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ABSTRACT

Two approximations for network reliability polynomials, only based upon the knowledge of the degree
vector of the graph, are compared: the first-order approximation by Brown et al. and our stochastic
approximation. Our method is an extension of the connectivity probability of Erdős–Rènyi random graphs.
Both approximations are shown to upper bound the actual reliability polynomial and are increasingly
accurate for dense and large graphs. Moreover, the first-order approximation is always sharper or at least as
good as the stochastic approximation, whereas the stochastic approximation is computationally easier. Our
stochastic approximation (2.2) can determine the critical operational probability under which the graph is
disconnected almost surely for any graph and an approximation for the number Fj of sets of j links whose
removal retains the graph G connected, which is helpfull because the exact computation of Fj is NP-hard.

KEYWORDS: network robustness; node failure; probabilistic graph; reliability polynomial.

1. INTRODUCTION
The reliability of a system or network assesses its ability to remain operational after the failure of
some components [1]. In 1956, Moore and Shannon [2] proposed a probabilistic model for network
reliability, where nodes were considered to be perfectly reliable, while links had a certain probability
of failure. Colbourn [3] categorized network reliability into three types: two-terminal reliability,
all-terminal reliability, and k-terminal reliability. The computation of the all-terminal reliability
was proven to be NP-hard [4, 5]. To speed up the computation, reduction techniques that utilize
principles such as the factoring theorem and mincuts have been proposed [6–10]. For series-parallel
graphs, the all-terminal reliability can be computed in linear time [11, 12]. Despite the availability
of these techniques, calculating the network reliability for large networks remains challenging, as
recently overviewed by Brown et al. [13]. Monte Carlo methods offer accurate estimates of the
network reliability, but suffer from extensive computations [14]. Besides determining the exact
value of the network reliability, many researchers have provided upper and lower bounds [15–18].

In this article, we first introduce in Section 2 a stochastic approximation (2.2) that (i) up-
per bounds the network reliability, (ii) demonstrates high accuracy in estimating the reliabil-
ity polynomial for large and dense graphs, and (iii) allows to deduce an approximation of the
critical operational probability p∗

N under which the graph is disconnected almost surely for
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any graph of size N. Section 2.3 exemplifies the stochastic method and compares it analyti-
cally with exactly known reliability polynomials of a few graphs. Section 3 extends the perfor-
mance analysis of the stochastic approximation, benchmarked by precise Monte Carlo simula-
tions. In addition, an approximation is found in Appendix B.2 for the number Fj of sets of j
links whose removal keeps the graph G connected. The exact computation of Fj is NP-hard
[3–5]. Section 4 explains the first-order approximation of Brown et al. [19], derives some properties
and compares the first-order approximation with the stochastic approximation. A key result are the
inequalities in (4.5) that relates the first-order approximation, our new stochastic approximation
and the all-terminal reliability. Moreover, the first-order approximation is shown to be always at
least as accurate as the stochastic approximation. Section 5 summarizes the paper.

2. RANDOM GRAPH ANALOGY AND EXTENSION
A graphG (N , L ), in shortG, is composed of a set N ofN = |N | nodes and a set L ofL = |L |

links. An undirected and unweighted graph withN nodes can be represented by aN×N symmetric
adjacency matrix A. The element aij of the adjacency matrix A equals aij = 1 if there exists a link
between node i and j, else aij = 0. Because self-loops do not affect the network reliability, we exclude
self-loops, implying that A has zero diagonal elements, i.e. ajj = 0 for 1 ≤ j ≤ N. We call a graph
simple [20] if it is undirected without self-loops.

The network (or all-terminal) reliability is defined as the probability that a network remains
connected if each link is operational with probability p, independent of any other link in the
graph G. We map the network reliability in a given, simple and undirected graph G to a stochastic
setting, where a random graph Ĝ is considered. The operational activity of a link is transferred to
a probabilitistic link existence setting: each link in G is transformed to a Bernoulli random variable
with mean p in the random graph Ĝ. In other words, the link âij = 1{link between node i and j} in Ĝ
is an indicator, implying that the link exists and âij = 1 if the link is operational, else âij = 0
and the link does not exist, i.e. fails or does not operate. The probability p that the link between
node i and j is operational in G means then that Pr

[̂
aij = 1

]
= p. Since any link in the random

graph Ĝ is a Bernoulli random variable, the powerful property of Bernoulli random variables that
probability equals expectation, i.e. Pr

[̂
aij = 1

]
= E

[̂
aij
]
, holds. The adjacency matrix of Ĝ then

equals Â = AGp(N) ◦ A, where AGp(N) is the random adjacency matrix of the Erdős–Rènyi (ER)
random graph Gp (N) on N nodes with link density p and A is the adjacency matrix of the given
graph G, while ◦ denotes the Hadamard product [20]. The relation between the degree of a node
in the given graph G and in its random companion Ĝ is derived in Appendix A.

The corresponding reliability polynomial is defined [3] as the probability that the random graph
Ĝ is connected, given the same operational probability p for all links,

relG
(
p
)

= Pr
[
Ĝ is connected

]
(2.1)

which is a function of the graph topology (i.e. adjacency matrix A) of the given graph G and of
the operational probability p of each link in G. Let Pr [D = k] be the probability that a randomly
chosen node in the graph G has degree k. The probability generating function (pgf) [21] of the
degree D in the original graph G is ϕD (z) = E

[
zD
]

=
∑N−1

j= 0 Pr [D = j] zj. Our main result here

is an approximation relG
(
p
)

for the reliability polynomial relG
(
p
)

for large size N of the graph G,

relG
(
p
)

≃ relG
(
p
)

=
(

1 − ϕD
(

1 − p
))N (2.2)

which is derived below in (2.4) and further compared with simulations in (2.4) Section 3. Our new
approximation relG

(
p
)

in (2.2) expresses the reliability polynomial of a graph G in terms of the
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degree distribution of G. The reliability polynomial of a graph G can be expressed [3] as

relG
(
p
)

=

L−N+1∑
j=0

Fj
(

1 − p
)j pL−j (2.3)

where Fj is the number of sets of j links whose removal leaves G connected. We deduce from (2.2)
analytic approximations for the coefficients Fj of the reliability polynomial (2.3) in Appendix B.2
and list a few instances of Fj in explicit analytic form.

