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Detecting the number of clusters in a network
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Many clustering algorithms for complex networks depend on the choice for the number of clusters and it is
often unclear how to make this choice. The number of eigenvalues located outside a circle in the spectrum
of the non-backtracking matrix was conjectured to be an estimator of the number of clusters in a graph.
We compare the estimate of the number of clusters obtained from the spectrum of the non-backtracking
matrix with three estimators based on the concept of modularity and evaluate the methods on several
benchmark graphs. We find that the non-backtracking method detects the number of clusters better than
the modularity-based methods for the graphs in our simulation study, especially when the clusters have
slightly different sizes. The estimates of the non-backtracking method are narrowly distributed around the
true number of clusters for all benchmark graphs considered. Additionally, for graphs without a clustering
structure, the non-backtracking method detects exactly one cluster, which is a convenient property of an
estimator of the number of clusters. However, the lack of a well-defined concept of a cluster prevents sharp
conclusions.

Keywords: Complex Networks, Community Detection, Spectral Clustering, Number of Clusters, Non-
backtracking Matrix.

1. Introduction

The detection of community structures in complex networks has been a popular topic in network science
for many years [1]. Finding the number of communities or the number of clusters, however, receives
comparably little attention. Many community detection algorithms require the number of communities as
an input and their results depend on the chosen number of communities. The number of communities found
by a given algorithm depends on the definition of ‘community’. The precise definition of a community
is in turn driven by the motivation behind employing community detection: different motivations lead to
different definitions, none of them is the best, but each of them is potentially useful for a specific goal
[2]. Here, we adopt the clustering approach of finding groups of nodes that are ‘similar’ or ‘close’. In the
context of complex networks, similarity or closeness between nodes is often described by the number of
links or the weights on the links in weighted networks. A cluster is then a group of nodes that is densely
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2 G. BUDEL AND P. V. MIEGHEM

Fig. 1. A network with five densely connected clusters of nodes.

connected internally, while sparsely connected to the nodes of other groups. Figure 1 exemplifies the
definition.

Initially, the research on clustering in complex networks focused on modularity optimization, initiated
by Newman and Girvan [3–5]. The concept of modularity is naturally linked to the definition of the
clustering problem: nodes that share more links than expected are considered to be part of one group,
a cluster. While exact optimization of modularity is computationally intractable [6], many approximate
algorithms were shown to achieve high modularity for some well-known real-world networks. Many
heuristic modularity maximization algorithms do not require the number of clusters as prior knowledge;
they discover the number of clusters in the network during the optimization.

Another popular and accurate type of clustering is spectral clustering. In spectral clustering nodes are
assigned to clusters based on the values of their corresponding components in a subset of the eigenvectors
of a matrix representation of the network, such as the Laplacian. However, most spectral clustering
methods require the knowledge of the number of clusters. In real-world networks, the actual number
of clusters is usually unknown and traditionally researchers therefore resorted to guessing or trying a
range of different values. Recently, a spectral clustering algorithm based on the non-backtracking matrix
was shown to achieve optimal clustering results for graphs generated by the stochastic block model [7].
Additionally, Krzakala et al. [7] conjectured that the number of real eigenvalues of the non-backtracking
matrix H that are separated from the bulk of the eigenvalues is an estimate of the number of clusters in the
network. Our contribution consists of the assessment of the accuracy of the non-backtracking method in
comparison with three modularity-based methods for estimating the number of clusters in a network. We
find that the non-backtracking outperforms the three other methods for all benchmark graphs considered
in this work.

In Section 2, we give a short description of several clustering techniques for complex networks,
focusing on modularity optimization methods and spectral clustering. We describe the literature related
to this work in Section 3. In Section 4, we describe the non-backtracking method and three modularity-
based methods for detecting the number of clusters in a network. We compare the four detection methods
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 3

on benchmark graphs in several simulation experiments and describe the experimental results in Section 5.
We conclude our research and reflect upon our findings in Section 6.

2. Clustering in complex networks

2.1 Modularity maximization

The modularity of a graph is a measure for the quality of a given partition of a network based on the
number of links between nodes belonging to the same cluster [6]. The modularity measure m proposed
by Newman and Girvan [5] is defined as the difference between the actual number of intra-cluster links
and the expected number of intra-cluster links if links were to be placed at random. The expected number
of links between node i and node j if links are placed randomly is

didj
2L . The modularity m is calculated as

m =
N∑

i= 1

N∑
j= 1

(
aij − didj

2L

)
1{i and j belong to the same cluster}, (1)

where aij is an element of the N ×N adjacency matrix A of a network with N nodes and L links, di is the
degree of node i and 1{x} is an indicator function that equals 1 if statement {x} is true and equals 0 if it is
false. A modularity close to 1 indicates a strong modular structure, while a modularity of 0 indicates that
the partition is not better than random. Maximizing the modularity for a number of clusters c larger than
two is equivalent to the maximum cut problem, which is NP-hard [3]. However, Van Mieghem et al. [8]
find that it is possible to derive an upper bound on the modularity measure m for any graph given the true
clustering:

m ≤ 1− 1

c
− Linter

L
, (2)

with c the true number of clusters in the graph and Linter the total number of inter-cluster links in the true
clustering of the network. Additionally, the N × N modularity matrix M of a network is defined with
elements mij = aij − didj

2L . If we define the N × c community matrix S with elements Sik to be equal to 1
if node i is in cluster k and 0 otherwise, we can express the modularity [6] in terms of these matrices:

m = 1

2L

c∑
k= 1

N∑
i= 1

N∑
j= 1

SikmijSjk = trace
(
ST MS

)
2L

. (3)

Several heuristic algorithms that approximately maximize modularity have been proposed. We consider
the popular Louvain method [9] and Newman’s iterative bisection algorithm [4], because they have been
shown to achieve high modularity for several real-world networks.

