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Abstract. An increasing number of network metrics have been applied in
network analysis. If metric relations were known better, we could more effectively
characterize networks by a small set of metrics to discover the association
between network properties/metrics and network functioning. In this paper,
we investigate the linear correlation coefficients between widely studied network
metrics in three network models (Bárabasi–Albert graphs, Erdös–Rényi random
graphs and Watts–Strogatz small-world graphs) as well as in functional brain
networks of healthy subjects. The metric correlations, which we have observed
and theoretically explained, motivate us to propose a small representative set
of metrics by including only one metric from each subset of mutually strongly
dependent metrics. The following contributions are considered important.
(a) A network with a given degree distribution can indeed be characterized by a
small representative set of metrics. (b) Unweighted networks, which are obtained
from weighted functional brain networks with a fixed threshold, and Erdös–
Rényi random graphs follow a similar degree distribution. Moreover, their metric
correlations and the resultant representative metrics are similar as well. This
verifies the influence of degree distribution on metric correlations. (c) Most metric
correlations can be explained analytically. (d) Interestingly, the most studied
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metrics so far, the average shortest path length and the clustering coefficient,
are strongly correlated and, thus, redundant. Whereas spectral metrics, though
only studied recently in the context of complex networks, seem to be essential
in network characterizations. This representative set of metrics tends to both
sufficiently and effectively characterize networks with a given degree distribution.
In the study of a specific network, however, we have to at least consider the
representative set so that important network properties will not be neglected.

Keywords: neuronal networks (experiment), network dynamics, random graphs,
networks, computational neuroscience
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1. Introduction

After about a decade of extensive research on complex networks, numerous metrics
have been introduced to quantify different features of complex networks [12, 40]. The
computation complexity of network metrics can be high. Actually, network metrics can
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be strongly correlated in a certain type of graphs such as power-law graphs, indicating
redundancy among them. On the other hand, each metric only partially captures
the properties of a network. It would be helpful if it is possible to define a small
representative set of network metrics that effectively characterize a given type of networks.
Understanding the relations between network metrics is essential, in general, for complex
network studies. In this paper, we take neuroscience as an illustration.

Network science has recently been applied to neuroscience to understand the effect
of the network structure on its functioning. The average shortest path length in the
human functional brain network was shown to be negatively correlated with IQ [26, 45].
The small-world pattern and modularity tend to disappear in the brain networks of
patient groups with, for example, brain tumors, epilepsy or Alzheimer’s [7, 9]. Well-
studied metrics like degree diversity (κ), assortativity (ρD), clustering coefficient (CG),
average hopcount (E[H ]), global efficiency (E[1/H ]), spectral radius (λ1), effective graph
resistance (RG), algebraic connectivity (µN−1) and ratio of µ1/µN−1, have been applied to
functional brain networks [40]. Is it redundant to consider these widely studied metrics to
relate network property/metric to network functioning? Which set of metrics at least have
to be considered? The understanding of the relation between network properties/metrics
enables neuroscientists to discover the most relevant topological features/metrics that may
characterize a certain brain disease or function [41].

This work investigates the correlations between network metrics, aiming to identify
a small representative set of metrics by including only one metric from each subset
of mutually strongly dependent metrics. Metric correlation was studied via the linear
correlation coefficient between network metrics in real-world networks in [21]. However,
that approach did not address the following challenges. First, the correlation between
network metrics is topology-dependent. Consider, for example, the correlation between
the average shortest path length4 E[H ] and the number of nodes N . The average
shortest path length E[H ] is independent of the size N in the class of dense Erdös–
Rényi random graphs but is positively correlated with N in D-dimensional lattices by
E[H ] ∼ (N1/D(D/3)). Thus, the correlation between two metrics can be different in
different types of networks. In other words, the representative set of metrics can be
different for different types of networks. Second, most network metrics are correlated with
the number of nodes N (or even the number of links L) of a network. This introduces
the difficulties in comparing networks [4, 50]. When the set of networks, like the set of
real-world networks studied in [21] are of different size N , two metrics may seem to be
strongly correlated, simply because they are both correlated with the size N . We approach
these difficulties in three steps. (i) We consider three network models: the Erdös–Rényi
random graphs5 [18] with a binomial degree distribution, the Bárabasi–Albert graphs6

[3] with a power-law degree distribution and the Watts–Strogatz small-world graphs7 [52]

4 The shortest path length between a node pair is the number of links contained in the shortest path between the
node pair. The average shortest path length E[H ] is the average over all node pairs.
5 An Erdös–Rényi random graph can be generated from a set of N nodes by randomly assigning a link with
probability p to each pair of nodes.
6 A Bárabasi–Albert graph starts with m nodes. At every time step, we add a new node with m links that
connect the new node to m different nodes already present in the graph. The probability that a new node will be
connected to node i in step t is proportional to the degree di(t) of that node. This is referred to as preferential
attachment.
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where most nodes have the same degree. This allows us to understand the influence of
the degree distribution on metric correlations. Although other network properties may as
well influence metric correlations, we start with the degree distribution since it is the most
studied and usually the easiest to obtain in most complex networks. (ii) We consider metric
correlations in the instances of each model with a given size N and a given link density
p. Initial results have been discussed in [12]. Here, we further explore how the metric
correlations change with network parameters N and p to obtain the metric correlation
pattern in each network model. (iii) The metric correlations are explored in the functional
brain network of healthy subjects, which have the same network size N . So far, metric
relations have been mainly studied via the linear correlation coefficient [12, 21, 27], as in
this paper. We do deem studies on other correlation measures, such as partial correlations
and multivariate analysis [15, 27], which may lead to different observations, as valuable
further work.

