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The design of an efficient curing policy, able to stem an epidemic pratems affordable cost, has to
account for the structure of the population contact network supportegadhtagious process. Thus,
we tackle the problem of allocating recovery resources among the piopulat the lowest cost pos-
sible to prevent the epidemic from persisting indefinitely in the network. iSpaty, we analyze a
susceptible—infected—susceptible epidemic process spreading oeateed graph, by means of a first-
order mean-field approximation. First, we describe the influence ofahiact network on the dynamics
of the epidemics among a heterogeneous population, that is possiblgdlinid communities. For the
case of a community network, our investigation relies on the graph-ttieadreotion of equitable par-
tition; we show that the epidemic threshold, a key measure of the netwbustreess against epidemic
spreading, can be determined using a lower-dimensional dynamatahsy Exploiting the computation
of the epidemic threshold, we determine a cost-optimal curing policy byrgpéyconvex minimization
problem, which possesses a reduced dimension in the case of a caynnaiwork. Lastly, we consider
a two-level optimal curing problem, for which an algorithm is designed withlgnomial time complex-
ity in the network size.

Keywords heterogeneous SIS model, community network, graph spectra, lglguitartitions, convex
optimization.
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1. Introduction

The diffusion and persistence of infectious diseases akprrtomplex interactions between individual
units (namely people, cities, countries, etc.), the chargstics of a disease and, possibly, on the applied
control policies. The last ones are aimed at arresting sésransmission or render the infection preva-
lence as low as possible.

Epidemic models have been used to describe a wide range @f gitlenomena as well, like social
behaviors, diffusion of information, computer viruses;. eindeed, although the basic mechanisms of

(© The author 2017. Published by Oxford University Press oralielfi the Institute of Mathematics and its Applications] Aghts reserved.



20f31 S. OTTAVIANO, F. DE PELLEGRINI, S. BONACCORSI, P. VAN MIEGH#

these phenomena can be different, often their dynamicaviehcan be described by the same type of
equations [1]. One of the main objectives, in all these dosas to gain insight into how the spreading
process transmits and to identify the most effective gjiatein order to prevent and control them.

In controlling the diffusion processes, the structure @f tontact network plays a crucial role. In
particular, several contact networks appear organizeddammunities. In this framework, a uniform
control strategy not always represents the most effectasetey reduce the infection rate, the number of
affected individuals or the time of extinction [2, 3, 4]. Eurmore, curing costs may vary from node
to node. In the case of community networks, curing costs nagly gepending on the features of the
specific community where curing controls are applied.

Thus, by taking into account the topology of a community reetuyin this work we want to deter-
mine a cost-optimal distribution of resources, that is ablprevent the disease from persisting indef-
initely in the population. The non-uniform distribution @sources aims to control, in a cost-optimal
way, the level of the nodes local curing rates. Increasiegthring rates of, e.g., some selected commu-
nities, is reflected into speeding up their detection cdjpialsiand treatments (or, into installing better
virus scan software, in the case of computer viruses) [2].

The problem of designing strategies to stop spreading psesain networks has been largely tack-
led. Though, in this context, to the best of our knowledgey ¥&w works have described how to exploit
the community structures in order to formulate an optinid@aproblem for resources allocation, with
lower complexity. Based on the theory of contact procedBesys et al. [4] characterize the optimal
distribution of a fixed amount of antidote in a given netwdBaurdin et al. [5] and Sahnen et al. [6] take
advantage of thé&l-intertwined approximation [7] to analyze and control tpeesd of a SIS epidemic
model. The same mean-field approach is adopted by Preciadadref8], where the authors propose
a semidefinite programming (SDP) approach for optimal ngtwomunization. Cost-optimal vaccine
allocation in arbitrary undirected networks are obtainiecte minimization of a vaccination cost func-
tion which depends on infection rates. In [9], the same astBpecialize some specific instances of
optimal network protection problem, via Geometric Progmang techniques, to weighted, directed,
strongly (and not necessarily strongly) connected netstlcompute the cost and speed optimal allo-
cation of vaccines and/or antidotes. In Sec. 3, we analyze inadetail the differences between their
and our approach. Enyioha et al. [10] propose a distribubdgtion to the vaccine and antidote allo-
cation problem to contain an epidemic outbreak in the alsseha central social planner. Each node
locally computes its optimum investment in vaccine anddmtéis needed to globally contain the spread
of an outbreak, via local exchange of information with néigis. Drakopoulos et. al [11, 12] consider
the propagation of an epidemic process over a network anlg ste problem of dynamically allocating
a fixed curing budget to the nodes of the graph. The objectite minimize the expected extinction
time of the epidemics. In the case of bounded degree gramhsptovide a lower bound on the expected
time to extinction under any such dynamic allocation policy

1.1 Outline and main results

Compared to previous works on optimal curing policy, we ateriested, particularly, in leveraging
the subdivision of the population into communities. The iiration comes from the fact that commu-
nity structures are a relevant non-trivial topologicakéra of complex networks. Community structures
have been identified as a typical feature of social netwdighfly connected groups of nodes in the
World Wide Web usually correspond to pages on common topibgyeas in the biology framework,
e.g., in cellular and genetic networks, communities maatedb functional modules [13]. Consequently,
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in many practical situations, it appears reasonable toidensuring policies which applger commu-
nity (i.e., per hospital, school, village, or city, etc,...)ther than policies which apply per individual
unit.

In particular, we consider a continuous-time susceptibfeeted—susceptible (SIS) epidemic pro-
cess, where an individual can be repeatedly infected, szcamd yet be infected again. An input
weighted graph captures the interaction between indilédarad communities, where the heterogeneity,
and possible asymmetries in the contagiousness, are dayighdge-dependent weights.

Our investigation, on a population divided into commursitieas been based on the graph-theoretical
notion ofequitable partition[14, 15, 16]. A network with an equitable partition of its reoget posses
some interesting symmetry properties; we will use the wagdhfmetry” to refer to a certain structural
regularity of the graph connectivity [16]. We take advartad the notion of equitable partitions for
providing curing policies, diversified for communitiespedle to lead the system to extinction, at the
minimum cost. In this context, our main goal is that we are abformulate a convex cost minimization
problem with a reduced dimension, with respect to the géoneas®, where curing policies are providing
for each node.

Spatial inhomogeneity has been incorporated in other nsddedtudy the epidemic control [17, 18,
19], however not much effort has been made to explore inhemegus control strategies within this
kind of models [2]. The problem of an inhomogeneous allacatif limited resources for a multi-group
model, has been studied, instead, in [2] by Wan et al. The &threcauthors is to maximize the speed at
which the virus is eliminated. Thus, considering a disctete epidemic model, they tackle the prob-
lem to minimize the dominant eigenvalue of a system mattbject to limiting constraints on some
system parameters to be controlled. Compared to their flation, we want to allocate resources to the
communities, sufficient to lead the system towards the epiclextinction, with the aim of minimizing
a certain cost function. Moreover, in the cited paper, iitilials transmit the disease through homoge-
neous mixing within their own group, as well as interactiwith individuals in other groups, like in the
usual metapopulation models. Such model is only a specisie ohour network model, in fact, by the
notion of equitable partition, we go beyond the full meshuagstion, within the communities, as well
as outside, thus providing results for wider possible sderfaee Section 4).

The paper is organized as follows. In Sec. 2, first, we reviemesbackground concepts for epi-
demic processes on networks in the homogeneous settinghanelated mean-field approximation
adopted in the paper. Then, we provide the adaptation of thdehto the heterogeneous setting and
we report on the analysis of the global dynamics of the epid@nmocess. This allows to recognize the
stability modulus of a matrix, encoding for the network sttue and for the parameters of the model,
as the critical value separating an absorbing phase, froemdamic phase. Leveraging on this result,
in Sec. 3, we present the cost-optimal resource allocatioblem. We use a semidefinite approach to
formulate our optimization problem for the case of arbitnandirected graphs with symmetric weights.
Then, we show that this approach can be extended to some kimat symmetric weighted networks,
those whose adjacency matrix is diagonally symmetrizaWitaeover, for the case of a general directed
weighted graph, we provide a suboptimal solution. In Sec £avesider the case when a contact net-
work is shaped by an existing community network. First, wieed the results in [20] (related to equi-
table partitions in the case of undirected graphs), conisigequitable partitions for directed weighted
graphs. Specifically, we show how a certain kind of structegilarity, in a directed weighted graph,
influences the system of differential equations that sadweltfe evolution in time of the approximated
infection probability of each node. Then, we exploit sudutarities in graph connectivity for reducing
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the original dynamical system to a lower dimensional onesByposing that different curing rates can
be chosen depending on the community network structuretatdhey can be optimized for a certain
cost function, the latter system is used to reduce the diimems our optimization problem. In the last
part of the work, we propose a two-level optimal curing pesh) that is, we have a two-dimensional
curing policy, suitable, e.g., when the population can lviddd in two categories (young and elders,
male and female, etc,...). This kind of situation fits welttaig networks with equitable partition, such
as, e.g., bipartite graphs and interconnected star neswdmkthis case we provide a scalable bisection
algorithm, that yields ag-approximation of the optimal solution, in polynomial tirimethe input size.
Finally, we carry out some numerical experiments. Prootsmduded in previous sections for better
readability are placed in Section 7.

