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Assortativity in Complex Networks 

Rogier Noldus and Piet Van Mieghem 

Abstract–We survey the concept of assortativity, starting from its original definition by 
Newman in 2002. Degree assortativity is the most commonly used form of assortativity. 
Degree assortativity is extensively used in network science. Since degree assortativity alone is 
not sufficient as a graph analysis tool, assortativity is usually combined with other graph 
metrics. Much of the research on assortativity considers undirected, non-weighted networks. 
The research on assortativity needs to be extended to encompass also directed links and 
weighted links. In addition, the relation between assortativity and line graphs, 
complementary graphs and graph spectra needs further work, to incorporate directed 
graphs and weighted links. The present survey paper aims to summarize the work in this 
area and provides a new scope of research. 
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1. Introduction 
In this survey paper, we provide an overview of assortative mixing in complex networks. The concept of 
assortativity was introduced by Newman [32] in 2002 and is extensively studied since then. Assortativity 
is a graph metric. It represents to what extent nodes in a network associate with other nodes in the 
network, being of similar sort or being of opposing sort. Generally, the assortativity of a network is 
determined for the degree (number of direct neighbours) of the nodes in the network. The concept of 
assortativity may, however, be applied to other characteristics of a node as well, such as node weight, 
coreness, node betweenness, kth level node degree (number of nodes that can be reached in no more than k 
hops; also known as expansion) etc. In addition, assortativity may be applied to node characteristics that 
are not directly topology-related, such as race or language (see e.g. Quayle et al. [66] and Nagoshi et al. 
[67]). 

Assortativity is expressed as a scalar value, ρ, in the range -1 ≤ ρ ≤ 1. Degree assortativity is identified as 
ρD. A network is said to be assortative when high degree nodes are, on average, connected to other nodes 
with high degree and low degree nodes are, on average, connected to other nodes with low degree. A 
network is said to be disassortative1 when, on average, high degree nodes are connected to nodes with 
low(er) degree and, on average, low degree nodes are connected to nodes with high(er) degree. 
Assortativity provides information about the structure of a network, but also about dynamic behaviour of 
the network and robustness of the network, such as random or targeted attack and virus spread. 
Considering only the degree distribution of the network does, generally, not provide sufficient 
information about the network. 

The original definition of assortativity (Newman [32]), for non-weighted, non-directed networks, is based 
on the correlation between random variables. We define the linear correlation coefficient between two 
random variables X and Y as follows: 

                                                
1 The term dissortative is also used in some publications. 
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where Xµ and Yµ are the mean of X and Y respectively, YXXYE µµ−][ is the covariance of X and Y and σX 
and σY are their respective standard deviation. To derive a definition of degree correlation, assortativity, 
we apply the following approach. We randomly select a link l in the graph. The link connects two nodes: 
a start node, denoted l-, and an end node, denoted l+. The degree D of l- is denoted by Dl- and the degree of 
l+ is denoted by Dl+. Newman [32] derived from Eq. (1) the linear degree correlation coefficient: 
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where 

ejk is the joint-excess degree probability for excess degree j and excess degree k (the excess degree, also 
known as remaining degree, of a node is equal to the degree of that node minus one) 
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is the normalized distribution of the excess degree Dr of a randomly selected node 

σq is the standard deviation of qk. 

The assortativity is quantified by the Pearson correlation coefficient (Van Mieghem [50], ch.2 and ch.4) 
of X and Y, whereby X and Y are the excess degree at the end of a link. The division by σq

2 (variance of q) 
serves to normalize the assortativity in the range [-1,1]. The rationale for basing the degree assortativity 
on the excess degree (= di - 1) of node i rather than on the degree of node i, di, is that the tendency for two 
nodes i and j to connect is determined from the moment that these nodes i and j are not yet connected, i.e. 
have degree di - 1 and dj - 1. We also refer to Van Mieghem [50] for a further description of the linear 
correlation coefficient. 

Assortativity has, since its inception in 2002, been studied extensively, notably by Newman [33] [34], 
D’Agostino et al. [1], Chang et al. [6], Estrada [14], Holme et al. [18], König et al. [20], Leung et al. 
[21], Litvak et al. [25], Liu et al. [27], Manka-Krason and Kulakowski [29], Nguyen [35], Piraveenan et 
al. [38 - 44], Van Mieghem et al. [48 - 49], Wang et al. [52], Winterbach et al. [55], Xia et al. [56], Xu et 
al. [57], Xulvi-Brunet et al. [58], J. Zhou et al. [60] and D. Zhou et al. [61]. 

The paper is organized as follows. After a brief introduction on graph analysis in section 2, section 3 
presents a literature survey. Section 4 lays the theoretical foundation for the concept of assortativity, 
including various examples. Although the foundation considers directed networks (networks with directed 
links), the examples in this section comprise undirected networks only. Section 5 applies assortativity to 
networks with non-weighted, directed links. This was studied by, among others, Foster et al. [16] and 
Piraveenan et al. [41]. Assortativity for weighted networks is, thus far, not sufficiently explored. Section 6 
studies the relation between assortativity and graph spectra. Here we refer to the work by Van Mieghem 
et al. [48][49]. Section 7 studies methods for influencing the network’s assortativity, such as degree-
preserving rewiring. A network’s assortativity may be modified for a specific reason, such as increasing 
the network’s robustness (e.g. resilience against link removal) or to mitigate the effect of virus spread 
through the network. Section 8 looks into the relation between assortativity and line graphs. This relation 
was studied by, among others, Liu et al. [27] and Manka-Krason and Kulakowski [29]. Section 9 studies 
the relation between assortativity and complementary graphs, studied by Wang et al. [52]. In section 10, 
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we study the concept of local assortativity. We refer to the work of Piraveenan et al. [39]. Section 11 
contains conclusions and provides directions for future work. 

2. Graph analysis 
Extensive description of graph analysis can be found in Van Mieghem [50], part III, and in Van Mieghem 
[51]. We represent a network as a graph G(N,L), with node set N of N=|N| nodes and with link set L of 
L = |L| links2. The graph may be represented through its adjacency matrix A of size N x N, with elements 

aij = 1, when a link exists between node i and node j 

 = 0, when no link exists between node i and node j 

We assume that no self-loops exist (hence aii=0) and no overlapping links, i.e. there cannot be more than 
one link between i and j. Such a graph is known as a simple graph. For undirected graphs, links have no 
direction. For undirected graphs A is symmetrical, i.e. aij=aji and A=AT. For directed graphs, where links 
have a direction, we have aij ≠ aji, for i≠j. E.g. when a link exists from node i to node j, but not in the other 
direction, then aij=1 and aji=0. Graphs may comprise weighted links, in which case a link has a weight 
associated with it. Usually, this weight wij is expressed by a non-negative real number3. The 
corresponding weighted adjacency matrix W contains the weights wij instead of aij. 

We study assortativity in graphs of various classes, whereby the class constitutes a description of the 
topology of the network. The degree sequence of a network alone cannot be considered as a 
comprehensive characterization of that network, which is one of the reasons for Newman to introduce the 
concept of assortativity. Well-known network models (classes) include: 

- Erdős-Rényi (ER) random graph [12][13]. A graph of the class ER comprises a set of N nodes. 
Nodes in the network are connected by a link with probability p. The presence of a link between a 
node pair is stochastically independent of the presence of a link between any other node pair. The 
ER network has binomial degree (D) distribution: 
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For large N and )1( −= Npλ  is independent of N, the degree distribution Eq. (3) evolves into a 
Poisson distribution (Van Mieghem [50], ch. 2): 
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- Barabási-Albert (BA) random graph [2]. A graph of the class BA is a growing network model. 
The network is built from a starting graph, normally a complete graph with N0 nodes, to which 
iteratively a node is added. Each newly added node is connected to m existing, randomly selected 
nodes. The probability of attachment to a randomly selected node is proportional to the degree 
probability of that existing node, which explains the term preferential attachment. 

For large N, a BA graph has power law (scale-free) degree distribution: 

                                                
2 Literature also uses the terminology vertex to refer to a node and edge to refer to a link; the notation G(V,E) is 
used, were V is the set of vertices and E is the set of edges. 
3 When the graph represents an electrical circuit comprising resistive components, capacitive components and 
inductive components, then wij may be a complex variable. 
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A scale-free graph generalizes Eq. (5) to a power-law degree distribution: 

γ−== ckkD ]Pr[  (6) 

whereby γ > 1, although, for most real-world networks, 1.2 ≤ γ ≤ 3.5 and where c is a 

normalization factor so that Pr[D = k]
k=1

N−1

∑ =1 . 

- Watts-Strogatz (WS) small world graph [54]. A WS graph is an evolving graph. The graph is 
constructed from a regular graph, such as (typically) a ring lattice. An iterative rewiring process is 
applied to rewire each link, with probability pr, to a randomly selected other node. The term 
”small world” is used since networks of this class exhibit shortest paths with small average hop 
count E[H]. At the same time, the clustering coefficient, C, of the graph remains high. (C is a 
measure of the number of triangles in the graph relative to the number of triplets in the graph 
[50].) When pr increases towards 1, the resulting network will be close to an ER network. 

The degree of the WS graph is centered around the degree of the non-rewired nodes. When we 
consider a WS graph constructed from a ring lattice without rewiring (pr=0), the degree of each 
node is identical, as each node is connected to the same number of neighbours. When the rewiring 
probability pr increases or when the number of rewiring cycles c increases, the graph becomes 
more random and the degree distribution evolves towards a binomial distribution (or Poisson 
distribution, depending on N and L). For pr=0, we have the average hop count of the shortest path 
as a function of N, E[HN] = O(N). When pr becomes sufficiently large, the average hopcount of 
the shortest path becomes E[HN] = O(log N). 

- Callaway growing network [3]. The Callaway graph class is, just like the BA graph class, a 
growing network model. The graph is built from an initial complete graph with small N0, e.g. 5. 
Then nodes are added iteratively. For every added node, a link is added between two nodes. The 
two nodes are selected randomly from the set of existing nodes and the newly added node. As 
such, a Callaway network model may be considered a variant of the BA network model. The 
degree distribution has an exponential form. 

