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This paper studies the dynamics of complex networks with a time-invariant underlying topology,
composed of nodes with linear internal dynamics and linear dynamic interactions between them.
While graph theory defines the underlying topology of a network, a linear time-invariant state-space
model analytically describes the internal dynamics of each node in the network. By combining linear
systems theory and graph theory, we provide an explicit analytical solution for the network dynamics in
discrete-time, continuous-time and the Laplace domain. The proposed theoretical framework is scalable
and allows hierarchical structuring of complex networks with linear processes while preserving the
information about network, which makes the approach reversible and applicable to large scale networks.
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1. Introduction

Networks are everywhere. Real-world examples of networks are electric power networks, transportation
networks, water networks, economic networks, the Internet, the World Wide Web, social networks and
biological networks. Dorfler et al. [1, 2] applied network concepts on electrical networks. Van Mieghem
et al. [3] examined resistive networks and provided best spreaders, based on a weighted Laplacian
matrix, while Cetinay et al. [4] analysed the vulnerability of power networks under targeted attacks.
Guimera et al. [5] found that the world-wide air transportation network is a small-world network, while
Dunne et al. [6] discovered that food-web networks are generally not small-world networks. Newman
et al. [7] used the theory of random graphs with arbitrary degree distribution to model the behavior of a
collaboration network of scientists. Topology of the Internet and the World Wide Web was discovered
by Faloutsos et al. [8]. In the past two decades, the network topology has been deeply studied, for which
we refer to the books by Newman [9]; Boccaletti et al. [10] and by Van Mieghem [11].

Each network is defined by its underlying topology and the dynamics that take place on the network.
The interplay between the network topology and dynamics has been an active field of scientific research
in the past two decades [12]. However, Newman [9] observed that the progress in analyzing the struc-
tural properties of the network has been faster than the one related to the dynamics taking place on the
network. Barzel, Harush et al. [13–15] showed that, while many real networks tend to have similar
(universal) structural properties, there exist classes of dynamical processes that exhibit fundamentally
different flow patterns. The network dynamics depend on both the network topology and the type of
dynamic interactions between the nodes.

During last two decades, dynamical processes on complex networks such as phase transitions [16],
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percolation [17], synchronization [18], diffusion [19], epidemic spreading [20–23], collective behavior
[7] and traffic [24] have been intensively researched [12]. The dynamics of the real-world networks are
non-linear and their underlying topology is time-varying [25]. However, complex networks with linear
dynamics have been intensively researched recently [26, 27], which can be motivated in several ways.
Firstly, non-linear dynamics on the networks can be approximated [28] or bounded [20] by the linear
dynamics, in most cases. Secondly, the notion of controlling complex networks has become an important
research question [27, 29]. In system theory, non-linear system control is a difficult problem, which has
been developed on previously well-established linear system control theory [30]. An analogous order of
research development is noticeable in network control theory. Several names for the complex networks
with linear dynamics have been used in literature, such as networks of agents (dynamical systems) [31],
networked multi-input-multi-output (MIMO) systems [32] and complex networked dynamical systems
[26]. Mentioned approaches define models of the network with linear processes from the system/control
theory point of view.

Here, a general framework for a complex network with linear processes is proposed, where nodes
perform heterogeneous, higher-order linear dynamics, with multi-dimensional input and output vectors.
The framework is based upon two assumptions: (1) The internal dynamics of the nodes, as well their
interactions, are linear and (2) The underlying topology of the network is time-invariant. The frame-
work allows each dynamic interaction between the nodes to be defined locally and independently and
results in the most general description of a network of linear processes available in the literature, to
our best knowledge. We provide the analytic solution (both in discrete-time, continuous-time and the
Laplace domain) for the network dynamics as a whole, in terms of the internal dynamics of the nodes
and the underlying graph that couples these linear processes. Thus, we preserve the network perspec-
tive. A major novelty is the hierarchical structuring of linear dynamics, in which the lowest level in the
hierarchy describes individual linearly interacting processes. After a certain clustering, subnetting or
grouping of linear processes (i.e. nodes on the lowest hierarchical level), these clusters can be aggre-
gated on the next higher level of the hierarchy again as a linear process, though with a different linear
dynamics. The key property of such nodal aggregation is that no information by condensation is lost! In
other words, the aggregated node precisely shows the same linear dynamics as the lower level group of
individual nodes. Thus, the linearity preserves information, but allows to shield the lower level intercon-
nection details and enables very large networks to be condensed into a smaller network of interacting
aggregated nodes that preserves exactly the linear dynamics! In fact, a network with linear processes of
any size can be iteratively condensed into a set of hierarchical layers, in which each layer still presents
a desired, aggregated network structure. An example is traffic flows (steered by a linear process) in a
small neighbourhood, condensed into a city, while cities can be condensed to countries etc. Another
example are different measurement techniques of a same phenomenon, where each technique has its
own granularity. As long as those techniques are linear, finer-detail measurement can be aggregated
with coarser ones by choosing the proper hierarchical layer that combines them. Although the spread of
Corona has not a linear dynamics (but can be linearized [33]), mobile individual traces can be combined
with aggregated flows measured by sensor, telecom base-stations, WIFI hotspot and so on.

The present paper does not directly contribute to the control theory. However, the proposed model
preserves the network perspective in developing the governing equations. The generality of the pro-
posed model (i.e. the type of one-node dynamics and the interactions between nodes), the reversible
scalability of the hierarchical structuring as well the network perspective based governing equations are
novelties of this paper. Another important application of the proposed model for networks with linear
processes is identification. Suppose that input and output sequences can be measured at certain places
in the network during a long enough time period. Linear system identification then allows to determine
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the exact governing equations (see [34]). Our general framework for linear networked processes hier-
archically groups the subnetworks between measurement nodes and the aggregated linear dynamics of
these subnetworks can be identified.

The paper is structured as follows. Section 2 introduces basic terminology and notations, while the
network dynamics and hierarchical structuring are analysed in Section 3. The concept of Extended graph
is introduced in Section 4, while the analytical solution for the network dynamics in the discrete-time
domain is provided in Section 5. Finally, we conclude in Section 6.

2. Basic notations

Complex networks have two general features: a graph and a service or function, specified by dynamic
processes [35].

2.1 Network topology

The underlying structure (topology) of the network is assumed to be time-invariant and is represented
by a graph G(N ,L ). The graph G is defined by a set N of N = |N | nodes, representing N systems1,
and by a set L of L links, that interconnect the systems. The link existence of the graph G is specified
by the N×N adjacency matrix W , where wi j = 1 means that there exists a link between node i and node
j, otherwise wi j = 0. The graph G is assumed to be directed, which implies that the adjacency matrix
W is not symmetric in general, i.e. W 6=W T .

A node i of the graph G can also be connected to external nodes. We distinguish two types of
external nodes: input and output nodes. The input nodes provide links to the nodes of the graph G and
have zero in-degree, while the output nodes receive links from the nodes of the graph G and have zero
out-degree. In contrast to external nodes, we call the nodes and the links of the graph G internal nodes
and internal links, respectively.

There are r input nodes, defined by the set M . The input nodes connect to the internal nodes via
input links, specified by the r×N matrix Φ :

Φ =


φ11 φ12 . . . φ1N
φ21 φ22 . . . φ2N

...
...

...
...

φr1 φr2 . . . φrN

 (2.1)

where φi j = 1 defines the existence of an input link between the i-th input and j-th internal node,
otherwise φi j = 0.

There are q output nodes, defined by the set P . We refer the links connecting the internal and output
nodes output links. The existence of the output links is defined by the N×q matrix Ψ :

Ψ =


ψ11 ψ12 . . . ψ1q
ψ21 ψ22 . . . ψ2q

...
...

...
...

ψN1 ψN2 . . . ψNq

 (2.2)

1In this work, the words node and system have been used interchangeably
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FIG. 1. Different types of nodes and links, in case of a network of 10 nodes

where element ψi j indicates whether the i-th internal node provides an output link to the j-th output
node (ψi j = 1), or not (ψi j = 0).

Finally, each input node can be directly connected to an output node as well. We refer to such a link
as external link and define their existence with the r×q matrix Z:

Z =


z11 z12 . . . z1q
z21 z22 . . . z2q
...

...
...

...
zr1 zr2 . . . zrq

 (2.3)

where element zi j defines whether there is an external link between the input node i and the output node
j (zi j = 1) or not (zi j = 0).

The in-degree of the i-th output node is (uTΨ)i + (uT Z)i, while the j-th input node has the out-
degree (Φu) j +(Zu) j, where u is the all-one vector. All types of nodes and links defined above are
presented in Fig. 1 and labelled by a different colour, for a graph G of 10 nodes, with additional 5 input
and 4 output nodes.

2.2 Processes on the network

Each node in the network is a linear time-invariant (LTI) system, whose dynamics are defined by a
discrete-time linear state space (DLSS) model [36]. The dynamics within the i-th node/system obey the
DLSS governing equations: {

xi[k+1] = Ai · xi[k]+Bi ·ui[k]
yi[k] =Ci · xi[k]+Di ·ui[k]

(2.4)

where the discrete time is modelled by k. The ni×ni state matrix Ai defines how the ni×1 state vector
xi depends on its previous value, while the ni×mi input matrix Bi determines the relation between the
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state vector xi and the previous value of the mi× 1 input vector ui. The relation between the pi× 1
output vector yi and the state vector xi is defined by the pi×ni output matrix Ci. Finally, direct relation
between the output vector yi and the input vector ui is defined by the pi×mi feedforward matrix Di.

The interconnected DLSS dynamics are sketched in Fig. 2, in case of a network with three nodes.
We define the N×1 vector n, containing the number of states for each node/system of the network:

A1, B1, 
C1, D1

A3, B3, 
C3, D3

m1
p1 m2

m3
p3

p2

𝑥3 𝑘 + 1 = 𝐴3 ∙ 𝑥3 𝑘 + 𝐵3 ∙ 𝑢3 𝑘
𝑦3 𝑘 = 𝐶3 ∙ 𝑥3 𝑘 + 𝐷3 ∙ 𝑢3 𝑘

𝑢1[𝑘] 𝑢2[𝑘]

𝑢3[𝑘] 𝑦3[𝑘]

𝑦2[𝑘]𝑦1[𝑘]

1

2

3

𝐺(𝒩, ℒ)

A2, B2, 
C2, D2

Processes 
in the network

Network 
topology 

𝜇1

𝜌1

𝜂1[𝑘]

𝜉1[𝑘]

External input vector

External output vector

Interconnection vector

FIG. 2. DLSS dynamics of a simple network with N = 3 nodes/systems

n =
[
n1 n2 . . . ni . . . nN

]T (2.5)

Similarly, we define the N×1 vector m that contains the dimension of the input vector ui for each system
(i ∈N ):

m =
[
m1 m2 . . . mi . . . mN

]T (2.6)

where mi represents the dimension of the input vector ui of the node/system i. Analogously, the N×1
vector p defines the dimension of the output vector yi for each system in the network (i ∈N ):

p =
[
p1 p2 . . . pi . . . pN

]T (2.7)

where pi represents the dimension of the output vector yi of the i-th system.
The input vector ui of the i-th system of the network can be composed of the output vectors from

other systems (due to interconnections) and of the external input vectors. In other words, only internal
and input links can be connected to an internal node.