Section 2 introduces network metrics that we explore. The linear correlation
coefficients between network metrics are computed in a large number of network instances
of each model with various parameters in section 4. The metric correlation patterns in
network models as well as the corresponding representative sets of metrics are considered
important contributions of this paper. Surprisingly, the large set of metrics that we
considered can be sufficiently represented by a small number of metrics in Erdös–Rényi
random graphs, Bárabasi–Albert graphs and Watts–Strogatz small-world graphs. The
analytic relations between network metrics, presented in section 3, support the correlations
discovered via numerical experiments in section 4.

Finally, we study metric correlations in the functional brain networks of healthy
subjects in section 5. We discuss how to derive unweighted functional brain networks
via fixed threshold or via fixed average degree [50]. First, with the fixed threshold,
the unweighted functional brain networks are shown to follow approximately binomial
degree distribution. Interestingly, the metric correlation pattern in the studied functional
brain networks is consistent with what we found in the Erdös–Rényi random graph
model. Second, with the fixed average degree or link density, the degree distribution
of unweighted functional brain networks has a heavy tail. The metric correlation patterns
of these two types of unweighted functional brain networks are different whilst their degree
distributions differ.

Our results suggest that (a) the representative set of network metrics can indeed be
smaller than the originally considered set; (b) the average distance and the clustering
coefficient, the most studied metrics so far especially in neuroscience, are strongly
correlated and, thus, redundant; (c) spectral metrics8 are only studied recently in
the context of complex networks. However, at least one spectral metric appears
in the representative set, suggesting the importance of spectral metrics in network
characterizations. When we study a class of graphs with a given degree distribution,
these networks can be possibly characterized by a small representative set of metrics
instead of by the originally considered set. However, in the study of a specific complex
network, the representative set at least has to be considered so as not to neglect any

7 A Watts–Strogatz small-world graph can be generated from a ring lattice with N nodes and k edges per node,
by rewiring each link at random with probability p.
8 Spectral metrics are those involving in the eigenvalue computations, such as spectral radius (λ1), effective graph
resistance (RG), algebraic connectivity (µN−1) and ratio of µ1/µN−1.
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important network properties. In empirical network studies, we probably do not know
the true underlying topology but partial network properties. Our understanding of the
dependency of metric correlation patterns on network properties opens up the possibility
to use metric correlation as a topology diagnostic for real networks.

2. Definition of network metrics

In this section, we introduce the network metrics that are widely studied in the literature,
from classical structural metrics (from local metrics like degree diversity to global
metrics, e.g. the average hopcount) to spectral metrics (eigenvalue-related metrics).
The correlation between these metrics will be studied analytically in section 3 and
experimentally in section 4.

Let G = (N , L) be a graph, where the number of nodes is denoted by N = |N |
and the number of links is represented by L = |L|. The graph G can be represented
by a N × N adjacency matrix A, consisting of elements aij that are either one or zero,
depending on whether there is a link between nodes i and j. The Laplacian matrix of G
is an N × N matrix Q = ∆− A, where ∆ = diag(di) and di is the degree of node i ∈ N .

• Degree diversity κ.

The degree diversity κ is defined [6] as

κ =
E[D2]

E[D]
=

Var[D] + E[D]2

E[D]
. (1)

Chung et al [10] found that the degree diversity approximates the largest adjacency
eigenvalue λ1 in Erdös–Rényi random graphs, if κ >

√
dmax ln N (dmax is the maximum

degree). Scale-free networks, where Var[D] → ∞ as N → ∞, are characterized by κ → ∞,
whereas regular networks, where Var[D] = 0, have κ = E[D]. Properties of dynamic
processes on networks, such as the synchronization threshold in the mean-field theory
of coupled oscillators in networks [38], the network percolation [11] and the epidemic
thresholds [31], have all been stated to be related to κ = E[D2]/E[D], approximately.

• Assortativity ρD.

‘Mixing’ in complex networks [34] refers to the tendency of network nodes to connect
preferentially to other nodes with either similar or opposite properties. The mixing
of the degree is computed via the degree correlation of connected node pairs, called
assortativity [48]:

ρD = 1 −
∑

i∼j(di − dj)2

∑N
i=1 d3

i − (1/2L)(
∑N

i=1 d2
i )

2
. (2)

Networks where high-degree nodes preferentially connect to other high-degree nodes, are
assortative in the degree correlation (ρD > 0), whereas networks where high-degree nodes
connect to low-degree nodes, are disassortative (ρD < 0). Van Mieghem et al [48, 49] have
reformulated the assortativity as follows:

ρD =
N1N3 − N2

2

N1

∑N
i=1 d3

i − N2
2

(3)
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where Nk = uTAku is the total number of walks with k hops. Newman [33] found
that technological and biological networks are disassortative while social networks are
assortative. The functional brain networks determined from EEG have also been found
to be assortative [13].

• Clustering coefficient CG.

Two different clustering coefficients are frequently used. The first definition of
clustering coefficient [11, 25, 46] CG of a graph is the average clustering coefficient of nodes
whose degree is larger than 1, given as

CG =
1

N − |N (1)|
∑

v∈N−N (1)

cG(v) (4)

where N is the set of all nodes and N (1) is the set of degree 1 nodes. The clustering
coefficient of a node cG(v) characterizes the density of connections in the environment
of a node v and is defined as the ratio of the number of links y connecting the dv > 1
neighbors of v over the total possible dv(dv − 1)/2, thus cG(v) = 2y/dv(dv − 1).

The second one is based on the following definition for undirected unweighted
networks [12]:

CG =
3!G

NΛ
(5)

where !G is the number of triangles in the network and NΛ =
∑N

i=1

( di
2

)
is the number

of connected triples.
The difference between the two definitions is that equation (4) is the average of the

connection density among the neighbors of each node, while equation (5) is the average of
the probability that a triangle is formed upon each triple in the network. In this paper, we
consider the effect of degree distribution, so we use the definition equation (4) to calculate
the clustering coefficient to each node.

• Average hopcount E[H ] and global efficiency E[1/H ].