2. The epidemic network model

In this section, we report some background concepts and oels that we will use later to find a
cost-optimal curing policy.

Let us consider a SIS epidemic process spreading over aesimplirected grapts = (V,E), with
edge seE and node (vertex) s&t. The order ofG, denoted byN, is the cardinality o¥/. The edge set
of G consists of unordered paif§, j}, with i, j € V, andi # j. Connectivity of graplG is conveniently
expressed by the symmethtx N adjacency matriA.

The viral state of a nodg at timet, is described by a Bernoulli random varial{gt), where we
setX;(t) =0, if i is healthy andX(t) = 1, if i is infected. Every node at tinteis either infected with
probability p;(t) = P(Xi(t) = 1) or healthy (but susceptible) with probability-1p;(t) = P(X(t) = 0).

In the homogeneous setting, the recovery process is a Rgsscess with ratd, and the infection
process is @er link Poisson process where the infection rate between an healthgn infected node
is B. All the infection and recovery processes are independEin¢ SIS process, developing a graph
with N nodes, can be modeled as a continuous-time Markov procés@Wétates, covering all possible
combinations in whiciN nodes can be infected [7]. The probability of the processaidin a certain
state can be uniquely determined by the Kolmogorov’s diffidial equations (i.e. a system of linear
differential equations). However, the number of equatioaseases exponentially with the number of
nodes; this poses several limitations in order to detersihe set of solutions even for small network
order. Hence, often, it is necessary to derive models tieadmapproximation of the exact original one
[7, 21].

In this work, we consider a first order mean-field approxiora{NIMFA), proposed by Van Mieghem
et. al. in [7]. Basically, NIMFA replaces the original' 2inear differential equations bl non-linear
differential equations representing the time-change ®frifection probability of each node.

Epidemic thresholdFor a network with finite ordeN, the exact SIS Markov process will always
converge towards its unique absorbing state, that is tlestate where all nodes are healthy. However,
the process shows a phase transition behavior: indeee, itharcritical valua, of the effective spread-
ing ratet = 3/9, whereby ift is lesser thang, the initial infection dies out quickly. Conversely, for
larger thante, the infection spreading can last very long in any suffidietatrge network [22, 23, 24].
The regime of persistent infectiom ¢& 1 ), called the metastable or quasi-stationary state, ishexhc
rapidly given an initial set of infected nodes and can pefeisvery long time [24]. In support of this,
numerical simulations of SIS processes reveal that, evefaifty small networkgN ~ 100) and when
T > T¢, the overall-healthy state is only reached after an ursiedilly long time. Hence, the indication
of the model is that, in the case of real networks, one shotpée that above the epidemic threshold
the extinction of epidemics is hardly ever attained [22,. 2Bbr this reason, the literature is mainly
concerned with establishing the value of the epidemic tiolels being a key measure of the robustness
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against epidemic spreading.
In the homogeneous setting, NIMFA determines the epideln@shold for the effective spreading rate

asré ) = A where)\l( ) is the spectral radius of the adjacency ma#tixsee [7, 25]). Whem < rél)

the only equmbnum of the NIMFA system is the zero point. Wite> ré”, there exists a second non-
zero steady-state that reflects well the observed viral\bheh§26], and that can be regarded as the
analogous of the quasi-stationary state of the exact sstict&lS model. NIMFA yields an upper bound
for the probability of infection of each node, as well as adowound for the epidemic threshold [7, 27].

This fact ensures thaél) allows us to determine a safety regiém < rél) for the effective spreading

rate, that guarantees the extinction of epidemics in a redde time frame. Thus, even though NIMFA
is approximated, a design for our optimization problemgldaan NIMFA, is always “safe” or “secure”.

2.1 Heterogeneous SIS mean-field model

In this section, we consider a heterogeneous setting. Wedadthe possibility that the infection rate is
link specific, denoting bys;; the infection rate of nodg¢towards nodé. Moreover, each nodaecovers
at rated, so that the curing rate is node specific. Basically, we aftmvthe epidemics to spread over a
directed weightedraph.

A direct weighted graph (or weighted digraph) is a trigle= (V,E, p), where the elements &,
namedarcs(or directed edges), are ordered cougles(i, j) of distinct vertices o/, andp : E — (0, «)
is a given functionp(e) is called theveightof e. The matrixA = (g;), with elementsyj = p(i, j) = Bji,
is theweighted adjacency matriaf G. In our frameworke = (i, j) € E andp(e) = B;; means that
nodei can infect nodg with rate3j;. Again, self-loops and multiple edges (multiple arcs with same
direction) are not permitted. Hereafter, we shall assuragttie directed graph is strongly connected,
i.e., for all pairs of nodes j € V, there is a path formto j and fromj toi.

As in the homogeneous case, the SIS model with heterogemafegtion and recovery rates is a
Markovian process. The time for infected nogt infect any susceptible neighbiis an exponential
random variable with meaﬂj’l. Also, the time for nodg to recover is an exponential random variable
with meand*. A NIMFA model for the heterogeneous setting has been pteddiist in [28], where
a node can infect all neighbors with the same infection rteHere we include the possibility that the
infection rates depend on the connection between two ndldes covering a much more general case.
The NIMFA governing equation for noden the heterogeneous setting writes as

dp ZBI]pJ ZBIJpI —Gipi(t), i=1,...,N. (2.2)

Letthe vectoP(t) = (pa(t),..., pn(t))" and letA= () be the matrix defined g = f3;; wheni #
j, anda; = —&; moreover lefF (P) be a column vector whoseth component is- 3, Bij pi (t) pj(t).
Then we can rewrite (2.1) in the following form:

aP)

S = AP +F(P). (2.2)

Let
r(A) = max ReAj(A)),

1<j<N
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be thestability modulug29] of A, whereRe(Aj(A)) denotes the real part of the eigenvalued\pf =
1,...,N. Now, we adopt a result from [29] that lead us to find the epid@hreshold, and to extend the
global stability analysis of the homogeneous NIMFA systeee(e.g. [20]) to the entirely heterogeneous
setting, where each node can potentially infect each ofditghbors with different infection rates. We
underline that to use the result in [29], the matkixeeds to be irreducible, this is equivalent to say that
its associated digraph must be strongly connected.

THEOREM2.1 Ifr(A) < 0thenP = 0is a globally asymptotically stable equilibrium pointjp= [0, 1]N
for the system (2.2), On the other hand {A) > O then there exists a constant solut e Iy — {0},
such thaP” is globally asymptotically stable iy, — {0} for (2.2).

Proof. See [29, Thm. 3.1]. O

REMARK 2.1 LetAbe anN x N irreducible and non negative matri®,a diagonal matrix with positive
entries. Leto(A— D) be the spectrum of the matrix— D, then the eigenvalugé € g(A— D), such that
RgA) =r(A—D), is real (this follows also from (7.6)).

The result in Theorem 2.1 is crucial for the cost-optimalirmyiproblem described in the next
section. In fact, it identifies the value of the epidemic #v@d, separating an absorbing phase, where
the epidemics will go extinct, from an endemic phase. Thhis, dritical threshold is recognized as a
key value for treatment strategies against viral infection

3. Optimal curing policiesfor arbitrary weighted networks

Now, leveraging on the result in Theorem 2.1, we address tbkelegm of suppressing an epidemic
spreading, by a cost-optimal distribution of resourcesiwit networked population. Allocating more
resources at each node aims to increase its curing ratés tiefliected, e.g., by speeding up its detection
capabilities and treatments. We consider that recoveguress have an associated cost that might be
different for each node. Thus, let us define a cost functioithvimeasures the expenditure in order to
distribute curing resources to all nodes. g8 ) be areal, linear and monotonically increasing function
with respect ta}, whose value represents the effort of modifying the recpvate of node.

This model fits the case of disease treatment plans: polikgreaan distribute different amount of
resources (e.g. money for medicines, medical and nursaffysic,...) in a network of hospitals, or they
can design a different health program for different disgsicities, or nations in the case of a timely mass
prophylaxis plan. For instance, in the US, pharmaceutigaply caches and production arrangements
have been pre-designated. This is done in order to be usdarferscale ongoing prophylaxis and/or
vaccination campaigns in case of sudden intentional orabbutbreaks disease [30].