The i-th external input vector is denoted by ηi and has dimension µi×1. We define the r×1 vector
µ that contains the dimension of each external input vector:

µ =
[
µ1 µ2 . . . µi . . . µr

]T (2.8)
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In addition, we define the M×1 vector η , by concatenating r external input vectors:

η =
[
η1 η2 . . . ηi . . . ηr

]T (2.9)

where M = ∑
r
j=1 µ j.

An external output vector can be composed of the output vectors of the systems from the network, as
well as of the external input vectors. The i-th external output vector is denoted by ξi and has dimension
ρi×1. We define the q×1 vector ρ containing the dimension of each external output vector ξi (i ∈P):

ρ =
[
ρ1 ρ2 . . . ρi . . . ρq

]T (2.10)

In addition, we define the P×1 vector ξ , composed by concatenating q external output vectors:

ξ =
[
ξ1 ξ2 . . . ξi . . . ξq

]T (2.11)

where P = ∑
q
j=1 ρ j. We introduce the N×1 vectors lφ and lw, as well as the q×1 vectors lz and lψ as

A1, B1, 
C1, D1

A2, B2, 
C2, D2

p1 m2

𝑢2[𝑘]𝑦1[𝑘]

𝑝1=𝑚1=3

𝑦1 𝑘

𝑘

𝑦1 𝑘 = 𝑢2 𝑘

0

1 2𝐺(𝒩, ℒ)

3 4

5

𝑦2[𝑘]

p2

𝑢1[𝑘]

(a) Network topology 

(b)  Processes 
in a subnet of 𝐺

(c) A realization of an 
output process in 
discrete time 𝑘

m1

FIG. 3. Network topology, processes and time realization of a process

follows:
lφ = ΦT ·ur×1 lw =W T ·uN×1
lz = ZT ·ur×1 lψ =Ψ T ·uN×1

(2.12)

where (lw)i defines the number of internal links connected to the internal node i, while the number of
input links that internal node i receives is defined by (lψ)i. Additionally, the output node i receives (lψ)i
links from the internal nodes, as well as (lz)i external links. Total number of the internal, input, output
and external links is defined as follows:

Lw =
(
lw
)T ·uN×1 Lφ =

(
lφ
)T ·uN×1

Lψ =
(
lψ
)T ·uq×1 Lz =

(
lz
)T ·uq×1

(2.13)
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respectively.
A graph G of 5 nodes, together with the one input and one output node is presented in Fig. 3(a). The

processes within the first and second node of G are sketched in Fig. 3(b). Finally, a realization of the
output vector of the first node is presented in Fig. 3(c).

The dimension mi of the input vector ui of each node in G (i ∈N ) must obey:

m =W T · p+Φ
T ·µ (2.14)

Analogously, the dimension ρi of each external output vector ξi (i ∈P) must obey:

ρ =Ψ
T · p+ZT ·µ (2.15)

Relations (2.14) and (2.15) can be written together in a matrix form:2[
mN×1
ρq×1

]
=

[
W T

N×N ΦT
N×r

Ψ T
q×N ZT

q×r

]
·
[

pN×1
µr×1

]
(2.16)

3. Network dynamics

A complex network is composed of N nodes/systems, with internal DLSS dynamics defined by (2.4). We
now would like to find the dynamics between the aggregated external output vector ξ defined in (2.11)
and the aggregated external input vector η defined in (2.9), by following DLSS governing equations:

𝑥𝑒 𝑘 + 1 = 𝐴𝑒𝑥𝑒 𝑘 + 𝐵𝑒𝜂 𝑘

𝜂 =

𝜂1
⋮
𝜂𝑟

𝑥𝑖 𝑘 + 1 = 𝐴𝑖 ∙ 𝑥𝑖 𝑘 + 𝐵𝑖 ∙ 𝑢𝑖 𝑘

𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖𝑆𝑖

𝑆1 𝑢𝑖 𝑘 𝑦𝑖 𝑘

𝑆3
𝑆4

𝑆2

𝑆5

𝑆6

𝑆𝑒

𝜉1 𝑘 𝜉2 𝑘 𝜉3 𝑘 𝜉𝑞 𝑘

. . .

. . .

𝜂1 𝑘 𝜂2 𝑘 𝜂𝑟−1 𝑘 𝜂𝑟 𝑘

𝜂 𝑘

𝜉 𝑘

𝜉 𝑘 = 𝐶𝑒𝑥𝑒 𝑘 + 𝐷𝑒𝜂 𝑘

𝑦𝑖 𝑘 = 𝐶𝑖 ∙ 𝑥𝑖 𝑘 + 𝐷𝑖 ∙ 𝑢𝑖 𝑘
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FIG. 4. Underlying topology vs linear processes on the complex network

2Determining the rank of the matrix in (2.16) is a problem similar to the problem of determining the rank of the adjacency
matrix of a directed graph, see e.g. [37].
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{
xe[k+1] = Ae · xe[k]+Be ·η [k]
ξ [k] =Ce · xe[k]+De ·η [k]

(3.1)

where the ∑
N
j=1 n j×1 vector xe contains states of each system in the network:

xe[k] =


x1[k]
x2[k]

...
xN [k]

 (3.2)

The matrices Ae, Be, Ce and De will be determined in terms of network topology and the dynamics of
individual nodes/systems.

3.1 Hierarchical Structuring of Complex Networks
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N

𝐺2 𝑁, 𝐿
2

31

FIG. 5. Hierarchical Structuring of Complex Networks with Linear Processes

The underlying topology of the network, together with the input and output links is sketched in the
left lower part of Fig 4, while the processes within each node/system of the network are presented in the
right lower part. By determining the DLSS process in (3.1), we determine the network dynamics. Thus,
we can abstract the network dynamics with a DLSS process, as provided in the right upper part of Fig 4.
This abstraction is analogous to abstracting the network topology by a node, as shown in the left upper
part of Fig 4.
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An example of hierarchical structuring is provided in Fig 5. We use three layers of abstraction,
namely Layer L0, Layer L1 and Layer L2. A network G1 of N interconnected nodes with internal
dynamics is presented in the Layer L1. The dynamics of the network G1 are abstracted by the dynamics
within the node 2 of the network G2, in a higher abstraction layer L2. There are two additional nodes
in G2 and they abstract the dynamics of another two networks from the Layer L1. An external impact
on the network dynamics from the layer L1 represents an interconnection between the nodes/abstracted
networks in G2.

In the same time, the internal dynamics of a node from G1 abstract the dynamics of a network from
a lower abstraction layer L0, as presented in Fig 5. An external impact on the dynamics of a network in
abstraction layer L0 represents an interconnection in abstraction layer L1 and a mode of the dynamics
within a node from abstraction layer L2.

Thus, the proposed theoretical framework allows the hierarchical structuring of complex networks
with linear processes. By using the same type of governing equations (DLSS governing equations) to
describe both the internal dynamics within a node/system from the network and the network dynamics,
we enable hierarchical structuring of complex networks.

4. Extended graph

The underlying topology of the network is defined by a graph G. Beside nodes of the graph G, input

𝐺𝑒(𝒩𝑒 , ℒ𝑒)

𝐺(𝒩, ℒ)

FIG. 6. Concept of the extended graph Ge

and output nodes are also defined, as source of input and external links and as destination of output and
external links, respectively. Therefore, we introduce the extended graph Ge(Ne,Le), that is composed
of Ne = |Ne| nodes:

Ne = r+N +q Ne = M ∪N ∪P (4.1)

and of Le links:
Le = Lφ +Lw +Lψ +Lz (4.2)

The relation between the graph G and the extended graph Ge is presented in Fig. 6. The input nodes
of the extended graph Ge are labelled first, before the internal nodes, while the output nodes are labelled
as the last q nodes of Ge. Extended graph Ge from Fig. 6 with labelled nodes is presented in Fig. 7.
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FIG. 7. Labelled nodes of the extended graph Ge from Fig. 6

The adjacency matrix We of the extended graph Ge has a block structure:

We =

Or×r Φr×N Zr×q
ON×r WN×N ΨN×q
Oq×r Oq×N Oq×q

 (4.3)

Since the input nodes have zero in-degree, the first block column of We is composed of zero block
matrices. Similarly, since the output nodes have zero out-degree, the third block row contains zero
block matrices as well.

The links whose destination is the first internal node of Ge are labelled first, in ascending order,
relative to the source node. Next, the links connected to the second internal node are labelled. After
labelling all the incoming links to the internal nodes, links whose destination is the first output node
are labelled, in ascending order, relative to the source node. Then the incoming links of the second
output node are labelled, in ascending order relative to the source node. The incoming links of the q-th
output node are labelled last. The links of the extended graph Ge from Fig. 6 have been labelled by our
convention and presented in Fig. 8.

We introduce the Ne×Le incidence matrix Λ of extended graph Ge in block form:

Λ =


(
Λ11
)

r×(Lw+Lφ )

(
Λ12
)

r×(Lψ+Lz)(
Λ21
)

N×(Lw+Lφ )

(
Λ22
)

N×(Lψ+Lz)(
Λ31
)

q×(Lw+Lφ )

(
Λ32
)

q×(Lψ+Lz)

 (4.4)

The first block column of Λ refers to the links whose destination is an internal node. There are Lw +Lφ

such links. The second block column of Λ refers to the links whose destination is an output node. There
are Lψ +Lz such links. The first block row of Λ refers to the r input nodes. Further, the second block
row is related to the N internal nodes, while the third block row regards the q output nodes.

