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1. Introduction

In spectral graph theory [22], the eigenvalues and eigenvectors of matrix represen-
tations of graphs are studied and related to properties of the graph. This spectral 
methodology often enables a very concise characterization of a graph by relating complex 
combinatorial graph properties to simple expressions involving the graphs’ eigenvalues. 
While other methods may provide tight algorithmic approximations to such combinato-
rial problems, for instance the famous Arora-Rao-Vazirani algorithm for finding sparse 
cuts [4], the added value of the spectral approach is that it provides analytical rela-
tions and bounds in terms of the graphs’ spectral properties rather than numerical or 
algorithmic solutions.

The combinatorial property of interest in this work is related to the number of links 
between disjoint sets of nodes in a graph. If we select two such sets, then the cut-set is 
defined as the set of all links that connect nodes from one set to nodes from the other 
set. The number of links in the cut-set is then called the cut size. Given the number of 
nodes in each subset, one is often interested in the smallest and largest possible value 
of the cut size. Here, we propose new spectral bounds for the cut size. We start from 
the standard spectral approach, which we refer to as the standard relaxation method 
(SR), which yields spectral bounds by relaxing the combinatorial optimization problem 
of finding the smallest and largest cut-sets. By considering additional constraints based 
on Laplacian eigenvectors, our constrained relaxation method (CR) leads to a tighter 
relaxation of the combinatorial optimization problem, and tighter bounds on the cut 
size. While the SR bounds contain limited spectral information about the graph — in 
fact, only the largest or second-smallest eigenvalue of the Laplacian of the graph — the 
CR bounds include a larger number of eigenvalues, and additionally, some properties of 
the Laplacian eigenvectors. To illustrate the applicability of our new bounds, we relate 
the cut size to three well-studied problems in graph theory: the Cheeger inequalities, the 
Max Cut problem, and the expander mixing lemma [3], [14], [17, Lemma 2.5]. Numerical 
simulations of the new (CR) and existing (SR) bounds further illustrate the potential of 
our constrained relaxation approach. Finally, we apply our bounds to study cut sizes in 
the hypercube graph, and describe how bounding the cut size plays an important role in 
the study of epidemics on networks, where the cut size relates to the spreading velocity 
of a disease over a network [24].

In Section 2, we introduce some basic definitions from spectral graph theory and 
formally define the cut size. In Section 3, we derive the new cut size bounds starting 
from the definition of the largest and smallest cut size and the standard relaxation. We 
then compare all bounds, which results in a hierarchy of bounds. Section 4 describes 
the application of our constrained relaxation method to the Cheeger inequality, the Max 

1 Currently at the Mathematical Institute, University of Oxford, Oxford and The Alan Turing Institute, 
London.
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Cut problem, the expander mixing lemma, cuts in the hypercube graph and epidemics 
on graphs. Finally, Section 5 concludes and summarizes the results.

2. Preliminaries

2.1. Graphs and the Laplacian matrix

We consider a connected and unweighted graph G(N , L) without self-loops, where N
is the set of N nodes and L the set of L links. The structure of any such graph can be 
represented by a symmetric N ×N Laplacian matrix Q with elements:

Qij =

⎧⎪⎪⎨⎪⎪⎩
di if i = j

−1 if (i, j) ∈ L
0 otherwise

Here, the degree di is the number of nodes connected to node i, and (i, j) ∈ L represents 
the condition that there is a link between node i and node j. The quadratic form xTQx, 
for some vector x ∈ R

N , can be written as a sum over the graph links:

xTQx =
∑

(i,j)∈L
(xi − xj)2 (1)

Furthermore, since the Laplacian matrix Q is a real and symmetric matrix, its eigende-
composition is [22]:

Q =
N∑

k=1

μkzkz
T
k ,

where μk is the kth real eigenvalue and zk the corresponding eigenvector. Equation (1)
shows that the Laplacian matrix is positive semi-definite and, additionally, a basic result 
from spectral graph theory states that the multiplicity of the zero eigenvalue equals the 
number of connected components [22, art. 80]. Since we are considering connected graphs, 
we can thus always define the ordered sequence of eigenvalues μ1 ≥ μ2 ≥ · · · > μN = 0. 
From the definition of the Laplacian matrix Q, we find that the eigenvector corresponding 
to the zero eigenvalue μN = 0 equals zN = u√

N
, where u = [1, 1, . . . , 1]T is the all-one 

vector. Furthermore, as the Laplacian is real and symmetric, we know that the set of 
all eigenvectors {z1, z2, . . . , zN} forms an orthonormal basis of RN . In other words, we 
know that zTi zj = δij , where δij is the Kronecker delta, which is equal to δij = 1 if 
i = j, and δij = 0 otherwise. An important consequence of this orthonormality property 
is Plancherel’s theorem:

N∑
k=1

(zTk x)2 = xTx ∀x ∈ R
N . (2)
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2.2. Cut size: definition, quadratic form and constraints

Definition 1 (Cut-set). For two non-empty, disjoint node subsets V, S ⊂ N of a graph, 
the cut-set C(V, S) is the set of all links that connect nodes in V to nodes in S. In other 
words:

C(V,S) = {(i, j) ∈ L | i ∈ V, j ∈ S}

For a subset V and its complement V, this cut-set equals the edge boundary ∂V of the 
set V:

∂V = C(V,V)

In the remainder of this article, we will work with the edge boundary ∂V, which is 
invariant when V and its complement V are interchanged. The number of links in the 
edge boundary ∂V is called the cut size and is denoted by |∂V|. The number of nodes in V
will be denoted by V = |V| and the fraction of nodes in V by v = V

N . Appendix E extends 
the results for ∂V to C(V, S) in context of the expander mixing lemma, illustrating how 
the derivations and results for ∂V can be generalized.

The ability to find spectral bounds for the cut size follows from its algebraic repre-
sentation as a quadratic form:

Definition 2 (Quadratic and Spectral Form). The cut size |∂V| of a set V in a graph with 
Laplacian matrix Q can be written as:

|∂V| = wT
VQwV =

N−1∑
k=1

(wT
V zk)2μk, (3)

where wV ∈ {0, 1}N is the zero-one partition indicator vector specifying the nodes in V
by (wV)i = 1 if i ∈ V, and (wV)i = 0 otherwise.