For now, we take into account an arbitrary weighted netwbriSec. 4, instead, we shall provide a
cost-optimal curing policy for a network with communitywtture. Hereafter, we considéfd) = ¢4,
with ¢ > 0, that we shall call the cost coefficients, fioe= 1,...,N. Thus, the cost function is the
cumulative sum over the nodes’ set

N
U(a) = ;Cid,

whereA = (44,...,0n) is the curing rate vector.
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3.1 Undirected graphs with symmetric weights.

Now, let us assume th@; = B;, foralli,j =1,...,N, i.e., the weighted adjacency matix= (f3;) is
symmetric and, consequently, all its eigenvalues are Bzadically, now we are considering undirected
graphs with symmetric weights.

Let us define th& x N curing rate matrixp = diag(A). We remark that, hereafter, we shall indicate
with A1(A) the maximum eigenvalue &&. By Theorem 2.1, we know that &1(A — diag(4)) < 0,
then the epidemics will go extinct. As we have explained ioti®e 2, the critical threshold for the
mean-field model is a lower bound of the threshold of the ekéartkov model. Thus, the condition
)\1(A— diag(A)) < 0 corresponds, in the exact stochastic model, to a regiorathe infectious process
dies out exponentially fast for sufficiently large times J[24Ve recall that, instead, above the exact
threshold the overall-healthy state is reached only afiarraealistically long time. Hence, in order to
find a cost-optimal distribution of resources that guaresthe extinction, we seek for the solution of
the following problem.

Problem 3.1 (Eigenvalue Constraint Formulation) Find A > 0 which solves

minimize ua)
subjectto: Ay(A—diag(4)) <0, A>0.

Problem 3.1 can be reformulated as a semidefinite prograhistta convex optimization problem
[31]. In fact diadA) = EiN=1Ai diag(g), where4; is thei-th component ofA ande is thei-th element
of the standard basis so that digg > 0. Hereafter, as in [32], the inequality signlih > 0, whenM
is a matrix, means thal is positive semidefinite. Thus, we can express the optimizgtroblem with
eigenvalue constraint as a semidefinite programming (SBd®)igm.

Problem 3.2 (Semidefinite Programming Formulation) Find A which solves

minimize u(a)
subjectto: diagA)—A>0
A>0

The feasibility of the problem is always guaranteed, as sl the following
THEOREM 3.3 (Feasibility) Problem 3.2 is feasible.

Proof. We definelmax:= max ¥ ; &j and choos& = Imaxln, Wherely is the all-one vector of length
N, consequentlyD = Imaxn, With Iy identity matrix of ordeN. Then, for any vectow = zi'\‘zlzivi,
wherez € R, fori =1...N and{vy,...,vw} is an eigenvector basis & it holds

w (A-D)w=w" (_i)\i (A)zvi — |maxW> < (A1(A) — Imax)|[W|[* < O,

where the last inequality follows sindg(A) < max ¥ ; ajj. Hence the chosen vector satisfies the con-
straint and we can assert that the feasible region is notyempt d

Since the problem is feasible there is always an optimaltpminthe boundary [31] and, by the
fundamental result of convex optimization, any locallyiogl point of a convex problem is globally
optimal [32, Sec. 4.4.2].
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Existing results.As introduced in Sec. 1, an SDP approach is adopted also to [@tect a cost-
optimal distribution of protective resources in an arliitrandirected network. Unlike our approach,
they consider that each notlean infect all its neighbors with the same infection fatemoreover they
describe the minimization of a decreasing vaccination fwsttion, which depends on the infection
rates, that are allowed to be in a feasible interval. In tlo@se part of the work they propose a greedy
approach for the case of all-or-nothing vaccination, theey restrict the infection rate to be in a discrete

set, possibly different for each nod#,c {@,E} where the two values, are fixed a priori.

With respect to their approach, in our model, each node ctenpially infect each of its neighbors
with different infection rates, thus we treat a wider scamdn addition, from the next section onwards,
we shall focus, mainly, on a population divided into comntiesi obtaining a dimensionality reduction
of the optimization problem (3.2). Moreover, in Sec. 5.3 wegose a bisection algorithm for a two-level
optimal curing problem, i.e we consider a two-dimensiorirgupolicy, providing that the population
is divided in two categories, each of which will benefit fromeoof the two policies. The two available
values of the curing rate are not fixed a priori.

At last, in [9], Preciado et al., leverage on Geometric Paagning (GP) techniques for the resource
allocation problem, applied to arbitrary weighted direageaphs, hence they do not require the symme-
try of the adjacency matrix. However, the drawback of suechidation is that it does not fit for a linear
cost function of the type we are considering, which is, anyveastandard cost function of practical
relevance. Thus, in the next section, we show how our fortiamaf the problem, involving a linear
cost function, can be extended to a certain class of not syricmeatrices.

3.2 Extension to directed weighted networks.

The formulation of the optimization problem (3.2) holds sgmmetric weighted adjacency matrix,
however we shall show how it can be extended to a certain ofasst symmetric matrices that are
diagonally symmetrizable. In this case, for a not symmetradrix A, there exists a diagonal matrix
G such thatG—1AG is symmetric, for similarity their eigenvalues are the saamd the semidefinite
program formulation can be applied @ *AG . Thus, we can include also the case of not symmetric
weighted adjacency matrix. A notable example is that of agirented network where each node
can infect all its neighbors with the same infection rtethe weighted adjacency matr3A with A
symmetric andB = diag(3) is not symmetric, however it is diagonally symmetrizabhelded choosing
G = BY2 we haveB~Y/?(BA)BY/?2 = BY2AB!/?, which is symmetric (see, e.g., [8]). Hence, for our
problem 3.2, we can request that the maB#?AB/2 is semidefinite positive.

Otherwise, if we have an arbitrary, strongly connectedealed weighted graph and a not sym-
metrizableN-dimensional adjacency matri we can apply our formulation to its Hermitian pa#t; =
(A+AT)/2, obtaining a suboptimal solution. More precisely, R (A) = (ReA1(A),--- ,ReAn(A))
be the vector of the real part of the eigenvalueRand A (77 (A)) = (A1(HZ(A)),--- , AN(FZ(A))),
both arranged in decreasing order; then it hdkea (A) < A (57 (A)) [34, Thm. 10.28], meaning that
A (S (A)) majorizes R&(A) [34, Sec. 10.1]. Basically, this result suggests that thbilty modulus
A1(A—D) (see Remark 2.1) is smaller than(.7#’(A) — D), hence the feasible region of our optimiza-
tion problem, i.e., wher(J#(A) — D) < 0, is a subset of the feasible region for the ma#ixence,
if we solve the problem (3.2), choosiog’(A), the value of the cost function obtained is an upper bound

1As suggested in [2], see [33] for a method to check if a matriyisraetrizable, and, in case, the way to chose the diagonal
matrix to achieve symmetry.
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FiG. 1: Extension to directed weighted networks: comparison between opsadptimal and uniform solu-
tions. a) the cost values have been obtained averaging over 300 gstah&Erds-Renyi sample graphs
with N = 100, for differentp = 0.1,0.3,0.5,0.7,0.9, b) average over 300 Eid-Renyi sample graphs with
N = 100,200,400 600,800,1000 forp = 0.3; 0.95 confidence intervals are superimposed.

of the cost function that would be sufficient to brikgf A— D) at the critical value zero. Thus, we obtain
a suboptimal solution, i.e., we will be able to lead the epietowards the extinction, but with more
effort than it would be sufficient.

Hence, let us consider a diagonally symmetrizable weigatigicency matriBA; we want to com-
pare the optimal cost function — corresponding to the ogtsokution of the problem (3.2)) — with the
suboptimal cost function, obtained considering the heamipart ofBA. Besides, we compute also
the cost in the case of a uniform curing rate vector for whih inaximum eigenvalue &/2ABY/2
attains zero. We use a standard solver for semidefinite anag{see [35]). In Fig. 1 a) we consider the
cost functions obtained averaging over 300 instances di€&=Rényi random graphs withl = 100 for
increasing values gb. We take a matriB = diag(3;), where the infection rates are generated as uni-
form random variables in the intervé.1, 3), and thec;’s constants in the interva0.5,5). We observe
that the suboptimal cost function is close to the optimat funsction, the closer the lower the values of
p. In Fig. 1 b), instead, we fix the value pf= 0.3 and we plot the costs as functions of the number of
nodesN. We can see a growth in the difference between the suboptinththe optimal cost functions
as the number of nodes increase. Ultimately, we obtain avaayadvantage in the use of suboptimal
cost function with respect to the uniform case.

In the rest of the paper, we shall consider the case of a nktwith community structure. We
shall show that — in order to find the epidemic threshold fer shistem (2.2) — it can be employed a
matrix with lower dimension than the startibgdimensional adjacency matrix. In turn, this provides a
corresponding reduction in the dimension of our optima@afroblem (see Sec. 5).

