, each shortest path in a
complete graph crosses only a single link, i.e. SP(i, j) = {(i, j)},

min
l∈L

r(x)l = max
l∈L

r(x)l = 1

for x ∈ {E,B,F}. Hence, all inequalities (2.11) are equalities for the complete graph,

µN−1 = N =
N

minl∈L r(F)
l

3.2 Complete Bipartite Graph

A complete bipartite graph Km,n consists of two disjoint node sets S1 and S2, containing m and n nodes
respectively, in which every node in set S1 is connected to every node in set S2. The star graph is a
special case K1,N−1 of the complete bipartite graph, where m = 1,n = N− 1, i.e. one set contains just
one node and the other set contains N− 1 nodes. Because all links in the complete bipartite graph are
equivalent, for any link l, it holds that

minr(F)
l = maxr(F)

l = ∑
i∈S1

∑
j∈S2

h(P(i, j))1{l∈P(i, j)}+
1
2 ∑

i∈S1

∑
j∈S1

h(P(i, j))1{l∈P(i, j)}

+
1
2 ∑

i∈S2

∑
j∈S2

h(P(i, j))1{l∈P(i, j)}

= 1+2(m−1)+2(n−1) = 2N−3

where m+n = N. The first sum accounts for all the shortest paths with length one, i.e. the contribution
of node pairs belonging to different sets. The second and third sums account for all the shortest paths
with length two. We know [27] that the algebraic connectivity of a complete bipartite graph equals
µN−1 = min{m,n}> 1, thus, for N > 2,

µN−1 >
N

minl∈L r(F)
l

=
N

2N−3

3.3 Square Lattice Graph

A square lattice Ln×n of size n is a bounded n× n two-dimensional grid containing N = n2 nodes,
where all nodes have four incident links to their four closest neighbours, except those around the four
boundaries.

Let us define the elementary square of link l as the region between rows k,k + 1 and columns
m,m+ 1, where k and m are the row and column coordinates of the link l, respectively, and n is the
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FIG. 2: This figure illustrates the computation of the Full link betweenness of a given link l in a square
lattice. The shadowed region represents the elementary square of link l. The Full link betweenness of
link l equals the number of covering fields that fully overlap the elementary square.

number of rows (and columns). Define the covering field between two nodes in the lattice as the region
covered by a rectangle that contains the nodes in diagonally opposite corners. Then, by definition, the
full weighted betweenness of link l equals the total number of covering fields that overlap the elementary
square, over all node pairs. The computation of the Full betweenness of a link l is illustrated in Figure
2, which can be expressed as

r(F)
l = 2 ∑

i∈F1

∑
j∈F4

((y j− yi)+(x j− xi))+
m

∑
i=1

n

∑
j=m+1

(y j− yi)+2 ∑
i∈F1

∑
j∈F2

((y j− yi)+(k+1− xi)) (3.1)

=
n−2

∑
i=0

n−1

∑
j=0

(1+ i+ j)+(m−1)
n−k−2

∑
i=0

∑
y j=m+1

(y j− yi)+2(k−1)
n−2

∑
i=0

n

∑
y j=n+1

((y j− yi)+(k+1− xi))

(3.2)

where F1,F2,F3,F4 are 4 covering fields that lie in the four corners of the elementary square rooted at
link l; the indices i and j represent the start and end nodes of a given path, respectively; and yi, xi are
the column and row of node i. The link that minimizes (3.2) leads to the expression

minr(F)
l =

n−2

∑
i=0

n−1

∑
j=0

(1+ i+ j) =
N(N−1)

2
+2N(N−1)2 (3.3)

The algebraic connectivity of the square lattice Ln×n (see [26]) can be expressed as

µN−1(Ln×n) = 2
(

1− cos
(

π

N

))
(3.4)
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By comparing (3.4) to (3.3), we can establish that inequality µN−1 > N
minr

l(F)
only holds for values

of N smaller than 324. In other words, the minimum Full Betweenness can be used as a lower bound
for the algebraic connectivity only in square lattices with less than 18×18 nodes.

4. Simulation results

4.1 Small graphs

In order to test whether the Brandes, Full and Empty weighted betweenness are good approximations
for the algebraic connectivity, we exhaustively computed µN−1, r(F)

l , r(B)l , and r(E)l for every existing
connected undirected small graph, i.e. graphs up to 10 nodes. The full set of non-isomorphic connected
graphs C(N) with N nodes can be swiftly generated with McKay’s algorithm [17]. We choose to exclude
disconnected graphs because the algebraic connectivity of such graphs is zero (µN−1 = 0), which is an
uninteresting case study. The results of our exhaustive exploration of the graph are summarized in
Figure 3, Table 1, and Appendix A.