2.1 Connectivity and degree in the random graph Ĝ
We extend here the analysis of the connectivity in ER random graphs in [21, Section 15.7.5], by
reviewing the interesting relation between the connectivity of a graph, a global property, and the
degree D of an arbitrary node, a local property. The implication {G is connected} H⇒ {Dmin ≥ 1},
where the minimum degree is Dmin = minall nodes ∈G D, is always true. The opposite implication is
not always true, because a network can consist of separate, disconnected clusters containing nodes
each with minimum degree larger than 1. For large size N of the graph G and a certain link density
pN which depends on N, the implication {Dmin ≥ 1} H⇒

{
Gp (N) is connected

}
is almost surely

(a.s.) correct for ER random graphs. Thus, for a large ER random graph Gp (N), the equivalence{
Gp (N) is connected

}
⇔ {Dmin ≥ 1} holds almost surely such that

Pr
[
Gp (N) is connected

]
= Pr [Dmin ≥ 1] + o(1),

meaning that the difference between the left- and right-hand sides vanishes as N → ∞. The
equivalence is rigorously proved in the book [22, Section 5.3] of van der Hofstad, with references

to earlier work, and the error o (1) can be sharpened to O
(

logb N
N

)
for some b > 0 by [22,

Equation 5.3.21]. Our main hypothesis here is that we assume, in our random graph companion Ĝ of
the given graph G, the validity of

Pr
[
Ĝ is connected

]
= Pr

[
D̂min ≥ 1

]
+ o(1),

where D̂min = minall nodes ∈Ĝ D̂.
The basic law of the degree [20],

∑N
j= 1 dj = 2L, couples the degree dj of nodes to the number

of links L in any graph. For large N and p < 1 in Ĝ; however, this dependence is negligibly weak.
Assuming independence, the minimum of independent random variables is [21, Section 6.6]

Pr
[
D̂min ≥ 1

]
≃
(

Pr
[
D̂ ≥ 1

])N
=
(

1 − Pr
[
D̂ = 0

])N
Invoking (A.3) in Appendix A yields

Pr
[
D̂min ≥ 1

]
≃
(

1 − ϕD
(

1 − p
))N

Our hypothesis then leads, for large N, to the approximation of the network reliability

Pr
[
Ĝ is connected

]
=
(

1 − ϕD
(

1 − p
))N

+ o(1) (2.4)

which, in combination with the definition (2.1) of a reliability polynomial relG
(
p
)

, demonstrates
our key approximation relG

(
p
)

=
(

1 − ϕD
(

1 − p
))N in (2.2). If p = 1, then ϕD

(
1 − p

)
= 0 in a

connected graphG and Pr
[
Ĝ is connected

]
= 1 almost surely, while ifp = 0, then ϕD

(
1 − p

)
= 1

and Pr
[
Ĝ is connected

]
= 0 almost surely.
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Since the event
{
D̂min ≥ 1

}
includes the event

{
Ĝ is connected

}
(but not vice versa as explained

above), it holds that Pr
[
D̂min ≥ 1

]
≥ Pr

[
Ĝ is connected

]
. Equivalently, the order term o (1) in

(2.4) is non-negative. Consequently, our asymptotic approximation (2.2) upper bounds the actual
reliability polynomial, i.e.

relG
(
p
)

≤ relG
(
p
)

(2.5)

and that the accuracy of (2.2) increases with size N. The theory of ER graphs then guarantees that
equality in (2.2), i.e. relG

(
p
)

= relG
(
p
)

, holds in the limit for graph sizes N → ∞. Numerical
computations confirm, for the graphs computed, the upper bound (2.5) and the increasing accuracy
of the asymptotic approximation (2.2) for large graph sizes N.

It is thus quite remarkable that only the degree distribution of a sufficiently large graph G seems
sufficient to conclude about the connectivity of the companion random graph Ĝ, in which failures
occur independently per link and with a same Bernoulli distribution with mean p!

2.2 Asymptotic analysis for large N of Pr
[
Ĝ is connected

]
in (2.4)

We write Pr
[
Ĝ is connected

]
in (2.4) in terms of pN , expressing that p is a function of N, and omit

the order o (1),

Pr
[
Ĝ is connected

]
≃ exp

(
N log

(
1 − ϕD

(
1 − pN

)))
Invoking the Taylor series of log (1 − x) = −

∑
∞

k= 1
xk
k for |x| < 1 yields

log
(

1 − ϕD
(

1 − pN
))

= −ϕD
(

1 − pN
)
−

∞∑
j=2

(
ϕD
(

1 − pN
))j

j

and

Pr
[
Ĝ is connected

]
≃ e−NϕD(1−pN) exp

−N
∞∑
j=2

(
ϕD
(

1 − pN
))j

j


If we denote cN ≜ NϕD

(
1 − pN

)
, then

N
∞∑
j=2

(
ϕD
(

1 − pN
))j

j
=

∞∑
j=2

cjN
jNj−1

can be made arbitrarily small for large N, provided we choose cN = cNβ with β < 1
2 , where c is a

positive real and constant number. Thus, for large N, we have that

Pr
[
Ĝ is connected

]
= e−cNβ (

1 + O
(
N2β−1))

which tends to 0 for 0 < β < 1
2 and to 1 for β < 0. Hence, the critical exponent where a sharp

transition occurs is β = 0. In that case, cN = c and NϕD
(

1 − pN
)

= c, which implies, assuming
that the inverse function z = ϕ−1

D (w) ofw = ϕD (z) exists, that the critical value of the operational
probability is

p∗
N = 1 − ϕ−1

D

( c
N

)
(2.6)
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In summary, for N → ∞, the network is operational if the operational link probability p exceeds
p∗
N ,

Pr
[
Ĝ is connected

]
−→

{
0 if p < p∗

N
1 if p > p∗

N

For a complete graph, ϕD (z) = E
[
zD
]

= zN−1 and the inverse function ϕ−1
D (z) = z

1
N−1 .

Introduced into the critical operational link probability (2.6) yields

p∗
N;KN

= 1 −

( c
N

) 1
N−1

= 1 − exp
(

log c
N

N − 1

)
=

logN
N

+ O
(

log c
N

)
which, indeed, agrees with ER random graph theory [21, Section 15.7.4-5] and pc ∼

logN
N is the

famous critical link density in Gp (N) for large N. Our method thus generalizes the phase transition
in the growth process of ER graphs (see e.g. [23]) to the critical operational probability p∗

N in (2.6)
for any given graph G and sufficiently large N. For operational probabilities p < p∗

N , the graph G
does not function anymore almost surely. In other words, the operational regime for any given graph
G stretches from p = p∗

N in (2.6) up to p = 1.