The quadratic form for the cut size can be rewritten with (1) as

wT
VQwV =

∑
(i,j)∈L

((wV)i − (wV)j)2 ,

where the sum in the right-hand side runs over all links, and only links in the cut-set 
contribute a “+1” to the sum. Furthermore, based on Plancherel’s theorem and on the 
specific form of wV as a zero-one vector, we show in Appendix A that the projections 
wT

V zk obey the following constraints:

Property 1 (Spectral Constraints). For any vector wV representing a subset of V nodes, 
the projections wT

V zk on the Laplacian eigenvectors are constrained by:
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⎧⎪⎪⎨⎪⎪⎩
N−1∑
k=1

(wT
V zk)2 = Nv(1 − v) (a)

(wT
V zk)2 ≤ s2

k(v), (b)

(4)

where we introduce

s2
k(v) := max

⎧⎨⎩
(

V∑
i=1

(
z↓k

)
i

)2

,

(
N−V∑
i=1

(
z↓k

)
i

)2⎫⎬⎭ , (5)

where z↓k is the vector zk with entries ordered by decreasing value, such that 
(
z↓k

)
1
≥(

z↓k

)
2
≥ · · · ≥

(
z↓k

)
N

.

Property (4a) follows from Plancherel’s theorem applied to the partition indicator 
vector wV and the eigenvectors of Q. Property (4b) follows from the fact that wV is a 
zero-one vector with exactly V non-zero elements.

3. Deriving the constrained relaxation bounds

Our main result is the formulation of the constrained relaxation bounds in Theorem 2
and the hierarchy of bounds in Theorem 3, which proves that these new bounds are at 
least as tight the standard bounds.

Assuming that a graph G(N , L) is given and its eigendecomposition is either known 
or can be calculated, we propose a new upper-bound on the cut size |∂V|. First, we 
discuss the exact characterization of the cut size range (EX), then formulate the standard 
spectral approximation approach (SR) and finally discuss our constrained relaxation 
approach (CR), which improves these standard bounds.

3.1. The Exact Method

The tightest characterization for the range of the cut size |∂V| for a given size of the 
set V is:

Definition 3 (Exact Cut Size Bounds). The cut size between a subset V� of V nodes and 
its complement is bounded by:

min
V⊂N
|V|=V

|∂V| ≤ |∂V�| ≤ max
V⊂N
|V|=V

|∂V|. (6)

The lower and upper-bound are further abbreviated by θE(v) and ΘE(v), respectively, 
where v = V .
N
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While (6) is an explicit description for the tightest possible cut size range, finding the 
maximum and minimum over all possible sets V of size V is NP-hard2 [17, Sec. 2.4], [6], 
[18], which motivates the pursuit to approximate the cut size bounds instead.

3.2. The Standard Relaxation Method

The standard relaxation method (SR) addresses the combinatorial difficulty of finding 
θE and ΘE by writing the optimization objective in a spectral form, and by subsequently 
relaxing the optimization domain.

First, using the spectral form of the cut size (3), the exact upper-bound (6) can be 
written as3:

ΘE(v) = max
V⊂N
|V|=V

|∂V| = max
wV∈{0,1}N

uTwV=V

N−1∑
k=1

(zTk wV)2μk (7)

Next, the combinatorial domain is relaxed from the zero-one partition indicator vector 
wV to a real vector x, taking property (4a) into account:

{
wV ∈ {0, 1}N

∣∣∣∣ N∑
k=1

(wV)k = V

}
⊂

{
x ∈ R

N

∣∣∣∣N−1∑
k=1

(zTk x)2 = Nv(1 − v)
}

(SR relaxation)

Finally, after denoting the projection of x on the kth Laplacian eigenvector by yk =
(zTk x)2 and rewriting the sum using the all-one vector u, the SR optimization problem 
follows as:

Problem 1 (SR Problem).

maximize
y∈RN−1

N−1∑
k=1

ykμk

subject to 0 ≤ yk,

uT y = Nv(1 − v).

(8)

This optimization problem is solved by the vector y�, with its first entry equal to 
(y�)1 = Nv(1 − v) and all other entries equal to zero, leading to the SR bounds:

2 The problem maxV |∂V| is NP-hard (see also Section 4.2) and can be rewritten as maxV maxV,|V|=V |∂V|, 
which implies that maxV,|V|=V |∂V| is NP-hard for general V .
3 We confine our derivation to the upper-bound, but the results for the lower-bound follow in direct analogy 

by replacing the matrix Q with eigenvalues μi and eigenvectors zi by the matrix Q̂ with eigenvalues (−μi)
and eigenvectors zi.
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Proposition 1 (SR Bounds). The cut size between a subset V of V nodes and its comple-
ment is bounded by:

θS(v) ≤ |∂V| ≤ ΘS(v), (9)

where the lower and upper-bound are defined as{
θS(v) = Nv(1 − v)μN−1

ΘS(v) = Nv(1 − v)μ1
(10)

Since the SR bounds (9) solve the relaxed optimization problem (8), they are neces-
sarily less tight than the exact bounds, which means that ΘE(v) ≤ ΘS(v) holds for all 
v.

3.3. The Constrained Relaxation Method

In order to improve the bounds obtained by the standard relaxation method, we 
further constrain the relaxed optimization domain. Starting from the exact formulation 
of the cut size upper-bound (7), the zero-one partition indicator vector wV is relaxed to 
a real vector x taking both property (4a) and property (4b) into account:{
wV ∈ {0, 1}N

∣∣∣∣ N∑
k=1

(wV)k = V

}
⊂

{
x ∈ R

N

∣∣∣∣N−1∑
k=1

(zTk x)2 = Nv(1 − v), (zTk x)2 ≤ s2
k(v)

}
(CR relaxation)

Relying again on the notation yk = (zTk x)2, the relaxed problem can be written as:

maximize
y∈RN−1

N−1∑
k=1

ykμk

subject to 0 ≤ yk ≤ s2
k(v),

uT y = Nv(1 − v).