2.2 Spectral clustering

In spectral clustering, nodes are assigned to clusters based on the values of their corresponding com-
ponents in one or more of the eigenvectors of a matrix representation of the network. The Laplacian
is the most popular matrix representation for spectral clustering [1]. Fiedler showed that the eigenvec-
tor corresponding to the second smallest eigenvalue μN−1 of the Laplacian Q can be used to obtain a
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4 G. BUDEL AND P. V. MIEGHEM

bipartition of a graph into two equivalent parts [6]. Here, equivalent means equivalent with respect to
the second smallest eigenvalue’s eigenvector, the Fiedler eigenvector. If a disconnected network consists
of c connected components, then the Laplacian Q will have c eigenvalues that are equal to zero. The
eigenvectors corresponding to these eigenvalues are the trivial all-ones eigenvectors of the connected
components, with entry 1 for nodes that are part of the corresponding component and entry 0 for nodes
that are not part of the component. The c eigenvectors map the nodes of one connected component onto
a single point on one of the axes in a c-dimensional space. The c eigenvectors can then be used to detect
the component membership of the nodes. The idea of spectral clustering with the Laplacian Q is that if
the graph consists of c weakly linked subgraphs (e.g. a network with community structure), the smallest
c− 1 non-zero eigenvalues will still be relatively close to zero. An eigenvector belonging to one of the c
smallest eigenvalues no longer maps the nodes of one subgraph onto a single point on one of the axes, but
rather to a small cloud of points that are still relatively close to each other [1]. Any clustering algorithm
that can identify clusters shaped as clouds of points in metric space given the true number of clusters c,
such as the k-means algorithm, can detect the original cluster memberships in the network. To what extent
the clusters are considered weakly linked and to what extent spectral clustering works, we will discuss
in the context of detecting the number of clusters with the maximum eigengap property in Section 2.3.
For matrix representations other than the Laplacian Q, spectral clustering also works [1].

2.3 Maximum Eigengap

Consider the N×N adjacency matrix A of a graph G with c equally sized clusters of Ng = N/c nodes. The
nodes can always be rearranged such that the nodes are ordered according to the cluster memberships.
The Ng × Ng adjacency matrices Ag of the cluster subgraphs are then located on the diagonal of the
adjacency matrix A and contain only intra-cluster links:

A =

⎡
⎢⎢⎢⎣

A1 B12 . . . B1c

BT
12 A2 . . . B2c

...
...

. . .
...

BT
1c BT

2c . . . Ac

⎤
⎥⎥⎥⎦. (4)

We first consider the case where the c clusters are disconnected and the adjacency matrix A in (4) is block
diagonal with all blocks Bij = O. The eigenvalues of the matrix A are the union of the sets of eigenvalues
of the blocks Ag and each block Ag has Ng eigenvalues λ1(Ag) ≥ λ2(Ag) ≥ · · · ≥ λNg(Ag). Let the degree
distribution of the subgraph g have expectation E

[
Dg

]
and variance Var

[
Dg

]
. The Perron–Frobenius

eigenvalue λ1(Ag) of each subgraph g must satisfy:

λ1(Ag) ≥ E
[
Dg

] √
1+ Var

[
Dg

]
(E

[
Dg

]
)2

, (5)

as derived in [6]. If the subgraph g has no community structure itself, then the largest eigenvalue λ1(Ag)

is substantially larger than the other Ng − 1 eigenvalues [10, 11]. An exception to this statement would
be when the expected degree E

[
Dg

]
of nodes in the subgraph g is relatively low. However, in general, we

have λ1(Ag)� λ2(Ag) for subgraphs without a community structure [11]. If indeed λ1(Ag)� λ2(Ag) and
the degree distributions of the subgraphs g are similar, then the c largest eigenvalues of A are substantially
larger than the other N − c eigenvalues and we observe a large gap. Finding the largest gap among the
sorted eigenvalues of A, the maximum eigengap, identifies the number of clusters c in this case.
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 5

Adding the inter-community links to the graph G can be considered as a perturbation of the adjacency
matrix A, such that A(ζ ) = A+ ζB is the adjacency matrix with inter-community links for a value ζ that
is small enough [11, 12]. The symmetric matrix ζB contains only the inter-community links in the blocks
Bij from (4) and has zeros O on the diagonal. When the perturbed eigenvalues λ(ζ ) of A(ζ ) are close
to the eigenvalues λ of A, the maximum eigengap is still a good estimator of the number of clusters c.
Similarly, when the perturbed eigenvectors x(ζ ) are close to the eigenvectors x of A, spectral clustering
with these eigenvectors still works. If ζ is sufficiently small, then the ith perturbed eigenvalue λi(ζ ) can
be approximated by the first-order approximation of λi(ζ ),

λi(ζ ) ≈ λi + ζxT
i Bxi, (6)

and also for the corresponding eigenvector xi(ζ ),

xi(ζ ) ≈ xi + ζ

N∑
j �= i

xT
j Bxi

λi − λj
xj, (7)

as derived in [13]. In the clustering problem, we assume λi � λj for the c largest eigenvalues λ1(Ag) of
A. Wu et al. [12] therefore propose to write the approximations for the eigenvectors xi(ζ ) of the c largest
eigenvalues as

xi(ζ ) ≈ xi + ζ

c∑
j �= i

xT
j Bxi

λi − λj
xj + ζ

λi
Bxi, (8)

where the last term of the approximation error is smaller for large λi. Denote by X\{i} the N × (N − 1)

matrix of all eigenvectors xj except xi. The approximations are close to the actual λi(ζ ) and xi(ζ ) when

|λi − λi+1| − |ζ |
∥∥∥xT

i Bxi

∥∥∥
2
− |ζ |

∥∥∥XT
\{i}BX\{i}

∥∥∥
2
> 0, (9)

and

|ζ |
∥∥∥XT
\{i}Bxi

∥∥∥
2
<

1

2

(
|λi − λi+1| − |ζ |

∥∥∥xT
i Bxi

∥∥∥
2
− |ζ |

∥∥∥XT
\{i}BX\{i}

∥∥∥
2

)
, (10)

as described in [12, 14].