We define the Le×Ne matrix Γ as follows:

Γ =
Λ T + |Λ T |

2
(4.5)
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FIG. 8. Labelled links of the extended graph Ge from Fig. 6

where |Λ T | denotes the absolute value of each element of Λ T . Matrix Γ has a block structure:

Γ =

[(
Γφ

)
(Lw+Lφ )×r

(
Γw
)
(Lw+Lφ )×N O

(Lw+Lφ )×q(
Γz
)
(Lψ+Lz)×r

(
Γψ

)
(Lψ+Lz)×N O

(Lψ+Lz)×q

]
(4.6)

where each block element of Γ is of same dimensions as the according block element of transposed
incidence matrix Λ T of Ge. The negative entries of Λ T define the destination node for each link of
Ge and are not contained in Γ . Therefore, the third block column of Γ that is related to output nodes,
contains zero block matrices. We observe that matrix Γ is a zero-one matrix. Each row of Γ regards
certain link in Ge and contains exact one non-zero component, that refers to the source node of that link.

We further introduce the (Lw +Lφ )×1 vectors sφ and sw, as well as the (Lψ +Lz)×1 vectors sz and
sψ as follows: [(

sφ

)
(Lw+Lφ )×1

(
sw
)
(Lw+Lφ )×1(

sz
)
(Lψ+Lz)×1

(
sψ

)
(Lψ+Lz)×1

]
= Γ ·

 µr×1 Or×1
ON×1 pN×1
Oq×1 Oq×1

 (4.7)

where (sw)i defines the dimension of the i-th internal link, (sφ )i defines the dimension of the i-th input
link, while (sψ)i and (sz)i define the dimensions of the i-th output and i-th external link, respectively.
The total number of links that are connected to the internal nodes is Lφ +Lw, while Lψ +Lz is the total
number of links that have the output nodes as destination. Total dimensions Sw, Sφ , Sψ and Sz of all
internal, input, output and external links, respectively, are defined as follows:

Sw = sT
w ·u(Lw+Lφ )×1 Sφ = sT

φ
·u(Lw+Lφ )×1

Sψ = sT
ψ ·u(Lψ+Lz)×1 Sz = sT

z ·u(Lψ+Lz)×1
(4.8)

Since the input and internal links are connected to internal nodes, while the output and external links
have output nodes as a destination, next identities hold:

Sw +Sφ = ∑
N
i=1 mi Sψ +Sz = ∑

q
i=1 ρi (4.9)
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Additionally, we define the diagonal block matrices containing DLSS matrices of each system of the
network, namely

(
Ad
)

∑
N
i=1 ni×∑

N
i=1 ni

,
(
Bd
)

∑
N
i=1 ni×∑

N
i=1 mi

,
(
Cd
)

∑
N
i=1 pi×∑

N
i=1 ni

and
(
Dd
)

∑
N
i=1 pi×∑

N
i=1 mi

:

Ad = diagonal
[
A1 A2 . . . AN

]
Bd = diagonal

[
B1 B2 . . . BN

]
Cd = diagonal

[
C1 C2 . . . CN

]
Dd = diagonal

[
D1 D2 . . . DN

] (4.10)

Matrices Ad , Bd , Cd and Dd enable us to define the dynamics of each system of the network in a compact
block diagonal form: {

xe[k+1] = Ad · xe[k]+Bd ·ud [k]
yd [k] =Cd · xe[k]+Dd ·ud [k]

(4.11)

where the ∑
N
i=1 mi× 1 aggregated input vector ud and the ∑

N
i=1 pi× 1 aggregated output vector yd are

defined as follows:

ud =


u1
u2
...

uN

 yd =


y1
y2
...

yN

 (4.12)

DEFINITION 4.1 The aggregated input vector ud , aggregated output vector yd , aggregated external input
vector η and the aggregated external output vector ξ are related as follows:{

ud [k] = Fw · yd [k]+Fφ ·η [k]
ξ [k] = Fψ · yd [k]+Fz ·η [k]

(4.13)

where the (Sw + Sφ )×∑
N
i=1 pi matrix Fw, the (Sw + Sφ )×M matrix Fφ , the (Sψ + Sz)×∑

N
i=1 pi matrix

Fψ and the (Sψ +Sz)×M matrix Fz, are composed of (Lw +Lφ )×N, (Lw +Lφ )× r, (Lψ +Lz)×N and
(Lψ +Lz)× r block elements, respectively, that are defined as follows:

(
Fw
)

i j =

{
I(sw+sφ )i if

(
Γw
)

i j = 1

O(sw+sφ )i×p j otherwise

(
Fφ

)
i j =

{
I(sw+sφ )i if

(
Γφ

)
i j = 1

O(sw+sφ )i×µ j otherwise(
Fψ

)
i j =

{
I(sψ+sz)i if

(
Γψ

)
i j = 1

O(sψ+sz)i×p j otherwise

(
Fz
)

i j =

{
I(sψ+sz)i if

(
Γz
)

i j = 1

O(sψ+sz)i×µ j otherwise

(4.14)

The definition is elaborated in Appendix B. Matrices Fw, Fφ , Fψ and Fz are defined similarly as the
Kronecker products. However, each block element of these matrices is of different dimensions, which
is not the case in the Kronecker product. Dimensions of the block elements vary because each vector
in the network is in general of a different dimension, which is thoroughly explained in Appendix F.
Furthermore, in Appendix D, we analyse homogeneous networks with identical dynamic interactions,
which is a special case of the network, that allows applying the Kronecker product. Therefore, governing
equations for the time dynamics of the entire network are based on the Kronecker product.
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5. Main results

THEOREM 5.1 The matrices Ae, Be, Ce and De from the DLSS governing equations in (3.1):

{
xe[k+1] = Ae · xe[k]+Be ·η [k]
ξ [k] =Ce · xe[k]+De ·η [k]

provided the matrix (I−Dd ·Fw) is non-singular or (Dd ·Fw) has not an eigenvalue 1, are explicitly
determined as follows:


Ae = (Bd ·Fw) · (I−Dd ·Fw)

−1 ·Cd +Ad

Be =(Bd ·Fw) · (I−Dd ·Fw)
−1 · (Dd ·Fφ )+Bd ·Fφ

Ce = Fψ · (I−Dd ·Fw)
−1 ·Cd

De = Fψ · (I−Dd ·Fw)
−1 · (Dd ·Fφ )+Fz

(5.1)

Proof. Appendix C

COROLLARY 5.1 When there is no direct interaction between the input vector ui and the output vector
yi of each system in the network (i.e. Di = Opi×mi , i ∈N ), the matrices Ae, Be, Ce and De are explicitly
determined as follows: 

Ae = Bd ·Fw ·Cd +Ad

Be = Bd ·Fφ

Ce = Fψ ·Cd

De = Fz

(5.2)

When the feedforward matrix Di of each node/system of G is a non zero matrix (i.e. Di 6= Opi×mi , i∈
N ), the state vector xi impacts the state vector x j (i.e.

(
Ae
)

ji 6= On j×ni ) if and only if there is a path

from the node i to the node j in G (i.e. iff
(

∑
N
k=1 W k

)
i j > 0).

On the other side, when there is no direct relation between the input vector ui and the output vector
yi for each node/system of the network (i.e. Di = Opi×mi , i ∈N ), the state vector xi influences the state
vector x j (i.e.

(
Ae
)

ji 6= On j×ni ) if and only if the node/system i and node/system j are direct neighbours
(i.e. wi j = 1). Thus, the relation (5.2) is significantly simpler than the solution of general case (5.1). The
further explanation of the matrices Ae, Be, Ce and De in terms of paths in Ge is provided in Appendix F.

The analysis of the continuous-time process on complex networks is provided Appendix E. The
solution for the network dynamics is provided both in time domain and in complex Laplace domain.

5.1 A numerical example

We provide a numerical example of a network model with linear processes, on which we apply the
results of the paper. Therefore, we provide a network of N = 5 nodes/systems, with r = 2 input nodes
and q = 2 output nodes. Further, the N×N adjacency matrix W , the r×N matrix Φ , the N×q matrix
Ψ and the r×q matrix Z are defined as follows:
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A1 B1

C1 D1
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C2 D2
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Theorem 5.1
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C4 D4𝑢3

𝜂

𝜉
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FIG. 9. Network topology and the block diagram of the network dynamics, where N = 5, r = 2, q = 2

W =


0 1 1 0 1
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 1 0

 Ψ =


0 0
0 0
1 0
1 0
0 1


Φ =

[
1 1 0 0 0
0 0 0 1 1

]
Z =

[
0 0
0 0

]
(5.3)

Further, the N×1 vector p containing output dimensions of each system, the N×1 vector n with number
of states for each system and the r×1 vector µ that contains the dimension of external inputs are defined
as follows:

p =
[
1 1 1 1 1

]
n =

[
2 2 2 2 2

]
µ =

[
1 1

]
(5.4)

while the N× 1 vector m with dimensions of inputs per each node/system and the q× 1 vector ρ con-
taining dimensions of external outputs are computed using (2.16):

m =
[
2 2 2 3 2

]
ρ =

[
2 1

]
(5.5)

Parameters of the DLSS model of each node of the graph are defined below:
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A1 =

[
0.1227 −0.0733
0.0733 0.1227

]
B1 =

[
0.0232 0.1070
0.1019 0.1026

]
C1 =

[
0.6547 0.1913

]
D1 =

[
0 0.5000

]
A2 =

[
0.3796 −0.3920
0.3920 0.3796

]
B2 =

[
0.2371 0.1215
0.4789 0.3491

]
C2 =

[
0.0089 0.1603

]
D2 =

[
0.5000 0

]
A3 =

[
−0.3438 −0.2597
−0.2597 −0.7647

]
B3 =

[
0.0597 0.3568
0.4729 0.7413

]
C3 =

[
0.0664 0.2628

]
D3 =

[
0.5000 0.3394

]
A4 =

[
−0.3773 −0.0779
−0.0779 −0.9613

]
B4 =

[
0.7038 0.6134 0.4158
0.2989 0.1345 0.5020

]
C4 =

[
0.4997 0.2145

]
D4 =

[
0 0.5000 0

]
A5 =

[
0.5796 −0.0619
−0.0619 0.7033

]
B5 =

[
0.1072 0.6859
0.4328 0.1584

]
C5 =

[
0.1089 0.0430

]
D5 =

[
0.5000 0

]

(5.6)

Network topology, with input and output nodes, is presented in the lower-left part of Fig. 9, while the
network dynamics in from of the interconnected block diagrams are presented in the upper-left part of
the Figure. By applying Theorem 5.1 we provide the dynamics of the entire network in the form of
a DLSS system, as presented in the upper-right part of the Figure. Finally, the Theorem 5.1 allows
representing entire network topology as a node, on a higher hierarchy level.