(11)

By explicitly incorporating the equality constraint, variable yN−1 can be eliminated as 
yN−1 = Nv(1 − v) −

∑N−2
k=1 yk. The problem can then be rewritten as:

Problem 2 (CR� Problem).

maximize
y∈RN−2

N−2∑
k=1

yk(μk − μN−1) + Nv(1 − v)μN−1

subject to 0 ≤ yk ≤ s2
k(v),

0 ≤ Nv(1 − v) − uT y ≤ s2
N−1(v).

(12)
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Since the CR� problem is a linear program, it can be solved efficiently in polyno-
mial time, yielding numerical solutions θC�(v) and ΘC�(v) for the cut size lower and 
upper-bound, respectively. In order to find closed-form bounds, we introduce further 
approximations.

We derive a set of bounds parametrized by K ∈ {1, 2, . . . , N}, by upper-bounding the 
objective function of (11). For any K, the eigenvalue order dictates that μk ≤ μK for all 
k ≥ K, and thus that 

∑N−1
k=1 ykμk ≤

∑K−1
k=1 ykμk + μK

∑N−1
k=K yk. Now, from property 

(4a), we have 
∑N−1

k=K yk = Nv(1 − v) −
∑K−1

k=1 yk, by which the objective function of (11)
can be upper-bounded by:

N−1∑
k=1

ykμk ≤
K−1∑
k=1

yk(μk − μK) + Nv(1 − v)μK , (13)

for y ∈ R
N−1 subject to the constraints in (11). Introducing the approximate objective 

function (13) for general values of K in problem (11) and translating the constraints 
leads to:

Problem 3 (CR-K Problem).

maximize
y∈RK−1

K−1∑
k=1

yk(μk − μK) + Nv(1 − v)μK

subject to 0 ≤ yk ≤ s2
k(v),

0 ≤ Nv(1 − v) − uT y ≤
K−1∑
k=1

s2
N−k(v).

(14)

We will show that there always exists some K (see later: this corresponds to K =
Ku(v) or K = Kl(v)) for which the second inequality constraint in (14) follows from 
the first inequality constraint. For this K, the exact solution y� can be found, which 
has elements (y�)k = s2

k(v). In Appendix B, this solution and approximate solutions for 
other values of K are derived, leading to the following bounds:

Theorem 2 (CR-K Bounds). The cut size between a subset V of V nodes and its comple-
ment is bounded by:

θC(v,K) ≤ |∂V| ≤ ΘC(v,K) for all 1 ≤ K ≤ N (15)

where the lower and upper-bound are defined as{
θC(v,K) =

∑K−1
k=1 s2

k′(v)(μk′ − μK′) + Nv(1 − v)μK′

ΘC(v,K) =
∑K−1

k=1 s2
k(v)(μk − μK) + Nv(1 − v)μK

(16)

with k′ = N − k and K ′ = N −K.
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3.4. Comparison between bounds

When comparing the constrained relaxation bounds for different values of the param-
eter K, certain values of K are “special”. In particular, the values Ku(v) and Kl(v), 
defined as ⎧⎨⎩Ku(v) = max

{
1 ≤ K ≤ N

∣∣∑K−1
k=1 s2

k(v) ≤ Nv(1 − v)
}

Kl(v) = max
{

1 ≤ K ≤ N
∣∣∑K−1

k=1 s2
k′(v) ≤ Nv(1 − v)

}
,

(17)

are important since the CR-K bounds (15) are tightest at these values. This optimality 
of Ku(v) and Kl(v) is derived in Appendix C in context of a hierarchy of bounds:

Theorem 3 (Hierarchy of Bounds). The cut size bounds are related by

|∂V| ≤ ΘE(v)︸ ︷︷ ︸
NP -hard

≤ ΘC�(v)︸ ︷︷ ︸
Lin.Prog.

≤ ΘC(v,Ku) ≤ ΘC(v,K)︸ ︷︷ ︸
new bounds

≤ ΘS(v) ≡ ΘC(v, 1)︸ ︷︷ ︸
standard bound

(18)

for all K ≤ Ku and similarly for the lower bounds.

Theorem 3 thus states that amongst all CR-K bounds, the bound with K = Ku(v)
according to (17) is the tightest bound. Since the SR bound corresponds to the CR-K 
bound with K = 1, this implies that the CR-K bounds are at least as tight as the SR 
bound, and that the constrained relaxation method can yield strictly tighter bounds 
only if Ku(v) > 1 holds. More specifically, and taking the multiplicity of eigenvalues into 
account,4 the following condition can be formulated:

Corollary 1. The constrained relaxation method leads to tighter upper-bounds than the 
standard relaxation method, if and only if Ku(v) is strictly larger than the multiplicity of 
the largest eigenvalue, in other words if Ku(v) > mult(μ1) holds. The same result holds 
for the lower-bound, with condition Kl(v) > mult(μN−1).

Interestingly, a similar condition can be used as a criterion to determine in which 
graphs the SR bounds are achieved for some set V�: if Kl(v) = 1 for some v, then 
the set V� consisting of the V nodes with the largest elements of zN−1 corresponds to 
a cut size |∂V�| which equals the SR lower-bound. An example where the condition of 
Corollary 1 can be invoked to find when the constrained spectral bounds and standard 
spectral bounds coincide, is the hypercube graph (see Section 4.4).

4 When an eigenvalue μk has multiplicity higher than one, say multiplicity m, then the corresponding 
eigenvectors Zk = {zk1, zk2, . . . , zkm} and thus also s2

k1, s2
k2, . . . , s2

km are not uniquely defined. For any 
particular set of m vectors that spans Zk all derivations still hold, and in some cases it might be desirable 
to consider specific choices of these m vectors.
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Fig. 1. Simulation of the SR and CR bounds for a Barabási-Albert and Erdős-Rényi random graph on 
N = 103 nodes. The bounds are normalized to ΘS(v)

Nv(1−v) and ΘC(v)
Nv(1−v) , such that the standard bounds 

correspond to constant bounds μ1 and μN−1. The lower bounds are magnified in the inset.