2.4 Stochastic block model

The stochastic block model (SBM) is a generative random graph model in which the link probabilities
depend on cluster memberships. A realization of the model therefore results in a graph with a community
structure. Clustering algorithms are often evaluated on SBM graphs. The hardest case for cluster detection
is the symmetric SBM (SSBM), where there are only two different link probabilities: pin for two nodes
that belong to the same cluster, pout for two nodes that belong to different clusters. When the intra-cluster
link probability is larger than the inter-cluster probability, pin > pout, we obtain graphs that look similar
to the graph in Fig. 1. In SSBM graphs with clusters of equal size, the clusters are not detectable based on
the node degrees alone, because the expected degree is the same for each node in the graph, irrespective of
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6 G. BUDEL AND P. V. MIEGHEM

its cluster membership. We consider sparse, assortative SSBMs with c clusters of equal size. The SSBM
is said to be sparse and assortative if pin = bin/N and pout = bout/N for two constants bin > bout > 0 that
do not depend on the number of nodes N . In case of equally sized clusters, the expected average degree
E [D] is a weighted average of the constants:

E [D] = bin + (c− 1)bout

c
. (11)

Decelle et al. [15] show that there is a regime where no algorithm can detect the clusters because the
block structure is not apparent enough in the limit N →∞. When the difference |bin−bout| is larger than
the detectability threshold,

|bin − bout| > c
√

E [D], (12)

it is theoretically possible to detect the clusters by some algorithm. However, for most algorithms the
difference between bin and bout must much be larger than the detectability threshold c

√
E [D] to detect

the clusters in the sparse case [7]. Decelle et al. [15] also show that the detectability limit marks a phase
transition from the undetectable state to the theoretically detectable state.

3. Related work

There is not yet a single, generally accepted method that determines the number of clusters in any given
network [16]. In absence of a golden standard, there have been a few works that—at least partly—
address the problem of detecting the number of clusters. In many of the papers, the clustering methods
are evaluated on real-world networks by comparing the results with the presumed underlying clustering
or with a benchmark random graph model.

Shen and Cheng [17] discuss the detection of the number of clusters for spectral clustering using
the maximum eigengap property based on several different matrix representations of the network and,
additionally, based on the covariance matrix of the node degrees. They evaluate the estimators on a random
graph model proposed by Lancichinetti et al. [18] with clusters of different sizes and heterogeneous node
degrees. Shen and Cheng [17] conclude that in graphs with heterogeneous cluster sizes and heterogeneous
node distributions the maximum eigengap property of the normalized Laplacian and the covariance matrix
estimates the number of clusters best, because the two matrices both correct for heterogeneous node
degrees. At the time of their analysis [17], the non-backtracking matrix had not been introduced for
spectral clustering yet. Shea and Macker [19] try and formalize the selection of the number of clusters
based on the eigengap property of the normalized Laplacian by combining the eigengap property with
statistics of random cuts of the graph.

Another approach to the detection of the number of clusters consists of fitting a statistical parametric
model to the graph and including the number of clusters as one of the parameters to be estimated. The
stochastic block model is often explicitly assumed as the true underlying model of the graph and then the
most likely number of clusters is estimated using maximum likelihood [16, 20, 21]. Given that the true
clustering is unobserved, multiple values for the number of clusters are evaluated based on some criterion,
before the estimated number of clusters is found. Alternatively, the problem of finding the number of
clusters can also be cast in a Bayesian framework [22, 23], in which one formulates a prior distribution
on both the number of clusters and the cluster memberships and then finds the a posteriori most likely
number of clusters after learning from some network data. The disadvantage of Bayesian approaches is the
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 7

computational burden of the required data sampling, which Decelle et al. [15] overcome by proposing a
belief propagation algorithm that runs in polynomial time. They argue that their method is asymptotically
exact for the stochastic block model, also in the sparse case.

Krzakala et al. [7] introduced the non-backtracking matrix of Hashimoto [24] in a spectral clus-
tering algorithm for networks. They conjectured that a spectral clustering algorithm based on the
non-backtracking matrix can detect clusters all the way down to the detectability limit of the stochastic
block model in the sparse case. Krzakala et al. [7] remark that the number of eigenvalues located outside
a circle around the origin in the complex plane seems to be a good estimator of the number of clusters in
the graph. Given that the bulk of the eigenvalues of the non-backtracking matrix are contained within a
circle around the origin of the complex plane, the number of eigenvalues outside that circle yields a clear
and unambiguous decision rule for the choice of the number of clusters.

4. Detecting the number of clusters

We compare four different methods to detect the number of clusters in a network. We compare the estimate
obtained by counting the eigenvalues outside the circle in the spectrum of the non-backtracking matrix
H with three different methods based on the concept of modularity.

4.1 Detection methods

4.1.1 Spectrum of the non-backtracking matrix H The non-backtracking matrix H is based on the
idea of a non-backtracking walk: a walk that does not turn around and goes back to its starting point
immediately after the first step. The non-backtracking matrix H of an undirected graph G is a 2L × 2L
matrix with elements hel = 1 if the pair of links (ee, el) in G is non-backtracking, otherwise hel = 0.
Two consecutive links ee = i → j and el = j → k are non-backtracking if i �= k. If i = k, then the
link ee connects the same two nodes as the link el but in opposite direction and the link pair (ee, el) is
backtracking. For undirected graphs, each undirected link {i, j} is considered twice, once for the direction
i→ j and once for the direction j→ i, resulting in 2L bi-directional links. The non-backtracking matrix
H then is a 2L × 2L matrix with elements

hel =
{

1 if ee = i→ j, el = j→ k and i �= k
0 otherwise

, (13)

where e, l ∈ {1, . . . , 2L} the set of all bi-directional links and i, j, k ∈ {1, . . . , N}. A non-backtracking
walk is a walk in which every pair of consecutive links is non-backtracking. Similar to the adjacency
matrix A, raising the non-backtracking matrix H to the kth power counts the number of non-backtracking
walks of length k + 1 on the graph. We describe the non-backtracking matrix H in more detail in the
Appendix A.