The hopcount Hij is the number of links or hops in the shortest path between node i
and node j. The maximal hopcount Hmax among all node pairs is the diameter of a graph.
If the average hopcount of a network approximates that of the corresponding Erdös–Rényi
random graph with the same number N of nodes and link density p (E[HG] ≈ E[HGp(N)]),
and the clustering coefficient always CG > CGp(N), then the network possesses the small-
world property.

When a network is disconnected, the shortest paths between some node pairs are
infinite, so the average hopcount of the network cannot be computed. In this situation,
we compute the average reciprocal hopcount E[1/H ], which is called the global efficiency
and widely studied in neuroscience [8, 25]. In addition to the global efficiency in [25], a
local efficiency is defined as Eloc = 1/N

∑
i⊆G E(Gi), where Gi is the subgraph of the

neighbors of i. The local efficiency plays a role similar to the first definition of clustering
coefficient CG. As we have included the first definition of the clustering coefficient in a
metric set, thus the local efficiency is not taken into account in this paper.

• Spectral radius (the largest adjacency eigenvalue) λ1.

doi:10.1088/1742-5468/2011/11/P11018 6
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We denote the set of eigenvalues of the adjacency matrix A as λN ≤ λN−1 ≤ · · · ≤ λ1,
where the largest eigenvalue λ1 is called the spectral radius. The eigenvalues of the
adjacency matrix are real, while the eigenvalues of the Laplacian matrix are real and non-
negative [28]. The largest eigenvalue λ1 is a powerful character of dynamic processes on
networks such as virus spreading and synchronization processes [38]. The inverse of the
largest eigenvalue λ1 characterizes the threshold of the phase transition, which specifies
the onset of a remaining fraction of infected nodes and of locked oscillators, respectively,
of both virus spread [47] and synchronization of coupled oscillators [37] in networks.
Restrepo et al [38] discovered that λ1 can be approximated by N3/N2, where Nk is the
total numbers of walks with k hops. Recently, Van Mieghem et al [48] proved that N3/N2

is a lower bound of the largest adjacency eigenvalue λ1. Both motivate us to consider
N3/N2 as a potentially important network metric.

• Effective graph resistance RG.

The effective graph resistance (which is also called the Kirchhoff index) originated
from the field of electric circuit analysis [17, 23]. Assuming a network as an electrical
circuit where the resistance of each link is 1, the effective graph resistance is defined as
the accumulated effective resistance between all pairs of vertices. It measures the ease
of communication in a graph [17, 20]. The equivalent spectral expression for the effective
graph resistance is [49]

RG = N
N−1∑

k=1

1

µk
(6)

where µk is the kth largest eigenvalue of the Laplacian matrix Q.

• Algebraic connectivity µN−1.

The eigenvalues of the Laplacian matrix Q are ordered as 0 = µN ≤ µN−1 ≤ · · · ≤ µ1

and µN−1 > 0 if and only if the graph G is connected. The second smallest eigenvalue
µN−1 of Q is called the algebraic connectivity. It was first studied by Fiedler [19]. A
large value of algebraic connectivity characterizes strong network robustness regarding,
for example, (a) the difficulty to cut the network into separated subparts [22] and (b)
enhanced synchronizability and fast convergence [16, 51].

• Ratio µ1/µN−1.

The ratio of the largest eigenvalue µ1 and the second smallest eigenvalue µN−1 of
the Laplacian is often claimed as an index of synchronizability of a graph [44]. The
synchronizability mainly indicates whether the synchronized state of a dynamic on a graph
will be stable for a sufficiently large range of parameters of the dynamic process [4, 35]. The
larger the ratio is, the more difficult it is to synchronize the oscillators and vice versa [4].
The ratio is also referred to as the ‘paradox of heterogeneity’. It shows that (unweighted,
undirected) networks with a more homogeneous degree distribution synchronize more
easily than networks with a more heterogeneous degree distribution [44]. In [49], Van
Mieghem has explained that µ1 > Dmax and µN−1 ≤ Dmin. Hence, µ1/µN−1 > Dmax/Dmin,
implying that the ratio µ1/µN−1 is larger for heterogeneous networks because Dmax/Dmin

is larger, while homogeneous networks have smaller ratios µ1/µN−1.

doi:10.1088/1742-5468/2011/11/P11018 7
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3. Analytic relations between network metrics

In this section, we will analytically derive relations between the network metrics
introduced in section 2. Relations that have been proved in the literature will be
presented as well. These analytic relations partially explain the observations of numerical
experiments in section 4.

3.1. General relations

Lemma 1. In any connected graph, for N > 1, the effective graph resistance RG obeys
RG

(N − 1)2
≥ 1

E[D]
≥ 1

λ1
. (7)

Proof. From [49 p 68], the sum of Laplacian eigenvalues equals
N−1∑

j=1

µk = 2L,

so that, for any graph with L > 0,
1

∑N−1
j=1 µk

=
1

2L
. (8)

Jensen’s inequality states that, if f(x) is a convex function (see [46 section 5.2]),

f(E[X]) ≤ E[f(X)]. (9)

Since f(x) = 1/x is convex when x > 0, and nice in a connected graph, µk > 0, for
1 ≤ k ≤ N − 1, application of (9) to the left-hand side of (8) yields

1

(1/(N − 1))
∑N−1

j=1 µk

≤ 1

N − 1

N−1∑

j=1

1

µk
,

from which we obtain
N−1∑

j=1

1

µk
≥ (N − 1)2

2L
, (10)

invoking the definition (6) of the effective graph resistance:
RG

(N − 1)2
≥ N

2L
=

1

E[D]
. (11)

We note that (11) is another derivation of the inequality (7.25) in [49]. Using the classical
bound [49] of the spectral radius λ1 ≥ E[D], we arrive by combining 1/λ1 ≤ 1/E[D]
and (11) at (7). +,

Inequality (7) supports the negative correlation between the effective graph resistance
and the spectral radius, if the inequality is close to an equality.
Relation 1. For any connected graph

λ1 ≥
N3

N2
. (12)

Proof. See [48]. +,

doi:10.1088/1742-5468/2011/11/P11018 8
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Restrepo et al [38] have shown that the spectral radius λ1 can be approximated by
N3/N2. Hence, the inequality (12), proves the strong correlation ρ(λ1, N3/N2) ≈ 1. The
equality occurs in regular graphs, so the more irregular a graph is, the worse is (12).
Relation 2. In any connected graph

µ1

µN−1
=

1

µN−1
µ1 >

1

µN−1
(13)

since µ1 ≥ (N/(N − 1))Dmax > 1 (see [49]).