2.3 Examples of the stochastic approximation (2.2)
2.3.1 Complete graph

The random graph Ĝ associated to the complete graph KN is precisely the Erdős-Rènyi random
graph Gp (N) on N nodes with link existence probability p for each link. The definition (2.1) of the
reliability polynomial then reduces to

relKN

(
p
)

= Pr
[
Gp (N) is connected

]
which has been computed in the classical paper by Erdős and Rènyi [24]. If Gr (N, L) is the
Erdős-Rènyi random graph on N nodes with precisely L links, they proved that

lim
N→∞

Pr
[
Gr

(
N,
[

1
2
N logN + xN

])
is connected

]
= e−e−2x

(2.7)

Ignoring the integral part [.] operator in (2.7) and eliminating x using the number of links L =
1
2N logN + xN gives, for large N,

Pr[Gr(N, L) is connected] ∼ e−N e−
2L
N (2.8)

which should be compared with the exact result,

Pr[Gr(N, L) is connected] =
C(N, L)((N2)

L
) (2.9)

where the number of connected random graphs C(N, L) in the class Gr(N, L) has been intensively
studied. Gilbert [25] has derived a recursion for C(N, L), which is computed for small N up to
N = 7 in [21, Section 15.7.3]. Hence, if the operational probability equals a rational number
p =

L
(N2)

, then the reliability polynomial relKN

(
p
)

is exactly computable by (2.9). The goodness

of the Erdős-Rènyi asymptotic (2.8) is assessed in [21, Fig. 15.7 on p. 381]. If we replace the average
degree 2L

N by p (N − 1), then we find from (2.8), for large N, that

relKN

(
p
)

≃ e−N e−p(N−1)
(2.10)
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6 · Van Mieghem and Liu

The major interest of (2.10) is that any reliability polynomial relG
(
p
)

in a graph with N nodes and
operational probability p is upper bounded by relKN

(
p
)

.

2.3.2 Crown graph
The crown graph CrN is a complete bipartite graph KN−2,2 on N nodes, with an extra link between
the two nodes in the smallest set. The reliability polynomial of the crown graph CrN is [26]

relCrN
(
p
)

= pN−2
((

2 − p
)N−2

− 2N−2 (1 − p
)N−1

)
Each node in the largest set of N nodes has degree 2 and the degree of the two nodes in the

smallest set is N − 1. The degree distribution of the crown graph CrN is Pr [D = 2] =
N−2
N

and Pr [D = N − 1] =
2
N . The pgf is ϕD

(
p
)

= Pr [D = 2] p2
+ Pr [D = N − 1] pN−1

=

N−2
N p2

+
2
N p

N−1. The approximation (2.2) is

relCrN
(
p
)

≈

(
1 −

N − 2
N

(
1 − p

)2
−

2
N
(

1 − p
)N−1

)N

For large N, the approximation for the crown graph CrN is about

relCrN
(
p
)

≈

(
1 −

(
1 − p

)2
+

2
N
(

1 − p
)2

−
2
N
(

1 − p
)N−1

)N

=

(
p
(

2 − p
)
+

2
N
(

1 − p
)2

−
2
N
(

1 − p
)N−1

)N

= pN
(

2 − p
)N (1 +

2
N

(
1 − p

)2

p
(

2 − p
) −

2
N

(
1 − p

)N−1

p
(

2 − p
) )N

≈ pN
(

2 − p
)N e

2(1−p)2
p(2−p)

The general upper bound (2.5) then illustrates that relCrN
(
p
)

≥ relCrN
(
p
)

, implying, for large
N, the non-trivial inequality

pN−2
((

2 − p
)N−2

− 2N−2 (1 − p
)N−1

)
≤ pN

(
2 − p

)N e
2(1−p)2
p(2−p)

2.3.3 Cycle graph
The reliability polynomial for the cycle CN on N nodes is

relCN

(
p
)

= pN + NpN−1 (1 − p
)

The pgf of the degree of the cycle CN , which is a regular graph with degree D = 2, equals
ϕD
(
p
)

= E
[
pD
]

= p2 and approximation (2.2) is

relCN

(
p
)

=

(
1 −

(
1 − p

)2
)N

= pN
(

2 − p
)N
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Figure 1. The reliability polynomials relG(p) and stochastic approximations for a cycle graph on N = 100
nodes and a crown graph on N = 100 nodes.
Alt text: This figure illustrates the reliability polynomials of a cycle graph and a crown graph, both
containing 100 nodes. The plot compares the exact reliability functions with their stochastic
approximations across different values of p.

which is, after expansion of the binomial,

relCN

(
p
)

= pN
N∑
k=0

(
N
k

) (
1 − p

)k
= pN + NpN

(
1 − p

)
+ pN

N∑
k=2

(
N
k

) (
1 − p

)k
= relCN

(
p
)
+ pN

N∑
k=2

(
N
k

) (
1 − p

)k

Since all terms in the binomial expansion are non-negative, we clearly observe that our approxi-
mation (2.2) is an upper bound, i.e. relCN

(
p
)

> relCN

(
p
)

. Additionally, for small p as well as large
operational probabilities p → 1, our approximation (2.2) is increasingly accurate. The explicit error
term pN

∑N
k= 2

(N
k
) (

1 − p
)k allows us to compute the operational probability p∗ that maximizes

the error of the stochastic approximation.
Figure 1 illustrates that the stochastic approximation closely matches the reliability polynomial

relCrN
(
p
)

of the crown graph, but deviates from the reliability polynomial relCN

(
p
)

of the cycle
graph. Since the stochastic approximation relies solely on the degree distribution of the graph rather
than the specific connectivity patterns, two graphs with very similar degree distributions will have
similar stochastic approximations. Both the cycle graph C100 and the crown graph Cr100 have a
large number of nodes with a degree of two, leading to similar degree distributions. Consequently,
Fig. 1 shows that their stochastic approximations are alike. However, due to the influence of specific
connections, the actual reliability polynomials of the two graphs differ significantly.
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2.4 Subgraph properties of reliability polynomials
A homogeneous ER graph, where each link has the same probability p to exist, tends to a regular
graph when the graph sizeN tends to infinity and p is kept constant [21, p. 40]. The tight connection
between the stochastic approximation (2.2) and homogeneous ER graphs suggests that the largest
difference relG

(
p
)

− relG
(
p
)

occurs in dense graphs with low edge connectivity [21, p. 366-
368]. (The edge connectivity equals the minimum number of links whose removal disconnects the
graph.) A typical example are two complete graphs connected by a single link. Here, we explore two
dense subgraphs connected by a few links.

Consider two disconnected subgraphs G1 on n nodes and G2 on the remaining m = N − n
nodes of a graph G. The adjacency matrix A of G is written in block matrix form

A =

[ (
AG1

)
n×n Bn×m(

BT
)
m×n

(
AG2

)
m×m

]
where the matrix B specifies the links between the subgraph G1 and G1, which we call the
cutset C. In terms of the all-one vector u =

[
1 1 · · · 1

]T , the cutset C consists of LC =(
uT
)

1×m Bn×mum×1 links, each with one node in G1 and the other node in G2. The two subgraphs
G1 and G2 are disconnected if and only if all links in the cutset C are removed. The event that the
corresponding random graph Ĝ is connected consists now of three events{

