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1. Introduction

Consider an undirected graph G(N, L) with N nodes and L links. The adjacency 
matrix A of a graph G is an N ×N symmetric matrix with elements aij that are either 
1 or 0 depending on whether there is a link between nodes i and j or not. The Laplacian 
matrix Q of G is an N × N symmetric matrix Q = Δ − A, where Δ = diag(di) is the 
N×N diagonal degree matrix with the elements di =

∑N
j=1 aij . Let d = (d1, d2, . . . , dN )

denote the degree vector for a graph G. The Laplacian eigenvalues of Q are all real and 
non-negative [2]. The eigenvalues of Q are ordered as 0 = μN ≤ μN−1 ≤ . . . ≤ μ1. For 
a connected graph, the second smallest eigenvalue, coined the algebraic connectivity by 
Fiedler [3], is positive, i.e., μN−1 > 0. The Laplacian matrix Q is not invertible due to a 
zero eigenvalue μN = 0, but one of the generalized matrix inverses is the Moore–Penrose 
pseudo-inverse, denoted as Q†.

The effective graph resistance RG, also called Kirchhoff index, characterizes the re-
sistance distance [4] between nodes in an electrical network and can be computed by 
RG = N

∑N−1
i=1

1
μi

, where μi is the i-th eigenvalue of the Laplacian matrix Q. Stud-
ies [5–7] relate the effective graph resistance and the trace of the pseudo-inverse Laplacian 
Q† as

RG = Ntrace(Q†) = N

N∑
j=1

(
Q†)

jj

Bounds and closed-form formulas for the effective graph resistance are extensively 
investigated in some classes of graphs, such as regular graphs [8], Cayley graphs [9] and 
circulant graphs [10]. In complex networks, represented by graphs, the effective graph 
resistance characterizes the difficulty of transport in a network. As a robustness indicator, 
the effective graph resistance allows to compare graphs and is applied in improving 
the robustness of complex networks, especially against cascading failures in electrical 
networks [11–13].

Let P denote the transition probability matrix of a finite, irreducible Markov Chain 
and the steady state probability vector π and the all-one vector u satisfying Pu = u and 
πTP = πT .

Theorem 1 ([14]). Let h and g be any two column vectors such that the scalar products 
hTu and πT g are nonzero. Then the inverse

Z ≡
(
I − P + ghT

)−1

exists.

The Kemeny constant is defined, in terms of the trace of the matrix Z, as

K(P ) ≡ trace (Z) − πTZu
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For a given transition probability matrix P and with hT g = 1, the Kemeny constant 
K(P ) is the same regardless of the choice of the matrix Z defined in Theorem 1.

Kemeny offered a prize for the first person to find an intuitively plausible inter-
pretation for his constant. Peter Doyle suggested the following explanation: choose a 
target state j according to the steady state probability vector. Start from a state i and 
wait until the time Tj, also called hitting time, that the target state occurs for the first 
time. Let Xk, k ≥ 0 denote the states of the Markov chain. The expected hitting time is 
E [Tj |X0 = i] = 1 +

∑
k �=j pikE [Tj |X0 = k]. By the maximum principle E [Tj |X0 = i] is 

a constant. The explanation is reported in the second edition (2003) of a book [15] by 
Grinstead and Snell along with a question “Should Peter have been given the prize?”. 
An alternative interpretation is provided by Levene and Loizou [16]. Rewrite K(P ) as 
K(P ) =

∑N
i=1 πi

∑N
j=1 πjmij in a finite irreducible Markov chain, where mij is the mean 

hitting time from a state i to a state j and π is the steady-state vector. Imagine a random 
surfer who is following links according to the transition probabilities. At some stage the 
random surfer does not know in which state he is and where he is heading. In this sce-
nario, the Kemeny constant can be interpreted as the mean number of links the random 
surfer follows before reaching his destination.

Kirkland [17] studied the Kemeny constant K(P ) via the group inverse of the matrix 
I − P for the directed graph associated with the transition matrix P . A closed-form 
expression [18] for the Kemeny constant was provided in terms of the weights of certain 
directed forests in a directed graph of matrix P . The Kemeny constant and its relation to 
the effective graph resistance RG was previously investigated by Palacios et al. [8,1,19]. 
For a regular graph with degree r, the relation between the Kemeny constant and the 
effective graph resistance was shown to be

K (P ) = r

N
RG

However, the relation between the Kemeny constant K(P ) and the effective graph resis-
tance RG in a general graph is missing so far.