The inequality (13) supports the strong negative correlation between µ1/µN−1 and
µN−1.
Relation 3. It is immediate from Jensen’s inequality (9) that 1/E[H ] ≤ E[1/H ].

Hence, the average hopcount E[H ] is negatively correlated with the global efficiency
E[1/H ].
Relation 4. As proved in [49 p 207]

RG ≤
(

N
2

)
E[H ]. (14)

The inequality (14) supports the positive correlation between the effective graph
resistance and the average hopcount.
Relation 5. In any Erdös–Rényi random graph or approximately in Bárabasi–Albert
graphs

λ1 ≥ κ. (15)

Proof. The assortativity of an Erdös–Rényi random graph equals to 0, as proved
in [33, 48]. Via (3), we have

N2
2 = N1N3,

where Nk = uT Aku are the total numbers of walks with k hops. Using

E[D] =
N1

N
and

E[D2] =
N2

N
,

we arrive to

κ =
E[D2]

E[D]
=

N2

N1
=

N3

N2
.

The bound in (12) yields (15). +,
The spectral radius λ1 can be approximated by its lower bound N3/N2, equivalently

by κ in an Erdös–Rényi random graph (if p is high) or a Bárabasi–Albert graph, which
proves the strong correlation between λ1 and κ.

3.2. Analytic relations in Erdös–Rényi random graphs

Relation 6. In Erdös–Rényi random graphs Gp(N), we have

E[H ] ≈






2 − CG, when p is large

log N

log N + log CG
, when p is small.

doi:10.1088/1742-5468/2011/11/P11018 9
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Proof. The average clustering coefficient of an Erdös–Rényi random graph Gp(N) is

E[CG] = p. (16)

When the link density p is large in Erdös–Rényi random graphs, the average hopcount [46]
is

E[H ] - 2 − p. (17)

From (16) and (17), we obtain

E[H ] - 2 − CG.

When p is small, around the disconnectivity threshold pc, we have [46]

E[H ] ≈ log N

log N + log p
≈ log N

log N + log CG
. (18)

+,
Hence, relation 6 explains why the average hopcount E[H ] is negatively and strongly

correlated with the clustering coefficient CG in Erdös–Rényi random graphs.

Relation 7. In Erdös–Rényi random graphs Gp(N), we have

E[λ1] ≈ (2 − E[H ])(N − 2), when p is large

E[H ] ≈ log N

log E[λ1]
, when p is small.

Proof. The average of spectral radius λ1 in Erdös–Rényi random graphs can be expressed
as [49]

E[λ1] = p(N − 2) + 1 + O

(
1√
N

)
. (19)

When p is large, via (17), we have

E[λ1] ≈ (2 − E[H ])(N − 2) + 1 = CG(N − 2) + 1. (20)

When p is around pc, using (18)

E[H ] ≈ log N

log N + log(E[λ1]/(N − 2))
=

log N

log N − log(N − 2) + log E[λ1]
≈ log N

log E[λ1]
.

+,
Relation 7 supports the strong negative correlation between the spectral radius and

the average hopcount. In dense Erdös–Rényi random graphs, (20) shows the strong
positive correlation between the spectral radius and the clustering coefficient.

3.3. Analytic relations in Bárabasi–Albert graphs

Lemma 2. For Bárabasi–Albert graphs, it holds that

λ1 ≥ 2C−1/3
G . (21)

doi:10.1088/1742-5468/2011/11/P11018 10
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Proof. In the Bárabasi–Albert graph, when m = 4, the clustering coefficient CG

decreases [2] with the network size N as

CG ≈ N−3/4. (22)

In addition, when the number of added links m is equal to the starting number of vertices
m0, the maximum degree of the Bárabasi–Albert can be given as

Dmax = mN1/2. (23)

The lower bound of the spectral radius λ1 can be given as the square root of the network’s
largest degree Dmax (see [49, art 54, p 55]), as

λ1 ≥
√

Dmax =
√

mN1/4. (24)

Hence, we arrive at (21). +,
Inequality (21) supports that the linear correlation coefficient ρ(λ1,CG) ≈ 1 in

figure B.1.

Relation 8. In Bárabasi–Albert graphs

E[H ] <
1

CG
. (25)

Proof. In Bárabasi–Albert graphs, the average hopcount approximates [2]

E[H ] ≈ ln N

ln lnN
. (26)

When N > 4
ln N

ln ln N
< N3/4.

with (22), we obtain (25). +,
The inequality (25) supports the simulation results in the left bottom diagram of

figure 1 and right bottom diagram of figure B.1 that the average hopcount E[H ] and the
clustering coefficient CG are negatively correlated.