4. Community Networks

Hereafter, we shall focus on the case when a contact netwathaped by an existing community net-
work. This framework captures some of the most salient &tratinhomogeneities in contact patterns
in many applied contexts [36]. There exists an extensieeditire on the effect of network community
structures on epidemics. A specific community structure awése due to, for example, geographic
separation. Models utilizing this structure are commompwkn as “metapopulation” models, where
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Vi

V13 ‘/4

FiG. 2: A sample graphs with equitable partition. \&)= {V1,V,V3,V4}, b) Interconnected star networkg: =
{V](_)avzo7v3?7V407V507V17V27V37V43V5}

the population is compound of multiple interacting groupkich internally have homogeneous mixing
[2] (see, e.g., [37,38]). Such models assume that each comynalnares a common environment or is
defined by a specific relationship. Some of the most commoksvam metapopulation regard a popula-
tion divided into households with two level of mixing ([39.441]). This model typically assumes that
contacts, and consequently infections, between nodes setime group occur at a higher rate than those
between nodes in different groups [36]. Thus, groups carelieet], e.g., in terms of spatial proximity,
considering that between-group contact rates (and coesdguhe infection rates) depend in some way
on spatial distance, so that, each individual can be thiealigtinfected by each of the other individuals.
However, models where infection can only be transmitteddmjes directly connected by an edge, may
provide a more realistic approach to the study of the evautif the epidemics. In turn, an important
challenge is how to consider a realistic underlying strecaind appropriately incorporate the influence
of the network topology on the dynamics of epidemic [36, 42,44, 45].

In [20, 46] the authors analyze the dynamics of an epidemiasetworks that are partitioned into
local communities, through the first-order mean-field agjpnation discussed in Section 2. The inves-
tigation was based on the graph-theoretical notioamfitable partition[14, 15, 16]. Specifically, for
an undirected graph, let = {V4,...,Vi} be a partition of the node s¥t i.e., a sequence of mutually
disjoint nonempty subsets ©f, called cells, whose union s, that we assume given a priori;is called
equitable if the subgrap®; of G(V, E) induced by is regular for ali’s. Furthermore, for any two sub-
graphsG; andG;j, whenever there exists at least one connection betweers modee first and second
subgraph, then each node@nis connected with the same number of nodeGjnin [20, 46] two-level
infection rates have been considered: an intra-communfgciion rate and a lower inter-community
infection rate. In the network structures hereafter, weegglize the model to more than two levels of
infectiousness. We observe that usually a community is eeéfas a set of network nodes joined together
in tightly-knit groups whereas among such group connestame looser [47]. Leveraging on the defi-
nition of equitable partition, instead, we can also consillat connections between nodes belonging to
the same community can be, eventually, less dense thanadgmewith other communities. Thus, the
definition of community acquires a broader sense.

Networks with an equitable partition of the node set can iilesanodels consisting of multiple
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smaller sub-populations such as, e.g., households, warkp)] or classes in a school, when the inter-
nal structure of each community is represented by a comptetgh (members of a small community
usually know each other) and all the nodes of adjacent coritiesiare mutually linked (all member of
adjacent communities may potentially come into contactjuitable partitions can be observed also in
the architecture of some computer networks where clustalgents connect to single routers, whereas
the router network has a connectivity structure with theahdegree constrained by the number of ports
(see as examples Fig. 2b). Equitable partitions appeairathe study of synchrony and pattern forma-
tion in coupled cell networks [48, 49] where they are hamddrzed partitions. Equitable partitions
have been used also to analyze the controllability of nagént systems, for the case of a multi-leader
setting [50], and for the leader-selection controllapiitoblem, in characterizing the set of nodes from
which a given networked control system (NCS) is controd&lmhcontrollable [51]. These works show
interesting realistic scenarios for the use of equitabtétms.

In particular, since the size of some real networks mighepiositations in our ability to investigate
their spectral properties, we can leverage on the strugtgalarity of network with equitable partition,
to reduce the dimensionality of our optimization problen®2}3

Next, we define equitable partitions for the case of a dirketeighted networks, extending the
analysis in [20] to this framework. With a little abuse of atbdn, hereafter we shall refer to a partition
of a network, to indicate the partition of its node set.

4.1 Equitable partitions for weighted directed networks.

The definition of equitable partitions can be extended tagiveid directed graphs, based on [16, Def.
8.24]. That definition applies to oriented weighted grafi& Def. A.1]: we prefer to allow for a pair
of symmetric oriented edges in order to cover naturally iembed graphs.

DEFINITION 4.1 LetG = (V,E,p) be a weighted directed graph. The partitmwa- {Vi,...,V,} of the
node seV is calledinward equitableor outward equitabléf for all i, j € {1,...,n}, there are

CETGR sit. Z/p((v’w)):c;?, forall vev,

WEVj
or

eR st Z/ p((wv) =, forall veV,
WEVj

respectively. The partition is callezfjuitableif it is both inward and outward equitable, hence for all
i,j €{1,...,n}, there are

cjeR st Z/p((v,w))er((w,v)):cij, forall veW.
WeVj

We shall identify the set of all nodes Y with thei-th communityof the whole population.

REMARK 4.1 Letk; be the number of elements \4f i = 1,...,n. If the partition of the node set of a
weighted di-graph is equitable, then foralj € {1,...,n},

kicg" = kjclt, (4.1)
An equitable partition generates theotient graph G, which is amultigraph directed and weighted,
with cells as vertices. For the sake of explanation, in tiieviang, we will identify G/ mrwith the simple
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graph having the same vertex set, i.e. composed by the wbise an edge exists between two cells, if
at least one exists in the original multigraph.

For the purpose of modeling, nodes of the quotient graph @aresent communities, e.g., villages,
cities or countries. Link weights in the quotient graph, unnt provide the strength of the contacts
between such communities. In particular, the weight of k tiray be (a non-negative) function of the
number of people traveling per day between two countrie&dh the frequency of contacts between
them correlates with the propensity of a disease to spreeba nodes.

Related to the quotient graph, there exists a quotient rdtrat contains the relevant structural
information of the networks. Thus, let us considertheN matrix S= (sy), where

1 A
Sv:{ﬁ Ve

0 otherwise

from which it follows thatSS = I,. Now let us consider the transpose of the adjacency matritief
weighted directed grap®, that is
AT =A+D, (4.2)

where, we remembe# is the matrix in (2.2) and = diag/4) is the curing rate matrix. Then, the
transpose of thquotient matrixof G (with respect to the given partition) is

Q' :=SA'S.

We can write the following explicit expression fQr :

. ~out
Q" = diag(c"") + l (4.3)
v Kikj ij=1,...n

By (4.1), we can write the matri®' as
Q" = diagf”) + (\/e'ep), (4.4)

REMARK 4.2 We observe that matri@ in (4.4) might not be symmetric, whereas in the case of undi-
rected graphs it is always symmetric (see, e.g., [15, 20fenEhough we have represented the most
general definition of an equitable partition simpler siioa$ can be represented. E.g., nodes of the same
community may infect all nodes in another community with shene rate.

When considering a population partitioned into communijtiesnay be appropriate to take into
account the case where all nodes of a tagged commyhisve the same recovery ralg j =1,...,n.
In turn, such rate may differ from one community to the othée remember thall is the total number
of nodes in the network, whereags the number of communities.

DEFINITION 4.2 Let us introduce thexi n vector of nonzero curing ratés= (31, ..., dn), that we shall
call the reduced curing rate vector abd= diag(A), the reduced curing rate matrix.

Thus, we have the 1 N curing rates vectaft = (1, ...,0n), with components, = §; for all ze V;
andj=1,...,n.
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In appendix 7.1 we shall discuss when and how it is possiblkedace the original system (2.2)
to a system of differential equations, through the mat@X . Since for our optimization problem the
parameter of interest is the epidemic threshold, in thif@eeve limit our self to results related to this
critical value.

LEMMA 4.1 Letrr= {Vi,...,V,h} be an equitable partition. Lé&t" andQ" be weighted matrices as in
(4.2) and (4.4), respectively. Then, it holds:

i) (AT —D)S" = ST(Q" - D).

i) ForallA e Cand allxe C"

(Q"—D)x=Ax ifandonlyif (AT—D)STx=AS"x.

Now let us consider the system BF differential equations (2.2). It is possible to extend [20,
Thm. 4.1] to the case of directed graphs. Following thatltefuve assume that at time= 0 the
infection probability is equal for all nodes in the same camity (while it may differ from one com-
munity to the other), the number of equations in (2.2) canduiced by using the transpose of the
quotient matrixQ" . Hence, the reduced dynamical system writes

dp;(®) _ = .
i ZC?#fbm )+ (=D )P () - Py (), j=1...n (45

wherep; (t) is the infection probability of a node in the communjtyWe can prove that, in the case
of a graph whose node set has an equitable partition regatdless of initial conditionsthe critical
threshold for (2.2), applying Thm. 2.1, can be determine€elatlly considering the reduced system (7.1).