- Lattice (e.g. ring lattice, spherical lattice, square lattice, cubic lattice). The lattice is a regular 
structure, whereby each node is connected to a defined number of neighbours. However, for a 
square lattice, for example, nodes at the edge of the network structure have smaller degree. 

- Bi-partite network (generalized to k-partite network). The bi-partite network comprises one 
subnetwork N with n nodes and another subnetwork M with m nodes. Links exist between nodes 
in N and nodes in M, but not between nodes in N or between nodes in M. 

- A star network is a special case of a (N,M) bi-partite network; it has N=1. 

- A tree network is any connected graph with L = N-1 links. 

Complex networks of a particular class have certain qualifying characteristics, one of them being the 
degree distribution. Network rewiring modifies the topology of the network in order to change certain 
characteristic of the network. The rewiring may have the effect that the network is transformed from one 
graph class to another graph class. When we consider, for example, an observed network that is classified 
as a BA graph, and we apply random rewiring, the network will gradually become a network possessing 
the characteristics of an ER random network. Rewiring is described in more detail in section 7. 
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The degree D of a randomly selected node in the graph represents the number of direct neighbours. The 
degree vector is represented by [d1, d2…dN]T. The degree probability density function, PDF, is defined as 
fD(k) = Pr[D=k]. The joint degree probability density function, being the probability that two randomly 
selected nodes have two specific degree values, is defined as fD1D2(k,l) = Pr[D1=k,D2=l]. When the random 
selection of the first node is stochastically independent of the random selection of the second node, then 
fD1D2(k,l) = fD(k) · fD(l). Assortativity relates to the joint degree distribution for links in the network. When 
randomly selecting a link l in a graph, the degree of the node on one end of the link, dl-, is not 
stochastically independent of the degree of the node on the other end of the link, dl+. Assortativity is a 
measure of the extent to which Dl- and Dl+ are correlated for a network. 

The study of assortativity often comprises network transformation. The assortativity of a network may be 
increased or decreased by a network modification such as link addition, link removal, link rewiring and 
degree-preserving rewiring (DPR). DPR is described in section 7. 

3. Literature survey 
When we consider an ER graph, the existence of a link between two nodes has no relation to the degree of 
these respective nodes. When considering a BA graph, we observe that the preferential attachment of a 
link between a newly added node and an existing node is a function of the degree of that existing node. 
For a BA graph with sufficiently large network size, we observe that, on average, for each node i, the 
distribution of the degree of the nodes connected to node i, is independent of the degree of node i itself; 
i.e. no degree correlation exists. 

Newman observed that in many real-world networks the degree of the nodes connected to a randomly 
selected node i has a relation with the degree of that node i itself. In other words Pr[Dj=k|j~i] ≠ Pr[D=k], 
j~i indicating the existence of a link between i and j and Dj being the degree of a randomly selected 
neighbor j. Two networks with identical degree vector may have different assortativity. Some empirically 
found assortativity values, as well as simulation results, are shown in Table 1; [32] and [33] provide 
further assortativity values of actual networks. 

Table 1: Assortativity for value for different networks 

Network assortativity 

Physics coauthorship [4] 0.363 

Mathematics coauthorship [17] 0.120 

Company directors (see [37] for reference) 0.276 

Connections between autonomous systems on the Internet [7] -0.189 

World-Wide Web (see [33] for reference) -0.067 

Undirected hyperlinks between Web pages in a single domain [2] -0.065 

Neural network (see [37] for reference) -0.163 

Experimental Erdős-Rényi (ER) graph (for sufficiently large network size) ~0 

Experimental Barabási-Albert (BA) graph (for sufficiently large network size) ~0 

Physics authors and mathematics authors, albeit the latter to a lesser extent, tend to publish articles with 
others that have equally high or equally low number of publications, i.e. forming an assortative network. 
For connections on the Internet, we notice that highly connected Autonomous Systems (AS) are 
connected to other AS’s that themselves have few(er) connections, i.e. forming a disassortative network. 
The same observation applies for undirected hyperlinks between Web pages. For experimental (i.e. 
generated) ER and BA networks, the assortativity is approximately 0. 
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Assortativity has a direct relation with the robustness of the network, in terms of connectivity of the 
network. A failure of, or targeted attack on a high degree node in an assortative network would leave 
other high degree nodes connected to one another. This minimizes the chance of the network as a whole 
to become disconnected. In a disassortative network, high degree nodes are less connected to one another. 
Many paths between nodes in the network are dependent on high degree node(s). Failure of a high degree 
node in a disassortative network would hence have more impact on the connectedness of the network. 

Newman [33] provides a general exploration of assortativity, applied on various kinds of network and 
using various node characteristics based on which assortative mixing may occur. 

Extensive exploration of the concept of assortativity has been done by Piraveenan [42]. Piraveenan 
studies, among others, the existence of networks that are perfectly assortative or perfectly disassortative. 
In a perfectly assortative network, all nodes are connected to other node(s) of the same type, e.g. same 
degree. One example is a complete network, where all nodes are connected to all other nodes and all 
nodes have degree di=N-1. For such network, degree assortativity is maximal, ρD = 1. If the network 
comprises nodes with different degree, then perfect degree assortativity is still possible. Perfect degree 
assortativity would be reached when the network is fragmented in sub-networks, whereby each sub-
network itself constitutes a complete network. Perfect disassortativity is more difficult to achieve. One 
class of network that is determined [49] to be perfectly disassortative is the complete bipartite graph, Km,n, 
with m≠n. A star graph is an example of complete bipartite graph, Km,1. Piraveenen et al. [39] associate 
assortativity also with information content of a network. Networks which are degree assortative or degree 
disassortative have higher information content than networks which are degree non-assortative. When 
considering a random node i of a degree assortative or degree disassortative network, we know what 
degree(s) to expect for the nodes connected to node i. When considering a random node i of a degree non-
assortative network, we have no expectation of the degree(s) of the nodes connected to node i. This 
relation between assortativity and network information was also observed by Sole and Valverde [45]. The 
information content related to the link set of a graph is defined in [40] as follows: 

∑∑
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where 

j, k ∈  N 

qj, qk probability of excess degree j, k (the ‘excess degree’ is the number of links leaving the node other 
than the link on which we arrived, i.e. for node i, the excess degree is di - 1) 

ej,k probability that a randomly selected link l connects a node with excess degree j and a node with 
excess degree k; hence }]1{}1Pr[{, kDjDe llkj =−∩=−= +−  

For scale free networks, we replace in Eq. (7) N by Np, Np being the cut-off point for scale-freeness of the 
degree distribution. It follows from Eq. (7) that the information content of a network is influenced by the 
ratio between the joint degree probability ej,k and the product of the respective probabilities qj and qk. By 
changing the topology of a network through e.g. rewiring, we can increase or decrease the information 
content of that network. Piraveenan et al. [40] have observed a direct relation between the information 
content of a network and that network’s (dis)assortativity. 

Assortativity does not reveal information about individual nodes. A network with a given assortativity 
comprises nodes that contribute to this assortativity. Not all nodes contribute equally to the network’s 
assortativity. A network that is non-assortative overall may comprise nodes that are themselves highly 
assortative, e.g. comprise high-degree nodes that connect to other high degree nodes. Networks with equal 
assortativity may have different distribution of the assortativity contribution per node. The assortativity 
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contribution is referred to as local assortativity [42] or node assortativity. Local assortativity is further 
explored in section 10. 

Assortativity for networks with weighted links is studied by Chang et al. [6]. The rationale is that in many 
networks, the link between two nodes may be weak or strong, i.e. may have a weight, reflecting aspects 
such as data transfer capability, data transfer cost or length. OSPF based IP networks is one practical 
example where links have a defined weight, namely the data transfer capacity between two connected 
OSPF routers4. The degree of a node is no longer a discrete quantity, but rather a set of real variables. 
Chang et al. [6] propose that the Strength of a node is the sum of the weights of the links connected to 
that node. Hence, assortativity for these networks relates to the tendency of nodes with the same or 
opposing strength to be connected to one another. This definition of node strength is also applied by 
Wang et al. [63], which studies, among others, the distribution of the link weight for a single node. 
Assortativity for networks with weighted links5 is also studied by Leung and Chau [21]; the weighted 
assortativity, ρw, is proposed in [21]. When considering a network with weighted links, we can still 
calculate the (non-weighted) assortativity by ignoring the weight of the links. It is then observed (e.g. in 
[21]) that ρw and ρD can differ substantially for a network. One may, however, question the validity of 
ignoring the link weights in a weighted network. A link with small weight has in that case the same 
connection value as a link with high weight, while these links may contribute significantly differently 
towards the network’s robustness and other network characteristics. 

König et al. [20] present a network transformation model whereby a stationary, non-assortative or 
disassortative network migrates towards an assortative network. The network transformation includes a 
combination of link addition and link removal (decay of existing links). The motivation of this model is 
that nodes in the network, e.g. a human interaction network or a technological network, are constrained in 
the number of links that it can maintain. This model is distinctively different from the network growth 
models from e.g. Catanzaro et al. [4] and Piraveenan et al. [44], for generating a network with a given 
assortativity. For these models, a network grows through the addition of nodes and links, according to 
some rule. These models do not define a constraint in the number of links incident to a node. Neither do 
they consider the removal of links. 