The average values of the Brandes, Full and Empty betweenness provide bounds that hold up to
43%, 95% and 19% of the graph space, respectively. Each of the three betweenness shows a particu-
lar behavior: first, the accuracy of the average Empty betweenness declines as N increases, reaching
0.0001% for N = 10. On the other hand, the accuracy of the average Full betweenness improves as
N increases: it starts at 66% accuracy for all graphs with N = 5 nodes, and reaches 94% accuracy for
N = 10. Lastly, Brandes betweenness shows a double regime as illustrated in Figure 3a: for N < 7, the
accuracy declines for increasing N; for N > 8 the accuracy rises for increasing N.

Similar to the average betweenness, the minimum betweenness shows varied behaviors. The accu-
racy of both the minimum Empty and Brandes betweenness steadily decline, whereas the minimum Full
betweenness shows a double regime, i.e decreasing for N < 8, and increasing for N > 8. Surprisingly,
the maximum Empty betweenness is outperformed by the average Full betweenness even for small net-
works. This means that even for small values of N, an average-based estimator outperforms a wost-case
estimator.

To sum up, only two of the seven weighted betweenness metrics in (2.11), i.e. the average Full
and the maximum Empty betweenness, are fair approximations for the algebraic connectivity of small
graphs. These approximations provide us with two inequalities that hold for more than 58% of the graph
space.

4.2 Large graphs

This section studies the relation between the maximum, average, and minimum of the Full Betweenness
r(F)

l , the Brandes Betweenness r(B)l , the Empty Betweenness r(E)l and the algebraic connectivity for large
undirected graphs, i.e. graphs with N >> 10.

Given that obtaining the betweenness of every non-isomorphic connected graph with more than N =
10 nodes is computationally unfeasible, we resorted to a random sample of four statistically significant
graph models. The four proposed models are the Erdős-Rényi random graphs, the Barabási-Albert scale-
free graphs, the Watts-Strogatz, and the Lattice graph. These models mimic common features of real-
world like graphs, such as the small-world and the robust-yet-fragile properties. The input parameters
for our graph models were tuned such that the resulting Erdős-Rényi random graph and Barabási-Albert
Free-scale graphs all had an average degree of E[D] = 8, and Watts-Strogatz and Lattice have an average
degree of E[D] = 4. This multiple choice arises from the fact that most Erdős-Rényi graphs with average



WEIGHTED BETWEENNESS AND ALGEBRAIC CONNECTIVITY 11 of 16

1.0

0.8

0.6

0.4

0.2

0.0

P
r[
m

N
-1

 >
 N

 /
 X

]

10987654

N

(a) Fraction of complying graphs

10
1

10
2

10
3

10
4

10
5

10
6

10
7

C
(N

) 
* 

P
r[
m

N
-1

 >
 N

o
d
e
s
 /
 X

]

10987654

N

 X = max(rl

(F)
)

 X = E[rl

(F)
]

 X = min(rl

(F)
)

 X = max(rl

(B)
)

 X = E[rl

(B)
]

 X = min(rl

(B)
)

 X = max(rl

(E)
)

 X = E[rl

(E)
]

 X = min(rl

(E)
)

(b) Absolute number of complying graphs

FIG. 3: Number of graphs that obey the indicated inequalities for networks sizes in the range [4,10], both
as a percentage and as an absolute number (left image and right image, respectively). The top dashed
curve represents C(N), i.e. the total number of non-isomorphic connected graphs with N nodes. The
legend applies to both images.

degree 4 are disconnected.
For each model, we computed two performance metrics: (a) the average µN−1 and betweenness

values as illustrated in Figure 4; and (b) the number of graphs that obey each of the nine inequalities, as
depicted in Table 1. Simulations were iterated 105 times per sample point, for network sizes N in the
range [25,1014]. The following subsections provide a quantitative analysis of each of the four graph
types under study.

4.2.1 Square Lattice Graphs In agreement with our analytic results (3.1) and (??), the algebraic
connectivity and the minimum Full betweenness curves intersect at N = 324, as illustrated in Figure 4a.
For values of N slightly below 324, the minimum Full betweenness provides the tightest lower bound;
for values of N greater than 324, the average Brandes betweenness becomes the closest lower bound.

In contrast to other graph models, none of the Empty link betweenness inequalities provide a reliable
lower bound. This is due to the high path diversity observed in grid structures, in which there is an
absence of bottlenecks. By the same token, the Full link betweenness tends to be a better bound in the
Square Lattice than in the other three models.