PrROPOSITION4.3 The elements of the curing rates vedor (3, ..., dv), that determine the critical
threshold of (2.2), are identified by the elementgiof (31, ..., 8n), in such a way thab, = §; for all
zeVj, j=1,...,n, for which

r(Q"—-D)=0, (4.6)

wherer is the stability modulus.

Since the quotient matrix and the adjacency matrix have dhgesstability modulus (and so their
transposed do), a computational advantage can be obtairted calculation of the critical threshold
of the system (2.2). This result is very relevant for our imiation problem. Indeed, in the case of
a network with equitable partition, we can use a lower dirf@ra matrix to compute the epidemic
threshold.

5. Optimization for Networkswith Equitable Partitions

In this section, we consider a heterogeneous curing copmotommunity. First, we assume that all
nodes in communityj infect all nodes in community with the same infection ratg3v;, and that
Buv; =By, i, i =1,....n. Inthis case, the graph is undirected and the weights arengyric, thus the
quotient matrixQ is symmetric and has real eigenvalues. Now let us consi@et #n reduced curing
rate vectord, the cost function writes

n
Z k151
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Thus,U (A) is the cost for curing all elements of each communjitgt rategj, wherec; >0, j =
1,...,n. We seek for the solution of the following

Problem 5.1 (Eigenvalue Constraint Formulation) Find A > 0 which solves
minimize u(a)
subjectto:  Ay(Q—diag(4)) <0, A >0
which also writes

Problem 5.2 (Semidefinite Programming Formulation) Find A > 0 which solves

minimize u@a)
subjectto:  diagd) —-Q >0
A>0

Thm. 3.3 guarantees the feasibility of the problem. The g#r@ase of equitable partitions intro-
duced in Sec. 4.1, may not lead to a symmetric quotient m&triklowever, we may consider subop-
timal solutions — as explained in Sec. 3.1 — obtained by apglthe formulation of our optimization
problem to the hermitian part &J.

In the next section, we consider a simpler version of Probk? and we design a more efficient
algorithm with respect to the SDP program.

5.1 Two-level curing problem

The state of the art for SDP solvers such as, e.g SBT3 solver used for our numerical computation,
provide solutions for moderate size graphs. Actually, teet known bound for the complexity of an
solution attained with an interior point methodd$n>°log(1/¢)), wheres represents the accuracy [52].
The problem can be solved more efficiently when we face a éwvetbptimal curing problem, for which
we shall provide an algorithm that yields arapproximation of the optimal solution, with a complexity
equal toO(log(n)n373og(1/¢)) (see Thm. 5.7). Precisely, we consider only two possiblelseuf
the nodes local curing rates, let us sayand d;, that are not fixed a priori. This situation fits well,
e.g., in the case of a network where communities are of “typesy. Communities of the first type are
eligible for curing ratedy, whereas communities of the second type are eligible fanguated;. For
convenience, we define the formeentralcommunities, and the latteierminalcommunities.

Such kind of configuration is suitable for a network that ig}. gbipartite (where each node, e.g.,
represents a full-meshed community), or for an intercotatestars network, i.e., a network obtained
by interconnecting star graphs by linking stars’ centralem(see Fig 2b). Let us note that the Baisib
Albert graph model [53], that captures the power-law deglistibution often seen (or approximately
seen) in real-world networks, can be regarded as a set ofvatibstar graph features [54]. Bipartite
networks, instead, can be used to understand the spreddiegually transmitted diseases, in which the
population is naturally divided into males and females dneddisease can only be transmitted between
nodes of different kinds. Bipartite networks can also repne the spreading of diseases in hospitals, in
which one type of node accounts for (isolated) patients hadther type for caregivers, or some vector-
borne diseases, such as malaria, in which the transmisaioordy take place between the vectors and
the hosts [1].
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Thus, let us consider the following partition of the node sgt= {Vlo, ...,Vrg} andmm = {V1,...,Viw }
We assume that the node set partition= U 71 is equitable. Let us introduce the curing matrix
D = diag(d1m,11,;) and define

10 _ Im O 1L 0 O
m 0 o)’ L [0 R P
whereln, is the identity matrix of ordem. Then, we can write the semidefinite programming for the

two-level curing rates, shortly thé>2curing problem, as follows:

Problem 5.3 (Semidefinite Programming 2D Formulation) Find A, = (&, 1) which solves

minimize U(4Az)
subjectto:  &lId+ &l -Q>0
N> >0

The cost function is

Ulo)= 3 kifo(@)+ Y kfa(a),

Vi€m VzEm
wheref (&) = codo, andfy(d1) = €101, with ¢, ¢ > O, represent the effort to modify the recovery rate
for nodes belonging tw; € 1, andV; € 14, respectively.

In Section 7.5 of the Appendix, we shall provide some simgkgples for the optimal solution of
the Problem (5.3).

5.2 Properties of theD curing problem

In the design of our algorithmic solution, we have leveragedome basic properties of thB 2uring
problem. In order to do so, we need a few basic facts recaéiztd n

PROPOSITIONS.4 LetA be ann x n symmetric, irreducible and non negative matrix andDet
diag(d1, ..., On):

i. if & =0forsome =1,...n,thenA;(A—D) > 0;

ii. The function(da, ...,6n) — A1(A— D) is continuous;

ii. A1(A—D) is strictly decreasing id,i=1,...,n.

Let us denote by = {(d, &1)| A1(diag(dolm, &1y ) — Q) = O} the feasibility region of Prob. 5.3:
same argument of Thm. 3.3 let us state that it is non emptihdumore, the problem structure guaran-
teesl” to be convex [32]. We indicate andl; the standard projections 6f onto thedy-axis and the
0p-axis, respectively.

LEMMA 5.1 (Monotonicity) Letg: & — @(d) be the function that associatesdg< Iy the value
01 = (&) € 1 such thatn1(Q — diag(dplm, b1l )) = 0. Then,p is decreasing.

Proof. First, let us show thap is a well defined function ovel. Let & € o, because of feasibility,
there exist®d1, where(d,d1) € I, such thatA1(Q — diag(d1m,d11y)) < 0. Furthermore, it holds
A1(Q —diag(&1m,014y)) > 0 byi) of Prop. 5.4. Because aif) andiii) in Prop. 5.4 we know that
A1(Q—diag(dolm, &1,y )) is a continuous strictly decreasing functiondafover [0, 31], so there exists
one and only one valug € I satisfying the definition of.
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Letz> 0 and assume thgt(& +z) = ¢(&) + { > (o), for some > 0, i.e, thaty is not decreas-
ing. From the definition ofp there exists G4 w € ker(diag(((60+z)1m, P(d+2)1y) — Q). Hence,
we can write

W (Q -~ diag(&lm, @(30)Lnr) )W =W diag(Zm, ¢ Lur)w-+w" (Q —diag((&+2)Lm, @(+2)1n) )W
=w' diag((zlm, {1y))W > O,

where the strict inequality holds because di#g,, {1,y) > 0. Sincex\l(Qfdiag((Solm, (p(éo)lm() =0,

this means tha® — diag(d1m, ¢(d)1y) must be semidefinite negative and we have a contradidfion.
We prove next that the search for the optimal solution carebgicted to a compact subset/of

THEOREM 5.5 (Compact search set) There exist two péﬁgs“i”,é(’)“a")'and (5{“‘”,6{“_“) such that a
solutionA; = (&3, d;) of Prob. 5.3 belongs to a compact subset o™, 8] x [o™", 5.

Proof.  Let us definecg = Jy,en, Cokj andci = Jy,em Cikz, then we writeU ., = Colmax+ C1lmax,
With Imax @s in Thm. 3.3, and)* = ¢od; + €18;. Let us denoted)™™ = (Imax, Imax), by Thm. 3.3,
A" €T, hencely,,, > U* and, by defining se@ = {(&, &) : od + €181 < Uj,,,, )}, it follows that
(85.0f) e " =T NQ; I'is closed as intersection of closed sets.

Now, feasibility conditions of Prob. 5.3 require mat@x— (6ol,%+ 51Ir$f) to be semidefinite nega-

tive. We definef (&) = Al(Qf (5o|9n+ (@)lé) ): we havef (Imax) < 0 Since(Imax Imax) € I

and f(0) > 0 byi) of Prop. 5.4. By assertiom) in Prop. 5.4,f(&) is a continuous function. Hence,
there existe))"" such thatf (65"") = 0, and sincep is decreasing(dy"") = 6;"**. We can repeat the

same reasoning by inverting the role&fandd definingg(d) = Al(Q— ((W)IS& 61Ir}f) )
Hence, we can assert that exigf8" such thag(s"") = 0 andg(5"") = &

Finally, by lettingr : Cod + €161 = Uy, the pointg(Oy™", 8") and (85", &) belong todl™ N,
i.e., they belong t@l"’, sol"" C [o™, "] x [8{™", 6", and consequently, beird closed, it is also
compact. 0

REMARK 5.1 Thm. 5.5 allows us to identify an interval of the valuesdgpfand & where we can
restrict the search @y, d;). Sincel”’ C [6™", 05" x [6{"", 8["®] and (&g, 87) € I'', thend; € [dp™",
0" andd; € [6™", 6"]. This is one key property in the algorithmic search of theroat solution
presented in the following section.