Litvak and Van der Hofstad [25] observe that networks which are inherently degree disassortative, such 
as the Internet, show a decreasing degree disassortativity as the network size N increases, i.e. ρD moves 
towards 0. It is shown that the assortativity of the network is influenced by the distribution of the degrees 
of the nodes in the network. A broad distribution of degrees (range of degree values) has a decreasing 
effect on the assortativity value. For large networks, the degree distribution will on average be broader 
than for small networks. To mitigate this apparent shortcoming of Newman’s assortativity definition, 
Litvak and Van der Hofstad [25] propose the rank correlation as an alternative method for calculating 
degree-degree correlation. The rank correlation is defined as follows: 
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Whereby X and Y are random variables, representing the degree at either end of a randomly selected link 
in the network. The variables ri

X and ri
Y are the rank of an observation Xi and Yi respectively, for the case 

that the sample values (Xi)|i=1…n and (Yi) |i=1…n are ranked in descending order. The rank correlation is 
based on the classical Spearman’s rho6 measure [46] (as opposed to assortativity, which is based on the 

                                                
4 This data transfer capability is not only dependent on the physical characteristics of the Ethernet cable, but also on 
the capability of the IP interfaces on the OSPF router. 
5 Newman’s original definition of assortativity does not consider weighted links. 
6 We write ‘rho’ instead of ρ, to prevent confusion with assortativity. 
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Pearson correlation coefficient (Van Mieghem [50], ch. 2). Litvak and Van der Hofstad [25] show that the 
ranking definition allows for uncovering disassortativity in networks even for large N and continue to 
propose that the rank correlation should, along with assortativity, be a standard tool for complex network 
analysis, specifically networks that are by nature scale-free in terms of degree distribution. 

Note For Newman’s definition of assortativity Eq. (1), Eq. (2), based on the Pearson correlation 
coefficient, graph theoretic notation exists Eq. (14), Eq. (15), Van Mieghem [49]. For the 
rank correlation, based on the Spearman rho measure, such graph theoretic notation does not 
exist. When performing graph analysis, the theoretic notation of the assortativity is far easier 
to work with than the original definition. This makes the assortativity, for practical purposes, 
a more attractive metric than the rank correlation. 

Holme and Zhao [18] view assortativity from a different perspective. Holme and Zhao [18] define a null 
model for a network, formed by the ensemble G(G), whereby each element of G constitutes a network G' 
with the same degree sequence as G. G comprises all G' that may be formed from G, with the same 
degree sequence. All elements from G are placed in two-dimensional space formed by the assortativity 
and the clustering coefficient [50][64]: 

triplet

triangle

n
n

C 3=  (9) 

where ntriangle is the number of triangles (= closed triplet, also denoted as▲G) and ntriplet is the number of 
connected triplets (subgraph consisting of 3 nodes, connected through two or three links). Traversing the 
entire G, i.e. generating all elements G' of G, is non-trivial. Several techniques exist for transforming a 
network for increasing or decreasing assortativity. Winterbach et al. [55] study a greedy degree-
preserving rewiring approach. Van Mieghem et al. [49] and Noldus and Van Mieghem [36] apply a 
targeted approach for selecting links to be rewired in order to affect the assortativity, without affecting the 
degree sequence. 

Placing the elements from G into said two-dimensional space formed by ρD (horizontal axis) and C 
(vertical axis) provides the null model. When analyzing an observed network G, whereby assortativity 
and clustering coefficient of that network are calculated, the network can be pegged into its corresponding 
position in the assortativity-clustering space. We can then determine how far the assortativity of the 
network G may be increased, or decreased, and what clustering coefficient may be attained. 

A different two-dimensional metric space may be devised, such as assortativity versus average shortest 
path or assortativity versus effective graph resistance. Each such two-dimensional metric space, serving 
as null model for the observed network, may be used to interpret the potential assortativity range of the 
network. Put differently, it visualizes the extent to which an increase or decrease in assortativity of the 
network may affect the other metric. 

The concept of a null-model in a graph is applied also by Maslov and Sneppen [70]. Their null-model 
Gnull of a graph G is formed by a node set N, whereby each node in N has the same degree as the 
corresponding node in G. Hence, the degree of each node in Gnull is identical to the degree of the 
corresponding node in G. Links, however, are randomly distributed. Gnull may be generated by random 
rewiring of all the links. Gnull will have a probability Pnull[Di=k,Dj=l], whereby i and j are the nodes at the 
end of a randomly selected link and k and l their respective degrees. For an observed network, the joint-
degree probability of a randomly selected link is defined as P[Di=k,Dj=l]. Visualization (colour plotting) 
of the ratio P[Di=k,Dj=l] / Pnull[Di=k,Dj=l] shows (dis)assortative, or non-assortative, trend for nodes of 
varying degree. A further interesting observation by Maslov and Sneppen [70] is that when considering 
all nodes j that are neighbour of a specific node i, certain kinds of networks exhibit a power-law ratio 
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between E[Dj] and Di for a node i with Di=k. Specifically, nodes i with high Di have low E[Dj]. This is 
observed for the Internet and for protein networks. This characteristic of a network will, on average, curb 
the spread of deleterious information / data. 

Estrada [14] introduces a method for determining whether a network is assortative, by inspecting the 
following structural characteristics of the network: (a) clustering coefficient (also known as transitivity), 
(b) intermodular connectivity and (c) branching. Assortativity is rewritten in [14] into an expression 
containing, among others, the clustering coefficient, the intermodular connectivity and the branching. By 
inspecting the relation between these three network metrics, it can be determined whether the network is 
assortative, disassortative or non-assortative. It is shown that both clustering coefficient and intermodular 
connectivity have a positive effect on assortativity, while branching has a negative effect on assortativity. 
Estrada’s result [14] corresponds to the fact that a correlation is observed, empirically, between clustering 
coefficient and assortativity, as well as between modularity and assortativity. Networks with high 
modularity and high clustering coefficient are normally assortative. This is also observed by Youssef et 
al. [59]. 

Whereas assortativity is presented as a single value in the range [-1,1], the assortativity of a network is, in 
a way, a representation of a characteristic that may differ for each node in the graph. Each node i in the 
graph has a certain connectivity value di, i.e. the degree of the node. Each neighbour j of node i itself also 
has a connectivity dj. For each node i, the average degree of its neighbours can be determined. In this 
manner, we can calculate the average of dj, E[Dj] as a function of di. This approach is studied by Pastor-
Satorras et al. [37]. For assortative networks, E[Dj] will increase for increasing di, whilst for disassortative 
networks, E[Dj] will decrease for increasing di. For non-assortative networks, E[Dj] will remain constant 
for increasing or decreasing di. 

Li et al. [23] propose a network metric that is related to assortativity, namely Likelihood. Likelihood7, 
which we denote as Lh, considers the degree of adjacent nodes. The likelihood of a graph G(N,L) is 
defined as follows: 

∑
∈

=
Lji

jiddGLh
),(

)(  (10) 

The likelihood corresponds to the second Zagreb index, as defined by Gutman and Trinajstic [68]. To 
compare graphs of different class and size, the likelihood definition as given in Eq. (10) is normalized 
within the range of Lh(G)min and Lh(G)max, yielding the normalized likelihood Lhnorm(G). 

minmax

min

)()(
)()()(
GLhGLh
GLhGLhGLhnorm −

−
=  (11) 

The extreme values Lh(G)min and Lh(G)max relate to a graph of particular size N and degree set. The 
normalized likelihood has a value in the range [0,1]. Calculating Lhnorm(G) requires that Lh(G)min and 
Lh(G)max are calculated. Li et al. [23] show how Lh(G)min and Lh(G)max can be calculated. For a change in 
network topology, such as degree-preserving rewiring, the absolute change in Lhnorm(G) can easily be 
recalculated, as the product didj changes only for the nodes involved in the rewiring, and hence Lh(G) can 
be recalculated. Since Lh(G)max and Lh(G)min are constant for constant degree sequence, the Lhnorm(G) for 
the rewired graph follows from the Lh(G) from the rewired graph. 

Li et al. [23] show a relation between likelihood and assortativity. However, no further experiments are 
conducted to study how the likelihood and assortativity correlate for a network of particular class and 

                                                
7 Li et al. use L to denote likelihood, but that will confuse with number of links in a graph, so we use Lh instead. 
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degree sequence. By means of network rewiring, we can vary the assortativity of the network between its 
minimum and maximum value. 

4. Degree assortativity of non-weighted, undirected graphs 
Networks may be classified through their degree distribution. When randomly selecting a node of a 
network, the probability of that node having degree k is defined by the degree probability density function 
(PDF), FD(k) = Pr[D=k] of that network. Figure 1 shows a number of examples of degree PDF for 
different classes of graphs. 

 
(a) Erdős-Rényi random graph; N=10 000, p=0.1 
Binomial degree distribution 

 
(b) Scale-free graph; N=10 000, N0=4, 2 links added for 
each new node 
Power-law degree distribution 

Figure 1: Examples of degree probability density function 

When we consider a single node in a graph, the probability of that node having a particular degree follows 
from the degree distribution of that graph. A particular node i with degree di = k is connected to k other 
nodes. Each one of these k other nodes has its own degree, dj|i~j = l. When taking the average degree of the 

nodes incident to node i, 
k

d
d k

jij

j

∑
=

~|

, we can define the relation between di and jd . Considering that 

there may be multiple nodes with a specific degree k, we average this relation for all nodes with a specific 
k. Visualizing this relation reveals the degree correlation in a graph. Specifically, it reveals that for certain 
graph classes, the average degree of nodes adjacent to i is dependent or not dependent on the degree of i. 
This is shown in Figure 2 for an ER graph with N=10 000 and p=0.1. 
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Figure 2: Degree-degree correlation for ER graph, N=10 000, p=0.1 and E[D] = (N-1) · p ≈ 1000 

In this example, the average degree of nodes j adjacent to node i is stable around 1000, for different k. We 
may consider (at least) the following degree distributions for a graph: 

(1) degree distribution, Pr[D=k], defining the probability for a randomly selected node to have degree 
k; 

(2) combined-degree distribution, Pr[D1=j,D2=k] = Pr[D1=j|D2=k] · Pr[D2=k] = 
Pr[D2=k|D1=j] · Pr[D1=j], defining the probability for a randomly selected pair of nodes that do 
not have to be connected to each other, to have degrees j and k respectively; presuming that the 
selection of node 2 is stochastically independent of the selection of node 1, the combined degree 
distribution can be written as Pr[D1=j,D2=k] = Pr[D1=j] · Pr[D2=k]. 