Motivated by advances of the pseudo-inverse of the Laplacian, such as its appearance 
in the electrical current flow equation [4], the relation with the effective resistance [2] in 
electrical networks, the relation with the mean first-passage time [20,21] in a Markov-
chain model of random walks and the state-of-the-art application in identifying the best 
spreader node [6] in a graph, we connect the Kemeny constant and the effective graph 
resistance via the pseudo-inverse of the Laplacian. The paper is organized as follows. 
Section 2 presents a new closed-form formula for the Kemeny constant. Bounds for the 
Kemeny constant and the relation to the effective graph resistance are derived in Sec-
tion 3. Section 4 concludes the paper.

2. New closed-form formula for the Kemeny constant

The stochastic matrix P = Δ−1A characterizes a random walk on a graph that is 
time-reversible. One of the main contributions of this paper is Theorem 4, which derives 
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a new closed-form formula for the Kemeny constant based on the pseudo-inverse of the 
Laplacian matrix. We first state two lemmas that will be used in the proof of Theorem 4.

Lemma 2. Consider the N × N transition probability matrix P = Δ−1A. The all-one 
column vector u satisfies Pu = u. The column vector π = d

2L satisfies πTP = πT and 
πTu = 1. The Moore–Penrose pseudo-inverse of the matrix I − P equals,

(I − P )† =
(
I − P + πuT

)−1 − uπT

uTuπTπ
(1)

Proof. See Appendix A. �
Lemma 3. The Moore–Penrose pseudo-inverse of the matrix product Δ−1QQ† can be 
simplified as

(
Δ−1QQ†)† = Δ − ΔddT

dT d
(2)

where column vector d is the degree vector of a graph G and matrix Q is the Laplacian 
matrix.

Proof. See Appendix B. �
Theorem 4. Assume the transition probability matrix P = Δ−1A. A closed-form formula 
for the Kemeny constant follows

K(Δ−1A) = ζTd− dTQ†d

2L (3)

where the column vector ζ =
(
Q†

11, Q†
22, . . . Q†

NN

)
.

Proof. For the given transition matrix P = Δ−1A, all the matrices Z defined in Theo-
rem 1 with βT g = 1 result in the same Kemeny constant. Choose the matrix Z as

Z ≡
(
I − P + πuT

)−1 (4)

Lemma 2 shows that the Moore–Penrose pseudo-inverse of the matrix I − P can be 
rewritten in terms of matrix Z as

(I − P )† = Z − uπT

uTuπTπ
(5)

The Kemeny constant can be written as, with trace
(

uπT

uTuπTπ

)
= 4L2

NdT d
,

K(Δ−1A) = trace (Z) − πTZu = trace
(
(I − P )†

)
+ 4L2

− πTZu (6)

NdT d
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Next, we focus on the Moore–Penrose pseudo-inverse of the matrix I − P . Substituting 
P = Δ−1A, we have that

(I − P )† =
(
Δ−1(Δ −A)

)† =
(
Δ−1Q

)†
In general, the pseudo-inverse of the product of two matrices does NOT follow the 
product of the pseudo-inverse of each matrix, i.e., (AB)† �= B†A†, but [22]

(AB)† =
(
A†AB

)† (
ABB†)† (7)

Let A = Δ−1 and B = Q, we arrive at

(
Δ−1Q

)† = Q† (Δ−1QQ†)†
According to Lemma 3, matrix 

(
Δ−1QQ†)† can be further simplified as

(
Δ−1QQ†)† = Δ − ΔddT

dT d
(8)

The Moore–Penrose pseudo-inverse of the matrix I − P thus follows

(I − P )† = Q†Δ −Q†ΔddT

dT d
(9)

and the trace of (I − P )† can be written as

trace
(
(I − P )†

)
= trace

(
Q†Δ

)
− trace

(
Q†ΔddT

dT d

)
(10)

where trace
(
Q†Δ

)
=

∑N
i=1

(
Q†)

ii
di = ζT d. With the inner product of two vectors 

following trace
(
xyT

)
= xT y, we have that

trace
(
Q†Δd

dT d
dT

)
= dT

(
Q†Δ

)
d

dT d
(11)

Substituting (10) into (6) yields

K(Δ−1A) = ζT d− dT
(
Q†Δ

)
d

dT d
+ 4L2

NdT d
− πTZu (12)

Next, we focus on simplifying the term πTZu. After left multiplying π and right multi-
plying u of (5), we arrive at

πTZu = πT (I − P )† u + πT uπT

u (13)

uTuπTπ
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Introducing the matrix (I − P )† in (9) and with π = d
2L , we obtain that

πTZu = dTQ†d

2L −
dT

(
Q†Δ

)
d

dT d
+ 4L2

NdT d
(14)

Substituting (14) into (12), we establish Theorem 4. �
Corollary 1. The Kemeny constant can be expressed, in terms of the effective resistance 
matrix Ω, as

K(Δ−1A) = dTΩd

4L (15)

where Ω = (ωij) and each element ωij represents the resistance on the link between nodes 
i and j.