Krzakala et al. [7] conjectured that the number of real eigenvalues of the non-backtracking matrix H
that are separated from the bulk of the eigenvalues indicates the number of clusters in the network. The
bulk of the eigenvalues are located in a circle around the origin of the complex plane with radius the square
root of the largest eigenvalue, therefore the number of eigenvalues located outside of the circle indicates
the number of clusters. Figure 2 shows the eigenvalues of the matrix H in the complex plane for a graph
on N = 1, 000 nodes generated by an SSBM with three clusters. The largest eigenvalue is approximately
equal to the expected degree of 7 and there are exactly three real eigenvalues located outside the circle.
The spectrum of the matrix H indeed shows that the number of clusters c = 3, in agreement with the
conjecture.
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8 G. BUDEL AND P. V. MIEGHEM

Fig. 2. The spectrum of the non-backtracking matrix in the complex plane for a graph with N = 1, 000 nodes generated by an
SSBM with c = 3 clusters of approximately equal size. The real eigenvalues are indicated by small circles and the eigenvalues
with a non-zero imaginary part are indicated by dots. The circle containing the bulk of the eigenvalues is centred around the origin
and has radius equal to the square root of the largest real eigenvalue. There are three real eigenvalues located outside the circle.

Let |λ1(H)| ≥ · · · ≥ |λ2L(H)| denote the eigenvalues of the non-backtracking matrix H, sorted
in descending order according to the modulus. The eigenvalues λl(H) ∈ C are the solutions to the
characteristic polynomial (A.1) in Appendix A.3. The largest eigenvalue λ1(H) is a real, non-negative
number [6]. The estimate c∗ of the number of clusters is the number of real eigenvalues λl(H) larger than
the square root

√
λ1(H) of the largest eigenvalue including the largest eigenvalue λ1(H) itself:

c∗ =
2L∑

l= 1

1{
Re(λl(H))>

√
λ1(H)∧ Im(λl(H))= 0

}. (14)

For finding the estimate c∗ of the number of clusters, not all 2L eigenvalues have to be computed. One first
has to find the largest root λ1(H) of the characteristic polynomial and compute its square root

√
λ1(H).

Next, find all real roots larger than
√

λ1(H) with a numerical procedure. The number of such roots
is the estimate c∗. Moreover, it is even more efficient to obtain the estimate c∗ by applying the above
iterative procedure to the 2N × 2N block matrix H∗ specified in (A.2), Appendix A.3. The size of the
square non-symmetric matrix H∗ is of order O(N2). We discuss the computational complexity of the
non-backtracking method in Appendix A.5.

4.1.2 Louvain method The Louvain method is a popular heuristic method aimed at maximizing the
modularity of a graph [9]. The method starts out with N clusters, one for every node. The clusters are then
iteratively merged in a two-stage procedure such that the modularity m increases in every iteration, until
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 9

the modularity cannot be improved upon anymore. However, there is no guarantee that the final result
is a global modularity maximum. An estimate of the number of clusters is obtained from the clustering
results.

One iteration in the Louvain method consists of two stages. In stage one, each node i is considered
sequentially and possibly multiple times. Blondel et al. [9] compute the resulting gain in modularity from
moving node i to the cluster g of some neighbouring node j as:

�m =
[∑

in+2
∑

l:Slg=1 Wil

2L
−

(∑
tot+ di

2L

)2
]
−

[∑
in

2L
−

(∑
tot

2L

)2

−
(

di

2L

)2
]

, (15)

where W is the weighted adjacency matrix of the graph, 2L =∑N
i=1

∑N
j=1 Wij is the sum of the weights

of all links in the graph, di =∑N
l=1 Wil is the sum of the weights of the links incident to node i,

∑
in is the

sum of the weights of the intra-cluster links in cluster g,
∑

tot is the sum of the weights of all links incident
to one of the nodes in cluster g. Node i is moved to the cluster g of the neighbouring node j for which
the modularity gain is most positive. If the resulting gain in modularity is not larger than some small
threshold or even negative for all neighbouring nodes j, then the node i remains in its original cluster. In
the first iteration, the weighted adjacency matrix W is simply the unweighted adjacency matrix A, from
the second iteration onwards, we have the weighted adjacency matrix W constructed in the second stage
of the previous iteration. The cluster re-assignment procedure is repeated until there is no node anymore
for which there is a positive gain in the modularity m achievable.

In the second stage of an iteration, a new weighted graph is constructed in which each node g represents
a cluster g resulting from the first stage. In the new graph, the weight on the link from node g to node h
is the sum of the weights of all inter-cluster links between cluster g and cluster h in the graph of Stage
1. The intra-cluster links in the graph of Stage 1 lead to self-loops in the new graph, such that the new
graph has the same modularity m as the graph in Stage 1. The newly constructed graph in Stage 2 is the
input for Stage 1 of the next iteration. The described iterations are repeated until there is no positive gain
in the modularity m achievable anymore.