(3) joint degree distribution, Pr[Dl-=j,Dl+=k], defining the probability for a randomly selected link l to 
have degree j on one end of the link (denoted l-) and to have degree k on the other end of the link 
(denoted l+). This relation represents assortativity (degree correlation). 

We observe the following. 

- non-assortative network. The distribution of the degree of the nodes j connected to a randomly 
selected node i follows the same distribution as the degree distribution of the network as a whole; 

- assortative network. For a randomly selected node i, there will be a concentration of high(er) 
joint-degree probability for connected nodes j having the same or similar degree as i; 

- disassortative network. For a randomly selected node i, there will be a concentration of high(er)  
joint-degree probability for connected nodes j having a degree different from the degree of i. 

Whereas the degree distribution of a network is considered a first order metric for characterizing the 
network, assortativity is considered as a second order metric. The relevance of assortativity is strongly 
related to the assortativity range, ρmax – ρmin, for that network, whilst keeping the degree distribution of 
that network unaffected. A network may be transformed, through link rewiring, whereby the degree 
distribution is not changed (degree-preserving rewiring, DPR). With DPR, the degree of the involved 
nodes is not affected. When applying DPR on a dense network, the assortativity of that network will vary 
between ρmin – ρmax, whereby ρmax and ρmax will be specific for this network, with this specific degree 
distribution. The range of ρD for the sparse network is found to be larger than the range of ρD for the dense 
network. A large range of ρD implies greater relevance of assortativity as second order metric for the 
network, compared to a small range of ρD. 
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We will now study the assortativity of various classes of networks. The four classes of graphs that are 
considered are: (a) Erdős-Rényi random graph, (b) Barabási-Albert scale-free graph random graph, (c) 
Watts-Strogatz small world random graph and (d) Callaway random growth model. 

4.1 Erdős-Rényi Random graph 

We expect a degree assortativity ρD ≈ 0 for the Erdős-Rényi (ER) class of random graph. The reason is 
that the presence of a link between two nodes is independent of the presence of links between these nodes 
and other nodes. There is no dependency between the degree of a node and the probability that there is a 
link between that node and another node of particular degree. Table 2 provides the assortativity for an ER 
class of graph with varying p (link probability). We vary p from the threshold link density8 pc to 0.5. For 
each ER graph Gp(N), the assortativity has been calculated, using Eq. (15), for 10000 instances of that 
Gp(N). 
Table 2: Assortativity for random graph, N=1000, varying p 

p 
Assortativity 

rmin rmax raverage 

0.0009210 (=pc) -0.163 0.181 -0.005 

0.009210 (=10pc) -0.052 0.047 -0.002 

0.09210 (=100pc) -0.018 0.015 -0.002 

0.1 -0.018 0.013 -0.002 

0.2 -0.013 0.008 -0.002 

0.5 -0.007 0.003 -0.002 

Figure 3 shows the probability density function (including curve fitting), distributed over 250 bins, of the 
assortativity for some of the graph models. 

  
(a) N=1000, p=0.1 (b) N=1000, p=0.2 

Figure 3: Assortativity (rho) probability density function for ER random graph 

                                                
8 pc ≈ ln(N) / N (asymptotically), for large N, is the critical link probability for ER graph, above which the graph will 
almost surely be connected (Erdős & Rényi [13] [14]; [50]). 
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The figure shows that the assortativity for the ER network is distributed around 0. Hence E[ρD] = 0. For a 
higher value of p, the ρD is distributed over a smaller range. 

4.2 Barabási-Albert scale-free graph random graph 

We consider the growth model as defined by Barabási & Albert (BA) [2]. For the BA graph, a network is 
constructed from a small (e.g. N0=3) complete network. The nodes in the starting graph, as well as the 
nodes that were added in the earlier part of the growth process have a higher expected degree. During the 
growth process, these nodes have a higher attraction for the new nodes to be added, due to the higher 
degree of these nodes. The degree of these nodes, therefore, tends to increase more than the degree of the 
nodes that were added later in the growth process. Put differently, when one node has, through the 
random node selection of the growth model, a higher degree than the other nodes in the network, that 
node tends to continue to attract more new connections than the other nodes. 

An intuitive thought [32] might be that BA graphs would show disassortativity. The reason is that every 
time a new link is added, the link is placed between the newly added node n, which has degree 0 ≤ dn < m 
(m being the number of links that are added for each newly added node) just prior to the attachment, 
which is by definition a low degree, and the existing node, which is likely a node with relatively high 
degree, resulting from the preferential attachment. Placing a link between a low-degree node and a high-
degree node is expected to make the graph as a whole more disassortative. 

Table 3 provides the assortativity range for various BA graphs. The network is built up to N = 1000, 
starting from a complete graph with 3 ≤ N0 ≤ 10 and 2 ≤ m ≤ 5. The assortativity has been calculated for 
10000 instances of each graph definition. 

Table 3: Assortativity for BA graph, N=1000 

Graph definition Assortativity 

N0 m rmin rmax raverage 

3 2 -0.147 -0.038 -0.092 

4 2 -0.158 -0.038 -0.089 

5 2 -0.135 -0.038 -0.084 

10 2 -0.116 -0.006 -0.064 

10 3 -0.093 -0.018 -0.055 

10 5 -0.078 -0.008 -0.046 

Figure 4 shows the probability density function (including curve fitting), distributed over 250 bins, of the 
assortativity for the different graphs models. 
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(a) N=1000, N0=3, m=2 (b) N=1000, N0=5, m=2 

Figure 4: Assortativity (rho) probability density function for BA graphs 

Figure 4 and Table 3 show that the simulated BA network overall is slightly disassortative, ρD distributed 
around -0.10 and -0.08 respectively. Experiments show that for large N, ρD for BA graph will be ≈0. It is 
also mathematically shown by Nikoloski et al. [71] that the BA graph generation process, asymptotically 
for large N, does not generate degree correlation.4.3 Watts-Strogatz small world random graph 

The Watts & Strogatz [54] small-word graph is obtained by applying n steps of random rewiring on all 
links of a ring-lattice. However, the principle of constructing a small-world graph may also be applied to 
other regular graph classes, such as square lattice, as for example explored by Makowiec [28], cubic 
lattice or spherical lattice. A WS graph obtained from a square lattice may not mimic a small-world (so 
we might not want to call it a ‘WS graph’). A WS graph may, alternatively, be generated through random 
link addition, as opposed to random link rewiring. This is proposed by Dorogovtsev [10]. 

When constructing a WS graph from a ring lattice, the following parameters are used: 

N Size of the lattice 

d Degree of each node; it shall be an even value; each node is connected to (d/2) adjacent 
neighbours on either side 

n Number of rewiring cycles; in each rewiring cycle, all links in the graph are visited and are 
randomly rewired with probability pr 

pr The probability for a link to be rewired, if not already rewired, during one rewiring cycle 

Figure 5 shows a number of ring lattices that are rewired into a WS graph model. All lattices have N=100. 

    
d=4; n=1; pr=0.1 d=4; n=2; pr=0.1 d=4; n=5; pr=0.1 d=4; n=5; pr=0.25 

Figure 5: Rewired ring lattices (WS graph model) 

Figure 6 shows the assortativity (including curve fitting) distribution for two of the WS graph models 
shown in Figure 5, with a difference that N is set to 1000. The assortativity distribution is obtained by 
generating each graph model 10000 times with the same characteristic parameters (N, d, n, pr). For 
reference, the assortativity for the non-rewired ring lattice is 1.0, since all nodes have equal degree. 
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(a) d=4; n=1; pr=0.1 (b) d=4; n=5; pr=0.25 

Figure 6: Assortativity (rho) probability density function for rewired ring lattices (WS graph model) 

Figure 6 illustrates that the iterative rewiring process makes the network slightly disassortative. This is to 
be expected, since each rewiring step ‘breaks’ the chain of nodes that are equally connected to a 
designated number of their respective neighbouring nodes. The rewiring steps obviously break that. With 
increasing number of rewiring steps, the network becomes random and so ρD approaches 0. 

We will now explore the assortativity of the WS graph model when applying the rewiring on a square 
lattice. All nodes that are not corner node or edge node have d=4. It is conceivable that a square lattice 
may also be devised with larger d, e.g. d=8, whereby also diagonal connections are included. Figure 7 
shows WS graph models obtained from this square lattice (N=64, d=4), for constant pr (pr=0.1) and 
various n. 

  
(a) n=1; Average shortest path = 2.01 (b) n=5; Average shortest path = 1.56 

Figure 7: WS graph models from square lattice 

Figure 8 shows assortativity distribution (including curve fitting), distributed over 250 bins, associated 
with WS graph models as shown in Figure 7, with N=1024. The test is repeated 10000 times. 
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(a) n=1 (b) n=10 

Figure 8: Assortativity (rho) distribution for WS graph models from square lattice 

The assortativity of the square lattice is smaller than 1.0, since not all nodes have the same degree (nodes 
at the graph boundary have lower degree). For increasing N, the assortativity of the non-rewired square 
lattice approaches 1.0, since the effect of the lower degree of nodes at the graph boundary decreases. As 
more rewiring cycles are performed, the assortativity decreases, as expected. The rewiring introduces 
randomness, so assortativity will (eventually) approach 0. 

A further variant of the traditional WS model is the following. Iteratively, an existing link from node 
],1[ Ni∈ is rewired with probability pr or a new link is added to node i with probability pr. When an 

existing link is rewired or a new link is added, instead of selecting the target node randomly over all other 
nodes, a preferential rewiring / preferential attachment is applied. The rewiring / attachment is done by 
randomly selecting a node and then applying a further probability proportional to the degree of that node. 
The rationale of this model is that the regular lattice represents an ‘imposed network structure’, such as a 
(created) closed community. Within the community structure, starting off as a regular structure, 
preferential attachment starts to occur. With an increasing number of rewirings or link additions, the 
graph is expected to approach the Barabási-Albert model, with power law degree distribution. 