4. Metric correlations in network models

In this section, we compute the linear correlation coefficient ρ(i, j) between any two metrics
i and j defined in section 2 in a large number of network instances of Erdös–Rényi random
graphs, Bárabasi–Albert graphs as well as Watts–Strogatz small-world graphs. The matrix
ρ is called the correlation matrix. The absolute value 0 ≤ |ρ(i, j)| ≤ 1 characterizes the
strength of the correlation between the corresponding metrics i and j. If |ρ(i, j)| is close
to zero, the two metrics are almost uncorrelated whereas a |ρ(i, j)| close to 1 implies a
strong correlation. We do not explore further the sign of ρ(i, j) which reflects whether the
correlation is positive or negative, because it is the strength |ρ(i, j)| indicates to which
extent a metric can be predicted from the other. Furthermore, we investigate how metric
correlations change with network parameters, specifically, the network size N and the
link density p of Erdös–Rényi random graphs and the network size N of Bárabasi–Albert
graphs and Watts–Strogatz small-world graphs.

doi:10.1088/1742-5468/2011/11/P11018 11
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(a)

(b)

Figure 1. The correlation between the spectral radius and other metrics of Erdös–
Rényi random graphs.

4.1. Erdös–Rényi random graphs

The Erdös–Rényi random graph Gp(N) is a frequently occurring random complex network
model, where N is the number of nodes and p is the link density between any two nodes.
An Erdös–Rényi random graph is connected, if p > pc ≈ ln N/N for large N , where
pc is the disconnectivity threshold. The correlation ρ(i, j) between any two metrics is
computed in the 103 realizations of the Erdös–Rényi random graph Gp(N), where p = 5pc

and N = 25, 50, 100, 200, 400 and 800. This allows us to explore how the metric
correlation ρ(i, j) evolves with the network size N . Similarly, the metric correlations
are also computed in the 103 instances of the Erdös–Rényi random graph Gp(N), where
N = 400 and p = αpc with α ∈ [1, 2, 5, 10, 20] to examine the influence of link density p
on metric correlations.

Figure 1 illustrates the linear correlation coefficient between λ1 and other metrics
for different size N and link density p. The correlation between λ1 and κ, N3/N2,
E[1/H ] are positive and strong over all network sizes and link densities: ρ(λ1, κ) -
ρ(λ1, N3/N2) - ρ(λ1, E[1/H ]) - 1. These three positive correlations are supported by
analytic relations relation 5, relation 1, relation 7 and 3, respectively. The correlation

doi:10.1088/1742-5468/2011/11/P11018 12
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Figure 2. The metric correlation pattern in Erdös–Rényi random graphs..

between λ1 and RG, E[H ] are negative and strong ρ(λ1, RG) - ρ(λ1, E[H ])| - −1 with
the only condition that the link density should not be too small, thus p ≥ 4pc. These
observations can be analytically explained by lemma 1 and relation 7, respectively. On
the other hand, λ1 tends to be independent or weakly correlated with µN−1 and µ1/µN−1:
|ρ(λ1, µ1/µN−1)| < 0.2 and |ρ(λ1, µN−1)| < 0.2, when the network size is large. Similarly,
the correlation coefficient between any other two metrics as a function of the network size
as well as the link density has been given in appendix A.

We consider two metrics i and j as uncorrelated if |ρ(i, j)| ≤ 0.2 and as strongly
correlated if |ρ(i, j)| ≥ 0.7, because most of the correlations |ρ(i, j)| are in the range [0,
0.2] and [0.7, 1]. Since the correlation ρ(i, j) changes with the network size N and link
density p, we claim two metrics are strongly correlated (or independent) if |ρ(i, j)| ≥ 0.7
(or |ρ(i, j)| ≤ 0.2) holds for a certain range of N and p and we will record the condition
on N and p, under which this strong (or weak) correlation is observed. In this way, we
could obtain the metric correlation pattern based on results in figures 1, A.1 and A.2 and
the correlation pattern is represented as a graph in figure 2.

In correlation patterns, each node represents a metric. Two nodes are connected by a
solid (or dotted) line if the corresponding metrics are strongly correlated (or independent)
with |ρ(i, j)| ≥ 0.7 (or |ρ(i, j)| ≤ 0.2). The boxes along the links specify the conditions,
if there are any, under which the strong or weak correlation has been observed. The up
(down) arrow represents the value of N or p is large (or small). For example, when the
size N of the network is small and the link density p is large, the correlation between CG

and RG is strong. Metrics λ1, κ and N3/N2 are strongly mutually correlated and they
have the same correlation coefficient with any other metric. Hence, we condense these
three metrics into one node. The same holds for E[H ] and E[1/H ].

Interestingly, our approach allows us to cluster the metrics into two, as marked by
different shapes of nodes, when the size N of the network is small and link density p is large.
Within each cluster, metrics are mutually strongly correlated (nodes are fully connected
by solid lines). Moreover, any two metrics from different clusters are independent (any
two nodes with different shapes are linked by a dotted line). Thus, it is sufficient to
characterize an Erdös–Rényi random graph by two metrics, each from a different cluster,

doi:10.1088/1742-5468/2011/11/P11018 13
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Table 1. Verification of the observed metric correlations in Erdös–Rényi random
graph by analytic relations between metrics in section 3.

ρ(i, j) RG µN−1 λ1
µ1

µN−1
E[H] E

[
1
H

]
CG κ N3/N2

RG 1 L1 R4 R3, R4 R4, R6 L1, R5 L1, R1
µN−1 1 R2
λ1 L1 1 R7 R3, R7 R6, R7 R5 R1

µ1

µN−1
R2 1

E[H] R4 R7 1 R3 R6 R5, R7 R1, R7

E

[
1
H

]
R3, R4 R3, R7 R3 1 R3, R6 R3, R5, R7 R1, R3, R7

CG R4, R6 R6, R7 R6 R3, R6 1 R5, R6, R7 R1, R6, R7
κ L1, R5 R5 R5, R7 R3, R5, R7 R5, R6, R7 1 R1
N3/N2 L1, R1 R1 R1, R7 R1, R3, R7 R1, R6, R7 R1 1

instead of by the nine metrics studied. In large and sparse networks, the correlation
between clustering coefficient and the metrics in a circle is not strong any more. In that
case, the representative set should contain three metrics: the clustering coefficient CG,
one metric in a rectangle (µ1/µN−1 or µN−1) and one metric from the circle cluster (RG,
λ1, κ, N3/N2, E[H ] or E[1/H ]).