Ĝ is connected
}

⊇
{
Ĝ1 is connected

}
∩
{
Ĝ2 is connected

}
∩
{
Ĉ connects Ĝ1 and Ĝ2

}
(2.11)

where the event
{
Ĉ connects Ĝ1 and Ĝ2

}
means that at least one link in the cutset Ĉ must be

operational, given that both subgraphs Ĝ1 and Ĝ2 are connected. However, the graph Ĝ can still
be connected if Ĝ1 or/and Ĝ2 are disconnected, as e.g. in bipartite graphs where G1 and G2 are
empty graphs. More generally, suppose thatG1 itself consists of two disconnected subgraphs S1 and
S2, but each subgraph apart is connected and the cutsetC contains a link from a node in S1 to a node
in G2 and a link from a node in S2 to a node in G2. Then, there exists a path between each pair of
nodes in G and G is connected, while G1 is not, which explains the included sign ⊇ in the event
sets in (2.11). Since the links in the subgraphs Ĝ1, Ĝ2 and Ĉ are all different, the events are mutually
exclusive [21, p. 9], which implies that

Pr
[
Ĝ is connected

]
≥ Pr

[
Ĝ1 is connected

]
Pr
[
Ĝ2 is connected

]
Pr
[
Ĉ connects Ĝ1 and Ĝ2

]
(2.12)

Given that
{
Ĝ1 is connected

}
∩
{
Ĝ2 is connected

}
, the event that at least one link in the cutset is

operational is equivalent to the event that not all links in the cutset Ĉmay fail and includes the event{
Ĉ connects Ĝ1 and Ĝ2

}
Pr
[
Ĉ connects Ĝ1 and Ĝ2

]
= 1 −

(
1 − p

)LC
If the cutset contains LC links, then the definition (2.1) of the reliability polynomial and (2.12)

leads to

relG
(
p
)

≥

(
1 −

(
1 − p

)LC)Pr
[
Ĝ1 is connected

]
Pr
[
Ĝ2 is connected

]
which reduces for each partition of the graph G into two non-overlapping subgraphs G1 and G2
connected by Lc = 1 link to an equality

relG
(
p
)

= pPr
[
Ĝ1 is connected

]
Pr
[
Ĝ2 is connected

]
(2.13)
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Figure 2. The stochastic approximation (2.2) and Monte Carlo simulations for the class of ER graphs
Gp (N) with N = 200 and critical link density pc ∼

logN
N = 0.0265.

Alt text: This figure presents the stochastic approximation and Monte Carlo simulations for Erdős–Rényi
(ER) graphs with 200 nodes. The plot compares the reliability polynomial for different link densities, with
a critical density value of approximately 0.0265, calculated using the formula Pc Log N/N.

Figure 6 below illustrates that the stochastic approximation applied to the entire graph G is
considerably worse than applied to each dense subgraph G1 and G2 only connected by one link
in (2.13).

In general, m + 1 disconnected subgraphs {S1, S2, . . . , Sm+ 1} are connected by precisely m
links forming a connected graph Ĝ, provided each Ŝj of the individual subgraphs is itself connected,
resulting in

Pr
[
Ĝ is connected

]
= pm

∏m+1
j=1 Pr

[
Ŝj is connected

]
Indeed, each subgraph can be represented in a hierarchical structure (see e.g. [27]) by a node and

m + 1 nodes can always be connected by a spanning tree consisting of m links.

3. PERFORMANCE ANALYSIS OF THE STOCHASTIC
APPROXIMATION (2.4)

The accuracy of our approximation (2.2) is compared with Monte Carlo simulations, based on a
variation of the method in [19], in terms of link density pL =

E[L]
(N2)

, where E [L] is the average

number of links. We regard the Monte Carlo simulations as precise enough to act as a benchmark
for the correct reliability polynomial relG

(
p
)

.
Figures 2 and 4 demonstrate that the stochastic approximation (2.2) is accurate for the ER

random graphs GpL (N) with link density pL above the disconnectivity threshold pc as well as for
Barbasi–Albert graphs.

Figure 3 demonstrates, indeed, that the approximation (2.2) becomes increasingly accurate for
graphs with large size N. Random geometric graphs are compared in Fig. 5 and indicate that the
stochastic approximation (2.2) is slightly less accurate for low link density.
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10 · Van Mieghem and Liu

Figure 3. The stochastic approximation (2.2) and Monte Carlo simulations for the class of ER graphs
GpL (N) with different sizes of N = 10, 25, 50, 75 and 100 and critical link density pc ∼

logN
N .

Alt text: This figure shows the stochastic approximation and Monte Carlo simulations for Erdős–Rényi
graphs of different sizes, ranging from 10 to 100 nodes. The plot demonstrates the reliability polynomial
behavior under varying network scales and critical link densities.

Figure 4. The stochastic approximation (2.2) and Monte Carlo simulations for the class of Barabasi-Albert
graphs with N = 500 and different link densities pBA (kmin) as function of the minimum degree kmin:
pBA (2) = 0.00798, pBA (3) = 0.01195, pBA (4) = 0.0159, pBA (5) = 0.01984, and pBA (6) = 0.02375.
Alt text: This figure presents the stochastic approximation and Monte Carlo simulations for
Barabási-Albert graphs with 500 nodes. The figure compares reliability polynomial estimates under
varying minimum degree values, ranging from 2 to 6, and corresponding link densities.
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Degree-based approximations for network reliability polynomials · 11

Figure 5. The stochastic approximation (2.2) and Monte Carlo simulations for the class of random
geometric graphs with N = 200 for various link connectivity radius r = 0.11, 0.12, 0.13, 0.14 and 0.15
with corresponding link density pL = 0.04266, 0.0506, 0.05346, 0.06517 and 0.07839.
Alt text: This figure presents the stochastic approximation and Monte Carlo simulations for random
geometric graphs with 200 nodes. It compares the reliability polynomial estimates for different
connectivity radii (r values) and their corresponding link densities.

For two ER graphs with N = 30 nodes that are connected by LC = 1 link, Fig. 6 compares, for
different link density pL the stochastic approximation (2.2) for the entire graph with formula (2.13)
that takes the substructure into account and where each subgraph is computed by (2.2). The latter
computation via (2.13) is almost the same as Monte Carlo simulations; their difference on the plot
is not visible.

Figures 7 and 8 assess the stochastic approximation (2.2) for lattices in two and three dimensions.
We observe that, in all simulated graphs, the approximate formula (2.2) upper bounds the exact

reliability polynomial, as anticipated in Ĝ Section 2.1.

4. COMPARISON OF THE STOCHASTIC APPROXIMATION AND THE
FIRST-ORDER APPROXIMATION

Brown et al. [19] have introduced their so-called first-order approximation

(R1)G (p) =

N∏
i=1

(1 − (1 − p)di) (4.1)

which reflects the probability that none of the nodes in the graph G has inoperational links.
Indeed, all links incident to node i fail with probability fi =

(
1 − p

)di and the complement,
i.e. not all links incident to node i fail, has probability 1 − fi. Given that the original graph G is
connected, the event E ={none of the nodes in the random graph Ĝ has all links inoperational}
is a sufficient, but not necessary condition for the event

{
Ĝ is connected

}
, which implies that

Pr [E ] ≥ Pr
[
Ĝ is connected

]
. Hence, the definition of the reliability polynomial in (2.1) indicates

that

(R1)G (p) ≥ relG
(
p
)

(4.2)

Both the first-order approximation (R1)G (p) in (4.1) and the stochastic approximation relG
(
p
)
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12 · Van Mieghem and Liu

Figure 6. Two ER graphs with N = 30 nodes, connected by LC = 1 link, are, for different link density
pL = kpc with k = {1, 2, 3, 4, 5}, computed by the stochastic approximation (2.2) for the entire graph and
by formula (2.13), which is close to exact.
Alt text: This figure presents two Erdős–Rényi (ER) graphs, each with 30 nodes, connected by a single
link. The reliability polynomial approximations for the entire graph are compared under different link
densities, showing results from the stochastic approximation and an analytical formula.