Proof. The effective resistance matrix Ω can be written [2], in terms of the pseudo-inverse 
Laplacian, as

Ω = ζuT + uζT − 2Q† (16)

Left multiplying dT and right multiplying d yields

dTΩd = 4LζT d− 2dTQ†d (17)

Dividing 4L on both sides of (17) and substituting to Theorem 4 results in (15). �
The Kemeny constant in (15) contains a quadratic form,

dTΩd =
N∑
i=1

N∑
j=1

diωijdj (18)

and each term diωijdj in a connected graph (with non-negative link weights) is positive: 
there is a path between each pair (i, j) of nodes with positive effective resistance and 
each node has, at least, a degree di ≥ 1. Hence, Corollary 1 indicates that the Kemeny 
constant is strictly positive.

Theorem 4 enables the computation of K(P ) via the pseudo-inverse of the Laplacian 
in the unweighted, undirected graph associated with the transition matrix P , which is 
different from the approach in [18] employing the weighted, directed graph of the ma-
trix P . The result in Corollary 1 was obtained by Palacios and Renom [23, Corollary 1]
working with a different Z matrix, Z =

(
I − P + uπT

)−1, which is called the fundamen-
tal matrix [15]. Moreover, half of the quadratic form in (18) is also defined [24,23] as the 
multiplicative degree-Kirchhoff index R∗

G = 1
2d

TΩd. The Kemeny constant relates to R∗
G

in the form of K(Δ−1A) = R∗
G .
2L
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3. Generalization of the relation between K(Δ−1A) and RG

In this section, we derive a general relation between the Kemeny constant and the 
effective graph resistance. Sharp upper and lower bounds are deduced for the Kemeny 
constant. Finally, we study the Kemeny constant for special graphs.

3.1. Generalization of the relation

Corollary 2. Assume the probability transition matrix P = Δ−1A. The relation between 
the Kemeny constant K(Δ−1A) and the effective graph resistance RG is described as

dminRG

N
− dTQ†d

2L ≤ K(Δ−1A) ≤ dmaxRG

N
(19)

where dmin and dmax is the minimum and the maximum degree in graph G, respectively.

Proof. An inequality for the term ζTd in (3) follows

dminζ
Tu ≤ ζTd ≤ dmaxζ

Tu (20)

Substituting (20) into (3), together with ζTu = RG

N and d
TQ†d
2L ≥ 0 due to the positive 

semi-definiteness of the matrix Q†, we establish the general relation between K(Δ−1A)
and RG, i.e., Corollary 2. �

For a regular graph with degree r, the degree vector follows d = ru. Since Q†u = 0, 
the quadratic form for a regular graph follows

dTQ†d = 0 (21)

The Kemeny constant in Theorem 4 is reduced to K(Δ−1A) = rζTu = rRG

N , which was 
found earlier by Palacios et al. [1].

Moreover, a sharper lower bound than that in (19) is presented by invoking a new 
lower bound for the term ζTd. Applying the lower bound of Q†

ii, derived in [6],

Q†
ii ≥

1
di

(
1 − 1

N

)2

(22)

to the term ζT d =
∑N

i=1 Q
†
iidi yields

ζT d ≥ N

(
1 − 1

N

)2

Combining with (3), a sharper lower bound for the Kemeny constant follows

K(Δ−1A) ≥ N

(
1 − 1

)2

− dTQ†d (23)

N 2L
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Next, we show that a lower bound (24) for the effective graph resistance (or the Kirchhoff 
index) can be obtained by using (22). Invoking (22) and RG = Ntrace

(
Q†), we arrive 

at

RG ≥ (N − 1)2

N

N∑
i=1

1
di

Employing the inequality 
∑N

i=1
1
di

≥ N2

2L in [25], we show that

RG ≥ N (N − 1)2

2L (24)

The lower bound (24) is a pretty good bound obtained circa 2014–2015 (see, e.g., [12,
25–27]), but is superseded by the state-of-the-art result in [25, Theorem 1].