Those strong and weak metric correlations observed in Erdös–Rényi random graphs
are supported by the analytic relations between metrics in section 3 as shown in table 1.

4.2. Bárabasi–Albert graphs

The Bárabasi–Albert graph is one of the most studied network models since it generates a
power-law degree distribution. Approximate power-law degree distributions are widely
observed in complex networks. The mechanisms in Bárabasi–Albert graphs can also
explain the origin of the social and economic disparities governing competitive systems [3].
The linear correlation coefficients between any two metrics are computed in 103 instances
of the BA model with each given set of parameters m and N , where m = 4 and
N = 25, 50, 100, 200, 400 and 800. The metric correlations as a function of the network
size N are illustrated in figure B.1 in appendix B. Based on these results, we obtain the
metric correlation pattern in Bárabasi–Albert graphs as depicted in figure 3.

We first consider the case when the network size N is large. The metrics in a circle
are mutually strongly correlated with each other and they are uncorrelated with the
other metrics. Hence, one and only one metric in the circle cluster should be included
in the representative set of metrics. On the other hand, the three metrics in a rectangle,
µ1/µN−1, µN−1 and RG are not strongly correlated in large networks. Thus, these three
metrics should all be included in the representative set. In summary, four metrics, the
three marked as rectangle and one in circle, suffice to represent a power-law graph. When
the network size is small, it is sufficient to characterize a network by three metrics κ (λ1

or N3/N2), E[H ] (or E[1/H ]) and one metric from the rectangle cluster (µ1/µN−1, µN−1

and RG). This observed correlation pattern is supported by the analytic relations between
metrics in section 3 as summarized in table 2.

doi:10.1088/1742-5468/2011/11/P11018 14
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Figure 3. The metric correlation pattern in Bárabasi–Albert graphs..

4.3. Watts–Strogatz small-world graphs

A small-world graph refers to properties: (1) the average short path E[H ] is small, like
that in an Erdös–Rényi random graph; and (2) the clustering coefficient CG is high, like
that in a ring lattice where each node is adjacent to the j following previous nodes.
The structural properties of small-world networks have also been found in real-world
networks, including social networks [32], neural networks [43], biological oscillators [24]
and information propagation [30]. The small-world graphs of Watts and Strogatz [52] can
be generated from a ring lattice with N nodes and k edges per node by rewiring each
link at random with probability p. The linear correlation coefficients between any two
metrics are computed in 103 instances of the WS model with each given set of parameters
k, p and N , where k = 6, p = 0.01 and N = 200, 400, 800, 1000 and 2000. We choose
the rewiring probability p = 0.01 to generate graphs that have small-world properties,
because: (1) in small-world rewiring, C(p) is the clustering coefficient of the small-world
graph with rewiring probability p and C(0) is the clustering coefficient of the ring lattice
without rewiring. The dependence of the clustering coefficient ratio C(p)/C(0) on N is
very small, and C(p)/C(0) decreases with the fraction p, as C(p)/C(0) ≈ (1−p3) [5]; and
(2) the average shortest path E[H ] is much smaller even when p is small, as long as the
size N of the network is large enough [5]. The correlation coefficient between any other
two metrics as a function of the network size has been given in figure C.1 in appendix C.
With these results, we obtain the metric correlation pattern in Watts–Strogatz small-world
graphs in figure 4.

We first consider the case when the network size N is small. In the circle cluster,
metrics, i.e. RG, κ (N3/N2), E[H ] (E[1/H ]) CG and µN−1, are mutually strongly
correlated with each other, except that µ1/µN−1 is uncorrelated with κ (N3/N2) and CG.
Furthermore, λ1 is only correlated with κ (N3/N2) and the assortativity ρD in a triangle
is not correlated all other metrics in networks. Hence, four metrics should be included in
the representative set: ρD, λ1, µ1/µN−1 and another metric in the circle cluster. When
the network size is large, it is still enough to characterize a network by four metrics λ1,
µ1/µN−1 (or µN−1), one from other metrics in a circle and ρD.

doi:10.1088/1742-5468/2011/11/P11018 15
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Figure 4. The metric correlation pattern in Watts–Strogatz small-world graphs..

The different metric correlation patterns observed in Erdös–Rényi random graphs
(figure 2), Bárabasi–Albert graphs (figure 3) and Watts–Strogatz small-world graphs
(figure 4) reflect that metric correlations depend on the graph, via the adjacency matrix,
e.g. the degree distribution. Both network models can be characterized by a small set
of three or four metrics instead of by the nine metrics studied. Surprisingly, the average
hopcount E[H ] and clustering coefficient CG, the most studied metrics so far especially
in neuroscience turn out to be strongly correlated9. On the other hand, spectral metrics,
which are investigated only recently, seem to be essential in network characterizations.
At least, spectral metrics always appear in the representative set in these three network
models.

5. Metric correlations in functional brain networks

It has become clear that properties (reflected by metrics) of brain networks may
predict brain functioning such as cognitive performance [36, 39, 40, 44]. Moreover, brain
networks show systematic changes during development under genetic control and reveal
characteristic patterns of disruption in various types of neurological disease. In order
to understand which network property/metric is the most relevant to a certain brain
functioning, it is essential to understand the relations between network properties. In this
section, we investigate the metric correlation pattern in the functional brain networks of
22 healthy subjects. The correlation pattern observed in functional brain networks will
be compared with what we discovered in network models.