Finally, a direct proof that the optimal solution lies df’ follows:
COROLLARY 5.1 A solutionA; = (&3, d;) of Prob. 5.3 belongs t8I' N Q.

Proof. Let us assumé\; = (8;,0;) € "\ dr'. A is feasible, hencd;(Q—D) < 0, with D =
diag(d31m, &; 1ny). From Prop. 5.4, again we can fin&0] < d; such thatA1(Q—diag(d;1m, o 1)) =
0, where, i.e.A; = (85,9;) € dr'. But,U(A5) —U(A%) = €1(5] — ;) > 0. Contradiction. O

5.3 Bisection Algorithm

Tab. 1 reports on the pseudocode of algorit@pt i mal Thr eshol d2D: it solves the P curing
problem. It employs three additional functiohef t Cor ner (Tab. 2) Ri ght Cor ner and, finally,
Bi secti onThreshol d (Tab. 3).
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Table 1:Opt i mal Thr eshol d2D: solves the B optimal curing problem via the bisection search.

(&,0) =Opti mal Threshol d2D(Q, co,C1)

ReceivesQ, cg, C1

Returns:d;, o7

Initialize: (§,6"®) = Lef t Cor ner (Q,co,C1)
(8", &) = Ri ght Cor ner (Q,c1, o)
K 1,Ux 1< 0,Ug <+

1. WHILE|Ux—Ux 1| >¢€

22 F=(3+8)/2

3: o «+ Bi sectionThreshol d(Q, %)
4. U1 =Co 85+ €619

5: IF 0Uy<0 % (see Rem.5.2)

6: THEN & =§&

7. ELSE & =0

8: END

9: k—k+1

9:

END

Lef t Cor ner identifies via bisection feasible poind{"", 5"3); the bisection search operated by
Lef t Cor ner —see proof of Thm. 5.5 —is performed along valdes- f(d). The companion function
Ri ght Cor ner identifies the pointd"® &""); the pseudocode is omitted for the sake of space.

Procedure sNegat i veDef i ni t e is the standard test for a real symmetric makito be nega-
tive definite; it requires to verify sgilet Ay)) = (—1)X whereAy is thek-th principal minor ofA, i.e., the
matrix obtained considering the fifstrows and columns only. Finally, thgpt i mal Thr eshol d2D
algorithm performs a bisection search based on a subgtatBsnent over the utility functiod (&) =

€000+ €10( ).

REMARK 5.2 In Tab. 1 we have reported an implementation assumincgtlealation of the subgradient
JdU at each mid poink. However, it is sufficient to evaluate the increment at a pwif &1 within the
feasibility region for somes; > 0: if U(X) < U(x+ &1), then, due to convexity, the whole interval
[X+ &1,+0) can be discarded. Conversely,Uf(x) > U(x+ &), then, due to convexity, the whole
interval [0,x) can be discarded during the search. This operation can bzped at a cosD(1) when

U (x) andU (x+ &;) are known, i.e., at the cost of two callsBif sect i onThr eshol d.

We note thaREPEAT loop stops whem > [|Ai| = |defQ—D)| > [A1|", i.e., whenAs| < (£)Y/™.
Furthermore, the termination conditionBhsect i onThr eshol d, Lef t Cor ner andRi ght Cor ner
requiresA; to lie within the feasible regioandthe determinant to be smaller than

THEOREM5.6 (CorrectnessDpt i mal Thr eshol d2Dis ang-approximation of an optimal solution.

Proof. The algorithm operates a bisection search for a global mimimfU (A2) = €100 + €1¢(d),
whereU (4) is a convex function. Le¥ = U, andA; be the optimal solution: from the properties
of the bisection search on (quasi-)convex functions [3R][@, pp. 145], the accuracy at step=
[log,(V/€)] of the algorithm iU, —U (A5)| <V2 ' <e&. O

Furthermore, we can characterize the computational codtplef the algorithm.
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Table 2: Lef t Cor ner : identifies the left corner of ' C I (Thm. 5.5); the pseudocode of the dual function
(85", 6/™") = Ri ght Cor ner (Q,¢p,cy) is omitted for the sake of space.

(o™, 07"®) = Lef t Cor ner (Q,Co,C1)
ReceivesQ, co, C1

Returns:&y""

Initialize: Umax < (€o + €1)Imax

1. REPEAT

2: o"M=(a+4&)/2

3 gy Unec O

4: D= diag(é{,‘““bflm, 0" ,y)

5: X < isNegativeDefinite(Q-D)

6: | FX=true

7: THEN & =9; % discard larger values
8: ELSE & =98 % discard smaller values
9: END

10: T =detQ—-D)

12: UNTIL X==TRUE AND |T|<é& % Termination condition

THEOREM5.7 (Complexity) The time complexity a@pt i mal Thr eshol d2Dis O(n***log,(n/¢))
wherel = 2.373.

Proof.  The number of iterations of the bisection seakii LE loop (lines 1 to 9 in Tab. 1) is
O(logy(n/¢)). This follows again from elementary properties of bisatsearch [32][Ch. 4, pp. 145].
In fact, the bisection search operates fe£ O (d) < Uy, andUj . = Imax(€o+ €1). Finally, indeed,
Imax < (N—1) max j oj.

Same argument on the measure of the search intervBIss@ct i onThr eshol d, Lef t Cor ner
andRi ght Cor ner let us conclude that they requi@log,(n/¢)) iterations of theREPEAT loop.

Finally, testi sNegat i veDef i ni t e appearing inThr eshol d2D, Lef t Cor ner andRi ght -
Cor ner requires the computation af- 1 determinants of the principal minorsAf- D at costO(n**?).
Here/ is the exponent for fast matrix multiplication [55]. In thase of the Coppersmith-Winograd
algorithm for fast matrix multiplication it holdé= 2.373. O

5.4 Numerical Results

In this section we present the results of numerical exparimim the case of interconnected stars net-
works, a sample network is depicted in Fig. 2b). In Figurev@arompare the ratio between the ddgt

of the uniform curing rate vector, and the optimal dd$t= U (A*) obtained by solving the2 curing
Prob. 5.3, by means of th@pt i mal Thr eshol d2D. The uniform curing rate vector i4 = d1y,
whered is the value such that the threshold in (4.6) is attainedttisrexperiment, we consider that the
infection spreads with ratﬁ,iovjo = o among the central communities and with rﬂyi&;,io = (1 between

a central node and a node in its adjacent terminal commumityeover we assumg = c¢; = 1. We
consider that each terminal community has the same numhbseientk. The computation is made
for different values ok, for three different sample networks, with= 50 central nodes anai = 50
terminal communities. Sample networks differ for the agerdegree of the central nodes. Central
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Table 3:Bi sect i onThr eshol d: given feasibl&), findsd; such tha{dy, &) lies on the frontier of the feasibil-

ity region.
01 =Bi sectionThreshol d(Q, d)
ReceivesQ, &
Returns:f
Initialize: T «—inf, § =0, & < max J ; &
1. REPEAT

2: a=(+&)/2

3 D « diag(dolm, d11yy)

4 X <« isNegativeDefinite(Q-D)

5: IFX=true

6: THEN & = & % discard larger values

7: ELSE & = & % discard smaller values

8 END

9 T =de{Q-D)

10: UNTIL X ==TRUE AND |T|<é& % Termination condition

nodes are connected as BsdRenyi random graphs with = 0.2, p = 0.3, p = 0.6, respectively. The
plot confirms that a larger gain is obtained, in terms of cdsys2D curing policy versus a uniform
approach, in particular, the larger the denser the netwaely, for largemp in our samples. For the
interconnected stars networks samples, in particular,hgeme one order of magnitude gain in the cost
function. We see that the advantage increases as the nufrdlements increases, with a’k shaped
ratio (7.9) as derived in closed form for the came- M = 2. In Figure 3b) we have instead reported,
only, on the optimal codt * for different values oty andc;. In particular, we observe that the optimal
cost appears to depend linearly on the community kizkarger costs are incurred in the case when
the coefficienty, related to the expenditure for the central nodes, is ldtgarc;. This is in line with
the fact that central communities are more connected thrarinial communities, and consequently we
need for more investments in such a way that the infectioes &ubcritical.