4.2.2 Erdős-Rényi random graphs Numerical results for Erdős-Rényi are illustrated in Figure 4b,
which shows the three closest weighted betweenness estimators to be the average Brandes E[r(B)l ], the

minimum Full r(F)
l min and the maximum Empty betweenness r(E)l max, i.e. the three curves immediately

below µN−1. However, the values depicted in Figure 4b represent only averaged values, i.e. there exist
outlier graphs for which µN−1 < N

E[r(B)l ]
, i.e. inequality µN−1 > N

E[r(B)l ]
does not comply. The number

of complying cases is depicted in the first three columns of Table 1. We can see that less than 90% of
average Brandes samples provide a valid lower bound for the networks smaller than ≈ 729 nodes. On
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FIG. 4: (Color online) Average values for the algebraic connectivity (black curve), Full, Brandes, and
Empty betweenness (green, blue, and red curves, respectively) of 104 sampled networks. The simu-
lated graphs are: Square Lattice (top left), Erdős-Rényi (top right) and Barabási-Albert (bottom left),
and Watts-Strogatz (bottom right). The curves lying the closest to the black line (i.e. the algebraic
connectivity) provide the better bounds. The legend applies to the four images.

the other hand, the accuracy of r(F)
l min and r(E)l max-based bounds is always greater than 90% irrespectively

of the network size.
The rest of the curves, besides the mentioned three, pose uninteresting case studies. These curves

show either 0% or 100% compliance, because they either never hold, or lie below well-known lower
bounds, respectively. Among the average Brandes E[r(B)l ], the minimum Full r(F)

l min and the maximum

Empty betweenness r(E)l max, the latter two provide lower bounds with the highest compliance for Erdős-
Rényi random graphs. Nonetheless, as N → ∞, the average Brandes betweenness seems to approach
100% compliance, while still being the closest lower bound.

4.2.3 Barabási-Albert Free-scale graphs Simulation results are illustrated in Figure 4c. We have
simulated 104 iterations of Barabási-Albert Free-scale graphs from 25 to 1014 nodes.
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Table 1: The top table displays the percentage of small graphs that obey the nine inequalities, for all
graphs with small N 6 10. The bottom table displays, for large N >> 10, the percentage of Erdős-
Rényi, Barabási-Albert and Watts-Strogatz graphs that obey three handpicked inequalities: maximum
Empty, average Brandes, and minimum Full betweenness. The six inequalities we left out are either
≈ 100% accurate, or ≈ 0% accurate.

Small graphs (N 6 10)
Empty Brandes Full

N min avg max min avg max min avg max
5 14.2% 19.0% 61.9% 23.8% 42.8% 100% 28.5% 66.6% 100%
6 1.7% 4.4% 61.6% 8.9% 33.9% 100% 21.4% 69.6% 100%
7 0.4% 1.6% 66.0% 2.9% 23.6% 100% 16.7% 75.7% 100%
8 0.04% 0.2% 63.8% 0.6% 23.6% 100% 14.8% 83.6% 100%
9 0.002% 0.03% 61.5% 0.1% 26.2% 100% 16.8% 90.5% 100%
10 0.0001% 0.002% 58.0% 0.04% 31.6% 100% 23.6% 94.8% 100%

Large graphs (N >> 10)
Erdős-Rényi Barabási-Albert Watts-Strogatz

N r(E)l max E[r(B)l ] r(F)
l min r(E)l max E[r(B)l ] r(F)

l min r(E)l max E[r(B)l ] E[r(F)
l ]

49 94.6% 74.7% 91.1% 99.8% 100% 77.5% 99.8% 8.1% 97%
144 100% 70.6% 95.3% 100% 100% 74.4% 100% 17.3% 97.3%
289 100% 63.8% 98.6% 100% 100% 58.8% 100% 41.4% 98.6%
484 100% 88.3% 99.0% 100% 100% 46.7% 100% 68.9% 99.0%
729 100% 94.7% 98.6% 100% 100% 35.6% 100% 78.4% 98.8%

1014 100% 96.4% 99.4% 100% 100% 28.4% 100% 83% 99.1%

Similarly to the Erdős-Rényi scenario, the three closest weighted betweenness estimators are the
average Brandes E[r(B)l ], the minimum Full r(F)

l min and the maximum Empty betweenness r(E)l max. However,
their behaviors differ considerably from those in the Erdős-Rényi case, as seen in the three middle
columns of Table 1. For extremely small values of N < 100, both the maximum Empty and average
Brandes betweenness show a compliance greater than 99%. However, as N increases, the accuracy
of the r(E)l max-based bound decreases all the way down to 28.4% for N = 1014; where average Brandes
remains at 100% compliance.