4.1.3 Newman’s iterated bisection To maximize the modularity m, Newman [4] proposes to make
recursive splits according to the leading eigenvector of the modularity matrix M, which is inspired
by the approach of Fiedler [6]. In the case of c = 2 clusters, clustering is equivalent to choosing a
vector y with elements +1 and −1 that indicate the cluster membership. The vector y can be written
as a linear combination of the orthogonal eigenvectors w1, w2, . . . , wN of the modularity matrix M, y =∑N

j=1 βjwj, with coefficients βj = yT wj. Invoking the orthogonality of the eigenvectors, the modularity m is
written as:

m = 1

4L
yT My = 1

4L

N∑
j= 1

β2
j λj(M). (16)

Maximizing the modularity m is equivalent to choosing the vector y with cluster memberships proportional
to the eigenvectors corresponding to a few of the largest eigenvalues. Newman [4] proposes to perform
the bisection by maximizing the term for the most positive eigenvalue: β1 = yT w1. Since the elements of
y only take two possible values, the coefficient β1 is maximized for yj = −1 if (w1)j < 0 and yj = +1 if
(w1)j ≥ 0.
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10 G. BUDEL AND P. V. MIEGHEM

For the case of c > 2 clusters, the network is first split in two and then the procedure is repeated on
each of the resulting subgraphs separately. However, simply applying the same procedure on the block
components of the modularity matrix M corresponding to the subgraphs is not correct, because the block
components do not contain inter-cluster links and the modularity m would change if the inter-cluster links
are disregarded. Instead, Newman [4] proposes to write the modularity matrix Mg of a cluster g as:

Mg = mij −
⎛
⎝∑

k ∈ g

mik

⎞
⎠ δij, (17)

with Kronecker delta δij equal to 1 if i = j and 0 otherwise. In the iterated bisection algorithm of Newman
[4], the subgraphs are iteratively split in two until the modularity cannot be improved anymore, indicated
by an absence of positive eigenvalues of the modularity matrix Mg of the subgraph. The stopping criterion
is evaluated for each subgraph separately, therefore the resulting number of clusters can be any number
greater than or equal to 1 and is not necessarily a multiple of 2. The algorithm provides an estimate of
the number of clusters and the corresponding clustering results too.

4.1.4 Eigengap modularity matrix M We estimate the number of clusters c by the maximum eigengap
of the modularity matrix M as described for the adjacency matrix A in Section 2.3. Let the eigenvalues of
the modularity matrix M be sorted in descending order: λ1(M) ≥ λ2(M) ≥ · · · ≥ λN(M). The eigenvalues
of the modularity matrix M and the adjacency matrix A are interlaced:

λ1(A) ≥ λ1(M) ≥ λ2(A) ≥ λ2(M) ≥ · · · ≥ λN(A) ≥ λN(M), (18)

as described in [6]. The maximum eigengap property then maximizes the difference λi−1(M)− λi(M) in
the sequence of N eigenvalues as

c∗ = arg max
i

(λi−1(M)− λi(M)), i = 2, . . . , N , (19)

with c∗ the resulting estimate of the number of clusters c.

5. Results

5.1 Erdős–Rényi graphs

We evaluate the cluster detection methods on Erdős–Rényi (ER) random graphs with different link
densities in Fig. 3. An ER random graph features no clustering structure in expectation, but in individual
realizations some clustering structure might be present due to randomness. The non-backtracking method
finds on average one single cluster in the ER graph for each of the link density values. The Louvain
method and the modularity eigengap method find a higher, constant number of clusters on average, while
Newman’s iterated bisection method finds a lower number of clusters as the link density increases. The
non-backtracking method detects 1 cluster in absence of a clustering structure, which is a convenient
property for an estimator of the number of clusters.
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 11

Fig. 3. The estimated number of clusters of the largest connected component for ER graphs Gp(N) with N = 1, 000 nodes and
different link densities p. Each point in the plots represents an average over 104 realizations. The vertical dashed line indicates the
connectivity threshold pc for an ER graph with N = 1, 000 nodes.

5.2 Ring of cliques

We evaluate the cluster detection methods on a ring of c cliques, similar to the evaluation method of
Fortunato and Barthélemy [25]. Each clique is the complete graph KNg with Ng nodes and we connect
neighbouring cliques by a single link. The set-up is a seemingly easy clustering problem, but Fortunato
and Barthélemy [25] illustrate the resolution limit of modularity optimization methods by showing that
for a ring of c >

√
L cliques, the modularity m is maximized for c/2 clusters that consist of 2 cliques

each. We choose a set-up where each cluster has relatively many nodes and links, therefore we have the
opposite: c <

√
L. The complete graph KNg has the largest possible spectral gap between the two largest

eigenvalues.
Figure 4 shows the estimated number of clusters for our experiment. Intuitively, a cluster detection

method is expected to find as many clusters as there are cliques. The non-backtracking method estimates
the correct number of clusters (cliques) in almost every instance, while Newman’s iterated bisection and
the modularity eigengap method are close on average. Surprisingly, the Louvain method finds exactly
twice the number of cliques in every instance. Inspecting the Louvain clustering results reveals that the
method subdivides each clique into two smaller clusters. The clustering results of the Louvain method
are therefore almost equivalent to the partition where each clique is a cluster, but the detected number of
clusters is not the intuitively expected number.

5.3 The number of clusters in SSBMs

5.3.1 Clustering in the eigenvectors of the modularity matrix M First, we inspect if and how the
clustering pattern appears in the eigenvector components of the modularity matrix for a network generated
by an SSBM with N = 1, 000 nodes and average degree E [D] = 7. Figure 5 shows the components of
the first eigenvector w1 versus the components of the second eigenvector w2 for two graphs generated
by SSBMs with c = 3 clusters. For the network in Fig. 5a, the difference bin − bout = 19 is well above
the detectability threshold in (12) of 7.94. The objects corresponding to the nodes of a single cluster
are clearly cluttered and they are well separated from the objects corresponding to the nodes of other
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12 G. BUDEL AND P. V. MIEGHEM

Fig. 4. The estimated number of clusters for a ring of c cliques, where each clique is the complete graph K100 with Ng = 100 nodes.
The entire graph has N = Ng ·c = 100c nodes and two neighbouring cliques in the ring are connected by a single link. The 45◦ line
maps the true number of clusters (cliques) to the estimated number of clusters on a 1:1 scale, the estimates of an ideal estimator
would be positioned close to the 45◦ line. For each point in the graph, we randomize the order of the nodes 20 times and average
over these 20 estimations.