Figure 7. The stochastic approximation (2.2) and Monte Carlo simulations for 2D-lattice width 20 and
different height h = 20, 30, 40, 50 and corresponding link density
p = 0.00952, 0.00639, 0.00481, 0.00386 and 0.00322.
Alt text: This figure shows the stochastic approximation and Monte Carlo simulations for 2D lattice
graphs with a fixed width of 20 and varying heights. The graph compares reliability polynomial estimates
for different link densities corresponding to heights ranging from 20 to 50.

in (2.2) are larger than the actual reliability polynomial relG(p). Moreover, both approximations
solely use the degree vector or degree distribution to assess the connectivity of the random graph Ĝ.
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Degree-based approximations for network reliability polynomials · 13

Figure 8. The stochastic approximation (2.2) and Monte Carlo simulations for 3D-lattice with width 20
and length 20 for different height k = 2, 7, 12, 17, 22 and corresponding link density
p = 0.006, 0.00197, 0.00117, 0.00084 and 0.00064.
Alt text: This figure presents the stochastic approximation and Monte Carlo simulations for 3D lattice
graphs with fixed width and length of 20. The plot compares the reliability polynomial estimates for
varying graphs with fixed width and length of 20. The plot compares the reliability polynomial estimates
for varying.

In the sequel, we present an interesting relation between the first-order approximation (4.1) and the
stochastic approximation (2.2).

4.1 Arithmetic-geometric mean inequality
The arithmetic mean over all nodes of the probability 1 − fi is

PAM =
1
N

N∑
i=1

(
1 − fi

)
=

1
N

N∑
i=1

(
1 −

(
1 − p

)di)
which we rewrite as a sum over the nodal degrees by denoting nj as the number of nodes with degree
j and realizing that Pr [D = j] =

nj
N ,

PAM =
1
N

N−1∑
j=0

nj
(

1 −
(

1 − p
)j)

=

N−1∑
j=0

Pr [D = j]
(

1 −
(

1 − p
)j)

After simplification with
∑N−1

j= 0 Pr [D = j] = 1 and (A.3), we arrive at

PAM = 1 − ϕD
(

1 − p
)

(4.3)

The corresponding geometric mean is

PGM =
N
√∏N

i=1
(

1 − fi
)

=
N
√∏N

i=1(1 − (1 − p)di) (4.4)
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14 · Van Mieghem and Liu

Comparison of (4.3) and (4.4) with the definitions (2.2) and (4.1) leads to the interesting
observation

(PAM)N = relG
(
p
)

and (PGM)N = (R1)G (p)

Since for any set of positive numbers {b1, ., bN}, the arithmetic mean is always greater than or
equal to the geometric mean [28], with equality if and only if all bi = b are equal, the first-order
approximation (R1)G (p) is smaller than or equal to stochastic approximation relG

(
p
)

, resulting in
the key inequality

relG(p) ≤ (R1)G (p) ≤ relG
(
p
)

(4.5)

In other words, the first-order approximation (R1)G (p) in (4.1) is always at least as accurate as
the stochastic approximations relG

(
p
)

in approximating reliability polynomials relG(p) in (2.1).
Only if all nodes in the network G have the same degree, thus only for regular graphs, it holds that
(R1)G (p) = relG

(
p
)

.

4.2 Probabilistic proof of the inequality (4.5)
With Pr [D = j] =

nj
N and q = 1 − p, we rewrite the first-order approximation (R1)G (p) in (4.1)

as

(R1)G (p) =

N∏
i=1

(1 − qdi) =

N−1∏
d=0

(1 − qd)nd =

N−1∏
d=0

(1 − qd)N Pr[D=d]

After taking the logarithm of both sides,

log [(R1)G (p)] = N
N−1∑
d=0

Pr [D = d] log(1 − qd) (4.6)

The definition [21, Equation (2.12) on p. 12] of the expectation E shows that

log [(R1)G (p)] = N.E
[
log
(

1 − qD
)]

(4.7)

or as

(R1)G (p) =

(
eE
[

log
(

1−(1−p)D
)])N

(4.8)

If g (x) is a convex function on an interval x ∈ [a, b], then Jensen’s inequality [21, Equation (5.7) on
p. 101] for a random variable X ∈ [a, b] is g (E [X]) ≤ E [g (X)]. Since − log x is convex, Jensen’s
inequality states that E [log (X)] ≤ log (E [X]) from which

E
[
log
(

1 − qD
)]

≤ log
(
E
[
1 − qD

])
= log

(
1 − E

[
qD
])

= log
(

1 − ϕD
(
q
))

Finally, (4.7) is upper bounded by

log [(R1)G (p)] = N.E
[
log
(

1 − qD
)]

≤ N log
(

1 − ϕD
(
q
))

which is equivalent, with the stochastic approximation (2.2) and q = 1 − p, to inequality (4.5).
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Degree-based approximations for network reliability polynomials · 15

By introducing the Taylor series log (1 − z) = −
∑

∞

k= 1
zk
k , convergent for all |z| < 1, into

(4.6), we obtain

log [(R1)G (p)] = −N
N−1∑
d=0

Pr [D = d]
∞∑
k=1

qdk

k

= −N
∞∑
k=1

1
k

N−1∑
d=0

Pr [D = d]
(
qk
)d

With the definition of the pgf ϕD (z) = E
[
zD
]

=
∑N−1

j= 0 Pr [D = j] zj of the degree D in the
original graph G, another form of the logarithm of the first-order approximation in terms of the pgf
ϕD (z) is

log [(R1)G (p)] = −N
∞∑
k=1

ϕD

((
1 − p

)k)
k

(4.9)

while the logarithm of the stochastic approximation (2.2) is

log
[
relG

(
p
)]

= N log
(

1 − ϕD
(

1 − p
))

= −N
∞∑
k=1

(
ϕD
(

1 − p
))k

k

Jensen’s inequality for the convex function g (x) = xk for integers k and positive real x, i.e.