4.4 Callaway random growth model 

The Callaway model [3] forms part of the class of ‘growth models’. For every newly added node, a link is 
added with probability δ, between two randomly selected nodes (selected uniformly from all nodes, 
including the newly added node), provided that no link exists yet between the two selected nodes. The 
Callaway model differs from the ER model in that the nodes that are added at a later moment have a 
smaller chance of having been selected once or multiple times for creating a link from that node, to 
another node. So, these nodes will, on average, have a lower degree. The Callaway growth model also 
differs from the BA growth model, since for the BA growth model, new links are always created between 
the newly added node and an existing node. The Callaway growth model could, however, create a 
network with isolated nodes. A further difference between the Callaway growth model and the BA growth 
model is that for the Callaway model, the degree of nodes does not influence their likelihood of attracting 
more links. Hence, there is no preference in the attachment. The rationale of the Callaway growth model, 
when comparing with the Erdős-Rényi model, is that the degree of a node becomes a function of the age 
of that node. 

Callaway et al. [3] observe that their network growth model exhibits a distinctive degree correlation, as a 
function of the degree of a node. It is shown in [3] that a positive correlation coefficient exists, for nodes 
to connect with other nodes of similar degree. This differs clearly from the ER random graph, whereby 
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degree correlation is, on average 0. Positive degree correlation is in Callaway graphs prevalent especially 
for higher degree nodes, rather than for lower degree nodes. High degree nodes tend to connect to other 
high degree nodes. For lower degree nodes, the degree of connected nodes is more evenly distributed 
between low(er) degree nodes and high(er) degree nodes. 

Callaway et al. [3] define the following formula for degree correlation: 
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Clearly, Eq. (12) for ρ is recursive; ρ will therefore have to be calculated during the growth process of the 
graph. According to Eq. (12), the value of δ ranges between 0.0 and 1.0. Experiment and calculation 
shows, see Figure 9, that ρ will range between 0.0 and 0.4. 

 
Figure 9: Degree correlation, ρ, as a function of link density, δ (source: [3]) 

Newman [32] has conveniently transformed Eq. (12) into: 

)21( δ
δ

ρ
+

=  (13) 

4.5 Assortativity of specific classes of graph 

In the present section, we compute the assortativity of selected graph classes. For this purpose, we make 
use of the reformulation of assortativity by Van Mieghem et al. [49]: 
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where Nk = uTAku equals the total number of walks with k hops. Thus N0=N, N1=2L, N2=∑(di)2=dTd and 
N3=dTAd=uTA3u (Van Mieghem [50]). 

Eq. (14) is further transformed into (Van Mieghem et al. [49]): 

∑∑

∑

==

−

−
−= N

i
i

N

i
i

ji ji
D

d
L

d

dd
G

1

22

1

3

~
2

)(
2
1

)(
1)(ρ  (15) 

where di represents the degree of node i. Eq. (15) for assortativity constitutes a graph theoretic formula, 
since it expresses the assortativity in terms of the degree of the nodes in the graph. Eq. (15) can be written 
as follows: 
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Combining Eq. (16) with Eq. (10) results in: 
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We conclude from Eq. (17) that a linear relation exists between the assortativity and the likelihood of a 
graph. 

4.5.1 Path graph 

A path graph with N=2 is perfectly assortative, since all nodes have equal degree. For a path graph of 
N>2, all the nodes have di=2, except for i=1 and i=N, which have di=1. The term∑ −

ji ji dd
~

2)( in Eq. 

(15) equals 2, since the outermost links have 121 −=−dd  and 11 =−− NN dd  while all other links have

0=− ji dd . The term ∑
=

N

i

k
id

1

 in Eq. (15) for k=2 yields 4N-6, while for k=3 it yields 8N-14. Using (15) 

yields 
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ρD (G)= 2
1
−

−
N

. (18) 

The path graph with N>2 is always disassortative. For N=3, ρD = -1 and with increasing N, ρD increases 
towards 0. 

4.5.2 Star graph 

The central node in the star graph with N>2 has di=N-1, all other nodes have di=1. The star graph is a 
special case of complete bipartite graph Km,n, namely m=1 and n=N-1. The complete bipartite graph has 
ρD = -1, as will be shown in a next section. So, a star graph always has ρD = -1. 

4.5.3 Lattice 

We consider a two-dimensional lattice of size N x M, with the number of links equal to 
MNNMNMMNL −−=−+−= 2)1()1( . The nodes in the graph can be divided in the following 

groups; 

- )2)(2( −− MN  inner nodes with 4=id  

- )2(2)2(2 −+− MN = 822 −+ MN  nodes along the edge with 3=id  

- 4 corner nodes with 2=id . 

The links can be grouped as follows: 

- each corner node has 2 links, for which 1=− ji dd  

- apart from the links from the corner nodes, there are )3(2)3(2 −+− MN links residing at the 
perimeter of the lattice, for which 0=− ji dd  

- along the perimeter of the lattice, there are 822)2(2)2(2 −+=−+− MNMN links 
connecting to inner nodes, for which 1=− ji dd  

- the remaining links in the lattice connect nodes of equal degree, so 0=− ji dd . 

Figure 10 provides graphical representation for assortativity of a lattice with N=2…35 and M=2…35. 
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Figure 10: Assortativity for lattice graph, N=2…35 and M=2…35 

For a 2x2 lattice, ρD =1, since all nodes have degree 2. 

4.5.4 Complete bi-partite graph 

For a complete bi-partite graph Km,n, with n ≠m, we have perfect disassortativity, i.e. ρD = -1. The m nodes 
in set M all have degree equal to |N| and the n nodes in group N all have degree equal to |M|. Since we 
assume n ≠m, all low-degree nodes are connected to high-degree nodes and all high-degree nodes are 
connected to low-degree nodes. The ρD = -1 for the complete bi-partite graph can also be shown as 
follows. The term ∑ −

ji ji dd
~

2)( in Eq. (15) is equal to 2)( mnnm − , since there are n*m links, 

connecting nodes which have degree n and m respectively. The term ∑
=

N

i
id

1

3 is equal to

)( 2233 mnnmnmmn +=+ , since each node in set M has degree n and each node in set N has degree m. 

Likewise, the term ∑
=

N

i
id

1

2 equals )( mnnm + , while the number of links L is equal to n * m. Filling these 

terms into Eq. (15) yields ρD = -1. 

4.5.5 Tree graph 

We consider a k-ary tree as shown in Figure 11. Each node has equal number of branches, denoted k. The 
depth of the tree is denoted by D. 

 
Figure 11: Tree graph with D=2 and k=2 

For a depth D=1, we have perfect disassortativity, ρD =-1; the tree resembles a path graph with N=3. As 
the depth D increases, the tree becomes less disassortative. This is shown in Figure 12. 



Assortativity survey 

JCN2015AssortativitySurveyRogier.docx 
Printed: Tuesday, January 27, 2015 

21 

 
Figure 12: Assortativity for tree graph with k=2, k=3 and k=4 

For trees with k > 2, the rise of ρD will be less than for trees with k = 2. This is attributed to the relative 
larger number of end-branches for which kdd ji =− || . The difference in degree for the nodes connected 
by the end-branches, makes the graph more disassortative. 

5. Degree assortativity of non-weighted, directed graphs 
Degree assortativity for directed networks follows the same principle as degree assortativity for non-
directed networks. Eq. (2) can be generalized for directed networks. Newman [33] defines the degree 
assortativity for directed networks as follows: 
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where 
in , out refer to in-degree and out-degree respectively 

ejk fraction of links connecting a node with out-degree k to a node with in-degree j, 
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σin , σout standard deviation of qin
j, standard deviation of qout

k 

Newman’s assortativity Eq. (19) for directed networks considers the correlation between a node’s out-
degree and the adjacent nodes’ respective in-degree, and the correlation between a node’s in-degree and 
the adjacent nodes’ respective out-degree. It may, however, be more logical if the assortativity for 
directed networks would measure the correlation between nodes considering their respective in-degree or 
their respective out-degree. The rationale is that in-degree and out-degree represent a characteristic of a 
node and the correlation coefficient should be based on comparable characteristics. Piraveenan et al. [41] 
propose a modified definition of assortativity for directed network, taking this (intuitive) more logical 
approach. Some examples of directed networks are (Newman [32]) e-mail address books, World Wide 
Web and software dependencies.The graph creation models that are commonly used for undirected 
networks are not directly usable for directed network. The models describe the ‘adding of a link’, but do 
not describe how the direction of that link is chosen. More specifically, the processes for generating a 
graph of class ER, BA or WS do not take link direction into account. In order to be able to study directed 
networks of different class, and specifically study the assortativity of these directed networks, such 
models would be needed. Li et al. [22] describe a method for generating a graph with required 
directionality. Chen and Olvera [7] describe methods for creating directed graphs with a given in-degree 
and out-degree distribution. Also, rewiring methods need to be enhanced for considering directed links. A 
network growth model should also decide on the weight of the added link. In addition, a growth model 
should increase the weight of existing links. So, not only the network size (node set, N) and the number of 
links (link set, L) grows, but also the weights of the links in the network will change over time. Leung and 
Chau [21] propose a growth model for a network composed of weighted links. 

When analyzing directed networks through their assortativity, a multi-layered approach may be applied. 
For a directed network, the assortativity may be differentiated in three classes: 

(i) in-degree assortativity, which measures the tendency of nodes with particular in-degree to 
connect to other nodes with the same in-degree or with different in-degree; 

(ii) out-degree assortativity, which measures the tendency of nodes with particular out-degree to 
connect to other nodes with the same out-degree or with different out-degree; and 

(iii) overall assortativity, which forms an aggregation of the in-degree assortativity and the out-
degree assortativity. 

A network may be assortative for its in-degree, but disassortative for its out-degree or vice versa. 
Piraveenan et al. [41] have studied this differentiated form of assortativity. The degree distribution and 
the degree correlation for directed graphs are also studied by Myers [69] in ‘networks’ built from software 
dependencies. Myers [69] observes, indeed, that directed networks may exhibit different assortativity 
when taking the direction into account. 