In Tab. 4 we compare the performanceQ@gt i mal Thr eshol d2D with an SDP solver, namely
the SDPT3 solver [35]. TheSDPT3 solver generates a solution using a primal-dual inter@nipalgo-
rithm which leverages on the infeasible path-followingguigm. As reported in Tab. 4, when the solver
is applied to Prob. 5.3, we denote the corresponding sola@s&DPT3 ( 2D) . For the sake of compar-
ison, we have reported also on the optimal solution derivitd thhe same solver when curing rates are
optimized per node (Prob 3.2), and we refer to this solut®8RPT3. The solution is provided on a
graph withm = m' = 50 andcy = ¢; = 1, for increasing values of the terminal community dimensio
k. We can observe that for the interconnected stars networthe case of two infection rate levels,
SDPT3, SDPT3 (2D) andOpti mal Thr eshol d2D provide similar values. This result suggests
that, in this particular case, there is no advantage to &aelh node with different curing policies: the
general solution obtained usir8PPT3 has similar performance as the one generated solvingbhe 2
formulation of the problem, i.e., by usir@t i mal Thr eshol d2D or SDPT3 ( 2D) in the 2D case.
We observe also that the curing rate of terminal nodes apfresensitive to the increase of the terminal
communities sizé, as it can be seen, with a direct computation, in the examptefor the case with
m=1 andm= 2, respectively. In Tab. 5, same performance evaluatiorbban reported for the same
sample graph and the same cost coefficients, but studyingatde with more than two infection rate
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FiG. 3: (a) RatioU,/U* for increasing sizé of the terminal communities of interconnected star networks with
m=m = 50. The three curves refer to networks where the central nodeoanected as Efis-Renyi graphs
generated fop = 0.2, p= 0.3 andp = 0.6 respectivelyBy = 1, 1 = 0.3, ¢cg = ¢1 = 1. (b) Cost functiorJ* for
increasing dimensiok of the terminal communitiegdy = 1, B; = 0.3. The curves refer to the cape= 0.3 in the
casexy = 2c1, Co = C; and Zg = ¢1, respectively.

levels; specifically a central node can eventually infeches its adjacent central nodes with a different
infection rate, also the infection rate between a centrderend a terminal community can vary from
a subgraph to another. The infection rates are generatedifasnu random variables in the interval
(0.1,1.9) and(0.03,0.57) for the speed of infection between central communities atadéen a central
node and a terminal community respectively.

As seen there, by curing nodes with different curing po$idtes possible to attain lower costs at
larger values ok. This effect is depicted also in Fig. 4. In particular, ag#ie 2D curing rates output of
SDPT3 (2D) andOpt i mal Thr eshol d2Dshow similar performance and the optimal curing rate of
terminal communities appears insensitive to the incre&ieederminal communities size. We observe
that the relative advantage of tBBPT3 tends to increase with the size of the terminal communities.

In the final set of experiments we study the case of a complig@tiie graph. We consider
that the community whose curing rate dg, to which we refer to as the central community, has a
fixed dimensiorkg = 50; instead, for the so-called terminal community, wdthcuring rate, we con-
sider increasing siz& = 1,50,100,150,200. In Fig. 5a) we report on the ratio between the cost
obtained by using the uniform curing policy, namély, and the optimal cost/* obtained by means
of the Opt i mal Thr eshol d2D, in the case of equal coefficients = c; = 1. As expected, we can
see that whek; = 1 we obtain an advantage in the use of the two-level curiregesiy. Clearly, when
the two communities have the same size there is no differeetveeen the two costs; the ratio starts to
grow again as the asymmetry in terms of communities dimessitarts to increase again.

In Fig. 5b), we compare the effect of having two differenttcosefficients, preciselg; = 4cy,
with the case where they are the same, nanegly:- c; = 1, considering that their total amount is
given and fixed a priori, that isp + ¢ = 2. A bias in the cost coefficient towards terminal community
has a beneficial consequence because the optimal cost istltavethe case of equal coefficients, the
advantage increases the larger the size of the terminal coitynHowever, it is interesting to note that
we would have obtained the same optimal cost if we intercbdtige two coefficients, namety = 4c;
(see example 7.5). Basically, due to the specific topologthefnetwork, we have an advantage in
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Table 4: Performance @pt i mal Thr eshol d2D, SDPT3 (2D) andSDPT3. The graph considered is an inter-
connected star network witlm = m’ = 50, where the connection between the central nodes are represgraed b
Erdés-Renyi graph generated with = 0.2; cg = ¢; = 1 and the values of the weights g8¢= 1, andf3; = 0.3.

In the SDPT3 case, the values @f*, i = 0,1, represent the averaged value of the node-specific curing rates ov
community.

[ [ Optinal Threshold2D | SDPT3 (2D) [ SDPT3 ]
kK | vad & ko, | U™ & ko, | U™ & K& |
0 08057 13116 029979 080572 131144 03 0772 1244 03
20 11057 16,1163 029984 11057 161144 03 1072 1544 03
30 14056 10.1222 029964 14057 19.1145 03 1372 1844 03
40 17055 22.1294 029951 17057 221144 03 1672 2144 03
50 2.0053 251354 029943 2.0057 251144 03 1972 2444 03
60 23052 728.1414 029934  2.3057 281144 0.3 2272 2144 03
70 26049 311578 029914  2.6057 311145 0.3 2572 3044 03
80 29047 341792 029893 2.9057 341144 03 2872 334400 03
90 32043 371929 029884 3.2057 371144 03 3172 364402 03
100 35039 401319 0.2994]  3.5057 401144 0.3 34723944 03

Table 5: Performance @pt i mal Thr eshol d2D, SDPT3 (2D) andSDPT3, sample graphs are obtained from
the same graph used in Tab. 4 aipd= c; = 1. The infection rates are generated as uniform random variables in
the interval(0.1,1.9) and (0.03,0.57), for rates between central communities and between a central node and
terminal community respectively. In tt8DPT3 case, the values &, i = 0,1, represent the averaged value of the
node-specific curing rates over a community.

[ [ Optimal Threshold2D | SDPT3 (2D) [ SDPT3 ]

[k [ v@e) & ke | UQ0P) & kg | UAP) & ko |
10 19963 341309 0.57945] 10063 341300 0.57945] 1.0379  33.4102  0.53481
20 25603 39.3993 _ 0.5903 25603 39.3993 _ 0.5903 24307 38.3384__ 051382
30 31665 44.9001 0.61431] 3.1666 _ 440001 0.61431] 2.0536 _ 43.5660 _ 0.51682
40 37954 50.6431 0.63164] 3.7957 _ 50.6431 0.63164| 3.4781 _ 48.8125 051876
50 44332564137 _0.64490| 44336 564137 _0.64499| 4.02/9 _ 54.3098 _ 0.52495
60 51272 62.627 _ 0.66528| 51278 62627 _ 0.66628|  4.6049 _ 60.0804 _ 0.53364
70 58175  69.0200 067/612| 58184 _ 60.0209 0.67612| 51505 656263 _ 0.53663
80 64779 74.8633 068360  6.4792 _ 74.8633  0.68369| 56708 _ 70.7388 _ 0.53346
90 71277 80.4688 068984  7.1208 _ 80.4688  0.68984|  6.1686 _ 75717 _ 05295
100 78361 87.1312 _ 0.6959 7839 87.1312  0.6959 67182 812132 053151
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FiG. 4: Details of the costs in the case of uniform distribution of infection rats Tab. 5).

considering different cost coefficients for the two comntiesi instead of having them equal, if their
total sum is fixed.

6. Conclusions

We have studied the problem of finding a non-uniform allaraif curing resources, within a net-
worked population, at the minimum cost possible to avoidgpiglemic from persisting indefinitely in
the network. We have considered a mean-field approximafi@n &S model to study the diffusion
of epidemics over a directed weighted graphs, capturingptissible asymmetric interactions, and the
heterogeneity in the contagiousness. We have reportedearettessary and sufficient conditions for the
extinction of the epidemics. These conditions are relaigbée sign of the stability modulus of a matrix
encoding for the network structure and for the parametetiefmodel. Thus, such stability modulus
represents the epidemic threshold of our system. Constguea have formulated a convex optimiza-
tion problem for determining a cost-optimal curing poligia a semidefinite programming approach,
involving, the spectral properties of the network.

Then, we have specialized the theory to the case of equitatitions, in order to model heteroge-
neous community networks that possess a certain degregudarity in their connectivity; this choice
has been motivated since communities are relevant naaltrdpological feature of complex networks,
that often have a certain regularity in their structure. §ha this case, we were able to reduce the
dimensionality of our optimization problem, that is usefirice the size of many real-networks poses
limitations in investigating their spectral properties.

At last, we have discussed on the special case of a two-dioraluring policy, that can reflect,
e.g., the case of different policy decisions for two diffgrkinds of individual units (male and female,
younger and elders, small villages and cities, firewaldgalys or clients in an enterprise network,
etc.,...). With respect to this problem we have proposeg-approximation algorithm with polynomial
complexity in the input size.