To further illustrate the discrepancy between the SR and the CR-K bounds, Figs. 1a 
and 1b show numerical simulations of the bounds for a randomly generated Barabási-
Albert graph and a randomly generated Erdős-Rényi graph.5 These simulations indicate 
that the improvements can be considerable, and hint towards “degree heterogeneity” as 
a property that leads to large differences between the SR and the CR methodology.

4. Applications of the improved bound

4.1. The Cheeger constant

In 1969, Jeff Cheeger [7] proved a relation between the smallest non-zero eigenvalue 
of the Laplace operator on a Riemannian manifold M , and a geometric characterization 
h̃(M) of that manifold. Later, this inspired others to define the Cheeger constant for 
graphs:

Definition 4. The Cheeger constant h(G) of a graph is defined as

h(G) = min
V⊂N

|V|≤N
2

|∂V|
|V| (19)

In other words, the Cheeger constant, also called the edge expansion or the isoperi-
metric constant, is the smallest number h(G) such that each partition of V nodes has a 

5 The Barabási-Albert graph was generated starting from a clique of 10 nodes and by adding degree four 
nodes that link to the existing nodes with probability proportional to their degree. For the Erdős-Rényi 
random graph, link density p = 4pc was chosen, with pc = log(N)

N = 3
1000 the connectedness threshold for p.
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cut size of at least V h(G) links. By this description, it is clear that the Cheeger constant 
is closely related to how well-connected a graph is. Similar to the spectral result of Jeff 
Cheeger for Riemannian manifolds, the Cheeger constant (19) for graphs can also be 
bounded by spectral properties of the Laplacian matrix Q [12,3,1,19]:

Theorem 4. The Cheeger constant h(G) of a graph can be bounded by:

μN−1

2 ≤ h(G) ≤
√

μN−1(2dmax − μN−1), (20)

where dmax is the largest degree.

Invoking the CR-K bounds (15) for the cut size, it is possible to find tighter lower-
bounds for the Cheeger constant:

Corollary 2 (Tighter Cheeger lower-bound). The Cheeger constant h(G) of a graph is 
lower-bounded by

μN−1

2 ≤ min
v

{θC(v,Kl(v))} ≤ h(G) (21)

The standard Cheeger inequality (20) is an important result in spectral graph theory, 
that highlights the relation between the second-smallest Laplacian eigenvalue μN−1 and 
the connectedness of a graph. This fact was discovered earlier by Fiedler [13,9], who 
coined the appropriate name algebraic connectivity for μN−1. The constrained relaxation 
method and resulting tighter Cheeger lower-bound (21) provide additional information 
about the connectivity of a graph in terms of the other eigenvalues. Assume for simplicity 
that Kl(v) > 1 for all v, such that we can look at θC(v, 2) as a lower bound. The standard 
Cheeger inequality is based on minv {(1 − v)μN−1} ≤ h(G), which relates μN−1 to the 
connectedness of a graph. The constrained relaxation (limited to K = 2) is then based on 

minv

{
(1 − v)μN−2 + (μN−2 − μN−1)

s2N−2(v)
V

}
≤ h(G). This inequality shows that μN−2

is related to the graph connectedness in a similar way as the algebraic connectivity μN−1, 
and that a large eigenvalue gap (μN−2 − μN−1) contributes to a higher connectedness. 
The CR-K bounds for higher values of K thus provide relations between the K smallest 
Laplacian eigenvalues and the graph’s connectedness.

4.2. The Max Cut problem

Finding the node subset V� with the largest cut size |∂V�| in a graph was one of 
the original 21 NP-hard problems6 identified by Karp [18]. This problem is commonly 
known as the Max Cut problem, and several approaches were developed to approximate 

6 More precisely, the following decision problem was shown to be NP-hard: “given a graph G and a positive 
integer k, is there a cut-set in G of at least k links?” Consequently, finding the largest cut size or the subset 
V� must be NP-hard as well.
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the largest cut size, or to find subsets with large cut sizes. The spectral relaxation, 
corresponding to what we have called the SR methodology, was first invoked on the max 
cut problem by Mohar and Poljak [20], yielding the bound

max
V⊂N

|∂V| ≤ N

4 μ1. (22)

It was shown that (22) is tight for a number of graph families, such as complete graphs, 
regular bipartite graphs and others [20]. Taking into account additional constraints, the 
CR methodology can be invoked to yield the new bound

max
V⊂N

|∂V| ≤ max
v

ΘC(v,Ku) (23)

with the CR bound ΘC(v, Ku) as in Theorem 2. By the hierarchy of bounds (18), the CR 
max cut bound (23) is tighter than the SR max cut bound (22). A different eigenvalue-
based bound was formulated by Delorme and Poljak [10], given by the optimization 
problem

Theorem 5 (Delorme-Poljak max cut bound). The largest cut size in a graph is bounded 
by

max
V⊂N

|∂V| ≤ N

4 min
c∈R

N

cTu=0

μmax (Q + diag(c)) , (24)

with μmax(M) the largest eigenvalue of matrix M .

This spectral optimization problem (24) is solvable in polynomial time, and is tighter 
than the SR max cut bound (22), as (24) reduces to (22) for c = 0. In 1995, Goemans 
and Williamson [14] relaxed the max cut problem to a semidefinite program:

Theorem 6 (Goemans-Williamson max cut bound). The largest cut size in a graph is 
bounded by

max
V⊂N

|∂V| ≤ 1
4 max

Y ∈PSD
(Y )ii=1 ∀i

tr(QY ), (25)

where Y ∈ PSD means that Y is a real, symmetric matrix with non-negative eigenvalues 
(positive semi-definite).