Ae =



0.1402 −0.0682 0.0002 0.0029 0.0040 0.0158 0.0601 0.0258 0 0
0.0901 0.1276 0.0002 0.0028 0.0038 0.0152 0.0577 0.0248 0 0
0.0895 0.0261 0.3797 −0.3903 0.0020 0.0080 0.0341 0.0147 0 0
0.2571 0.0751 0.3922 0.3843 0.0058 0.0229 0.0981 0.0421 0 0
0.0440 0.0128 0.0032 0.0580 −0.3428 −0.2558 0.0168 0.0072 0 0
0.3483 0.1017 0.0069 0.1253 −0.2518 −0.7336 0.1329 0.0570 0 0
0.2259 0.0660 0.0021 0.0375 0.0458 0.1813 −0.3006 −0.0451 0.0453 0.0179
0.0495 0.0145 0.0005 0.0082 0.0100 0.0398 −0.0611 −0.9541 0.0547 0.0216
0.5052 0.1476 0.0005 0.0093 0.0114 0.0451 0.1928 0.0827 0.5796 −0.0619
0.1167 0.0341 0.0001 0.0022 0.0026 0.0104 0.0445 0.0191 −0.0619 0.7033


Be =



0.0323 0
0.1106 0
0.2423 0
0.4937 0
0.1809 0
0.3907 0
0.1171 0.9117
0.0257 0.5499
0.0291 0.1072
0.0067 0.4328



Ce =

0.3683 0.1076 0.0034 0.0612 0.0747 0.2956 0.1406 0.0603 0 0
0.1841 0.0538 0.0017 0.0306 0.0374 0.1478 0.5622 0.2413 0 0

0 0 0 0 0 0 0 0 0.1089 0.0430

 De =

0.1909 0
0.0954 0

0 0.5000



(5.7)

6. Conclusion

In this paper, we propose a general theoretical framework for modeling complex networks with time-
invariant topology, composed of nodes with linear internal dynamics and with linear interactions between
them.

Nodes perform heterogeneous higher-order internal dynamics, with multi-dimensional input and
output vectors. The proposed framework allows to independently define each dynamic interaction
between the nodes. Proper notations have been introduced for network topology and the internal dynam-
ics of nodes. The external processes that influence the network dynamics are included in the proposed
framework. The analytic solution for the network dynamics is provided in the discrete-time domain,
continuous-time domain and the Laplace domain.
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The assumption about linear processes on networks allows scalability of the proposed model to
large-scale networks and preserves network information. Finally, the reversible hierarchical structuring
of complex networks with linear processes is introduced.
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A. List of Notations

Table A.1. Notations for the graph G and DLSS models
Notation Explanation

G Graph
N Set of N nodes of graph G
L Set of L links of graph G
N Number of nodes in graph G
L Number of links in graph G
W Adjacency matrix of graph G
Ai State matrix of a DLSS model of node/system i
Bi Input matrix of a DLSS model of node/system i
Ci Output matrix of a DLSS model of node/system i
Di Feedforward matrix of a DLSS model of node/system i
Ad Diagonal block matrix composed of Ai matrices, i ∈N
Bd Diagonal block matrix composed of Bi matrices, i ∈N
Cd Diagonal block matrix composed of Ci matrices, i ∈N
Dd Diagonal block matrix composed of Di matrices, i ∈N
Ae State matrix of a DLSS model of the network
Be Input matrix of a DLSS model of the network
Ce Output matrix of a DLSS model of the network
De Feedforward matrix of a DLSS model of the network

Table A.2. Notations for the links in Ge

Notation Explanation
lw Vector with number of internal links connected to each internal node in Ge
lφ Vector with number of input links connected to each internal node in Ge
lψ Vector with number of output links connected to each output node in Ge
lz Vector with number of external links connected to each output node in Ge
Lw Total number of internal links in Ge
Lφ Total number of input links in Ge
Lψ Total number of output links in Ge
Lz Total number of external links in Ge
sw Vector with number of components of each internal link in Ge
sφ Vector with number of components of each input link in Ge
sψ Vector with number of components of each output link in Ge
sz Vector with number of components of each external link in Ge
Sw Total number of components of all internal links in Ge
Sφ Total number of components of all input links in Ge
Sψ Total number of components of all output links in Ge
Sz Total number of components of all external links in Ge



18 of 41 IVAN JOKIć AND PIET VAN MIEGHEM

Table A.3. Notations for the processes in Ge

Notation Explanation
k Discrete time variable
t Continuous time variable
s Complex variable
ni Number of states of i-th node/system in G
n Vector with number of states of each node/system in G
mi Dimension of the input vector ui of the i-th node/system in G
m Vector with dimension of the input vector ui of each node/system in G (i ∈N )
pi Dimension of the output vector yi of the i-th node/system in G
p Vector with dimension of the output vector yi of each node/system in G (i ∈N )
xi State vector of the i-th node/system in G
xe State vector of entire network

Xe(s) Laplace transform of the state vector xe(t)
ui Input vector of the i-th node/system in G
ud Aggregated input vectors ui of each node/system in G (i ∈N )

Ud(s) Laplace transform of the aggregated input vector ud(t)
yi Output vector of the i-th node/system in G
yd Aggregated output vectors yi of each node/system in G (i ∈N )

Yd(s) Laplace transform of the aggregated output vector yd(t)
M Set of input nodes in Ge
r Number of input nodes in Ge
µi Dimension of the i-th external input vector ηi
µ Vector with dimension of the external input vector ηi of each input node in Ge (i ∈M )
M Sum of elements of the vector µ

ηi The i-th external input vector in Ge
Hi(s) Laplace transform of the i-th external input vector ηi(t)

η Aggregated external input vector
H(s) Laplace transform of the aggregated external input vector η(t)
P Set of output nodes in Ge
q Number of output nodes in Ge
ρi Dimension of the i-th external output vector ξi in Ge
ρ Vector with dimension of the external output vector ξi of each input node in Ge (i ∈P)
P Sum of elements of the vector ρ

ξi The i-th external output vector in Ge
Ξi(s) Laplace transform of the i-th external output vector ξi(t)

ξ Aggregated external output vector
Ξ(s) Laplace transform of the aggregated external output vector ξ (t)
Hi(s) Matrix of transfer functions of the i-th node/system in G
Gd(s) Diagonal matrix composed of matrices Hi(s) of each node/system in G (i ∈N )
Ge(s) Matrix of transfer functions of the entire network
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Table A.4. Notations for the extended graph Ge

Notation Explanation
Ge Extended graph
Ne Set of Ne nodes of extended graph Ge
Le Set of Le links of extended graph Ge
Ne Number of nodes in extended graph Ge
Le Number of links in extended graph Ge
We Adjacency matrix of extended graph Ge
Λ Incidence matrix of extended graph Ge
Γ Transposed incidence matrix Λ with all negative entries set to 0
Γw Internal sub-matrix of Γ

Γφ Input sub-matrix of Γ

Γψ Output sub-matrix of Γ

Γz External sub-matrix of Γ

Φ Matrix that defines the input links existence
Ψ Matrix that defines the output links existence
Z Matrix that defines the external links existence
F Extension of the matrix Γ for higher-dimensional vectors in Ge
Fw Internal topology matrix, defined upon Γw
Fφ Input topology matrix, defined upon Γφ

Fψ Output topology matrix, defined upon Γψ

Fz External topology matrix, defined upon Γz

B. Elaboration of Definition 1

We recall the definition of the matrix Γ :

Γ =

[(
Γφ

)
(Lw+Lφ )×r

(
Γw
)
(Lw+Lφ )×N O(Lw+Lφ )×q(

Γz
)
(Lψ+Lz)×r

(
Γψ

)
(Lψ+Lz)×N O(Lψ+Lz)×q

]
Matrix Γ preserves information of the source node of each link in Ge. Each row of the matrix Γ contains
exactly one non-zero element and this element is equal to 1.

When
(
Γw
)

i j = 1, it means that j-th internal node provides the i-th link of Ge. In case
(
Γφ

)
i j = 1, we

conclude that the i-th link of Ge originates from the j-th input node. The links connected to the internal
nodes are defined with the matrices Γw and Γφ . There are Lw +Lφ such links (i.e. internal and input
links).

Remaining Lψ +Lz links of Ge are connected to the output nodes and they are defined by the matrices
Γψ and Γz (i.e. output and external links). For

(
Γψ

)
i j = 1, we conclude that the (Lw +Lφ + i)-th link

of Ge originates from the j-th internal node. Analogously,
(
Γz
)

i j = 1 indicates that the j-th input node
provides the (Lw +Lφ + i)-th link of Ge.

In case all the links in Ge are one-dimensional, i.e. pi = 1 and µ j = 1, where i ∈N , j ∈M , the
following relations hold: {

ud [k] = Γw · yd [k]+Γφ ·η [k]
ξ [k] = Γψ · yd [k]+Γz ·η [k]
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The definitions of the matrices Fw, Fφ , Fψ and Fz represent the generalization of the matrices Γw, Γφ , Γψ

and Γz, respectively, in case when not all the links in Ge are one-dimensional.