3.2. Bounds for Kemeny’s constant

Since Q†u = 0, we rewrite the degree vector as

d = davu− δ (25)

where the average degree dav = 2L
N = dTu

N . This definition (25) has two direct conse-
quences. First,

δTu = 0

implying that the difference vector of the degree has mean zero, is orthogonal to the 
vector xN = u√

N
belonging to the zero Laplacian eigenvalue μN = 0 and that δ can be 

written as a linear combination of all eigenvectors of the Laplacian (and pseudo-inverse 
Laplacian) belonging to positive eigenvalues (for a connected graph). Thus,

δ =
N−1∑
k=1

(
δTxk

)
xk (26)

which also illustrates that δTu = 0 due to orthogonality of the Laplacian eigenvectors 
xT
k xm = δkm (where δkm is the Kronecker delta), because xN = u√

N
. Next, the norm 

‖δ‖ =
√
δT δ follows from

δT δ = (d− davu)T (d− davu) = dT d−Nd2
av (27)

which also equals, invoking (26) and orthogonality of the eigenvectors,

δT δ =
N−1∑ (

δTxk

)2

k=1
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The stochastic interpretation is Var [D] = E
[
(D − E [D])2

]
= E

[
D2] − (E [D])2 =

dT d
N − d2

av, where D is the random variable of the degree in a graph, which equals the 
degree of a randomly selected node in the graph.

After this preparation, we introduce the definition (25) into the quadratic form

dTQ†d = δTQ†δ

due to Q†u = 0. Invoking the inequality [28, (5.4) on p. 99],

1
μ1

≤ δTQ†δ

δT δ
=

∑N−1
k=1

1
μk

(
δTxk

)2
∑N−1

k=1 (δTxk)2
≤ 1

μN−1

we find with (27) that

dT d−Nd2
av

μ1
≤ δTQ†δ ≤ dT d−Nd2

av

μN−1
(28)

Consequently, the Kemeny constant K(Δ−1A) in (3) is upper and lower bounded by

ζT d− Var [D]
E [D]μN−1

≤ K(Δ−1A) ≤ ζT d− Var [D]
E [D]μ1

(29)

Involving K(Δ−1A) = R∗
G

2L , we derive upper and lower bounds for the multiplicative 
degree-Kirchhoff index

2LζT d− NVar [D]
μN−1

≤ R∗
G ≤ 2LζT d− NVar [D]

μ1
(30)

which improves the lower bound in [29]

R∗
G ≥ N − 1 + 2L (N − 2) (31)

We numerically evaluate the upper and lower bounds in (29) for various random 
graphs. In Fig. 1, we present the accuracy of the bounds for (a) Erdős–Rényi graphs 
(ER) with N = 500 nodes, link density p = 2pc, where pc = log(N)

N is the connectivity 
threshold; (b) Barabási–Albert graphs (BA) with N = 500 and the average degree 
dav = 6; (c) Watts–Strogatz small-world graphs (WS) with N = 500, the average degree 
dav = 6 and the rewiring probability p = 0.1. The generation of these random graphs 
is described in, e.g., [30] for ER graphs, [31] for BA graphs, and [32] for WS graphs. 
For each class of random graphs, we generate 105 graph instances and the probability 
density functions for the Kemeny constant K(Δ−1A) and the bounds are plotted. The 
upper bound deviates on average 0.01%, 0.04% and 0.002% of the numerical value of the 
Kemeny constant in ER random graphs, BA graphs and WS graphs, respectively. The 
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Fig. 1. Accuracy of the upper and lower bounds for the Kemeny constant. (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
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Table 1
Accuracy of lower bounds (30) and (31) in random graphs with the same parameters as in Fig. 1. The value 
in each column is the average value over 105 graph instances.

Random graphs R∗
G/2L lower bound (31)/2L lower bound (30)/2L

ER graphs 544.38 498.08 544.11
BA graphs 603.87 498.17 598.80
WS graphs 949.97 498.17 949.54

lower bound is slightly less accurate compared to the upper bound, with 0.05%, 0.8% and 
0.04% of difference in ER, BA and WS graphs. Hence, the simulation results show that 
the upper and lower bounds in (29) are a good approximation for K(Δ−1A). Moreover, 
Table 1 shows that the result (30) improves the lower bound for the multiplicative 
degree-Kirchhoff index found in [29].