The rest of the curves display 100% compliance, whereas all curves above the algebraic connectivity
display near 0% compliance. Given that Barabási-Albert graphs with less than N ≈ 500 nodes do not
possess scale-free features, we can conclude that for scale-free graphs, both the maximum Empty and
the average Brandes betweenness provide the better bounds for the algebraic connectivity.

4.2.4 Watts-Strogatz Graphs Simulation results related to Watts-Strogatz are illustrated in Figure 4d
and the three rightmost columns of Table 1. The three closest weighted betweenness estimators are:
the average Brandes E[r(B)l ], the average Full r(F)

l min and the maximum Empty betweenness r(E)l max. The
main difference between the Watts-Strogatz model and the three previous graph models lies in the Full
betweenness. For Erdős-Rényi and Barabási-Albert graphs, the maximum Full betweenness proves to
be a reasonably good lower bound for small values of N. However, the algebraic connectivity of Watts-
Strogatz is far removed from the maximum Full betweenness, always lying at 0% compliance.
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Similarly to the random graph scenario, the average Brandes betweenness is a poor lower bound for
N < 700, but it shows a steady increase in compliance as N increases, as shown in Table 1. We expect
that, if this tendency remains as N grows larger, the average Brandes will have near 100% compliance
while providing the most accurate bound.

5. Conclusions

In this paper, we found a new estimate for the algebraic connectivity based on the averaged weighted
Brandes betweenness over all network links,

µN−1 &
N

E[r(B)l ]
≈ E[D]

E[H2]
(5.1)

For large enough N, simulations show that our approximation (5.1) is exceedingly sharp and can be
treated almost as a lower bound, which is nearly an order of magnitude better than the closest lower
bound (2.10) known to date. Unfortunately, strict inequality in (5.1) does not hold and even for large N,
we are unable to prove asymptotic inequality, although asymptotic relations for the hopcount H exist.
We showed the validity of our lower bound (2.10) by means of numerical simulations, where it holds
for 96% of Erdős-Rényi graphs, 100% of Barabási-Albert graphs, 83% of Watts-Strogatz graphs, and
100% of Square Lattice graphs with more than 1014 nodes. Our simulations suggest that the bound
(2.10) approaches 100% compliance as N → ∞. In a case by case scenario, alternative definitions
of betweenness (based on the Empty betweenness, and the Full betweenness) may provide even higher
quality algebraic connectivity estimators. For instance, in Erdős-Rényi graphs, inequality µN−1 6 N

maxrE
l

holds for 100% of the sampled graphs, while still being tighter than the state-of-the-art analytic bounds.
The present study brings us one step closer to understanding the graph spectrum as an alternative

representation of a graph. It is well known that the algebraic connectivity µN−1 plays an important
role in, among others, synchronization of coupled oscillators and network robustness to disconnectiv-
ity. In addition to these applications, one may understand the algebraic connectivity to be the average
length-scaled distance between all node pairs. Thus, the effect of a given path on synchronization and
robustness processes is directly proportional to the length of such path, i.e. short paths have less of an
influence on synchronization than longer paths.

Computationally, our work increases the amount of graphs for which computing the algebraic con-
nectivity is timely feasible. A substantial advantage of hopcount algorithms over spectral approxima-
tions is that hopcount-based processes can be parallelized, thus a raid of computers is likely to compute
the Brandes betweenness multiple times faster than the algebraic connectivity. In addition, computing
any variation of the weighted betweenness also yields the all-to-all node distances matrix, which proves
useful in the optimization of routing protocols.
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A. Scatter plots for N = 8.

For all non-isomorphic connected graphs with N = 8 nodes, we display nine scatter plots for the alge-
braic connectivity vs. each of the nine weighted betweenness. There exist a total of 11,117 connected
graphs with 8 nodes.

None of the point clouds seems to consistently stay below the cyan line (which illustrates the equality
µN−1 = N/rl), except the maximum Brandes and maximum Full betweenness. Even though the aver-
age Brandes betweenness seems to be the closest candidate to approximate µN−1 (middle row, middle
column), the number of complying graphs is lower than 40%, as illustrated in Section 4.1, Figure3.

(a) Empty betweenness minimum (b) Empty betweenness average (c) Empty betweenness maximum

(d) Brandes betweenness minimum (e) Brandes betweenness average (f) Brandes betweenness maximum

(g) Full betweenness minimum (h) Full betweenness average (i) Full betweenness maximum

FIG. A.5: N = 8 nodes. The cyan line illustrates the equality µN−1 = N/rl , thus graphs lying below the
cyan line obey the respective inequality, points lying above do not. The inset graph displays a contour
plot of the data: blue contours high density, red contours low density.