ϕD

(
qk
)

= E
[
qkD

]
≥
(
E
[
qD
])k

=
(
ϕD
(
q
))k

again demonstrates the inequality (4.5).
By invoking the harmonic, geometric and arithmetic mean inequality (C.1), we deduce a lower

bound − log
(
E
[

1
1−qD

])
≤ E

[
log
(

1 − qD
)]

for (4.7) in Appendix C. However, Monte Carlo

simulations indicate that relG
(
p
)
≰
(
E
[

1
1−(1−p)D

])−N
, meaning that the lower bound does not

lead to a tighter upper bound for the reliability polynomial relG
(
p
)

.

4.3 Comparison of stochastic and first-order approximation
Figures 9 and 10 show the comparison of first-order approximation (R1)G (p), stochastic approxima-
tion relG

(
p
)

and Monte Carlo simulations on two real-world networks in the Network Repository
[29]. Figure 9 shows that when the variance of the degree distribution in the network is large,
the first-order approximation is significantly smaller than the stochastic approximation. If the
variance var[D] of the degree distribution in the network is relatively small, as in Fig. 10, then
there is no significant difference between the first-order approximation (R1)G (p) and stochastic
approximation relG

(
p
)

.
Another advantage of the first-order approximation (R1)G (p) in (4.1) is the easy extension

to heterogeneous reliability polynomials, where each link l between node i and j has operational
probability pl = pij,

(R1)G (
{
pij
}

1≤i,j≤N) =

∏N

i=1

(
1 −

∏di

l=1

(
1 − pil

))
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16 · Van Mieghem and Liu

Figure 9. The stochastic approximation, first-order approximation and Monte Carlo simulations for
Infect-hyper Network [29].
Alt text: This figure compares the stochastic approximation, first-order approximation, and Monte Carlo
simulations for the Infect-hyper network. The plot illustrates the differences in reliability estimation
methods based on the network’s structure and characteristics.

Figure 10. The stochastic approximation, first-order approximation and Monte Carlo simulations for
Singapore MRT network [29].
Alt text: This figure presents the stochastic approximation, first-order approximation, and Monte Carlo
simulations for the Singapore MRT network. The plot demonstrates the reliability estimation methods
applied to the public transportation system’s connectivity.

The computational complexity Cstoch of the stochastic approximation relG
(
p
)

=

eN log(1−ϕD(1−p)) requires the computation of ϕD(1 − p), which equals Cstoch = O (ND), where
ND is the number of different degrees in the graph. The computational complexity Cfirst-order of
the first-order approximation (R1)G(p) in (4.8) requires the computation of the average over N
nodes and equals Cfirst-order = O(N).

If the network has a very large number N of nodes, but only a few distinct degrees ND, then
the stochastic approximation relG

(
p
)

becomes particularly efficient. Therefore, in networks where
ND ≪ N, the stochastic approximation requires significantly fewer computational resources,
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Degree-based approximations for network reliability polynomials · 17

resulting in a substantial reduction in computation time and in an increased efficiency. This
computational advantage becomes even more pronounced as the size N of the network grows.

5. CONCLUSION
We have presented and evaluated the accuracy of a simple, approximate formula (2.2) for reliability
polynomials, which can be regarded as an extension of Erdős–Rènyi random graphs. The stochastic
approximation is compared with the recently proposed first-order approximation by Brown et al.
[19]. We show that the first-order approximation is always more or at least as accurate as the
stochastic approximation. Both approximations are increasingly accurate for large graphs N and
seems to perform better for graphs with a large link density pL. Just for such dense and large
graphs, computations of the reliability polynomials are demanding. Hence, both degree-based
approximations fill a gap in current reliability theory. At last, our stochastic approximation provides
an estimate for the critical operational probability p∗

N in (2.6) and for the number Fj of sets of j links
whose removal retains the graph G connected in (B.11).
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A. Degree of a random node in Ĝ
The degree D̂ of a randomly chosen node in Ĝ follows from the law of total probability [21, p. 23],

Pr
[
D̂ = k

]
=

N−1∑
j=0

Pr
[
D̂ = k

∣∣D = j
]

Pr [D = j]

where D is the degree of random node in G. The conditional probability is

Pr
[
D̂ = k

∣∣D = j
]

=

(
j
k

)
pk
(

1 − p
)j−k

because a node in G with degree j has j links, that each operate properly with probability p and
the corresponding node in Ĝ has j independent Bernoulli links, whose sum is a binomial random
variable [21, Section 3.1.2]. SinceG is connected, the minimum degree dmin (G) ≥ 1 and the degree
D̂ of a randomly chosen node in Ĝ has the distribution

Pr
[
D̂ = k

]
=

N−1∑
j=dmin(G)

Pr [D = j]
(
j
k

)
pk
(

1 − p
)j−k (A.1)

We can rewrite (A.1) as

Pr
[
D̂ = k

]
=

pk

k!

N−1∑
j=0

Pr [D = j]
j!(

j − k
)
!

(
1 − p

)j−k
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18 · Van Mieghem and Liu

Since dk
dzk z

j
=

j!
(j−k)!

zj−k, we have

Pr
[
D̂ = k

]
=

pk

k!

N−1∑
j=0

Pr [D = j]
dk

dzk
zj
∣∣∣∣
z=1−p

=
pk

k!
dk

dzk

N−1∑
j=0

Pr [D = j] zj

∣∣∣∣∣∣
z=1−p

Finally, we arrive at

Pr
[
D̂ = k

]
=

pk

k!
dkϕD (z)

dzk

∣∣∣∣
z=1−p

(A.2)

Clearly, ϕD (z) = 1 and |ϕD (z)| ≤ 1 for |z| ≤ 1; also ϕD (0) = Pr [D = 0] = 0, which is zero in
a connected graph G. In particular, (A.1) and (A.2) reduce for k = 0 to

Pr
[
D̂ = 0

]
=

N−1∑
j=0

(
1 − p

)j Pr [D = j] = ϕD
(

1 − p
)

(A.3)

where Pr [D = j] = 0 for 0 < j < jmin = Dmin.
Furthermore, the pgf of the degree D̂ in Ĝ follows from (A.2) with Pr

[
D̂ = j

]
= 0 for j ≥ N as

ϕD̂ (z) = E
[
zD̂
]

=

N−1∑
j=0

Pr
[
D̂ = j

]
zj =

∞∑
j=0

1
j!

djϕD (z)
dzj

∣∣∣∣
z=1−p

(
pz
)j

After invoking Taylor’s theorem f (z) =
∑

∞

j= 0
1
j!

djf (z)
dzj

∣∣∣
z= z0

(z − z0)
j, we find that pgf

ϕD̂ (z) = E
[
zD̂
]

of the degree D̂ in Ĝ is

ϕD̂ (z) = ϕD
(

1 − p + pz
)

where the pgf of a link in Ĝ is ϕ̂a (z) = 1 − p+ pz. Thus, it holds that ϕD̂ (z) = ϕD (ϕ̂a (z)), which
is an instance of the general formula in [21, (2.79) on p. 31].