3.3. Quadratic form dTQ†d in star graphs

The Laplacian for a star graph with N nodes can be written as

Q =
[

N − 1 −uT
1×(N−1)

−uT
(N−1)×1 I(N−1)×(N−1)

]
(32)

The pseudo-inverse of the Laplacian matrix can be computed [2] by

Q† = (Q + J)−1 − J

N2 (33)

where J is the all-one matrix. With (32), we can write the inverse of matrix Q + J as

(Q + J)−1 =
[
N 0
0 I + J

]−1

=
[

1
N 0
0 I − J

N

]
(34)

Left multiplying dT and right multiplying d in (33), together with (34) and using d =
(N − 1, 1, . . . , 1), we have that d

TQ†d
2L = 1

2 − 2(N−1)
N2 . From (3), the Kemeny constant 

for a star graph can be explicitly expressed as K(Δ−1A) = N − 3
2 . Due to ζT d =

(N − 2)Q†
11 + RG

N and Q†
11 = N−1

N2 , the Kemeny constant is rewritten, in terms of the 
effective graph resistance RG, as

K(Δ−1A) = RG

N
+ N − 2

2N (35)

4. Conclusion

In this paper, we generalize the relation between the Kemeny constant and the effective 
graph resistance, which was known for regular graphs, to general connected, undirected 
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graphs. By deriving a new closed-form formula (3), we provide a new approach to com-
pute the Kemeny constant via the pseudo-inverse of the Laplacian matrix. Moreover, 
we show that for general graphs the Kemeny constant can be tightly upper and lower 
bounded by (29).
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Appendix A. Proof of Lemma 2

Proof. According to Theorem 1, the inverse matrix Z =
(
I − P + πuT

)−1 exists. The 
definition of the inverse of a matrix reads

(
I − P + πuT

) (
I − P + πuT

)−1 = I (A.1)

Left multiplying πT in (A.1) yields, with πTP = πT ,

uT
(
I − P + πuT

)−1 = πT

πTπ

Substituting into (A.1) results in

(I − P )
(
I − P + πuT

)−1 = I − ππT

πTπ

Similarly, the following can be obtained

(
I − P + πuT

)−1 (I − P ) = I − uuT

uTu
(A.2)

Assume that (1) is correct, then we verify indeed that the matrix product (I−P ) (I−P )†

follows

(I − P )
((

I − P + πuT
)−1 − uπT

uTuπTπ

)
= I − ππT

πTπ
(A.3)

and, similarly, the matrix product (I − P )† (I − P ) can be written as

((
I − P + πuT

)−1 − uπT

uTuπTπ

)
(I − P ) = I − uuT

uTu
(A.4)

Right multiplying I − P in (A.3) yields
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(I − P ) (I − P )† (I − P ) =
(
I − ππT

πTπ

)
(I − P ) = (I − P ) (A.5)

Right multiplying (I − P )† in (A.4) results in

(I − P )† (I − P ) (I − P )† =
(
I − uuT

uTu

)((
I − P + πuT

)−1 − uπT

uTuπTπ

)

= (I − P )† (A.6)

Since matrices (I − P ) (I − P )† and (I − P )† (I − P ) are symmetric matrices, together 
with (A.5) and (A.6), we establish Lemma 2. �
Appendix B. Proof of Lemma 3

Proof. Let xk be the eigenvector belonging to the eigenvalue μk of the Laplacian Q. The 
vector u√

N
is an eigenvector of Q belonging to the eigenvalue μN = 0. The Laplacian 

matrix can be written as Q =
∑N

k=1 μkxkx
T
k and the matrix product QQ† follows

QQ† =
N∑

k=1

μkxkx
T
k

N−1∑
m=1

1
μm

xmxT
m = I − 1

N
J

where matrix J = uuT is the N ×N all-one matrix. Left multiplying Δ−1 yields

Δ−1QQ† = Δ−1 − Δ−1u

N
uT

The Moore–Penrose pseudo-inverse [22] for the sum of matrices 
(
A + mnT

)† is

(
A + mnT

)† = A† − kk†A† −A†h†h +
(
k†A†h†) kh (B.1)

where k = A†m and h = nTA†.
Let A = Δ−1, m = −Δ−1u

N and nT = uT , so that k = −u
N and h = dT . With k† = uT

N2

and h† = d
dT d

, we arrive at

(
Δ−1 − Δ−1u

N
uT

)†
= Δ − u

N

uT

N2 Δ − Δd

dT d
dT +

(
uT

N2 Δ d

dT d

)
u

N
dT

Since − u
N

uT

N2 Δ +
(

uT

N2 Δ d
dT d

)
u
N dT = 0, Lemma 3 is established. �
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