C. Proof of Theorem 1

After substituting the first relation from (4.13) into the second relation from (4.11) we obtain:

yd [k] =Cd · xe[k]+Dd ·Fw · yd [k]+Dd ·Fφ ·η [k]

Under the assumption det(I−Dd ·Fw)
−1 6= 0, we further obtain:

yd [k] =
(
I−Dd ·Fw

)−1 ·Cd · xe[k]+
(
I−Dd ·Fw

)−1 · (Dd ·Fφ ) ·η [k] (A.1)

After substituting relation (A.1) into first relation from (4.13), we obtain the expression for the aggre-
gated input vector ud :

ud [k] = Fw ·
(
I−Dd ·Fw

)−1 ·Cd · xe[k]+
(

Fw ·
(
I−Dd ·Fw

)−1 · (Dd ·Fφ )+Fφ

)
·η [k] (A.2)

Further, after substituting relation (A.2) into first relation from (4.11), we obtain:

xe[k+1] =
(

Ad +Bd ·Fw ·
(
I−Dd ·Fw

)−1 ·Cd

)
· xe[k]+

(
Bd ·Fw ·

(
I−Dd ·Fw

)−1 ·Dd ·Fφ +Bd ·Fφ

)
·η [k]

from where we recognize the matrices Ae and Be:{
Ae = Ad +(Bd ·Fw) ·

(
I−Dd ·Fw

)−1 ·Cd

Be = (Bd ·Fw) ·
(
I−Dd ·Fw

)−1 · (Dd ·Fφ )+Bd ·Fφ

Finally, after substituting expression for the aggregated output vector yd from (A.1) into second relation
from (4.13), we obtain:

ξ [k] = Fψ ·
(
I−Dd ·Fw

)−1 ·Cd · xe[k]+Fψ ·
(
I−Dd ·Fw

)−1 ·Dd ·Fφ ·η [k]+Fz ·η [k]

Hence, we find: {
Ce = Fψ · (I−Dd ·Fw)

−1 ·Cd

De = Fψ · (I−Dd ·Fw)
−1 · (Dd ·Fφ )+Fz

which completes the proof. �

D. Homogeneous network with identical interactions between the nodes/systems

In the following subsection, we examine the simplest network with linear processes, i.e. a homogeneous
network (a network with nodes that perform identical internal dynamics) with identical dynamic inter-
actions between the nodes/systems. Consequently, dimensions of the external input (2.8) and external
output (2.10) vectors, as well of the input (2.6) and output vectors (2.7) are the same:

mi = p j = µl = ρv = p1 i, j ∈N l ∈M v ∈P (A.1)
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Node/system i performs internal dynamics defined by (2.4), where the ni×ni state matrix A, the ni×mi
input matrix B, the pi×ni output matrix C and the pi×mi feed-forward matrix D are identical for each
node/system in the network. For identical interactions, instead of stacking incoming vectors of a certain
node into an input/external output vector as in (2.16), they are summed:

ui[k] = ∑
j∈N ,w ji=1

y j[k]+ ∑
l∈M ,φli=1

ηl [k]

ξi[k] = ∑
j∈N ,ψ ji=1

y j[k]+ ∑
l∈M ,zli=1

ηl [k]
(A.2)

Therefore, Definition 4.1 for a homogeneous network with identical interactions reduces to:{
ud [k] =

(
W T ⊗ Ip1×p1

)
· yd [k]+

(
ΦT ⊗ Ip1×p1

)
·η [k]

ξ [k] =
(
Ψ T ⊗ Ip1×p1

)
· yd [k]+

(
ZT ⊗ Ip1×p1

)
·η [k]

(A.3)

Analogously to the Theorem 5.1, we provide the parameters of the DLSS model for the time dynamics
of the entire network:

Ae =
(
W T ⊗B

)
·
(
IN p1×N p1 −W T ⊗D

)−1 · (IN⊗C)+(IN×N⊗A)
Be =

(
W T ⊗B

)
·
(
IN p1×N p1 −W T ⊗D

)−1 ·
(
ΦT ⊗D

)
+
(
ΦT ⊗B

)
Ce =

(
Ψ T ⊗ Ip1×p1

)
·
(
IN p1×N p1 −W T ⊗D

)−1 · (IN×N⊗C)

De =
(
Ψ T ⊗ Ip1×p1

)
·
(
IN p1×N p1 −W T ⊗D

)−1 ·
(
ΦT ⊗D

)
+
(
ZT ⊗ Ip1×p1

) (A.4)

while, in the case, the p1 × p1 feed-forward matrix D = Op1×p1 , the solution for parameters of the
governing model (5.2) becomes considerably simpler:


Ae =

(
W T ⊗B ·C

)
+(IN×N⊗A)

Be =
(
ΦT ⊗B

)
Ce =

(
Ψ T ⊗C

)
De =

(
ZT ⊗ Ip1×p1

) (A.5)

E. Continuous-time linear processes on complex networks

E.1 Time-domain analysis

The continuous-time linear dynamics of the i-th node/system of the network obey a similar governing
equation as (2.4): {

dxi(t)
dt = Ai · xi(t)+Bi ·ui(t)

yi(t) =Ci · xi(t)+Di ·ui(t)
(A.1)

where t denotes continuous time. We revise the definition of the ∑
N
i=1 mi× 1 aggregated input vector

ud from (4.12), the ∑
N
i=1 pi×1 aggregated output vector yd from (4.12), the M×1 aggregated external
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input vector η from (2.9) and the P×1 aggregated external output vector ξ from (2.11) as follows:

ud(t) =


u1(t)
u2(t)

...
uN(t)

 yd(t) =


y1(t)
y2(t)

...
yN(t)



η(t) =


η1(t)
η2(t)

...
ηr(t)

 ξ (t) =


ξ1(t)
ξ2(t)

...
ξq(t)


(A.2)

The aim is to determine the dynamics between the aggregated external output vector ξ (t) and the aggre-
gated external input vector η(t), by following governing equations:

dxe(t)
dt

= Ae · xe(t)+Be ·η(t)

ξ (t) =Ce · xe(t)+De ·η(t)
(A.3)

where the ∑
N
i=1 ni state vector xe(t) is defined as follows:

xe(t) =


x1(t)
x2(t)

...
xN(t)

 (A.4)

The direct continuous-time analogy of Theorem 1 in discrete-time domain is as follows:

THEOREM A.1 The matrices Ae, Be, Ce and De from the DLSS equations in (A.3),

dxe(t)
dt

= Ae · xe(t)+Be ·η(t)

ξ (t) =Ce · xe(t)+De ·η(t)

provided the matrix (I−Dd ·Fw) is non-singular or (Dd ·Fw) has not an eigenvalue 1, are explicitly
determined as follows: 

Ae = (Bd ·Fw) · (I−Dd ·Fw)
−1 ·Cd +Ad

Be = (Bd ·Fw) · (I−Dd ·Fw)
−1 · (Dd ·Fφ )+Bd ·Fφ

Ce = Fψ · (I−Dd ·Fw)
−1 ·Cd

De = Fψ · (I−Dd ·Fw)
−1 · (Dd ·Fφ )+Fz

(A.5)

while Corollary 1 remains the same.

E.2 Laplace-domain analysis

The unilateral (one-sided) Laplace transform, denoted as L { f (t)}, of a continuous-time function f (t)
that is defined for all real numbers t > 0 is the complex function F(s) defined as follows:

F(s) = L { f (t)}=
∞∫

0

e−st f (t)dt (A.6)
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where s is a complex variable. In case the function f (t) is defined also for negative real numbers,
the bilateral (two-sided) Laplace transform is defined as en extension of (A.6), where the limits of the
integral become entire real axis:

F(s) = L { f (t)}=
∞∫
−∞

e−st f (t)dt (A.7)

The inverse Laplace transform, denoted as L −1{F(s)} is defined by:

f (t) = L −1{F(s)}= 1
2πi

lim
T→∞

∮
γ+iT

γ−iT
estF(s)ds (A.8)

where the real number γ defines the contour path of integration, that belongs to the region of convergence
of F(s).

The governing equations of the i-th node/system in continuous-time domain from (A.1) can be trans-
formed into transfer functions using Laplace transform:

Yi(s) = Gi(s) ·Ui(s) =
(

Ci · (sI−Ai)
−1 ·Bi +Di

)
·Ui(s) (A.9)

where the pi×1 complex output vector Yi(s) and the mi×1 complex input vector Ui(s) are the Laplace
transforms of the output vector yi(t) and the input vector ui(t), respectively. The pi×mi complex matrix
Gi(s) is a matrix of transfer functions between the complex vectors Yd(s) and Ud(s), where the

(
Gi(s)

)
jk

transfer function defines the dynamics between the j-th component of the complex output vector
(
Yi(s)

)
j

and the k-th component of the complex input vector
(
Ui(s)

)
k.

The Laplace transforms of the aggregated input vector ud(t), aggregated output vector yd(t), aggre-
gated external input vector η(t) and aggregated external output vector ξ (t) from (A.2) are defined as
follows, respectively:

Ud(s) =


U1(s)
U2(s)

...
UN(s)

 Yd(s) =


Y1(s)
Y2(s)

...
YN(s)



H(s) =


H1(s)
H2(s)

...
Hr(s)

 Ξ(s) =


Ξ1(s)
Ξ2(s)

...
Ξq(s)


(A.10)

By defining the ∑
N
i=1 pi×∑

N
i=1 mi complex matrix Gd(s) as a block diagonal matrix, composed of the

transfer functions Gi(s) of each individual node/system (i.e. i ∈N ):

Gd(s) = diagonal
[
G1(s) G2(s) . . . GN(s)

]
=Cd · (sI−Ad)

−1 ·Bd +Dd (A.11)

we are able to define the dynamics between the complex aggregated output vector Yd(s) and complex
aggregated input vector Ud(s) in a compact form:

Yd(s) = Gd(s) ·Ud(s) (A.12)
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The aim of this subsection is to determine the P×M complex matrix Ge(s) of transfer functions between
the complex aggregated external output vector Ξ(s) and the complex aggregated external input vector
H(s):

Ξ(s) = Ge(s) ·H(s) (A.13)

where the P× 1 complex aggregated external output vector Ξ(s) and the M× 1 complex aggregated
external input vector H(s) are Laplace transforms of the aggregated external input vector ξ (t) and the
aggregated external input vector η(t), respectively.

The Laplace transform of the direct continuous-time analogy of Definition 1 in discrete-time domain
is as follows: {

Ud(s) = Fw ·Yd(s)+Fφ ·H(s)
Ξ(s) = Fψ ·Yd(s)+Fz ·H(s)

(A.14)

THEOREM A.2 The complex matrix Ge(s) of transfer functions from (A.13) is explicitly determined as
follows:

Ge(s) = Fψ ·
(

I−Gd(s) ·Fw

)−1
·Gd(s) ·Fφ +Fz (A.15)

Proof. We provide two different proofs of the Theorem A.2. The first proof is based upon (A.14).

1) After substituting first relation from (A.14) into (A.12), we obtain:

Yd(s) = Gd(s) ·Fw ·Yd(s)+Gd(s) ·Fφ ·H(s)

from where, under the assumption det(I−Fw ·Gd(s)) 6= 0 we express the complex aggregated
output vector Yd(s):

Yd(s) =
(

I−Gd(s) ·Fw

)−1
·Gd(s) ·Fφ ·H(s) (A.16)

Next, we substitute (A.16) into second relation from (A.14) and obtain:

Ξ(s) =
(

Fψ ·
(
I−Gd(s) ·Fw

)−1 ·Gd(s) ·Fφ +Fz

)
·H(s)

which completes the proof.