The Goemans-Williamson semidefinite optimization problem is the dual problem of 
the spectral optimization of Delorme and Poljak (see [14]), which means that (25) is a 
tighter max cut bound than (24) (with equality possible), and consequently is tighter 
than the SR max cut bound (22). The approach of Goemans and Williamson more-
over leads to an elegant randomized construction of a set VGW , whose average cut 
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Fig. 2. Comparison between the standard (spectral) relaxation bounds (SR) (22), the constrained (spectral) 
relaxation bounds (CR) (23) and the Goemans-Williamson bound (GW) (25) for the largest cut size of a 
graph. The relative differences SR−GW

GW and CR−GW
GW are calculated for Erdős-Rényi and Barabási-Albert 

random graphs of size N = 50, 70, 90, . . . , 800, and for each size 10 random graphs are sampled.

size is guaranteed to be within a constant factor α ≈ 0.878 of the max cut value, i.e. 
E (|∂VGW |) ≥ αmaxV⊂N |∂V| (see [14]).

Fig. 2 above compares the different max cut bounds (22) and (23) to the GW max 
cut bound (25) for a number of Erdős-Rényi and Barabási-Albert random graphs7 of 
increasing size N . The SDP problem in (25) is solved using CVX, a package for specifying 
and solving convex programs [15]. The positive relative differences GW−SR

GW and GW−CR
GW

which are plotted in Fig. 2 show that the GW bound (25) clearly outperforms the 
spectral bounds (22), (23) for these random graphs. The relative difference for both SR 
and CR max cut bounds seems to be much smaller for Erdős-Rényi random graphs than 
for Barabási-Albert random graphs. However, the improvement of the CR bound over 
the SR bound is significantly larger for Barabási-Albert random graphs compared to 
the improvement for Erdős-Rényi random graphs, which was also the case in Fig. 1a. 
While the Goemans-Williamson bound seems to generally give a tighter bound than the 
spectral bounds, it yields a numerical solution rather than a closed-form expression in 
terms of properties of the Laplacian Q, such as Laplacian eigenvalues and eigenvectors. 
Hence, we believe that the interpretable expression of our constrained relaxation bound 
(23) has complementary value to the numerical solution of the GW bound, even if the 
latter might generally be tighter.

7 The Barabási-Albert random graphs are generated starting from a clique of 10 nodes and adding degree 
four nodes with probability proportional to the existing degrees. The Erdős-Rényi random graphs have link 
density equal to p = 4pc with pc = log(N)

N , the connectedness threshold for p.
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4.3. The Expander Mixing Lemma

The expander mixing lemma (EML) is a basic result in the study of expander graphs 
[2,17], which relates the expansion properties of a graph to the Laplacian spectrum. 
In context of the graph isoperimetric problem [5,8], the same inequality appears in a 
geometric context. While generally stated in terms of the cut-set C(V, S) between two 
disjoint sets V and S (see Appendix E), we focus here on the cut-set ∂V corresponding 
to S = V. The expander mixing lemma is then stated as:

Lemma 1 (Expander Mixing Lemma). In a graph G(N , L), the difference between the cut 
size |∂V| for any subset V of V nodes, and the average cut size 2Lv(1 − v) is bounded by∣∣|∂V| − 2Lv(1 − v)

∣∣ ≤ λNv(1 − v),

with λ = max
{
|μN−1 − 2L

N |, |μ1 − 2L
N |

}
.

The expander mixing lemma quantifies how far the cut size of a set with V nodes can 
possibly diverge from 2Lv(1 − v), which is the expected cut size in a random graph with 
the same “link density” or average degree as G. Hence, rather than bounding the cut size 
range, EML bounds the variation of this range around a central value. In Appendix D, 
we show that the CR-K bounds naturally translate to the EML bounds:

Corollary 3 (Tighter Expander Mixing Lemma). In a graph G(N , L), the difference be-
tween the cut size |∂V| for any subset V of V nodes, and the average cut size 2Lv(1 − v)
is bounded by∣∣|∂V| − 2Lv(1 − v)

∣∣ ≤ max
{∣∣∣θ̃C(v,Kl(v))

∣∣∣ , ∣∣∣Θ̃C(v,Ku(v))
∣∣∣} ≤ λNv(1 − v),

where Θ̃C(v, K) and θ̃C(v, K) are the CR-K bounds corresponding to the matrix Q̃ =
Q − 2L

N (I − uuT

N ).

The proof of Corollary 3 in Appendix D shows that the standard EML inequality 
corresponds to the least tight bound in the bound hierarchy of Theorem 3, for bounds 
calculated from the matrix Q̃ = Q − 2L

N (I − uuT

N ). Appendix E further generalizes the 
result to cut-sets between any pair of disjoint subsets.

4.4. Spectral lower bounds in the hypercube graph Hd

The hypercube graph is a graph where cuts and cut sizes have been thoroughly studied. 
The d-dimensional hypercube graph is the graph Hd = G(N , L) with N = 2d nodes, 
and with links L determined by identifying each node n ∈ N with a unique d-length 
bit string b(n) ∈ {0, 1}d, and connecting two nodes with a link if their bit strings differ 
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in only one entry, i.e. L = {(i, j) | ‖b(i) − b(j)‖1 = 1}. In 1964, Harper [16] proved the 
following result for the smallest cut size in the hypercube graph:

Theorem 7. In the hypercube graph Hd the smallest cut size for a set of size V is achieved 
by the set of nodes V� containing the nodes with the V smallest bit strings, in other words

min
V⊂N
|V|=V

|∂V| = |∂V�| where V� =
{
n ∈ N

∣∣∣∣ d∑
i=1

(b(n))i 2
i−1 ≤ V − 1

}
, (26)

where (b(n))i is the ith bit of the bit string b(n).