Fundings. This work has been partially supported by the European Casion within the frame-
work of the CONGAS project FP7-ICT-2011-8-317672 (ké¢ p: / / www. congas- pr oj ect . eu
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FiG. 5: (a) RatioJ,/U* in the case of complete bipartite graphs for increasinglsize 1,50,100,150,200 of the
terminal community, and fixed si2g = 50 of the central communityB = 1, cg = ¢; = 1. (b) Cost functiorJ*
for increasing dimensioky of the terminal community and fixed sikg = 50, 8 = 1. The two curves refer to the
casexy = ¢1 = 1 andc; = 4cy, respectively, in such a way thag+c; = 2.

7. Appendix
7.1 Dimensionality reduction of the dynamical systgh?)
Let us defineg, as the element &' in position(i, j). We know that

. ~out
kl ij

Kjkm

T
Qim =

hence

out __ v Kikm 1 _ ﬁ ok T
ij - k]. qjm - kj qjm'

Thus we can write (4.5) in the following matrix form

? = (Q—-D)P(t) — diag(P(t))QP(t), (7.1)

whereQ = diag<\/lkf_> QT diag(\/kj). Itis immediate that(Q") = o(Q).
]

By [20, Corollary 4.2], irrespective of the initial conditis of nodes in the same community, it is
sufficient to compute the positive steady-state veletoof the reduced system (7.1) to obtain that of the
original system (2.2). Indeed, as time elapses all noddseisame community tend to have the same
infection probabilities, thus the components of the stestdye vectoP, corresponding to nodes in the
same community are equal.
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7.2 Proof of Lemma 4.1
Proof. i) We first prove thaAT ST = STQT. In fact, ifi € W, it holds

cout

ATSTY; | L 7.2
( )|,] m? ( )

1 chft
(STQT)i.,j ﬁqﬁj = \/7:(7 (7.3)

j

We further note thatDS' )i, = (S'D)in = ﬁéh, if i € Vi, otherwise(DS" )i, = 0. Thus the state-
ment holds.

ii) By using the result in), the proof in [15, Thm. 2.2] applies. O

7.3 Proof of proposition 4.3
We first need some technical facts to prove Prop. 4.3.

PROPOSITION7.1 LetA be ann x nirreducible and non-negative matrix and 2t= diag(d, ..., on).
Then it holds:

i. A—D isirreducible, for eaclid, ..., on).

ii. There exists an eigenvectarof A— D such thatv > 0 (i.e. each componemt > 0,i = .,n)and
the corresponding eigenvalueriA — D), for each(d, ..., 6n).

Proof. i. From [29]: an x n matrix A is said to be irreducible if for any proper sub&st {1,...,n}

there existd € Sand j € S = {1,...,n} — Ssuch thata;; # 0; sinceA is irreducible, the definition

applies immediately té— D;

ii. See [29, Lemma 4.2]. O
With these background statements we prove Prop.Rr@f. Basically, by Theorem 2.1, we have

to show that

r(AT-D)=r(Q-D)=r(Q" - D). (7.4)
We first prove that
r(Q"—D)=r(A" —-D). (7.5)
Letc € R such that botta],— & +c >0, forallz=1,...,N andg] — i +c>Oforalli=1..

Let us defineAT — DT + clyxn = AT and QT — D+c|nxn QT. AT andQT are non negatlve and
irreducible matrices (selg in Proposition 7.1). We order the elgenvaluesQTf so that|)\1(QT)|
|)\2(QT)| > |An (QT)\ and similarly forAT. By the Perron-Frobenius theorem [56, Chapter 8], the
eigenvalue of maximum modulus of an irreducible and non tegaatrix is real and positive and its
corresponding eigenvector, the Perron vector, is the enfgp to a factor) strictly positive eigenvector
of the matrix. Hence there exists an eigenveetar 0 of QT corresponding ta\;(QT), i.e. w; > 0,
foralli=1,....n. Now, byii) in Lemma 4.1 and sinc8' I,,.n = InxnS', we have thaS'w > 0 is the
eigenvector ofAT corresponding to\l((jT). However, becaus8'w is strictly positive, it must be the
Perron vector oAT, consequentiy\; (AT) = A1(QT). Since

r(Q) =A1(QT) = AL(AT) =r(AT),

and
r(Q"—D)+c=r(Q") =r(AT) =r(A" D)+, (7.6)
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(7.5) is proved. Now we prove that
r(Q-D)=r(Q" -D). (7.7)

Let the matrixA = diagk;), i = 1,...,n. For anyn-dimensional vectov and scalaid € C we have that
(Q-D)v=2Ave (A’%Q/\% —5)v:/\v<:>
(QA% —BA%)V:/\/\%V@

(Q—D) (/\%v) =A (/\%v),

hencer € 0(Q—D) <= A € 0(Q—D), so that (7.7) is verified. In conclusion, from (7.7) and {t5
follows (7.4). O

7.4 Proof of proposition 5.4

Proof. i. Let & =0 for somei = 1,...n and assume that;(A— D) < 0: for the vectorg of the
canonical basis it holdg' (A—D)e = €' Ag > 0 which is a contradiction.

ii. The eigenvalues of such kind of matrix vary with contityuivith the entries of the matrix [56,
Appendix D].

iii. Let us considerc > 0 such that-dj +c>0foralli=1,...,n. Then,A— D + cl is non-negative
irreducible andA\1(A—D +c- I) is actually its Perron-Frobenius eigenvalue [56, ChapteN8w, we
can write for anye > 0

AM(A—D+ediage)) =A1(A—D+ediage) +cly) —¢c> A (A—D+cly) —c=A1(A—-D),

where the strict majorization holds because the Perrobdfinis eigenvalue is strictly increasing in
any entry of the matrix [57, 56].
U

7.5 Examples

1. A simple example of the optimal solution for the case of mecwnity network is that of a star
graph, where we have two communities, one formed by thealemide and the other by the leaf nodes.
Assuming that the infection rate [ we have to find the value @ and?d; for which Q — D has the
maximal eigenvalue which is equal to zero. The charactepstiynomial of 3Q — D for a star graph
with k leaves is

PA(BQ—D) = A%+ (& + &1)A + & — Bk
We observe thad = 0 belongs to the spectrum @Q — D if and only if & = B%k/&. This also
ensures that the second eigenvalue is negative and, camhgd = 0 must be the largest eigenvalue
of BQ — D. Thus replacing the value @ obtained above in
U (&0, %1) = Codo + C1kdy,

and setting to zero the following derivative
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U'(8) = ——=— +cik,

we have that the linear cost optimization is solved for

P R
%—Bk\/; 5 Bﬁ, (7.8)

which in turn provides the optimal cost

U* = Bk(co\/§+ Cl\/cai) — 2BK(\/C1Go).-

We observe that the optimal cost is linear in the terminal momity sizek.

In the case of a uniform curing policy, where all nodes aredat rated, we have that the value of
d such that = 0 is the largest eigenvalue BQ — D is equal toBv/k, thus the valuéJ, of the total cost
is

It is easy to see that the rati /U* is increasing in(1, ), moreover we can observe that

U

u%: = O(VKk). (7.9)
Hence it is clear that we have an advantage in consideringdavel curing policy, with respect to the
uniform curing policy.

2. Now we consider an interconnected star network with twked central nodes, where each terminal
community has the same number of eleméni#/e setf as the infection rate between the central nodes
andep the infection rate between a central node and a node in it&adj terminal community, where

€ > 0. After computing the characteristic polynomial @ — D we can see that the zero eigenvalue
belongs to the spectrum BfQ — D provided that

3507 — 2B*dd e’k + e* B — B237 = 0.

The values ofdy for which A = 0 corresponds to the largest eigenvalugBqf — D is equal tody =
/32;12" + B and the linear cost optimization is solved for

C1 Co
wop(efZ1), aep /O

Consequently the optimal cost is

U* =2Bc <£k\/z+ 1) +201k\/cai£[3 = 2B/Cotr(e(k+1) + o). (7.10)

In the case of a uniform curing policy we have that the valué sluch thatA = 0 is the largest
eigenvalue i + /B2 + 4B2¢2k) /2 and the value of the total cost is

Uy =Co(B-+v/B+4B262K) +ek (B-+/ B2+4B2E%K)
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The ratioU,/U* is increasing in0,«), and again we have that

Yy

U = O(Vk).

3. Now we consider a complete bipartite graph. Basicallyhase two communities and we denote by
ko the number of elements in the community whose nodes haveepcoatedy andk; the number of
elements in the community whose nodes has recovendiafEhe optimal curing rates are

P o [®
&—Bkl\[o, 61—Bko\/;
U Z%koﬁkl\/g +Clk13k0\/cai-

In the case of a uniform curing policy the valued@§uch thatt = 0 is the largest eigenvalue is

0 = B/ koki,

and the optimal cost is

and the cost is
Uy = CokoB 1/ Kok1 + C1k1 B4/ Kok.

In this case the asymptotic behaviordf /U * for high values okg andk; depends on the direction
in which we move, thus we can not say anything in this regard.
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