B. The approximation (2.2) in polynomial form
B.1 Polynomial forms of (2.3) and (2.2)

We write (2.3) as a pure polynomial in p by using Newton’s binomium,

relG
(
p
)

= pL
L−N+1∑
j=0

Fj

(
1
p

− 1
)j

= pL
L−N+1∑
j=0

Fj
j∑

k=0

(
j
k

)
(−1)j−k p−k

= pL
L−N+1∑
j=0

j∑
k=0

Fj

(
j
k

)
(−1)j−k p−k

Reversing the sums yields

relG
(
p
)

=

L−N+1∑
k=0

L−N+1∑
j=k

Fj

(
j
k

)
(−1)j−k pL−k
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Degree-based approximations for network reliability polynomials · 19

Let l = L − k, then

relG
(
p
)

=

L∑
l=N−1

L−N+1∑
j=L−l

Fj

(
j

L − l

)
(−1)j−L−l pl

Subsequently, let m = L − j to finally obtain,

relG
(
p
)

=

L∑
l=N−1

rlpl (B.1)

where the polynomial coefficient rl equals

rl =

l∑
m=N−1

(−1)m−l
(
L − m
L − l

)
FL−m (B.2)

The alternative polynomial in q = 1 − p follows similarly as

relG
(
p
)

=

L−N+1∑
j=0

Fjqj
(

1 − q
)L−j

=

L−N+1∑
j=0

Fjqj
L−j∑
k=0

(
L − j
k

)
(−1)k qk

=

L−N+1∑
j=0

L−j∑
k=0

(
L − j
k

)
Fj (−1)k qk+j

Let l = k + j, then 0 ≤ l ≤ L and 0 ≤ j = l− k ≤ L−N + 1 implies that 0 ≤ k ≤ l, so that

relG
(
p
)

=

L∑
l=0

l∑
k=0

(
L − (l − k)

k

)
Fl−k (−1)k ql

Hence, the reliability polynomial in terms of q = 1 − p is

relG
(

1 − q
)

=

L∑
l=0

vlql (B.3)

with the coefficient

vl =

l∑
k=0

(−1)k
(
L − l + k

k

)
Fl−k =

l∑
n=0

(−1)l−n
(
L − n
l − n

)
Fn (B.4)

In particular, for p = 1, we know that relG
(
p
)

= 1. Thus, for q = 0 in (B.3), it follows that
1 = relG (1) = v0 = F0.

Similarly, we write our approximation (2.2) as a polynomial in q = 1 − p

relG
(
p
)

=
(

1 − ϕD
(
q
))N

=

(
1 −

N−1∑
k=0

Pr [D = k] qk
)N
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The integer power of a Taylor series f (z) =
∑

∞

k= 0 fkz
k follows as fN(z) =

(∑
∞

k= 0 fk z
k)N

=∑
∞

j1=0 · · ·
∑

∞

jN=0
∏N

i= 1 fji z
∑N

i= 1 ji . After letting m =
∑N

i= 1 ji with ji ≥ 0 for each 1 ≤ i ≤ N, we
obtain

fN(z) =

∞∑
m=0

 ∑
∑N

i=1 ji=m;ji≥0

N∏
i=1

fji

 zm (B.5)

Applying (B.5) shows, with f0 = 1 − Pr [D = 0] = 1 and fk = − Pr [D = k], that

relG
(
p
)

= 1 +

∞∑
m=1

cm qm (B.6)

where c0 = 1 and the coefficient cm for m > 0,

cm =

∑
∑N

i=1 ji=m;ji≥0

N∏
i=1

fji =

N∑
j=0

(
N
j

)
s[j,m] (B.7)

where the characteristic coefficients, first defined in [30],

s[k,m] =

∑
∑k

i=1 ji=m;ji>0

k∏
i=1

fji (B.8)

are efficiently computed by the recursion

s[1,m] = fm

s[k,m] =

m∑
j=k

fm−j+1 s[k − 1, j − 1] (k > 1)

=

m−k+1∑
j=1

fj s[k − 1,m − j] (k > 1) (B.9)

B.2 Estimates for the coefficients Fj in (2.3)
Equating corresponding powers in (B.3) and (B.6) yields vm ≈ cm, for m ≥ 1,

m∑
n=0

(−1)m−n
(
L − n
m − n

)
Fn ≈ cm

Using
(L−n
m−n

)
=

(L−n)!
(m−n)!(L−m)! =

(L−n
L−m

)
and with k = L − n, we have

L∑
k=L−m

(−1)L−m+k
(

k
L − m

)
FL−k ≈ cm
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For an arbitrary q, applying the second binomial inverse pair [31, chap. 2]

fn =

q∑
k=n

(
k
n

)
gk ⇔ gn =

q∑
k=n

(
k
n

)
(−1)k+n fk (B.10)

yields (with n = L − m and q = L, it holds that
∑L

k=n
(k
n
)
(−1)n+k FL−k ≈ cL−n; next, let

fk = FL−k and gn = cL−n in (B.10))

FL−n ≈

L∑
k=n

(
k
n

)
cL−k =

L−n∑
k=0

(
k + n
n

)
cL−n−k

Finally, with m = L − n, we arrive at

Fm ≈

m∑
k=0

(
k + L − m

k

)
cm−k (B.11)

In other words, we found an approximation (B.11) for the coefficients Fm of the reliability polyno-
mial in (2.3), whose exact computation was proven to be an NP-complete problem in [4, 5] and
[3].

We compute the approximation (B.11) of Fm for the first few values of m. For m = 1, (B.11)
becomesF1 ≈

∑1
k= 0

(k+L−1
k

)
c1−k = c1+Lc0 = c1+L and c1 =

∑N
j= 0

(N
j
)
s[j, 1] = Ns [1, 1] =

Nf1 = −N Pr [D = 1]. To shorten the notation, we denote dk = Pr [D = k] and present the list:

F1 ≈ L − Nd1

F2 ≈

(
L
2

)
− d1(L − 1)N + d2

1

(
N
2

)
− d2N

F3 ≈

(
L
3

)
− d1

(
L − 1

2

)
N + (L − 2)

(
d2

1

(
N
2

)
− d2N

)
− d3

1

(
N
3

)
+ 2d2d2

(
N
2

)
− d3N

F4 ≈

(
L
4

)
− d1

(
L
3

)
N +

(
L − 2

2

)(
d2

1

(
N
2

)
− d2N

)
+ (L − 3)

(
−d3

1

(
N
3

)
+ 2d1d

(
N
2

)
− d3N

)
+ d4

1

(
N
4

)
− 3d2

1d2

(
N
3

)
+
(
d2

2 + 2d1d3
) (N

2

)
− d4N

With current mathematical symbolic programs, such as Mathematica, we can explicitly compute
(B.11) for any desired, finite value of m.