Harper’s result (26) does not give an explicit numerical result in terms of graph 
properties, and in practice the following approximate bound can be used [17, Example 
4.2.1]:

min
V⊂N
|V|=V

|∂V| ≥ V log2

(
N

V

)
, (27)

which is tight when V = 2� for some integer �. As the Laplacian eigenvalues and eigen-
vectors of the hypercube graph Hd are known, we can compare (26) and (27) to the CR 
bounds. The hypercube graph Hd has Laplacian eigenvalues μk = 2m with multiplicity (
d
m

)
for 0 ≤ m ≤ d, and except for the eigenvector zN = u√

N
, all eigenvectors zk contain 

exactly 2d−1 entries equal to 1√
2d

and 2d−1 entries equal to −1√
2d

. As a result, the ordered 
eigenvectors obey

⎧⎨⎩
(
z↓k

)
i

= 1√
2d

for all 1 ≤ i ≤ 2d−1(
z↓k

)
i

= −1√
2d

for all 2d−1 + 1 ≤ i ≤ 2d,

such that s2
k(v) = V 2

N is independent of k. Since s2
k(v) is constant, we find that Kl(v) =

max
{

1 ≤ K ≤ N

∣∣∣∣ ∑K
k=1

V 2

N ≤ V (N−V )
N

}
=

⌊
v−1⌋. By Corollary 1 and the fact that 

mult(μN−1) = d, it thus follows that the CR bound can only be tighter than the SR 
bound when 

⌊
v−1⌋ ≥ d. More specifically, the CR bound will always equal the SR bound 

when v ≥ d−1. Fig. 3, comparing lower bounds for the cut size in the hypercube graph 
Hd, shows that the CR bound is better than the SR bound for small cuts, i.e. when 
v < d−1, but that both the SR and CR bounds are significantly less tight than Harper’s 
bound (26) and its approximation (27). However, this difference can be expected as (26)
and (27) are tailored to the hypercube Hd specifically, while the CR bound is valid for 
general graphs.
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Fig. 3. Comparison between different bounds for the smallest cut size in the hypercube graph Hd of dimension 
d. All bounds are divided by Nv(1 −v) for normalization. This comparison indicates that the tightest bounds 
are, respectively: Harper’s bound (26), the approximate lower bound (27), the CR bound and finally the 
SR bound. The black star indicates v = d−1 from which point the CR bound is guaranteed to equal the SR 
bound.

4.5. Bounding the spread of epidemics and mean-field accuracy

In epidemics on networks, a disease spreads through the network, infecting new nodes 
via links between infected nodes and healthy nodes [21]. If all infected nodes at some 
time t are grouped in the set V(t), and all healthy nodes in the complementary set V(t), 
then the cut-set ∂V(t) is the set of all “infectious links” at that time, i.e. links between 
healthy and infected nodes over which the disease can spread.

By modeling the spreading dynamics as independent Poisson processes, the epidemic 
process satisfies the Markov property [23] and the probability distribution PV�(t) =
Pr[V(t) = V�] can be solved from the Kolmogorov equations. However, since this prob-
ability distribution is defined over all 2N possible states V� ⊆ N , several methods have 
been developed to approximate the exact description. In [24], a compact differential equa-
tion for the average number of infected nodes in the SIS epidemic model is proposed:

dEV(t)[|V|] = −EV(t)[|V|] + τEV(t)[|∂V|] (28)

dt
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where τ is the effective infection rate of the disease and EV(t)[.] the expected value 
with respect to PV�(t). Since the second term contains the cut size, equation (28) is not 
self-contained and cannot be solved for EV(t)[|V(t)|]. However, using the CR-K bounds 
for |∂V|, we can write:

−EV(t)[|V|] + τ min
v

{θC(v,Kl(v))} ≤
dEV(t)[|V|]

dt
≤ −EV(t)[|V|] + τ max

v
{ΘC(v,Ku(v))}

which shows how the best and worst-case SIS spreading behavior of a disease can be 
bounded, based on spectral information of the network over which the epidemic spreads.

More detailed approximations exist, ranging from approaches that incorporate the 
full topology of the graph, to mean-field approaches that coarse-grain the topological 
information. This variety of approaches is unified in [11] from the perspective of cut-set 
approximations. Specifically, the class of mean-field methods (MF) rely on approxima-
tions of the form:

E{V(t)||V|=V } [|∂V|] MF approx.−−−−−−−−→ 2Lv(1 − v) (29)

where E{V(t)||V|=V }[.] is the expectation with respect to the conditional probability dis-
tribution Pr[V(t) = V�

∣∣|V(t)| = V ], and similar results were found for general cut-sets 
C(V, S). The main result in [11] was to show that the topological mean-field approxima-
tion (29) can be bounded using the isoperimetric inequality (equivalently, the expander 
mixing lemma). Since we provide tighter bounds for EML in Corollary 3, these bounds 
for the MF accuracy are also improved:∣∣E{V(t)||V|=V } [|∂V|] − 2Lv(1 − v)

∣∣ ≤ max
{∣∣∣θ̃C(v,Kl(v))

∣∣∣ , ∣∣∣Θ̃C(v,Ku(v))
∣∣∣}︸ ︷︷ ︸

CR-K bounds

≤ λv(1 − v)︸ ︷︷ ︸
SR bounds [11]

,

where λ = max
{∣∣μN−1 − 2L

N

∣∣ , ∣∣μ1 − 2L
N

∣∣}.

5. Conclusion

We formulate new spectral bounds for the cut size |∂V| in general graphs. The bounds 
follow from a convex relaxation of the combinatorial (EX) problem maxV |∂V| and, com-
pared to the standard spectral relaxation approach (SR), additional constraints based 
on the Laplacian eigenvectors lead to a tighter relaxation of the problem (CR). The new 
bounds that follow from this constrained relaxation problem are given by Theorem 2, 
and as summarized in Theorem 3, these new bounds are at least as tight as the ex-
isting spectral bounds. Corollary 1 additionally specifies the condition that determines 
whether the CR bounds are strictly tighter than the SR bounds. The numerical results 
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in Figs. 1a–3 show that, indeed, the CR bounds are tighter than the SR bounds, and 
that the improvement can be significant.

We furthermore apply the constrained relaxation method to a number of problems in 
spectral graph theory. In particular, we show that the Cheeger inequality lower-bound, 
max cut bounds and the expander mixing lemma and related graph isoperimetric in-
equality [17,2] can be tightened using the constrained relaxation method. Finally, the 
conceptual importance of the cut-set in epidemics on networks is highlighted, and we 
show how our improved bounds provide a tighter characterization of best and worst-case 
spreading behavior, as well as improved bounds for the error of mean-field approximation 
methods.