6. Relation between assortativity and graph spectra 
The spectrum of a graph [51] is defined as the set of eigenvalues of a particular connectivity matrix of 
that network, together with the corresponding eigenvectors. The Laplacian matrix Q of G is defined as 
Q = Δ – A, where A is the adjacency matrix and Δ = diag(di). The following graph spectra are commonly 
used in spectral graph analysis: 

Adjacency eigenvalues The set of N eigenvalues λN ≤ λN-1 ≤ … ≤ λ1 of the adjacency matrix A. The 
highest eigenvalue of A, λ1, is known as spectral radius. The difference 
between λ1 and λ2 is known as spectral gap. 

Laplacian eigenvalues This spectrum is derived from the Laplacian matrix Q. It is formed by the set 
of N eigenvalues, 0 ≤ µN-1 ≤ … ≤ µ1 of Q. The second smallest eigenvalues of 
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Q, µN-1, is known as the algebraic connectivity (coined by Fiedler [15]). 

Graph spectra have been extensively studied and have proven to be a useful tool to evaluate essential 
properties of a network. We refer to Cvetkovic et al. [9] for background on Adjacency spectrum and to 
Mohar [30] for a survey on the Laplacian spectrum, and to Van Mieghem [51] for extensive analysis on 
the use of graph spectra for complex networks. 

The spectral radius is of particular interest for a network. We are interested to know how λ1 relates to the 
assortativity. Is there a relation between assortativity and λ1? Generally, we notice that with increasing ρD, 
there is also an increase in λ1. Hence, if we would like to have a large λ1, then one way of achieving that is 
increasing the assortativity of the graph. The increase in assortativity also leads to faster information 
(including virus!) spread through the network, due to the high inter-connectivity of the high-degree nodes. 
This faster information spread with increasing assortativity is observed despite the fact that increasing 
assortativity also leads to higher average hop count. It is furthermore shown by Van Mieghem et al. [49] 
that an increase of λ1 may lead to disconnectivity of a graph. 

We’re also interested in the relation between the algebraic connectivity and assortativity. It is shown in 
[49] that with decreasing assortativity of a graph, towards disassortativity, λ1 decreases but µN-1 increases. 
A higher µN-1 translates into increased topological robustness of the network. Generally, we notice that 
with increasing ρD, µN-1 decreases. Hence, by influencing the assortativity of the graph, we can affect µN-1. 
Especially, by making the network more disassortative, we can improve the topological robustness. But 
this will, at the same time, decrease the speed of information spread through the network. 

The Laplacian spectrum of the graph may be used to express the effective graph resistance. Effective 
graph resistance is initially defined as (Klein & Randić [19]): 

∑
≤≤≤

=
Nji
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Where Rij is the effective resistance between node i and node j in the graph. The effective graph resistance 
is also commonly expressed as: 
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Where µi is the ith eigenvalue of the Laplacian matrix of G. Van Mieghem et al. [48] show that an increase 
in assortativity leads to an increase in RG. Depending on the actual network, the increase of assortativity 
above a certain value leads to sharp rise of RG and eventually RG approaches∞ . This can be explained by 
the aforementioned fact that the increase in assortativity will eventually lead to graph disconnectivity, 
hence RG =∞ . 

7. Influencing assortativity through network topology 
changes 

It is shown in earlier sections that the assortativity of a network represents a specific structural aspect of 
that network and that we may want to influence that specific aspect of the network. For example, we may 
want to increase the spectral radius, λ1, or increase the algebraic connectivity, µN-1. The present section 
shows that we can change these spectral values by changing the assortativity of the graph. 

Zhou et al. [61] consider assortativity for single, stand-alone networks versus assortativity for inter-
dependent networks. They observed that increasing the assortativity of a network makes the network 
more robust against node removal, but at the same time makes the network less stable. It is, however, 
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further observed in [61] that for interdependent networks, an increase in assortativity decreases the 
robustness of the interdependent networks. Generally, when changing the assortativity of a network 
through topological changes to that network, we change other metrics of that network as well, such as the 
effective graph resistance. Increasing ρD through degree-preserving rewiring (DPR) leads to an increase in 
RG. When applying link addition instead of DPR, both ρD and RG may potentially be improved. Ellens et 
al. [11] investigate methods to improve RG through link addition. 

D’Agostino et al. [1] have also studied the effect of assortativity on the robustness of a network. A 
general conclusion is that disassortative networks are easier to immunize due to a higher epidemiological 
threshold. Although assortative networks are more prone to the propagation of failures, these networks 
require a longer intervention time to prevent further failures (epidemic spreading). Assortativity of a 
network relates both to the network’s robustness against node failure and to the network’s dynamic 
behaviour with respect to failure spreading. 

Trajanovski et al. [47] have introduced the concept of robustness envelope and have determined that the 
relation between assortativity and robustness against node failure depends on the type of failure. A 
moderate increase in assortativity increases the network’s robustness against targeted node attacks, while 
a moderate decrease in assortativity increases the network’s robustness against random uniform node 
attacks (or node failure). 

The network topology change can take various forms. We identify: (i) link addition, (ii) link removal, (iii) 
link rewiring and (iv) degree-preserving rewiring (DPR). The rationale of DPR is that the degree 
sequence (1st order graph metric) is unaffected, whilst the assortativity or other 2nd order graph metric 
changes. The impact on assortativity, by network modification, is highly dependent on the kind of 
modification, on the link(s) and nodes involved in the modification and on the class of the network. The 
topology modification will affect also other metrics of the network than assortativity. For example, link 
removal will increase the average shortest path in the network or may disconnect the graph; it will also 
increase the effective graph resistance. Link removal, link addition and link rewire (if not pair-wise) will 
affect the degree vector of the graph. Hence, network topology modifications will in practice be bound by 
certain restrictions. 

DPR entails that the network is rewired in such way that the degree vector d = [d1, d2, d3, … , dN]T is 
preserved. The degree probability distribution is unchanged, but the joint degree distribution FD1D2(k,l) for 
two randomly selected nodes may be affected. DPR is a common technique for network modification 
without altering d. DPR has the practical characteristic that a node keeps the number of traffic 
connections. One prominent example is formed by IP routers, which have a defined number of interfaces. 
An IP sub-network may be rewired, while keeping the number of cables per router constant. By keeping 
the degree vector unchanged, we can influence the assortativity of the network through DPR. This is 
visualized in Figure 13. 

 
Figure 13: degree-preserving rewiring 

The rewiring depicted in Figure 13 relates to graphs with undirected, non-weighted links. By rewiring 
node 2 to node 3 and node 4 to node 1, nodes 2 and 3 both become more assortative, as they are now 
connected to other nodes (nodes 3 and 2, respectively) that have degree closer to their own degree. Node 
1 and 4 also become more assortative, being rewired to other nodes with degree closer to their own 
degree. The basis of assortativity change due to DPR is provided in Lemma 1 in Van Mieghem et al. [49]. 
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DPR increases or decreases the assortativity with multitudes of a deterministic value. Eq. (15) is rewritten 
as: 

S

dd

S

dd
G LL llll

22 )(
...

)(
1)( 11 +−+−

−
−−

−
−=ρ  (22) 

where 

∑∑
==

−=
N

i
i

N

i
i d

L
dS

1

22

1

3 )(
2
1  

−1l , +1l  start node (-), end node (+) of link 1 of link set L 

Every link i~j|di≠dj pulls ρD(G) from 1 further towards -1, in multiples of unit steps S-1. The change in 
ρD(G) resulting from DPR can hence easily be calculated, since one set of links [i~j,k~l] is replaced by 

another set of links [i~k,j~l]. Their respective contributions to ρD(G) equal 
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Different strategies may be devised, in order to let the network topology converge in as few rewiring steps 
as possible towards the desired state. In addition, the rewiring strategy should be such that a link pair that 
is suitable for rewiring can be found in as few attempts possible. Winterbach et al. [55] outline a 
methodology for exhaustively rewiring a network, studying whether a greedy approach yields the 
optimum assortativity for a network within reasonable time. The approach in Winterbach et al. [55] is 
based on constructing a set R of all rewirable link pairs in the network. Rewiring is done by selecting a 
link pair from R and verifying that rewiring that link pair will increase the assortativity. The rewiring 
action leads to a change of R; some of the link pairs in R are no longer rewirable and new rewirable link 
pairs are added. So, R would have to be updated after every rewiring step. In fact, especially when 
rewiring is applied on large networks, in access of 1000 nodes, an optimized algorithm for finding 
rewirable links becomes crucial in order to curb the computation time. The need for such optimized 
algorithm further depends on the practical use of the network rewiring. When the aim of the rewiring is to 
transform the network towards its optimum assortativity (or other required metric), then many repeated 
rewiring steps are required. Alternatively, the aim may be to increase the assortativity to a defined 
absolute value or to increase the assortativity with a defined factor. In such cases, fewer rewiring steps 
may be needed. Winterbach et al. [55] derive also an exact method for calculating the maximum 
assortativity that may be reached through DPR. This method has computational complexity C of order 
C=O(N6), so the method is, practically, suitable for small networks only. 

Noldus and Van Mieghem [36] describe a method for assortative rewiring by ordering nodes according to 
their degree. The first link of the node pair is formed by selecting the node with highest degree and 
selecting the link connecting that node with another node having the lowest degree of all nodes connected 
to this first node. The second link is found by selecting the node with lowest degree and selecting the link 
connecting that node with another node having the highest degree of all nodes connected to this second 
node. The rewiring step, depicted in Figure 13, follows that approach. When a link pair is found, a check 
can be done whether the conditions for rewiring are fulfilled, namely: the links shall not share a node, 
rewiring shall not result in overlapping links and rewiring shall not result in graph disconnection. 
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For DPR, link pairs can be found that will increase the assortativity of the network (Van Mieghem et al. 
[49], Noldus and Van Mieghem [36]). What is not yet explored is how to deterministically find the link 
pair that will provide the largest absolute increase or decrease in assortativity. 