2) In Theorem 2, the dynamics between the aggregated external output vector ξ (t) and the aggre-
gated external input vector η(t) are determined by the governing equations in (A.3). Hence, the
Laplace transform of the governing equations from (A.3) is actually the complex matrix Ge(s) of
transfer functions between the complex aggregated external output vector Ξ(s) and the complex
aggregated external input vector H(s):

Ge(s) =Ce ·
(
sI−Ae

)−1 ·Be +De (A.17)

After substituting (A.5) into (A.17), we obtain:

Ge(s) =Fψ ·
(
I−Dd ·Fw

)−1 ·Cd ·
(

sI−
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1 ·Cd−Ad

)−1

·
(
(Bd ·Fw) ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Bd ·Fφ

)
+Fψ ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fz

(A.18)
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We right multiply the inverse term (sI−Ae)
−1 from (A.18) with (sI−Ad) · (sI−Ad)

−1 (i.e. with
identity matrix) and regroup the terms inside the same term:

Ge(s) =Fψ ·
(
I−Dd ·Fw

)−1 ·Cd ·
((

sI−Ad
)
−
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1 ·Cd

)−1

·
(
sI−Ad

)
·
(
sI−Ad

)−1 ·
((

Bd ·Fw
)
·
(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Bd ·Fφ

)
+Fψ ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fz

(A.19)

After applying the property of a matrix inverse onto the product (sI−Ae)
−1 ·

(
(sI−Ad)

−1
)−1

from (A.19) we obtain:

Ge(s) =Fψ ·
(
I−Dd ·Fw

)−1 ·Cd ·
(

I−
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1 ·Cd

)−1

·
((

sI−Ad
)−1 ·

(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+
(
sI−Ad

)−1 ·
(
Bd ·Fφ

))
+Fψ ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fz

(A.20)

We define the ∑
N
i=1 ni×∑

N
i=1 pi complex matrix K(s) as follows:

K(s) =
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1 (A.21)

and observe the following matrix product from (A.20):

Cd ·
(
I−K(s) ·Cd

)−1 (A.22)

We claim the next identity holds:

Cd ·
(
I−K(s) ·Cd

)−1
=
(
I−Cd ·K(s)

)−1 ·Cd (A.23)

where the identity matrix I from the left-hand side is of dimensions ∑
N
i=1 ni ×∑

N
i=1 ni and the

identity matrix from the right-hand side of (A.23) has dimensions ∑
N
i=1 pi×∑

N
i=1 pi. We prove

(A.23) by contradiction.

We denote the difference between the left-hand and the right-hand side of (A.23) as a complex
matrix E(s) of dimensions ∑

N
i=1 pi×∑

N
i=1 ni:

E(s) =Cd ·
(
I−K(s) ·Cd

)−1−
(
I−Cd ·K(s)

)−1 ·Cd (A.24)

After left multiplying with
(
I−Cd ·K(s)

)
and right multiplying with

(
I−K(s) ·Cd

)
both sides of

(A.24) we obtain: (
I−Cd ·K(s)

)
·E(s) ·

(
I−K(s) ·Cd

)
= O

Left side of last equation is always zero, thus we conclude E(s) = O. We import the proven
identity (A.23) into (A.20) and obtain:

Ge(s) =Fψ ·
(
I−Dd ·Fw

)−1 ·
(

I−Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1
)−1

·
(

Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1 · (Dd ·Fφ )

+Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fφ

))
+Fψ ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fz

(A.25)
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We regroup the terms inside the fourth product term of (A.25) in such a way to build a matrix,
whose inverse appears as the third product term in (A.25):

Ge(s) =Fψ ·
(
I−Dd ·Fw

)−1 ·
(

I−Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1
)−1

·
(
−
(

I−Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1
)
·
(
Dd ·Fφ

)
+
(
Dd ·Fφ

)
+Cd ·

(
sI−Ad

)−1 ·
(
Bd ·Fφ

))
+Fψ ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fz

(A.26)

After multiplying the third and the fourth product terms from (A.26), we obtain:

Ge(s) =−Fψ ·
(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fψ ·

(
I−Dd ·Fw

)−1·(
I−Cd ·

(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1
)−1

·
(

Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fφ

)
+
(
Dd ·Fφ

))
+Fψ ·

(
I−Dd ·Fw

)−1 ·
(
Dd ·Fφ

)
+Fz

(A.27)

The first and the third sum terms from (A.27) are the same, but with opposite signs. Hence, we
obtain:

Ge(s) =Fψ ·
(
I−Dd ·Fw

)−1 ·
(

I−Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
·
(
I−Dd ·Fw

)−1
)−1

·
(

Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fφ

)
+
(
Dd ·Fφ

))
+Fz

(A.28)

Finally, after applying the property of a matrix inverse onto the product of the second and third
product terms in (A.28), we obtain the final form for Ge(s):

Ge(s) =Fψ ·
(

I−
(

Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fw

)
+Dd ·Fw

))−1

·
(

Cd ·
(
sI−Ad

)−1 ·
(
Bd ·Fφ

)
+Dd ·Fφ

)
+Fz

(A.29)

which equals (A.15) and completes the proof. �

F. Intuitive explanation of Theorem 1

In order to provide an intuitive explanation of Theorem 1, we propose a graph representation of the
network dynamics. Throughout the explanation, we use simple networks to support our observations.
Upon these examples and provided observations, we induce the solution for the network dynamics,
provided in Theorem 1.

F.1 Graph representation of the DLSS process

A DLSS process can be represented as a graph, whose nodes model values of the process variables in
discrete-time k, while these variables are scaled and transmitted over links of the graph.
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FIG. A.10. A graph representation of the DLSS process inside the i-th system of a network, where ni = 3, mi = 2, pi = 2

Consider the node/system i of the network. The state vector xi is of dimension ni×1. We define ni
nodes that model the value of the state vector xi, where the j-th node contains the value of the j-th state(
xi
)

j at discrete time k. We refer to these nodes as state nodes (blue nodes in Fig A.10). The state nodes
are strongly connected via state links (blue links in Fig A.10), whose weights are defined by the ni×ni

state matrix
(
Ai
)T .

The input vector ui of the system i has dimension mi× 1. We define mi additional nodes and refer
to them as input nodes (red nodes in Fig A.10). The input nodes represent the value of the input vector
ui at discrete time k, where the j-th input node represents the value of the j-th component of the input
vector

(
ui
)

j. An input node is connected to each state node by input links (red links in Fig A.10), i.e.
input links connect the input nodes to the state nodes. The weights of the input links are defined by the
mi×ni input matrix

(
Bi
)T .

The pi×1 output vector yi is modelled by pi output nodes (green nodes in Fig A.10), containing the
value of the vector yi at discrete time k. A state node is connected to each output node by the output
links (green links in Fig A.10). The weights of the output links are defined by the ni× pi output matrix(
Ci
)T .
Finally, an input node is connected to each output node via feedforward links (yellow links in Fig

A.10), whose weights are defined by the mi× pi feedforward matrix
(
Di
)T . We sketch the graph repre-

sentation of the DLSS process inside the system i in Fig A.10, where ni = 3, mi = 2 and pi = 2.
The process variables are transmitted over defined four types of links. The weight of a link defines

how the signal is scaled while being transmitted over that link. While transmitting the signal, state and
input links impose fixed time delay equal to the one discrete-time instant. On the other side, output
and feedforward links do not impose time delay, i.e. they instantaneously transmit the signal.

From the graph representation of the DLSS process, we provide relation between the state vector xi
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and the input vector ui of the i-th system from the network:

xi[k] = Ai · xi[k−1]+Bi ·ui[k−1]

where the previous values of the state vector xi and of the input vector ui appear because both the
state links, whose weights are defined by the state matrix

(
Ai
)T and the input links, whose weights are

defined by the input matrix
(
Bi
)T impose time delay. After substituting k→ k+1 in previous equation,

we obtain:

xi[k+1] = Ai · xi[k]+Bi ·ui[k]

Analogously, we provide relation between the output vector yi, the state vector xi and the input
vector ui, using graph representation of the DLSS process:

yi[k] =Ci · xi[k]+Di ·ui[k]

where there is no time delay, because both the output links, whose weights are defined by the output
matrix

(
Ci
)T and the feedforward links, whose weights are defined by the feedforward matrix

(
Di
)T do

not impose time delay, i.e. they transmit the signal instantaneously. By merging last two equations, we
obtain the governing equations for the DLSS process of the system i from the network:

xi[k+1] = Ai · xi[k]+Bi ·ui[k]

yi[k] =Ci · xi[k]+Di ·ui[k]

We condense the graph representation of the DLSS process as follows:

• ni state nodes are condensed into one state node, which contains the value of the state vector xi at
discrete-time k

• mi input nodes are condensed into one input node, that contains the value of the input vector ui at
discrete-time k

• pi output nodes are condensed into one output node, containing the value of the output vector yi
at discrete-time k

• The state links are condensed into one state link that represents a self-loop for the condensed state
node. This condensed link is defined by the state matrix

(
Ai
)T

• The input links are condensed into one input link, that connects the condensed input node to the
condensed state node and is defined by the input matrix

(
Bi
)T

• The output links are condensed into one output link, connecting the condensed state node to the
condensed output node and is defined by the output matrix

(
Ci
)T

• The feedforward links are condensed into one feedforward link that connects the condensed input
node to the condensed output node and is defined by the feedforward matrix

(
Di
)T .
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FIG. A.11. A condensed graph representation of the DLSS process from Fig A.10

A condensed graph representation of the DLSS process from Fig A.10 is sketched in Fig A.11.
Following previously defined properties of the links from the graph representation of the DLSS pro-

cess, we stress that the condensed state and the condensed input link impose the fixed time delay while
transmitting the signal, whereas the condensed output and condensed feedforward link instantaneously
transmit the signal.

The network dynamics are defined by the DLSS governing equations from (3.1). Thus, the network
dynamics can be also presented by a graph, analogously to the graph representation of the DLSS process
of individual system from the network. In the graph represetnation of the entire network dynamics, there
are ∑

N
i=1 ni state nodes, M input and P output nodes. Furthermore, there are

(
∑

N
i=1 ni

)2 state links, M ·
∑

N
i=1 ni input, ∑

N
i=1 ni ·P output and M ·P feedforward links. The weights of the state links are defined by

the ∑
N
i=1 ni×∑

N
i=1 ni state matrix

(
Ae
)T , whereas the ∑

N
i=1 mi×∑

N
i=1 ni input matrix

(
Be
)T determines the

weights of the input links. Finally, the ∑
N
i=1 ni×∑

N
i=1 pi output matrix

(
Ce
)T and the ∑

N
i=1 mi×∑

N
i=1 pi

feedforward
(
De
)T contain the weights of the output and feedforward links, respectively.