C. Harmonic, geometric and arithmetic mean inequality
For positive real numbers a1, a2,, . . . , an, the harmonic, geometric and arithmetic mean inequality
is [21, p. 99]

n∑n
k=1

1
ak

≤ n

√√√√ n∏
k=1

ak ≤
1
n

n∑
k=1

ak (C.1)

with equality only if all aj are equal.
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The harmonic mean corresponding to PAM in (4.3) is

PHM =
N∑N

i=1
1

1−fi

=
1

1
N
∑N

i=1
1

1−(1−p)di
=

1
1
N
∑N−1

d=0 nd 1
1−(1−p)d

=
1∑N−1

d=0 Pr [D = d] 1
1−(1−p)d

which is rewritten in terms of the expectation operator as

PHM =
1

E
[

1
1−(1−p)D

]
Alternatively, invoking the geometric series yields an expression terms of the pgf ϕD (z) of the

degree,

PHM =
1∑N−1

d=0 Pr [D = d] 1
1−(1−p)d

=
1∑N−1

d=0 Pr [D = d]
∑

∞

k=0
(

1 − p
)dk

=
1∑

∞

k=0
∑N−1

d=0 Pr [D = d]
((

1 − p
)k)d =

1∑
∞

k=0 ϕD

((
1 − p

)k)
=

1

1 +
∑

∞

k=1 ϕD

((
1 − p

)k)
Since PHM ≤ PGM ≤ PAM by (C.1) and we find, with PNGM = (R1)G (p) and PNAM = relG

(
p
)

,
that

1(
E
[

1
1−(1−p)D

])N ≤ [(R1)G (p)] ≤ relG
(
p
)

Taking the logarithms,

−N log

(
E

[
1

1 −
(

1 − p
)D
])

≤ log [(R1)G (p)] ≤ log
[
relG

(
p
)]

then translates, with the expectation forms (4.7) of (R1)G (p) and relG
(
p
)

and with q = 1 − p, to

− log
(
E
[

1
1 − qD

])
≤ E

[
log
(

1 − qD
)]

≤ log
(

1 − E
[
qD
])

If we replace the random variable X = 1 − qD, then we find the harmonic, geometric and
arithmetic expectation inequality for any non-negative random variable X:

− log
(
E
[
X−1])

≤ E [log (X)] ≤ log (E [X]) (C.2)
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In summary, the harmonic approximation would be a sharper approximation than (R1)G (p) for the
reliability polynomial relG

(
p
)

, if the inequality

relG
(
p
)

≤

(
E

[
1

1 −
(

1 − p
)D
])−N

(C.3)

would hold. Unfortunately, Monte Carlo simulations indicate that the harmonic inequality (C.3) is
violated.

D. Additional example of the stochastic approximation
D.1 Tree graphs

The reliability polynomial for any tree graph T with N nodes and N − 1 links is relT(p) = pN−1.
Although the stochastic approximation (2.2) for any tree T is more complicated than the exact,
simple relT(p) = pN−1, the main purpose here is to compare the goodness of the stochastic
approximation (2.2) with exact results.

In contrast to the actual reliability polynomial relT(p), which is the same for all tree graphs on N
nodes, the stochastic approximation (2.2) of the reliability polynomial of a tree graph withN nodes
varies with the degree distribution D.

Consider two tree graphs T1 and T2 on N nodes, where the only difference between the degree
distributions is that the degrees of node i and j of T1 are di and dj, while the corresponding degrees
in T2 are di − 1 and dj + 1, and all the other nodes have the same degree. Anticipating the analysis

in Section 4, where we show that 1 − ϕD
(

1 − p
)

=

∑N
i= 1(1−(1−p)di )

N , the difference

1 =

(
1 − ϕDT1

(
1 − p

))
−

(
1 − ϕDT2

(
1 − p

))
=

p
N

((
1 − p

)di−1
−
(

1 − p
)dj)

from which we conclude that 1 ≥ 0 if di ≥ dj + 1, because the function f (x) = xk, where k is a
positive integer, is monotonically increasing with x in the domain [0, 1]. Hence, relT1(p) ≥ relT2(p)
only if di ≥ dj + 1. We define a tree graph descending restructuring, which disconnects a branch of
a node i with degree di in a tree graph and connects that branch to another node j with degree dj,
where di ≥ dj. The ascending restructuring is defined as the inverse of the descending restructuring.
The argument indicates that the stochastic approximation relT′ of a tree T′ after an ascending
restructuring is smaller than or equal than relT .

A path graph PN with N nodes can be reconstructed into any other tree graph with N nodes
by multiple ascending restructurings. Thus, the stochastic approximation relPN of path graph PN
with N nodes is larger than relT in any other tree graph with N nodes. A star graph K1,N−1 with
N nodes can also be reconstructed into any other tree graph with N nodes by multiple descending
restructurings. Hence, the stochastic approximation relK1,N−1 of star graph with N nodes is smaller
than relT in any other tree graph with N nodes. In conclusion, it holds for any 0 ≤ p ≤ 1 that

relK1,N−1(p) ≤ relT(p) ≤ relPN (p) (D.1)

The stochastic approximation of a star graph with N nodes and a path graph with N nodes are
respectively.

relK1,N−1(p) =

(
1 −

N − 1
N

(
1 − p

)
−

1
N
(

1 − p
)N−1

)N
(D.2)
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Figure A1. Comparison of the stochastic approximation relK1,N−1(p) for the star and relPN (p) for the path
graph with N = 100 and the actual reliability polynomial relT

(
p
)

.
Alt text: This figure compares the stochastic approximation of the reliability polynomial for a star graph
and a path graph, each with 100 nodes. The plot also includes the actual reliability polynomial for the tree
graph to highlight the differences in approximation accuracy.

and

relPN (p) =

(
1 −

2
N
(

1 − p
)
−

N − 2
N

(
1 − p

)2
)N

(D.3)

while the actual reliability polynomial of any tree graph with N nodes is relT(p) = pN−1.
Dividing relK1,N−1(p) by relT(p) yields

relK1,N−1(p)
relT(p)

= p

(
1 −

N−1
N
(

1 − p
)
−

1
N
(

1 − p
)N−1

p

)N

For large N, we have

relK1,N−1(p)
relT(p)

≈ p

(
1 −

N−1
N
(

1 − p
)

p

)N

= p
(

1 − p + Np
Np

)N

= p
(

1 +
1 − p
Np

)N
= p

(1 +
1 − p
Np

) Np
1−p


1−p
p

≈ pe
1−p
p

Similarly, we find that

relPN (p)
relT(p)

= p

(
1 −

2
N
(

1 − p
)
−

N−2
N
(

1 − p
)2

p

)N

= p
(

2N − 2 − (N − 2) p
N

)N
≈ p

(
2 − p

)N
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In summary, we arrive at

pe
1−p
p relT(p) ≤ relT(p) ≤ p

(
2 − p

)N relT(p)

Figure A1 shows that stochastic approximation performs best for a star graph K1,N−1 and worst
for a path graph PN .
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