Appendix A. Proof of spectral constraints

Proof of property (4a). From Plancherel’s theorem applied to the Laplacian eigenvectors 
zk (2), we know that for any vector x ∈ R

N the relation

N∑
k=1

(zTk x)2 =
N∑

k=1

(xk)2

holds. For the partition indicator vector wV in particular, and using the fact that zN =
u√
N

, this yields:

N−1∑
k=1

(zTk wV)2 = Nv(1 − v),

proving property (4a). �
Proof of property (4b). Since the partition indicator vector wV is a zero-one vector, the 
projection wT

V zk can be written as

wT
V zk =

∑
i∈V

(zk)i.

In other words, the projection is a sum of V entries of eigenvector zk. This sum can be 
bounded by ∑

i∈V−

(zk)i ≤ wT
V zk ≤

∑
i∈V+

(zk)i, (30)

where V+ is the subset of N corresponding to the V nodes with the highest zk values, 
and V− the subset with the V lowest zk values. Introducing the ordered vector z↓k, with (
z↓k

)
≥

(
z↓k

)
≥ · · · ≥

(
z↓k

)
, allows inequality (30) to be written as
1 2 N
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N∑
i=N−V +1

(
z↓k

)
i
≤ wT

V zk ≤
V∑
i=1

(
z↓k

)
i
.

Since all eigenvectors zk, with k �= N , are orthogonal to zN = u√
N

, which means that ∑N
i=1(zk)i = 0 holds, we can write

−
N−V∑
i=1

(
z↓k

)
i
≤ wT

V zk ≤
V∑
i=1

(
z↓k

)
i
.

Squaring leads to the inequality

(wT
V zk)2 ≤ max

⎧⎨⎩
(

V∑
i=1

(
z↓k

)
i

)2

,

(
N−V∑
i=1

(
z↓k

)
i

)2⎫⎬⎭ ,

which proves property (4b). �
Appendix B. Derivation of constrained relaxation bounds

Proof of Theorem 2. From expression (3) and introducing the parameter K ∈
{1, 2, . . . , N}, we know that the cut size can be written as

|∂V| =
N∑

k=1

(wT
V zk)2μk =

K−1∑
k=1

(wT
V zk)2μk +

N−1∑
k=K

(wT
V zk)2μk,

where the empty sums 
∑0

k=1 and 
∑N−1

k=N are defined to be zero. By the ordering of the 
eigenvalues μK ≥ μk holds for all k ≥ K. Replacing μk by μK in the second summation 
then yields the inequality:

|∂V| ≤
K−1∑
k=1

(wT
V zk)2μk + μK

N−1∑
k=K

(wT
V zk)2

Invoking property (4a) as 
∑K−1

k=1 (wT
V zK)2 +

∑N−1
k=K(wT

V zK)2 = Nv(1 − v) then leads to

|∂V| ≤
K−1∑
k=1

(wT
V zk)2(μk − μK) + Nv(1 − v)μK .

Finally, invoking property (4b), we can further bound the cut-set size as:

|∂V| ≤
K−1∑
k=1

s2
k(v)(μk − μK) + Nv(1 − v)μK for any 1 ≤ K ≤ N,

which proves that the CR-K bounds upper-bound the cut size. �
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The lower-bound inequality follows similarly by replacing μk by −μk (turning max-
imization into minimization) and subsequently ordering the eigenvalues according to 
decreasing values, which leads to the index replacement k → k′ = N − k.

Appendix C. Hierarchy of bounds

We start by proving an additional Lemma, which relates the CR-K bounds for different 
values of K:

Lemma 2. The constrained relaxation upper-bounds for different values of K satisfy{
ΘC(v,K1) ≥ ΘC(v,K2) for 1 ≤ K1 ≤ K2 ≤ Ku(v)
ΘC(v,K3) ≤ ΘC(v,K4) for Ku(v) ≤ K3 ≤ K4 ≤ N,

and similarly for the lower-bounds.

Proof of Lemma 2. The difference between two consecutive bounds equals:

ΘC(v,K − 1) − ΘC(v,K) = (μK − μK−1)︸ ︷︷ ︸
≤0

(
K−1∑
k=1

s2
k(v) −Nv(1 − v)

)
for 2 ≤ K ≤ N,

where the first factor is always negative or zero by the eigenvalue ordering. Hence, the 
sign of the second factor determines which of the consecutive bounds is tighter:{

ΘC(v,K − 1) ≥ ΘC(v,K) if
∑K−1

k=1 s2
k(v) ≤ Nv(1 − v)

ΘC(v,K − 1) ≤ ΘC(v,K) if
∑K−1

k=1 s2
k(v) ≥ Nv(1 − v)

from which Lemma 2 follows by definition of Ku(v) = max
{

1 ≤ K ≤ N
∣∣∑K−1

k=1 s2
k(v) ≤

Nv(1 − v)
}

in (17), and by transitivity of “≤” and “≥”. �
In order to prove the hierarchy of bounds (18), we start by proving pairwise inequalities 

of the form θ1 ≤ θ2 and θ2 ≤ θ3, which by transitivity of “≤” over the real numbers also 
proves θ1 ≤ θ2 ≤ θ3.

Proof of Theorem 3. By definition, the exact bound satisfies:

|∂V| ≤ max
V⊂N
|V|=V

|∂V| = ΘE(v) (a)

Since the CR� bound is found by relaxing the exact optimization problem, the solution 
to the CR� problem (12) is less tight than the exact bound:
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ΘE(v) ≤ ΘC�(v) (b)

Next, the CR-K problem approximates the CR� problem by replacing μk>K by μK , 
which means that for all K and for Ku(v) in particular, the inequality

ΘC�(v) ≤ ΘC(v,Ku(v)) (c)

must hold. From Lemma 2, it follows that K = Ku(v) achieves the tightest bound among 
all CR-K bounds:

ΘC(v,Ku(v)) ≤ ΘC(v,K) for 1 ≤ K ≤ Ku(v) (d)

Finally, since the CR-K bound for K = 1 equals the SR bound, and invoking Lemma 2
leads to:

ΘC(v,K) ≤ ΘC(v, 1) ≡ ΘS(v) for 1 ≤ K ≤ Ku(v) (e)

By transitivity, the inequalities (a)-(e) then lead to

|∂V|
(a)
≤ ΘE(v)

(b)
≤ ΘC�(v)

(c)
≤ ΘC(v,Ku(v))

(d)
≤ ΘC(v,K)

(e)
≤ ΘS(v) ≡ ΘC(v, 1),

proving Theorem 3. �
Appendix D. Proof of Tighter Expander Mixing Lemma

We prove that the tighter expander mixing lemma follows as a corollary from The-
orem 2, by rewriting the difference between the cut size |∂V| and the average cut size 
2Lv(1 − v).