Network topology defines the interconnection pattern of the nodes/systems. On the other side, a
graph representation of the DLSS process within a node/system defines the dynamics inside that node,
i.e. it defines the dynamics locally, without any knoledge of how the dynamics interact with the dynam-
ics within other nodes/systems of the network. Therefore, network dynamics are determined by both
the underlying topology and the dynamics of individual nodes/systems.

By combining condensed graph representation of the DLSS process of the individual systems and the
underlying topology, we provide a condensed graph representation of the netork dynamics in Fig A.12,
for a network of 3 nodes, composing a triangle. Network topology link (black links in Fig A.12) defines
the relation between the output vector of the source node/system and input vector of the destination
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node/system. As an example, a network topology link between the nodes/systems 2 and 1 implies
y2[k] = u1[k].
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𝐷1
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𝐵3

𝐶3

𝐷3
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1
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𝑥1

𝑥2

𝑥3

𝑢1

𝑢2

𝑢3

𝑦1

𝑦2

𝑦3

FIG. A.12. A condensed graph representation of the network dynamics, with N = 3

F.2 State matrix Ae

The ∑
N
i=1 ni×∑

N
i=1 ni state matrix Ae of the network dynamics is composed of N×N block elements,

where the ni× n j block element
(
Ae
)

i j defines the impact of the state vector x j onto the state vector
xi. The transposed state matrix AT

e defines the weights of the state links from the graph representation
of the network dynamics. Thus, each state link from the graph representation of the network dynamics
imposes fixed time delay while transmitting the signal, equal to the one discrete-time instant.

We first consider the
(
Ae
)

13 block element of the network presented in Fig A.12. Determining the(
Ae
)

13 block element is equivalent to determining the sum of all the paths from the node x3 to the
node x1, using the condensed graph representation of the network dynamics (Fig A.12), under the
constraint that each path imposes fixed time delay, equal to the one discrete-time instant.

Since each path from node x3 to node x1 ends with the condensed input link of the system 1 (input
links impose time delay), the remaining part of each path cannot introduce time delay. In this particular
case, there is such a path, over the condensed output link of the system 3 and the condensed feedforward
link of the system 2, i.e. (B1 ·D2 ·C3). Moreover, since the condensed feedforward links impose no time
delay and the nodes of the network from Fig A.12 compose a ring, there are infinitely many paths that
satisfy previous constraint:

(
B1 ·D2 · (D3 ·D1 ·D2)

k ·C3
)
,k > 0. Thus, we conclude:

(Ae)13 = B1 ·D2 ·
∞

∑
k=0

(D3 ·D1 ·D2)
k ·C3

We next consider the block element
(
Ae
)

11. It is determined as a sum of all the paths that start from
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and end in the node x1, where each such a path introduces unity time delay. The condensed state link of
the system 1 introduces time delay and creates the self-loop for the node x1. Hence, it is a valid path.
Also, there are infinitely many paths that start with the condensed output link of the system 1, continues
with the condensed feedforward link of the systems and finish with the condensed input link of the first
system: (

(
B1 ·D2 ·D3 · (D1 ·D2 ·D3)

k ·C1
)
,k > 0). Thus, we conclude:

(Ae)11 = A1 +B1 ·D2 ·D3 ·
∞

∑
k=0

(D1 ·D2 ·D3)
k ·C1

Remaining block elements of Ae can be determined analogously.
Each node from the network presented in Fig A.12 has the unity in-degree. In such a case, the input

vector of a system is the same as the output vector of its neighbour, i.e. if the system j receives the link
only from the system i, we have u j[k] = yi[k].

𝐴1

𝐵1 𝐶1

𝐷1

𝐴3

𝐵3

𝐶3

𝐷3
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𝐷223

1

𝐺(𝒩, ℒ)

𝑢2[𝑘] =
𝑦1 𝑘

𝑦3 𝑘

𝑥1

𝑥2

𝑥3

𝑢1

𝑢2

𝑢3

𝑦1

𝑦2

𝑦3

FIG. A.13. A condensed graph representation of the network dynamics, where N = 3, with non unity in-degree distribution

We analyse next a case when a node/system has more than one neighbour, which is the case for the
system 2 from the network presented in Fig A.13. Nodes 1 and 3 both provide link to the node 2. Hence,
the input vector u2 is composed of the output vectors y1 and the output vector y3:

(
u2[k]

)
m2×1 =

[(
y1[k]

)
p1×1(

y3[k]
)

p3×1

]
where the first p1 components of the input vector u2 are equal to the output vector y1, while the remaining
p3 components of the input vector u2 are equal to the output vector y3. Furthermore, first p1 columns of
the input matrix B2 and of the feedforward matrix D2 regard the output vector y1, while the remaining
p3 columns of these matrices are related to the output vector y3.

We consider the block element
(
Ae
)

21 for the network presented in Fig A.13, i.e. how the state
vector x1 influences the state vector x2. From Fig A.13, we conclude that there is only one path that
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satisfies previously defined properties and this path consists of the condensed output link of the system
1 and the condensed input link of the system 2. Additionally, we need only first p1 columns of the input
matrix B2, because the output vector y1 constitutes first p1 components of the input vector u2.

Therefore, we introduce the (Sw + Sφ )×P matrix Fw, composed of (Lw +Lφ )×N block elements,
defined as follows: (

Fw
)

i j =

{
I(sw+sφ )i if

(
Γw
)

i j = 1

O(sw+sφ )i×p j otherwise
(A.1)

Each block row of Fw is related to the output vector of a certain system from the network. First
(
lw+ lφ

)
1

block rows of Fw (in total ∑
(lw+lφ )1
k=1 (sw + sφ )k = m1 rows) regard the output vectors of the systems that

are connected to the system 1. Next
(
lw + lφ

)
2 block rows of Fw are related to the output vectors of the

systems connected to the system 2 and so on. Last
(
lw + lφ

)
N block rows of Fw are related to the output

vectors of the systems that are connected to the N-th system of the network. Therefore, we can further
combine block rows into new N block rows, where the i-th block row regards the output vectors of the
systems connected to the system i and is composed of mi rows. Therefore, we conclude that matrix Fw
is composed of N×N block elements, where the block element (Fw)i j has dimensions mi× p j.

We next analyse the matrix product (Bd ·Fw), by considering the block element
(
Bd ·Fw

)
i j = Bi ·(

Fw
)

i j. In case the system j is directly connected to the system i, (i.e. wi j = 1), the mi× p j block
element

(
Bd ·Fw

)
i j contains the p j columns of the input matrix Bi, that are related to the output vector

y j. Otherwise, when there is no link between the nodes/systems i and j (i.e. when wi j = 0) the block
element

(
Bd ·Fw

)
i j is a zero matrix. The analogous explanation holds for the block element

(
Dd ·Fw

)
i j =

Di ·
(
Fw
)

i j of a product (Dd ·Fw).
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𝑦3
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𝑢2

𝑥2

𝑦2

(𝐵𝑑 ∙ 𝐹𝑤)23

(𝐷𝑑 ∙ 𝐹𝑤)23

(𝐷𝑑 ∙ 𝐹𝑤)21

*
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**

⋆⋆

⋆⋆

⋆

FIG. A.14. Explanation of the products (Bd ·Fw) and (Dd ·Fw), for a network from Fig A.13

We apply these products to the network from Fig A.13 and sketch it in Fig A.14. Block elements
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Bd ·Fw

)
21 and

(
Bd ·Fw

)
23 contain the first p1 and the last p3 columns of the input matrix B2, respec-

tively. Analogously, block elements
(
Dd ·Fw

)
21 and

(
Dd ·Fw

)
23 split the feedforward matrix D2 into two

sub-matrices. The first sub-matrix
(
Dd ·Fw

)
21 is composed of the first p1 columns of the feedforward

matrix D2, that are related to the output vector y1, while the second sub-matrix
(
Dd ·Fw

)
23 contains the

remaining p2 columns, related to the output vector y3. Therefore, state matrix Ae for the network from
Fig A.14 is determined as follows:

Ae =

 A1 On1×n2 On1×n3(
Bd ·Fw

)
21 ·C1 A2

(
Bd ·Fw

)
23 ·C3

On3×n1 On3×n2 A3


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FIG. A.15. A condensed graph representation of the network dynamics, with N = 4 nodes and L = 5 links

The ∑
N
i=1 pi×∑

N
i=1 pi matrix

(
Dd ·Fw

)
is composed of the N×N block elements. If there is a direct

link from node i to node j (i.e. wi j = 1), the pi× p j block element
(
Dd ·Fw

)
i j = Di ·

(
Fw
)

i j contains the
p j columns of the feedforward matrix Di that are related to the output vector y j, otherwise (i.e wi j = 0)
it is a zero matrix.

The product (Dd ·Fw) can be used to compute relation between the output vectors yi and y j over
only feddforward links of all the systems in the network. A merged graph representation of the network
dynamics is sketched in Fig A.15, for a network of N = 4 nodes.

Since we analyse the relation between the output vectors yi and y j over the feedforward links, other
three types of links have been neglected in Fig A.16. Furthermore, in Fig A.17 we apply the multiplica-
tion of the block diagonal feedforward matrix Dd with the matrix Fw. This multiplication enables us to
further simplify condensed graph representation of network dynamics, using only feedforward links, as
presented in Fig A.17.
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𝐷1𝑢1 𝑦1

𝐷2
𝑢2

𝑦2 𝐷4

𝑢4

𝑦4

𝐷3𝑢3 𝑦3

FIG. A.16. Neglected condensed state, input and output links from the graph representation of network dynamics of the network
from Fig A.15
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𝑦3

FIG. A.17. Applying the multiplication with Fw to the network from the Fig A.16

The block element
(
Dd ·Fw

)2
i j defines the total impact of the output vector y j onto the output vector

yi over the feedforward links of the system j and another system k that form a path between the internal
nodes j and i (i.e. {k ∈N | w jk = wki = 1}).