Fig. 5. Scatter plots of the second eigenvector w2 versus the first eigenvector w1 of the modularity matrix for two different graphs,
both with N = 1, 000 nodes and generated by SSBMs with c = 3 clusters. The parameters bin and bout are chosen such that the
expected average degree E [D] = 7 in both networks and that they only differ through the difference bin − bout, for which the
theoretical detectability threshold in (12) is 7.94. The colours and shapes of the objects indicate the true cluster memberships.

clusters. For the graph in Fig. 5a, a spectral clustering algorithm based on the first two eigenvectors would
successfully detect the cluster memberships of the majority of the nodes. For the graph in Fig. 5b, the
difference bin − bout = 11 is closer to the detectability threshold and the objects corresponding to the
nodes of the different clusters now show significant overlap. Even though a spectral clustering algorithm
would now classify less nodes correctly, there are still three (overlapping) clouds of points visible. The
detection of the number of clusters through the maximum eigengap is potentially still possible.
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 13

Fig. 6. The estimated of number of clusters for graphs generated by SSBMs of N = 1, 000 nodes and c clusters. For an SSBM with
a given number of clusters c, we vary the difference bin − bout while keeping the expected average degree constant at E [D] = 7.
Each point in the plots represents an average over 104 realizations. The vertical dashed line indicates the theoretical detectability
limit of the SSBM.

5.3.2 Clusters of equal size Figure 6 shows the estimated number of clusters for networks generated by
SSBMs with 2, 3, 4, 10 and 20 equally sized clusters. In each subfigure, from left to right the number of
intra-cluster links increases with respect to the number of inter-cluster links, while keeping the average
degree constant. The contrast of the clusters becomes stronger as the difference bin−bout increases and the
detection of clusters becomes easier. On the left side of the detectability threshold, all methods appear to
have their own default guess for the number of clusters. The non-backtracking method and the modularity
eigengap find the correct number of clusters already slightly above the detectability threshold for graphs
with a lower number of clusters in Fig. 6a–c. Newman’s iterated bisection method finds the correct number
of clusters, but much higher above the detectability threshold than the first two methods. The Louvain
method does not find the correct number of clusters. However, inspection of the actual clustering results
from the Louvain method reveals that the true clusters are found, but they are subdivided into two or
more clusters, similar to the ring of cliques in Fig. 4. For the SSBMs with a higher number of clusters c
in Fig. 6d and e, the results are similar to the results for the low number of clusters. The difference is that
Newman’s iterated bisection does not find the correct number of clusters and the modularity eigengap
needs the difference bin− bout to be larger than the non-backtracking method before it detects the correct
number of clusters c.

Figure 7 shows the simulated densities of the estimators for the case in Fig. 6c where the number
of clusters c = 4. The three different values bin − bout = {6, 14, 23} correspond to the left, centre and

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/6/cnaa047/6161499 by guest on 12 April 2021



14 G. BUDEL AND P. V. MIEGHEM

Fig. 7. Histograms of the estimates of the number of clusters c by the four different methods for graphs generated by SSBMs with
c = 4 clusters. The values bin−bout = {6, 14, 23} correspond to the left (a), centre (b) and right (c) of the interval of the experiment
in Fig. 6c. The estimated probabilities are obtained by evaluating the methods on 104 simulated SSBM graphs with N = 1, 000
nodes. In panel (a), none of the methods performs well since the difference bin − bout is below the theoretical detectability limit in
this case. In panel (c), both the non-backtracking method and the modularity eigengap detect the right number of clusters for each
of the 104 networks, therefore the blue and black bars overlap.

right of the interval in Fig. 6c, respectively. The estimates of the non-backtracking method are narrowly
distributed around the correct number of clusters for the two cases with the highest contrast of the clusters.
Although the modularity eigengap method on average finds a number close to the true number of clusters
for the case bin − bout = 14, most estimates deviate significantly from the true number, and it seems a
coincidence that the average estimated number is close to the true number of clusters. Combining the
three cases in Fig. 7, the distribution of the non-backtracking method is overall the most accurate.

5.3.3 Imbalanced clusters Figure 8 shows the estimated number of clusters for a similar experiment as
in Fig. 6c, but with 4 clusters of heterogeneous size. The size of one cluster, cluster 1, is set to deviate from
the sizes of the other clusters in order to assess the impact of imbalancedness. For example, in Fig. 8d
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DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 15

Fig. 8. The estimated number of clusters for graphs generated by SSBMs of N = 1, 000 nodes subdivided into four imbalanced
clusters. The size N1 of cluster 1 is set to deviate from the sizes of the other three approximately equally sized clusters. The deviation
of the size N1 from the value 250 indicates the degree of imbalancedness. We vary the difference bin − bout exactly like in Fig. 6c
for comparability, but because of the imbalanced cluster sizes the average degree E[D] is not equal to 7 anymore. Each point in the
plots represents an average over 104 realizations.

the first cluster contains N1 = 400 nodes and the other three clusters contain N2 = N3 = N4 = 200
nodes each. In Fig. 8d, cluster 1 and the other three clusters have 250 nodes each. How far the size
N1 deviates from the value 250 indicates the degree of imbalancedness. Already when the clusters are
slightly imbalanced (Fig. 8b and c), the modularity eigengap fails to detect the right number of clusters c.
The graphs in Fig. 8a are recognized as graphs with three clusters by the detection methods and the
imbalancedness appears to be too strong. In Fig. 8e, the modularity eigengap method seemingly detects
the number of clusters perfectly. However, when comparing Fig. 8e with the other figures, it seems more
likely that the imbalancedness is too strong and that none of the methods is able to detect the clustering
structure. For the graphs generated by the SSBMs of Fig. 8a and e one could also argue that the graphs
actually have three clusters and one cluster, respectively. A hard definition of the concept of a cluster
would be required to make stronger statements.