The concept of functional connectivity refers to the statistical interdependences
between physiological time series recorded in various brain areas, and is thought
to reflect communication between several brain areas [1]. Magnetoencephalography
(MEG), a recording of the brain’s magnetic activity, is a method used to assess
functional connectivity within the brain. A functional brain network is created by
regarding each MEG channel as a node, and the functional connectivity between

9 Note that this strong correlation is expected in a class of networks with the same degree distribution as in the
three models, but not in graphs with different degree distributions.
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each pair of channels represents a link whose weight reflects the strength of the
connectivity or correlation. Correlations between the time series of the channels were
analyzed with the synchronization likelihood (SL), a nonlinear measure of statistical
interdependences [29, 42]. The functional brain networks were measured in 22 healthy
people, whose mean age was 63.6, by the medical ethics committee of the VU Medical
Center, Amsterdam. More information about the data can be found in [14]. Brain activity
was measured by MEG with N = 149 recording channels. With MEG, a loss of upper
alpha-, beta-and gamma-band synchronization could be demonstrated in patients with
Alzheimer’s disease, both during an eye-closed state as well as during an eye-open state.
In these studies, the 13–30 Hz beta-band showed the most consistent abnormalities in
the subjects [43]. Hence, we focus on the 13–30 Hz band. The functional brain network
was measured four times for each person in 13–30 Hz (beta) band. In total, we have 88
functional brain networks. Each network is a weighted complete graph, where each link
weight 0 ≤ wij ≤ 1.

Since we focus on metrics correlations in unweighted networks, each weighted network
is transformed to an unweighted network mapped as the union of links whose link weight
is above a threshold T . There are many methods to choose the threshold T [50]. In
this paper, we use either a fixed threshold T for all networks or a network-dependent
T which makes the link density p of all unweighted networks similar. The metric
correlation patterns are studied in the two resulting classes of networks with different
degree distributions.

5.1. Metric correlations in unweighted functional brain networks transformed with fixed
threshold T

Stam et al [43] investigated the clustering coefficients and the shortest path lengths as a
function of the threshold T on functional brain networks, and gave some suggestions on
how to set the threshold T . When the threshold T is small, the corresponding unweighted
functional brain networks are almost fully connected. If T is large, the unweighted network
tends to be disconnected. Regarding the studied functional brain networks, we find that,
when T ∈ [0.001, 0.019], the corresponding unweighted functional brain networks are
connected. When T ≥ 0.02, not all the networks are connected. In summary, to avoid
disconnected and fully connected graphs, we choose T = 0.019 to transform each weighted
functional brain network into an unweighted one, where we calculate the correlation
between those metrics mentioned above. As shown in figure 5, the degree distribution
of the unweighted functional brain networks is close to a binomial distribution, as in
Erdös–Rényi random graphs.

The linear correlation coefficients between any two metrics in the unweighted
functional brain networks are shown in table 3. The corresponding correlation pattern
is depicted in figure 6. Since all the functional brain networks have the same size N ,
no condition is associated with any correlation or dependency. Instead, we place the
correlation coefficient along each pair of metrics.

Both the functional brain networks and Erdös–Rényi random graphs possess a
binomial degree distribution. Interestingly, the metric correlation patterns observed in
both types of graphs as given in figures 2 and 6 are consistent with each other: (a) the
same set of metrics in the circle cluster as well as in the rectangle cluster; and (b) the
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Figure 5. The degree distribution of unweighted functional brain networks (fixed
T = 0.019) as well as its binomial curve fitting.

Table 3. The correlation coefficients between metrics in unweighted functional
brain networks (healthy people, beta-band, fixed threshold T = 0.019).

ρ(i, j) RG µN−1 λ1
µ1

µN−1
E[H] E

[
1
H

]
CG ρD κ N3/N2

RG 1.00 −0.77 −0.94 0.31 0.98 −0.97 −0.91 −0.33 −0.94 −0.94
µN−1 −0.77 1.00 0.66 −0.73 −0.73 0.72 0.60 0.23 0.67 0.67
λ1 −0.94 0.66 1.00 −0.11 −0.97 0.98 0.92 0.37 1.00 1.00

µ1

µN−1
0.31 −0.73 −0.11 1.00 0.20 −0.19 −0.16 −0.16 −0.12 −0.11

E[H] 0.98 −0.73 −0.97 0.20 1.00 −1.00 −0.88 −0.26 −0.97 −0.97

E

[
1
H

]
−0.97 0.72 0.98 −0.19 −1.00 1.00 0.90 0.27 0.99 0.99

CG −0.91 0.60 0.92 −0.16 −0.88 0.90 1.00 0.46 0.91 0.92
ρD −0.33 0.23 0.37 −0.16 −0.26 0.27 0.46 1.00 0.31 0.34
κ −0.94 0.67 1.00 −0.11 −0.97 0.99 0.91 0.31 1.00 1.00
N3/N2 −0.94 0.67 1.00 −0.11 −0.97 0.99 0.92 0.34 1.00 1.00

size of functional brain networks N = 149 is small. In small Erdös–Rényi random graphs,
the clustering coefficient is strongly correlated with the other metric in a circle, moreover
ρ(µN−1, RG) and ρ(µN−1, E[H ]) are not small, the same as observed in the functional
brain networks. The only difference is that the assortativity ρD is usually considered
in real-world complex networks but not in network models where ρD → 0. Actually,
functional brain networks are assortative ρD > 0. The representative set ρD, µ1/µN−1

and RG is preferable due to the independence between µ1/µN−1 and metrics in a circle as
well as the strong correlation between RG and many other metrics. The consistency in
metric correlation patterns (figures 2 and 6) in networks with a same degree distribution
verifies the crucial influence of the network property, especially the degree distribution,
on the relations between metrics. Importantly, both the degree distribution and the
metric correlation pattern suggest this particular class of MEG unweighted functional
brain networks with a fixed threshold are almost Erdös–Rényi graph-like, and not small-
world.
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Figure 6. The metric correlation pattern of unweighted functional brain networks
(fixed threshold T ).