When applying DPR, a graph G is transformed to G'. The graphs G and G' belong to a set of graphs G 
with the same degree vector d. It must, however, yet be proven whether all G'∈G can be reached through 
DPR, when starting from G. The set G may in fact comprise several clusters of G', each cluster 
comprising graphs that may be created through iterative rewiring from any other graph within that cluster, 
but not from a graph residing in another cluster. The set G may be reflected through a graph itself, G 
(N,L), whereby each node ∈N represents a (rewired) graph G and each link ∈L represents a rewiring 
action. When G is not connected, then apparently it’s not possible to rewire between all G'. 

There is currently no known methodology to efficiently determine the absolute bounds for assortativity 
that can be achieved through DPR, other than exhaustive analysis: rewiring G to every possible G', then 
rewiring every obtained G' to every possible G'', with G'' not being isomorphic to G or any of the already 
obtain G' or G''. This process is then to be continued until no further rewiring is possible. Then the 
complete set G is determined and the assortativity range of G'∈G can be determined, but only for the 
cluster in G that G belongs to. Furthermore, instead of using rewiring to achieve a G' with minimal or 
maximum assortativity, other network topology changes may be applied, such as link addition or link 
upgrade (increasing the link transmission capacity). There is no literature available that investigates the 
effect on assortativity from these other network topology changes. 

The changing of assortativity of a network, whilst keeping the degree vector unmodified, is studied also 
by Xia et al. [56]. Their method is based on random selection of link pairs for rewiring the network, for 
the case that the rewiring leads to increase or decrease of assortativity, as appropriate, and otherwise 
discard the rewiring and (randomly) select a next link pair. This method is due to its randomness deemed 
to be less efficient than the method applied by e.g. Noldus and Van Mieghem [36], where a targeted link 
set selection is applied. Xia et al. show that by decreasing the assortativity of a scale-free network, whilst 
keeping the degree vector unmodified, the packet drop rate of the network decreases, i.e. the network 
traffic performance improves. The test was done for a traffic model that represents typical traffic model in 
the Internet. The packet drop rate for a single node is related, obviously, to the capacity of that node and 
to the amount of traffic that is scheduled to pass through that node. We learn from [56] that rewiring may 
also be applied to optimize the network’s performance for traffic throughput. The rewiring is done to 
balance the traffic over the nodes in the network. We observe here that the optimum network 
configuration, in terms of balanced traffic flow through the respective nodes in the network, is dependent 
on the traffic model. For a given network instance, any traffic model will lead to a certain load on each of 
the nodes. This load may be expressed as the ‘traffic betweenness’ of the node. The betweenness value 
for a node considers the shortest paths, for any node pair in the network, traversing that node. The traffic 
betweenness takes also the traffic flow for each path into account. A shortest path carrying more traffic 
contributes proportionally more to the node’s betweenness than a shortest path carrying less traffic. 

Further work is needed to identify the relation between assortativity and betweenness. As also pointed out 
by Martin-Hernandez et al. [64], nodes or links with high betweenness would cause more traffic 
disruption when subject to failure compared to nodes or links with low betweenness. Rewiring the 
network will affect the betweenness of individual nodes and individual links. Not all possible DPR steps 
may therefore be feasible, since some rewiring steps may lead to an increase of betweenness of particular 
node or link beyond a threshold value. 

Xulvi-Brunet & Sokolov [58] apply DPR to a non-assortative, scale-free graph to either increase the 
assortativity to a maximum value (network becomes increasingly assortative) or to decrease the 
assortativity to a minimum value (network becomes increasingly disassortative). Various metrics are 
compared against the increase assortativity / disassortativity. The following effects are observed: 
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Increasing assortativity when ρD > 0 

• Average hop count E[H] grows rapidly. The logarithmic relation between E[H] and N, which we 
normally observe for scale-free networks, is preserved when ρD increases. 

• Average clustering coefficient C increases. 

• Information spread through the network, when considering each individual node in the network as 
origin of information, becomes slower. The increased assortativity will have the effect that 
information is rapidly arriving at high-degree nodes, as high(er)-degree nodes are connected to 
other high(er)-degree nodes. But the further distribution to (remote) nodes with lower degree will 
be slower, as these low(er) degree nodes are connected to other low(er) degree nodes. 

• Node percolation is affected. When the assortativity of the network increases, the network will 
more easily break up resulting from removal of a fraction, q, of nodes in the network (0 ≤ q ≤ 1). 

Decreasing assortativity when ρD < 0 

• The average hop count E[H] grows marginally. 

• Average clustering coefficient C decreases and will eventually become 0. Compare: a star 
network has clustering coefficient = 0 (no loops in the network) and is maximum disassortative. 

• Information spread through the network, when considering each individual node in the network as 
origin of information, shows stark ‘peaks and valleys’. Information spreads fast when the 
information has reached a high(er) degree node, since that high(er) degree node reaches out to a 
large number of connected nodes. From the respective connected nodes, however, information 
spreads slower, since these connected nodes will typically be low(er) degree nodes, following 
from the disassortative nature of the network. The low(er) degree nodes are, however, connected 
to a (small) number of high(er) degree nodes, so information will start spreading faster again etc. 

• Node percolation is minimally affected. When the disassortativity of the network increases, the 
network will slightly more easily break up resulting from removal of a fraction, q, of nodes in the 
network (0 ≤ q ≤ 1). 

8. Relation between assortativity and line graphs 
A graph G(N,L) can be represented as a line graph H(NH,LH), whereby NH represents the number of nodes 
in H and LH represents the number of links in H (Liu et al. [27]). Line graphs are often used as network 
model for certain real-world network structures. The line graph is created as follows: 

- each link in the graph G is represented through a node in H; hence, |NH| = |L|. 

- two nodes in H are connected if and only if the corresponding links in G share a node in G. | LH| 

can be expressed as LdddL
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)1(|| , where i is a node in G (Van Mieghem 

[51]). 

Figure 14 shows a few examples of graph G and their respective corresponding line graph H. 
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Figure 14: Example of graphs and corresponding line graphs 

We are considering here only graphs with undirected, non-weighted links. 

Manka-Krason and Kulakowski [29] show that line graphs of simple, non-directed graphs, always show 
positive linear degree-degree correlation, which translates into assortativity, i.e. ρD > 0. This result from 
[29] seems to be in disagreement with Liu et al. [27]. For the networks G generated in [27], ρD (G) is 
stepwise increased towards 0; the ρD(H) for each G varies around 0, including ρD(H) < 0. Liu et al. 
[26][27] construct the root graph from a line graph. An initial line graph is constructed, comprising a set 
of cliques, as well as the corresponding root graph. The root graph corresponding to the initial line graph 
is a collection of star graphs, each star corresponding to a clique in the initial line graph. Since a star 
graph has ρD = -1, a graph G consisting of a collection of stars also has ρD = -1. The line graph is 
iteratively transformed by merging two randomly selected nodes for which h > 1, i.e. belong to different 
cliques from the initial line graph. Each such transformation of the line graph translates to a reduction of 
the number of nodes, in the corresponding root graph, with k = 1. The root graph becomes more 
assortative at every step, up to ρD = 0. By varying the number of cliques in the initial line graph and the 
size of the cliques, a network with a desired ρD in the range -1 ≤ ρD ≤ 0 can be created. (to be precise: the 
process can be repeated until ρD ≥ ρdesired.) Hence, the model presented in [27] may be used to generate 
graphs with a desired assortativity. Manka-Krason and Kulakowski [29] have taken a different approach 
for generating line graphs. A large number of realizations of a particular graph class (ER and BA) are 
generated. For each graph realization, the corresponding line graph is generated. This is a different way of 
constructing a graph than the manner in which graphs are generated in [27], which explains the difference 
in results regarding the assortativity value for the line graphs. 

It is yet to be explored how the analysis of the assortativity of a network, such as increasing the 
assortativity of the network through DPR, may be facilitated by analysing the line graph of the network, 
instead of analysing the original graph of the network. For example, increasing the assortativity through 
DPR may be accomplished by applying an algorithm to find suitable link pairs in G. Such algorithm may 
be derived from the linear law for assortativity, devised by Liu et al. [27]. The algorithm shall preferably 
deterministically find the link pair that yields maximum assortativity increase (or decrease) when degree-
preserving rewired. 

9. Relation between assortativity and complementary 
graphs 

The adjacency matrix of the complement Gc of G is denoted Ac, whereby Ac = J - I - A, whereby J=uuT 
(the all one matrix) and I is the identity matrix (Van Mieghem [51]). Wang et al. [52] show that a linear 
relation exists between the degree assortativity of the original graph, ρD(G), and the degree assortativity of 
the complementary graph, ρD(Gc). The assortativity for the complementary graph is expressed as [52]: 
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whereby σ2[Dl+(G)] is the variance of the degree at one side of an arbitrary link in G and σ2[Dl+(Gc)] is the 
variance of the degree at one side of an arbitrary link in Gc. It follows from Eq. (23) that ρD(Gc) is linearly 
related to ρD(G), resulting from the observation that except for ρD(G), all terms and factors in Eq. (23) are 
constant for a particular degree vector. This linear relation enables us to study the assortativity in a graph 
by considering the complementary graph. When applying changes to the topology of the complementary 
graph whereby the degree vector is not affected, a resulting change in assortativity relates linearly to the 
corresponding change in assortativity of the original graph. DPR applied on a graph can be modeled to a 
corresponding action in the complementary graph. The search for the link pair in a graph that provides the 
largest increase or decrease in assortativity of the graph amounts in finding the link pair in the 
complementary graph that provides largest decrease or increase, respectively, in assortativity. 

We derive the degree assortativity for G’s complement, ρD(Gc), from Eq. (15). 
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exists a linear relation between ρD(G) and ρD(Gc) during DPR. 

It is further observed in [52] that the assortativity range, ρmin - ρmax, in a sparse network is generally larger 
than in dense networks. This means that in a sparse network, the assortativity has more relevance as 
second order characterizer (metric) than in a dense network. Figure 15 shows the distribution (fitted 
curves) of ρD(G) and the distribution of ρD(Gc) taken over 105 realizations of an ER random graph with 
N=1000 and p=0.1. 
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Figure 15: Distribution of assortativity (rho) of G versus distribution of assortativity of Gc 

Since p < 0.5 graph Gc has a higher link density than G. This manifests itself in a smaller assortativity 
range for Gc than for G. When p approaches 0.5, G and Gc will have approximately equal assortativity 
distribution. When p increases above 0.5, then Gc will have a larger assortativity range than G. 