5.4 Evaluation on real-world networks

We evaluate the four methods for detecting the number of clusters c on several real-world networks
commonly used in community detection. Table 1 shows the detected number of clusters for Zachary’s
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16 G. BUDEL AND P. V. MIEGHEM

Table 1 Detected number of clusters for five real-world networks.

Detected number of clusters c
Network Nodes N Links L Non-backtracking Louvain Newman Modularity eigengap

Karate 34 78 2 6 4 1
Political books 105 441 3 4 4 2
Facebook 347 2,519 8 26 18 2
Co-authorship 1,589 2,742 23 401 300 2
ArXiv 9,877 25,988 83 446 68 2

karate club network [26], a network of political books sold by Amazon1, a social circle network from
Facebook [27], a co-authorship network for publications in network science [28] and a collaboration
network of the Arxiv High Energy Physics Theory category [29]. The detected number of clusters c
differs significantly across the four different methods. The definition of a cluster indeed appears to
depend on the method. It is difficult to make statements about the validity of the methods based on these
results, since the ground truth is not known. The results of the modularity eigengap are not useful since
the detected number of clusters does not seem to depend much on the network structure. Potentially the
modularity eigengap method fails because the clusters in real networks are often not of equal sizes, since
we know from the simulation experiment in Section 5.3.3 that the modularity eigengap does not work
well for clusters of different sizes. The non-backtracking method finds a lower number of clusters c than
the Louvain method and Newman’s iterated bisection for most networks.

6. Conclusion

This work considers the detection of the number of clusters in a graph. Many clustering methods require
the number of clusters as an input and their results depend on the chosen number of clusters. Partly also
due to the lack of a clear definition of the concept of a cluster, the precise number of clusters in a graph
is debatable.

We have compared the estimates based on the non-backtracking matrix with several estimators based
on the concept of modularity. We find that the number of eigenvalues of the non-backtracking matrix
located outside a circle in the complex plane is an excellent estimator of the number of clusters in sparse
graphs where the clusters are not distinguishable based on differences in the node degrees alone. For
graphs without a clustering structure, the non-backtracking method detects one single cluster, which is
a convenient property for an estimator of the number of clusters. We also find that the detection based
on the maximum eigengap of the modularity matrix performs similarly to the non-backtracking method
for equally sized clusters, but the performance of the modularity eigengap method breaks down already
when the clusters are slightly imbalanced. The estimates of the non-backtracking method are narrowly
distributed around the true number of clusters for the benchmark graphs. In conclusion, the method based
on the eigenvalues of the non-backtracking matrix indeed yields a clear and unambiguous decision rule
for the choice of the number of clusters.

1 Unpublished, obtained from http://www-personal.umich.edu/∼mejn/netdata/.
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The non-backtracking matrix is, however, an asymmmetric matrix and many of its eigenvalues are
complex, making the non-backtracking method spectrally and conceptually difficult. The computational
complexity can be reduced by calculating the spectrum of H∗ in (A.2) from a quadratic eigenvalue equation
based on the adjacency matrix. Moreover, for obtaining the estimate of the number of clusters, only the
few largest, real eigenvalues have to be computed, reducing the computational complexity further. The
computation time of only a few large eigenvalues of the non-backtracking matrix scales approximately
linearly with the number of nodes N in the network.

The problem of detecting the number of clusters in a graph remains a difficult problem because of
the lack of a hard definition of the concept of a cluster. However, we find that when loosely defining a
cluster as a group of densely connected nodes, the number of eigenvalues of the non-backtracking located
outside a circle in the complex plane is a good estimator of the number of clusters.
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A. The non-backtracking matrix H

A.1 Non-backtracking walks

Two directed links are backtracking if they both connect the same pair of nodes but in opposite directions.
Two directed links are non-backtracking if one follows after the other and does not loop back to the starting
node of the first link. For example, the two links ee = i→ j and el = i← j are backtracking, while the

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/8/6/cnaa047/6161499 by guest on 12 April 2021



DETECTING THE NUMBER OF CLUSTERS IN A NETWORK 19

Fig. A.1. A directed graph with three nodes and three lexicographically ordered directed links e1 = A → B, e2 = A ← B and
e3 = B→ C.

Fig. A.2. Representing an undirected link in graph G by two bi-directional links.

two links ee = i → j and el = j → k are non-backtracking for k �= i. In a non-backtracking walk, no
two consecutive links are backtracking.

For illustrating non-backtracking walks, consider the example of the directed graph in Fig. A.1. A
walk over the links e1 = A→ B and e2 = A← B immediately returns to its starting node and the walk
is therefore backtracking. A walk over the links e1 = A → B and e3 = B → C does not immediately
return to its beginning node and is therefore non-backtracking. The latter is a non-backtracking walk of
length 2: a non-backtracking walk consisting of a succession of 2 links.

A.2 Definition of the non-backtracking matrix H

The non-backtracking matrix H is defined in (13). Starting from an undirected graph G, the non-
backtracking matrix H is defined for each pair of bi-directional links in the bi-directional graph
representation of G. Each of the L undirected links in G is represented by two bi-directional links,
one in each direction, hence there are 2L links in the bi-directional representation (see Fig. A.2). The two
bi-directional links that are created from a single undirected link in G are backtracking by construction.