5.2. Metric correlations in unweighted functional brain networks transformed with fixed
link density p

Van Wijk et al [50] claimed that graph measures can be influenced by the number N of
nodes and the link density p. It is easier to compare networks, such as the functional
brain networks, with the same size N and link density p. Thus, we choose a threshold T
for each weighted network such that the average degree of the corresponding unweighted
network equals a given constant value. In this paper, we choose the threshold such that
the average degree equals 15. Each unweighted network follows almost the same degree
distribution. The degree distribution of the unweighted functional brain networks is shown
in figure 7, which has a heavy tail. It differs from the degree distribution of any of the
three network models mentioned in section 4. The linear correlation coefficients between
any two metrics in the unweighted functional brain networks are shown in table 4. The
corresponding correlation pattern is depicted in figure 8.

The metrics can be divided into three groups, which are shaped rectangle, circle
and triangle. Metrics in the same shape are strongly correlated with each other, while
metrics in different shapes are not strongly correlated. We could choose one metric from
each shape group, therefore three representative metrics can characterize the unweighted
functional brain networks.

6. Conclusion

In this paper we have studied the correlations between widely studied metrics in functional
brain networks as well as in three classical complex network models, namely Erdös–Rényi,
Bárabasi–Albert graphs and Watts–Strogatz small-world graphs. The metric correlation
pattern in each of the three classes of graphs illustrates the strong correlations and
independences between metrics, which indicates the possibility to determine a small set
of representative metrics by including only one metric from each subset of mutually
strongly dependent metrics. This representative set of metrics tends to characterize
both sufficiently and effectively a class of networks with a given degree distribution.
When we study a specific network, however, the representative set at least has to be
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(a)

(b)

Figure 7. The degree distribution of unweighted functional brain networks (fixed
link density p).

Figure 8. The metric correlation pattern of unweighted functional brain networks
(fixed link density p).

considered so that important network properties will not be overlooked. Most of the metric
correlations observed so far are supported/explained analytically by theorems developed
in this paper as well as in the literature. Furthermore, graphs with a similar degree
distribution, such as the unweighted functional brain networks with fixed threshold T
and Erdös–Rényi random graphs, tend to possess a similar metric correlation pattern,
which verifies the influence of the degree distribution on metric relations. When the
degree distribution of networks is different, the metric patterns are also different. Hence,
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Table 4. The correlation coefficients between metrics in unweighted functional
brain networks (healthy people, beta-band, same size (L and N)).

Cij RG µN−1 λ1
µ1

µN−1
E[H] E

[
1
H

]
CG ρD κ N3/N2

RG 1.00 −0.83 0.61 0.89 0.73 −0.69 0.54 0.47 0.64 0.68
µN−1 −0.83 1.00 −0.51 −0.85 −0.73 0.72 −0.63 −0.51 −0.47 −0.52
λ1 0.61 −0.51 1.00 0.56 0.48 −0.47 0.44 0.55 0.85 0.94

µ1

µN−1
0.89 −0.85 0.56 1.00 0.67 −0.61 0.46 0.41 0.55 0.59

E[H] 0.73 −0.73 0.48 0.67 1.00 −0.99 0.90 0.76 0.30 0.42

E

[
1
H

]
−0.69 0.72 −0.47 −0.61 −0.99 1.00 −0.94 −0.81 −0.25 −0.39

CG 0.54 −0.63 0.44 0.46 0.90 −0.94 1.00 0.85 0.19 0.34
ρD 0.47 −0.51 0.55 0.41 0.76 −0.81 0.85 1.00 0.19 0.39
κ 0.64 −0.47 0.85 0.55 0.30 −0.25 0.19 0.19 1.00 0.97
N3/N2 0.68 −0.52 0.94 0.59 0.42 −0.39 0.34 0.39 0.97 1.00

a specific representative set of metrics should be determined for a particular degree
distribution. Luckily, degree distribution is the simplest metric to compute. Finally, two
observations are considered important especially for the applications of network science
to other disciplines: (i) the average distance and the clustering coefficient, the most
studied metrics so far in neuroscience, are strongly correlated and, thus, redundant; and
(ii) spectral metrics, though only studied recently in the context of complex networks,
seem to be essential in network characterizations.

Note that the metric correlations are studied and observed in networks with a similar
degree distribution. These results cannot simply be applied to a class of networks with
different degree distributions. The representative set tends to be larger when more than
nine metrics are considered. So far, we have explored the effect of degree distribution
on metric correlations. It is interesting to further examine a large set of metrics and the
metric correlation pattern in graphs with a given degree distribution and a given degree
correlation (assortativity).

Topologies of many complex networks such as the Internet at router level are not
known due to their large size or technical challenges, although some properties of their sub-
networks (i.e. within different autonomous systems) can be measured. The dependence
of metric correlation pattern on network properties opens up a new direction of reverse
engineering: we infer possible universal network properties or the possible suitable network
model of a class of graphs from the correlations of the measured network metrics.
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Appendix A. Metric correlations in Erdös–Rényi random graphs (figures A.1
and A.2)
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(a) (b)

(d)(c)

Figure A.1. Metric correlations as a function of N in Erdös–Rényi random graphs
(p = 5 pc).

(a)

(c)

(b)

(d)

Figure A.2. Metric correlations as a function of p in Erdös–Rényi random graphs
(N = 400).
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Appendix B. Metric correlations in Bárabasi–Albert graphs (figure B.1)

(a) (b)

(c)
(d)

(e)

Figure B.1. Metric correlations as a function of N in Bárabasi–Albert graphs
(m = 4).
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Appendix C. Metric correlations in Watts–Strogatz small-world graphs (figure C.1)

(a)

(b)

(c) (d)

(e)

Figure C.1. Metric correlations as a function of N in Watts–Strogatz small-world
graphs (k = 6, p = 0.01).
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