Finally, total impact of the output vector y j onto the output vector yi, over the feedforward links of
the systems from the network (which is equivalent to the sum of all paths from the condensed output
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node y j to the condensed output node yi, over only the feedforward links, using the condensed graph
representation of the network dynamics) is determined as follows:(

∑
∞
l=1
(
Dd ·Fw

)l
)

i j

Under the assumption that all eigenvalues of the matrix (Dd ·Fw) have absolute value smaller than 1,
the total impact of the vector y j onto the vector yi, over the feedforward links of the systems from the
network is defined by: (

I−Dd ·Fw
)−1

i j

In case there are no closed paths in G, the relation can be further simplified:(
∑

h
l=1
(
Dd ·Fw

)l
)

i j

where h is the hop-count of the longest walk in G. Finally, we conclude that the state matrix Ae of the
network dynamics is explicitly determined as follows:

Ae = (Bd ·Fw) ·
∞

∑
i=0

(Dd ·Fw)
i ·Cd +Ad

where i= 0 regards the case when the two nodes/systems are direct neighbours. In case there is no direct
relation between the input vector ui and the output vector yi of each system in the network (i ∈N ), i.e.
Dd = O, the state matrix Ae is defined as follows:

Ae = (Bd ·Fw) ·Cd +Ad

F.3 Matrix Be

The input matrix Be of the network dynamics has dimensions ∑
N
i=1 ni×M and is composed of N×r block

elements. The ni× µ j block element
(
Be
)

i j determines the relation between the state vector xi and the
external input vector η j. Following the condensed graph representation of the network dynamics, we
conclude that the matrix

(
Be
)T defines the weights of the input links, which impose time delay while

transmitting the signal.
The block element

(
Be
)

i j is determined as a sum of all the paths from the condensed input node j
to the condensed state node xi of the system i in Ge, under the constraint that each path imposes fixed
time delay equal to the one discrete-time instant. Furthermore, each such a path ends with the condensed
input links of the system i (input links impose time delay), thus the remaining part of each path transmits
the signal instantaneously. We recognize here two scenarios.

The first scenario is when the internal node i receives a direct link from the j-th input node of the
extended network (i.e. φ ji = 1). As an example, the internal node 1 of the network presented in Fig A.18
receives a direct link from the input node 1 of the network. Thus, the block-element

(
Be
)

11 contains the
µ1 columns of the input matrix B1, that are related to the external input vector η1.

Therefore, we introduce the (Sw + Sφ )×M matrix Fφ , consisting of (Lw +Lφ )× r block elements,
that are defined as follows: (

Fφ

)
i j =

{
I(sw+sφ )i if

(
Γφ

)
i j = 1

O(sw+sφ )i×µ j otherwise
(A.2)
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where each block row of the matrix Fφ is related to a certain link of the network, while each block
column is related to a certain input node of the network. Analogously as for the matrix Fw, we combine
the block rows into N new block rows, where the new i-th block row regards the links that are connected
to the system i and is composed of mi rows. In case the input node j is directly connected to the state
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FIG. A.18. A condensed graph representation of the network dynamics, with N = 2 and r = 1

node i in Ge (i.e. φ ji = 1), the block element
(
Bd ·Fφ

)
i j = Bi ·

(
Fφ

)
i j contains the µ j columns of the

matrix Bi that are related to the vector η j, otherwise (i.e. φ ji = 0) it is a zero matrix. The analogous
explanation holds for the block element

(
Dd ·Fφ

)
i j = Di ·

(
Fφ

)
i j.

For the network from Fig A.18, we conclude:

Be =

[(
B1 ·

(
Fφ

)
11

)
n1×µ1

On2×µ1

]
The second scenario is when there is a path from the j-th input node to the i-th internal node, over

other internal nodes in Ge. Each such a path consists only of the condensed feedforward links of the
nodes/systems that form a path from the input node j to the internal node i.

Finally, we conclude that the input matrix Be of the network dynamics is explicitly determined as
follows:

Be = (Bd ·Fw) ·
∞

∑
i=0

(Dd ·Fw)
i · (Dd ·Fφ )+Bd ·Fφ

where the first and the second term regards the second and the first scenario, respectively. In case the
feedforward matrix of each system in the network is a zero matrix (i.e. Dd = O), the previous relation
is significantly simplified:

Be = Bd ·Fφ
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F.4 Matrix Ce

The output matrix Ce of the network dynamics has dimensions P×∑
N
i=1 ni and is composed of q×N

block elements. The ρi× n j block element
(
Ce
)

i j defines the impact of the state vector x j onto the

external output vector ξi. The transposed output matrix
(
Ce
)T defines the weights of the output links in

the graph representation of the network dynamics.
Following the condensed graph representation of the network dynamics, we conclude that the ρi×

n j block element
(
Ce
)

i j is determined as a sum of all the paths from the condensed state node x j to
the condensed external output node ξi, under the constraint that each path introduces no time delay.
Furthermore, each path starts with the condensed output links of the system j, while the remaining part
of each path is composed of the condensed feedforward links of the systems that form a path from the
internal node j to the output node i in Ge. We recognize here two scenarios.

The first scenario is when the internal node j is directly connected to the output node i of Ge (i.e.
ψ ji = 1). In this case, the impact of the state vector x j onto the external output vector ξi is defined by
C j. As an example, there is a direct link from the internal node 1 to the output node 1 in the network
presented in Fig A.19.

2

1
𝐺(𝒩, ℒ)

𝜉1[𝑘] =
𝑦1 𝑘

𝑦2 𝑘
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𝐵2

𝐶2

𝐷2

𝑥2

𝑢2

𝑦2

FIG. A.19. A condensed graph representation of the network dynamics, where N = 2 and q = 1

The second scenario is when there is a path from the internal node j to the output node i, over other
internal nodes in Ge. These paths start with the condensed output links of the system j and continue
with the condensed feedforward links of the systems that form a path in Ge between the internal node j
and the output node i.

We introduce the (Sψ +Sz)×P matrix Fψ , composed of the (Lψ +Lz)×N block elements, that are
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defined as follows: (
Fψ

)
i j =

{
I(sψ+sz)i if

(
Γψ

)
i j = 1

O(sψ+sz)i×p j otherwise
(A.3)

Each block row of the Fψ is related to a certain output or external link of the network. First
(
lψ
)

1+
(
lz
)

1
block rows are related to the links that are connected to the output node 1, next

(
lψ
)

2+
(
lz
)

2 block rows
are related to the links that are connected to the output node 2 and so on. The last

(
lψ
)

q +
(
lz
)

q block
rows are related to the links that finish in output node q. By combining those block rows related to the
links connected to a certain output node, we can say that the matrix Fψ is composed of the q×N block
elements, where the i-th block row regards the links connected to the i-th output node of the network
and contains ρi rows.

The output node i of Ge receives
(
lψ
)

i output links, as well as
(
lz
)

i external links. Thus, the vector
ξi is composed of all the external input vectors and the output vectors of the systems that are directly
connected to the output node i. In case there is a direct link from the internal node j to the i-th output
node (i.e. ψ ji = 1), we have

(
Fψ ·Cd

)
i j =

(
Fψ

)
i j ·C j =C j, otherwise (i.e. ψ ji = 1) we the block element(

Fψ ·Cd
)

i j is a zero matrix. The analogous explanation holds for the block element
(
Fψ ·Dd

)
i j =(

Fψ

)
i j ·D j.

For the network from the Fig A.19 we conclude:

(
Ce
)

11 =

[(
C1
)

p1×n1
Op2×n1

]
,
(
Ce
)

12 =

[(
D1 ·C2

)
p1×n2(

C2
)

p2×n2

]
Finally, we conclude that the output matrix Ce of the network dynamics is explicitly determined as
follows:

Ce = Fψ ·
∞

∑
i=0

(Dd ·Fw)
i ·Cd

where i = 0 regards the first scenario. In case there is no direct relation between the input vector ui and
the output vector yi of each system in the network (i ∈N ), i.e. Dd = O, the output matrix Ce is defined
as follows:

Ce = Fψ ·Cd

F.5 Matrix De

The feedforward matrix De of the network dynamics has dimensions P×M and is composed of the q×r
block elements. The ρi×µ j block element

(
De
)

i j defines direct relation between the j-th external input

vector η j and the i-th external output vector ξi. The transposed feedforward matrix
(
De
)T defines the

weights of the feedforward links (feedforward links impose no time delay) in the graph representation
of the network dynamics.

Using the condensed graph representation of the network dynamics, we determine the block element(
De
)

i j as a sum of all the paths from the j-th condensed external input node η j to the i-th condensed
external output node ξi, under the constraint that each path imposes no time delay while transmitting
the signal. We recognize here two scenarios.
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FIG. A.20. A condensed graph representation of the network dynamics, with N = 2, r = 1 and q = 2

The first scenario is when there is a direct link from the j-th input node to the i-th output node in
Ge (i.e. z ji = 1). An example is the external link from the input node 1 to the output node 1 of the
network presented in Fig A.20. Therefore, we introduce the (Sψ +Sz)×M matrix Fz, composed of the
(Lψ +Lz)× r block elements, defined as follows:

(
Fz
)

i j =

{
I(sψ+sz)i if

(
Γz
)

i j = 1

O(sψ+sz)i×µ j otherwise
(A.4)

Analogously as for the matrix Fψ , we combine block rows of the matrix Fz into new q block rows, where
the i-th new block row regards the links connected to the i-th output node of Ge and contains ρi rows.
The ρi× µ j block element

(
Fz
)

i j is identity matrix iff there is a direct link from the j-th input node to
the i-th output node of Ge (i.e. z ji = 1), otherwise (i.e. when z ji = 0) the block element

(
Fz
)

i j is a zero
matrix.

The second scenario is when there is a path from the j-th input node to the i-th output node of, over
the internal nodes of the extended network Ge. These paths consist of the condensed feedforward links
of the systems that form a path from the j-th input node to the i-th output node.

For the network from Fig A.20, we conclude:

(
De
)

11 =

[
Iµ1×µ1(

D1
)

p1×µ1

]
,
(
De
)

21 =
[(

D2 ·D1
)

p2×µ1

]
Finally, we conclude that the feedforward matrix De of the network dynamics is determined explicitly
as follows:

De = Fψ ·
∞

∑
i=0

(Dd ·Fw)
i · (Dd ·Fφ )+Fz

where the first and the second term regard the second and the first scenario, respectively. In case there
is no direct relation between the input vector ui and the output vector yi for each system of the network
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(i.e. Dd = O), the previous relation is significantly simplified:

De = Fz

which completes the intuitive explanation of the Theorem 1.
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