Raising the matrix H to the kth power and taking the element (e, l) counts the number of non-
backtracking walks of length k+1 from the link ee to the link el. Similarly, raising the adjacency matrix A
to the kth power and taking the element (i, j) counts all walks of length k from node i to node j. Krzakala
et al. [7] and Bordenave et al. [30] have argued that counting only the non-backtracking walks rather
than all possible walks is more informative on the structure of the graph in specific applications such as
clustering.

A.3 Spectrum of the non-backtracking matrix H

The non-backtracking matrix was first mentioned by Hashimoto in the context of the Ihara-Bass zeta
function [24]. The eigenvalues of the non-backtracking matrix H are the reciprocal of the poles of
the Ihara-Bass zeta function. Stark and Terras [31] found and proved the surprising relation between the
eigenvalues of the non-backtracking matrix H and the adjacency matrix A and the diagonal matrix matrix�

with the degrees di on the diagonal. Following [32], the characteristic polynomial of the non-backtracking
matrix H is:

det (I2L − zH) = (1− z2)(L−N)det(IN − Az + (�− IN)z2), (A.1)

for complex values z ∈ C and where I2L is the 2L× 2L identity matrix and IN the N ×N identity matrix.
The equation (A.1) has 2(L − N) simple zeros that are equal to z = ±1. The other 2N eigenvalues are
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given by the quadratic eigenvalue equation on the right-hand side of (A.1). Angel et al. [32] remark
that the 2N non-trivial eigenvalues can be obtained from the eigenvalue equation of a block matrix H∗

constructed as follows

H∗ =
[

A I −�

I O

]
. (A.2)

Computing the 2N eigenvalues of the 2N × 2N block matrix H∗ rather than all 2L eigenvalues of the
2L× 2L non-backtracking matrix H reduces the number of required computations significantly for most
graphs.

A.4 Symmetry

The non-backtracking matrix H is an asymmetric matrix by definition: if a walk over two directed links ee

and el is non-backtracking, then the walk in opposite direction is not possible because of the directions of
the links. If the element (e, l) in the matrix H equals 1, then the element (l, e) must always equal 0. Still,
the non-backtracking matrix H features some kind of symmetry. The matrix H is defined for the pairs of
bi-directional links which are created from the undirected links in the graph G. Bordenave et al. [30] note
that if the link ee followed by the link el is non-backtracking, then the same links but in opposite directions
and in opposite order are also non-backtracking. It turns out that the transpose HT of the matrix H is
the non-backtracking matrix of the same graph G but with opposite directions in the bi-directional graph
representation. After all, the chosen directions in the bi-directional graph representation are arbitrary
(see Fig. A.2) and turning them around does not change the structure of the graph G. There exists a
permutation matrix P that relabels the bi-directional links in the bi-directional graph representation such
that all directions are reverted:

HP = PHT , (A.3)

where HP is a symmetric matrix. Bordenave et al. [30] find that while the eigenvalues of HP are strongly
related to the node degrees in the graph G, the bulk of the eigenvalues of H are not.

A.5 Complexity of the non-backtracking method

We discuss the computational complexity of detecting the number of clusters c with the non-backtracking
method as defined in (14). The size of the square non-symmetric matrix H∗ in (A.2) is of an order O(N2)

and calculating all 2N eigenvalues of H∗ takes an order of O(N3) operations, for example with the QR
algorithm for non-symmetric matrices [33]. For dense networks, calculating the eigenvalues of H∗ offers
a large reduction in computational complexity as compared to calculating all eigenvalues of H in an
order of O(L3) operations. It is even more efficient to apply the iterative procedure described in Section
4.1.1 to the matrix H∗. Alternatively, it suffices to compute the k largest eigenvalues in absolute value
for a small number k << N if the number k is larger than the number of clusters c. An efficient way to
approximate the k << N largest eigenvalues of an N ×N (or 2N × 2N) sparse matrix is with ARPACK,
a collection of algorithms mainly based on the Arnoldi process [33]. ARPACK is used for eigenvalue
computations in popular software packages. It is difficult to determine the exact complexity of ARPACK,
but in some cases it is possible to obtain the k eigenvalues in an order of as low as O(N) operations for a
sparse matrix [34], which offers a great reduction in computational complexity for the non-backtracking
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Fig. A.3. Measured computation times T in seconds for evaluating the non-backtracking method on graphs generated by an SSBM
with an exponentially increasing number of nodes N , from N = 200 to N = 200 · 212. The SSBM graphs are generated with the
number of clusters c = 3 and parameters bin = 10 and bout = 1. The k = 10 largest eigenvalues are calculated from the 2N × 2N
matrix H∗ (A.2) with ARPACK. For each network size N , we average the computation time over 20 instances. Regression lines
are shown for three different sections.

method. Whether the condition k > c holds has to be checked in retrospect, but it is safest to choose a
number k that is much higher than the number of clusters c one expects to find.

Figure A.3 shows a numerical evaluation of the scaling of the computation time of the non-
backtracking method. We measure the computation time T of estimating the number of clusters c by
calculating the k = 10 largest eigenvalues with the ARPACK implementation of MATLAB [35]. The
non-backtracking method is evaluated on graphs of exponentially increasing sizes generated by an SSBM
with the number of clusters c = 3 and parameters bin = 10 and bout = 1, which is slightly above the
detectability threshold in (12). Figure A.3 shows the logarithm of the computation time T plotted versus
the logarithm of the number of nodes N . Regression lines are fitted to 3 different sections. In the leftmost
section, the computation time T scales slower than linearly with the network size N . In the middle and
rightmost sections, the computation time T scales slightly faster than linearly with the network size N .
Overall, the scaling of the computation time T is close to linear. The scaling of the computation time of
detecting the number of clusters with the non-backtracking method is therefore quite favourable.
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