10. Local assortativity 
Piraveenan et al. [39] introduce the concept of Local assortativity. Local assortativity provides an 
additional dimension to network analysis. We have already earmarked assortativity as second order 
network metric, as opposed to degree distribution, being a first order network metric. Following this line 
of thinking, local assortativity may be considered a third order network metric, as it provides further 
differentiation in graphs with equal degree distribution and equal assortativity. 

When considering a network with a certain degree distribution and certain assortativity, it is observed that 
the individual nodes in that network contribute differently to the assortativity of that network as a whole. 
An assortative network may comprise nodes that contribute positively to the network’s overall 
assortativity, as well as nodes that contribute negatively to the network’s overall assortativity. Since the 
network as a whole is assortative, there is effectively more positive contribution to the network’s 
assortativity than negative contribution to the network’s assortativity. 

Local assortativity is defined such that each node in the network has its own assortativity value, which is 
dependent on local properties of the node. Namely, its degree and the degree of its neighbours. Local 
assortativity ρi of node i is defined as [39]: 
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where 

1−= idj , the excess degree of node i 
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, the average excess degree of the neighbours of node i 

σq is the standard deviation of the distribution of j (the excess degree) over all nodes in the network 

]1[ −= DEqµ , the mean of j (the excess degree) over all nodes in the network 

L is the number of links in the network 

Eq. (25) satisfies the requirement: 
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Figure 16 shows the average local assortativity value, as a function of the degree of a node, for example 
networks with different ρD. 

 
Figure 16: Average local assortativity, as a function of the degree of a node (source: [39]) 

Figure 16 reflects for nodes with equal degree the average local assortativity. We observe that for an 
assortative network, high-degree nodes contribute substantially more towards the network’s assortativity 
than low-degree nodes. In addition, up to a certain degree value, nodes have a negative contribution to the 
network’s assortativity. We call this degree the critical degree, kc. 

The local assortativity, as defined in [39], is also very convenient for recalculating assortativity when 
DPR is applied. There are four nodes and two links involved in a DPR action (Figure 13). It follows from 
Eq. (25) that the local assortativity for these four nodes is affected, but is unaffected for the other nodes in 
the network. The change in local assortativity of the four nodes involved in the rewiring can be calculated 
(by calculating the new k  for these four nodes) and with that the new assortativity. 

We briefly describe scalar assortativity. The scalar assortativity, L, is a generalization of Newman’s 
assortativity; it measures the tendency of nodes to be connected to other nodes having the same or having 
opposing (scalar) value (Newman [33]). The ‘value’ of a node may be a Boolean or a (continuous) scalar 
value, hence the term ‘scalar assortativity’. The scalar value of a node may change over time; nodes in a 
network may be subject to change, imposed by arbitrary stimulus or influence. A change in a node’s 
scalar value hence affects the scalar assortativity of the network. The scalar assortativity of a network 
may hence be expressed as a function of time, L t. A scalar assortativity value of L t =1 means that at time t, 

all links in the network have identical node state at either side of the link. For a network with L t =-1, all 
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links in the network have, at time t, nodes with dissimilar node state at either side of the link. As 
expected, L t =0 means that at time t, nodes with a particular state are equally likely connected to nodes 
with the same state as connected to nodes with dissimilar states. Scalar assortativity is a useful network 
metric when studying dynamic networks whereby the state (scalar value) of a node changes over time. 

Piraveenan et al. [38] introduce the concept of node congruity, l. The node congruity is defined as the 
contribution of a particular node to the network’s scalar assortativity. We may regard the node congruity 
as local scalar assortativity. The sum of the node congruity for all nodes in the network equals the scalar 
assortativity of that network. Considering that the scalar value of the nodes in a network may change over 
time, the node congruity will also change over time. At time t, a node’s congruity is denoted as lt. The 
congruity of node i represents a scaled difference between the average state (or scalar value) of the 
neighbours of node i and the average state (or scalar value) of the network as a whole. When the 
neighbours of node i have on average a higher scalar value than the expected value for the entire network, 
then node i has a positive congruity. A negative congruity for node i occurs when the neighbours of node 
i have on average a lower scalar value than the expected value for the entire network. Piraveenan et al. 
[38] continue to show that the distribution of node congruity for a network, provides additional tool to 
study a network’s dynamic behaviour. 

Xu et al. [57] have also observed that within a network, the overall assortativity of that network may be 
(strongly) influenced by a small number of highly connected nodes, commonly referred to as rich nodes 
or superrich nodes, as appropriate. Nodes with low degree may exhibit a different mixing pattern than 
nodes with high degree in that same network. For networks with power-law degree distribution, superrich 
nodes are defined as nodes whose degree exceeds the cutoff degree kc [57]. For a network that is overall 
scale-free and that contains one or more nodes with k >> kc, these (super)rich nodes are apparently not the 
result of the growth process of that network. They may, instead, have been artificially added. A (small) 
number of superrich nodes may therefore give a false overall assortativity value for the network as a 
whole. Xu et al. [57] propose a modified method for calculating assortativity, namely by excluding the 
superrich nodes. This modified definition of assortativity is denoted as ρc. Xu et al. [57] state that ρc 
constitutes a more realistic descriptor of the network than ρD. To determine from what degree onwards the 
(super)rich nodes in the network start to distort the assortativity, ρc should be calculated over 
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1
nodes, with p ranging from kc to N-1. Assortativity is then reflected as a graph, with ρc a 

function of p. As p becomes larger, starting at kc, the assortativity becomes more and more affected by the 
superrich nodes. Rationale of this approach is that not every node with k ≥ kc is necessarily a superrich 
node. A node with degree slightly higher than kc may be the natural result of the growth process, so ought 
to be taken into account. 

A final form of local assortativity we study is the Universal Assortativity Coefficient (UAC) defined by 
Zhang et al. [62]. The UAC assigns an assortativity contribution value to a single link or to a group of 
links. The assortativity contribution value for a single link is formed by the relation between the excess 
degree of the nodes on the end-points of the link and the expected excess degree of the network as a 
whole. The UAC for a link l, ρl, is defined as: 
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where 

j, k the excess degree of the respective nodes at the end of link l 

Uq=E[D-1], the expected value of the excess degree of the entire network 
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σq standard deviation of the excess degree distribution of the entire network 

L number of links in the network 

The following holds: 

∑
=

=
L

l
l

1

ρρ  (28) 

Analogous to the general definition of assortativity, when ρl > 0, the link is said to be assortative, when 
ρl < 0, the link is said to be disassortative and when ρl = 0, the link is said to be non-assortative. According 
to Eq. (27), a link is assortative when for both ends of the link, the excess degree is higher or lower than 
the expected excess degree of the entire network. Otherwise, the link will be disassortative, unless for 
both ends of the link, the excess degree is equal to the expected excess degree of the entire network. The 
absolute value |ρl| is the assortative (for ρl > 0) or disassortative (for ρl < 0) strength of the link. Eq. (27) 
can be used on a group of links; the UAC for a group of links is the sum of the individual ρl . Zhang et al. 
[62] argue that their definition of local assortativity is advantageous compared to the definition from 
Piraveenan et al. [39]. Their main argument is that their definition pertains to links, whereas the definition 
form Piraveenan et al. [39] pertains to nodes. The link local assortativity can be applied to an arbitrary set 
of links, e.g. the links of a single node. 

11. Conclusions and future work 
The concept of assortativity has been extensively studied since its introduction by Newman [32]. The 
assortativity, being a second order metric, adds insight in the characteristics of a network. Although 
assortativity as a concept may be applied to any qualification of a node, it is most often applied on the 
degree of a node, yielding degree assortativity. Various adapted forms of assortativity have been 
proposed over time. Assortativity for directed networks and for networks with weighted links, needs 
further study. Social networks, for example, exhibit connections that have direction. Communication 
networks contain links that may have weight, expressing e.g. link capacity or transmission cost. 

Networks may be rewired for changing static or dynamic behaviour of that network, e.g. to increase or 
decrease the assortativity of that network. DPR is studied extensively as a means to rewire a network 
without changing its degree vector d. When links are directional, DPR must distinguish between in-degree 
and out-degree of the nodes involved in the rewiring and keep both constant. When links have a weight, 
rewiring may be done degree-preserving, but then the nodes involved in the rewiring end up with a 
different connectivity. This follows from the fact that links with different weight contribute different to 
the connectivity of a node. 

Assortativity alone is not always sufficiently representative of the network as a whole. A network may be 
assortative overall, but some nodes would qualify as particularly disassortative, or the other way around. 
Each node or each link in that network contributes in some portion to the overall assortativity. This leads 
to local assortativity (local node assortativity, local link assortativity). The assortativity of a network may 
be reflected through a node-assortativity probability density function or link-assortativity density 
function. Many aspects of local assortativity remain unexplored. 

The relation between line graphs and assortativity, as well as the relation between complementary graphs 
and assortativity, has been studied in various papers. Constructing line graph and constructing 
complementary graph is generally defined for simple graphs containing undirected, non-weighted links. 
Finally, we propose the following areas for further research in assortativity: 

- Graph theoretic definitions of assortativity for networks containing weighted links. 

- Network rewiring methodology for networks containing weighted links and/or directed links. 
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- Relation between assortativity and betweenness, also in combination with network rewiring. 

- Using the line graph H of a root graph G as a tool for applying (degree-preserving) rewiring in the 
root graph G. 

- Using the complementary graph Gc as a tool for applying (degree-preserving) rewiring in the 
original graph G. 

- Distribution of local node assortativity and local link assortativity, also in combination with 
network rewiring. Can we apply DPR to a network to alter the local node assortativity distribution 
or local link assortativity distribution, whilst keeping the assortativity of the network as whole 
unaffected. 

- Relation between assortativity, betweenness and effective graph resistance. 
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