Proof of Corollary 3. Using the partition indicator vector wV , we can write the difference 
between the cut size |∂V| and the average cut size 2Lv(1 − v) as:

|∂V| − 2Lv(1 − v) = wT
VQwV − 2L

N
wT

V

(
I − uuT

N

)
wV ,

with I the identity matrix. Since all Laplacian eigenvectors zk that correspond to non-
zero eigenvalues μk �= 0 satisfy zTk u = 0, and thus satisfy 

∑N−1
k=1 zkz

T
k = I − uuT

N , this 
can be rewritten as:

|∂V| − 2Lv(1 − v) = wT
V

(
N−1∑
k=1

zkz
T
k

(
μk − 2L

N

))
wV .

Defining the matrix Q̃ =
∑N−1

k=1 zkz
T
k (μk − 2L ) leads to
N
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|∂V| − 2Lv(1 − v) = wT
V Q̃wV = |∂̃V|, (31)

where ∂̃V is the “cut-set” with respect to the matrix Q̃. While in general this matrix Q̃
is not a Laplacian matrix (since μk − 2L

N can be negative for some k), the derivation of 
the CR-K bound still works for the matrix Q̃, because Q̃ has a single zero eigenvalue 
corresponding to the eigenvector u√

N
. Hence, we can bound the cut size |∂̃V| by the 

CR-K bounds Θ̃C(v, K), which means equation (31) can be written as∣∣∣θ̃C(v,K)
∣∣∣ ≤ |∂V| − 2Lv(1 − v) ≤

∣∣∣Θ̃C(v,K)
∣∣∣ ,

which proves Corollary 3 by taking the absolute value and using the tightest bounds 
K = Ku(v) and K = Kl(v) for the upper and lower-bound, respectively. �
Appendix E. The General Expander Mixing Lemma

Here, we prove an improvement of the general expander mixing lemma which is based 
on the cut-set C(V, S) between any pair of disjoint partitions [2,17]:

Lemma 3 (General Expander Mixing Lemma). In a graph G(N , L), the difference between 
the average cut size 2Lsv and the cut size |C(V, S)| between two disjoint partitions V and 
S is bounded by ∣∣|C(V,S)| − 2Lsv

∣∣ ≤ λN
√

v(1 − v)s(1 − s),

with λ = max{|μN−1 − 2L
N |, |μ1 − 2L

N |}, and s = |S|
N and v = |V|

N .

As we show further, it is possible to upper-bound the cut size |C(V, S)| using the cut 
sizes |∂V| and |∂S|, which allows the general expander mixing lemma to be improved 
using the constrained relaxation method:

Theorem 8 (Tighter Expander Mixing Lemma). In a graph G(N , L), the difference be-
tween the average cut size 2Lsv and the cut size |C(V, S)| between two disjoint partitions 
V and S is bounded by

∣∣|C(V,S)| − 2Lsv
∣∣ ≤ √

Θ̂C(v,Ku(v))Θ̂C(s,Ku(s)) ≤ Nλ
√
v(1 − v)s(1 − s)

where Θ̂C(v, K) is the CR-K bound with respect to the matrix Q̂ =
∣∣∣Q− 2L

N (I − uuT

N )
∣∣∣.

Proof. Using the zero-one partition indication vectors wV and wS with wT
Vu = Nv and 

wT
Su = Ns and the fact that wT

VwS = 0, we have:

∣∣|C(V,S)| − 2Lvs
∣∣ =

∣∣∣∣−wT
VQwS + 2L

wT
V

(
I − uuT

)
wS

∣∣∣∣ .
N N
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Since all eigenvectors of the Laplacian Q that correspond to non-zero eigenvalues satisfy 
zTk u = 0 and thus satisfy 

∑N−1
k=1 zkz

T
k = I − uuT

N , this can be written as:

∣∣|C(V,S)| − 2Lsv
∣∣ =

∣∣∣∣∣
N−1∑
k=1

(wT
V zk)(wT

S zk)(μk − 2L
N

)

∣∣∣∣∣ .
Now we define μ̂k = |μi� − 2L

N | and ẑk = zi� , where i� is the index such that μ̂k is ordered 
according to descending values. Invoking the Cauchy-Schwarz inequality then leads to:

∣∣|C(V,S)| − 2Lsv
∣∣ ≤

√√√√N−1∑
k=1

(wT
V ẑk)2μ̂k

N−1∑
i=1

(wT
S ẑk)2μ̂k.

If by ∂̂ we denote the “cut-set” with respect to the matrix Q̂ =
∑N−1

k=1 z̃kẑ
T
k μ̂k, then we 

can write: ∣∣|C(V,S)| − 2Lsv
∣∣ ≤ √

|∂̂V||∂̂S|.

By introducing the CR-K upper-bounds for |∂̂V| and |∂̂S| in this expression, we arrive 
at Corollary 3. �
References

[1] N. Alon, Eigenvalues and expanders, Combinatorica 6 (1986) 83–96.
[2] N. Alon, F. Chung, Explicit construction of linear sized tolerant networks, in: Proceedings of the 

First Japan Conference on Graph Theory and Applications, Hakone, 1986, vol. 72, 1988, pp. 15–19.
[3] N. Alon, V. Milman, λ1, isoperimetric inequalities for graphs, and superconcentrators, J. Combin. 

Theory Ser. B 38 (1985) 73–88.
[4] S. Arora, S. Rao, U. Vazirani, Expander flows, geometric embeddings and graph partitioning, J. 

ACM 56 (2009) 5:1–5:37.
[5] V. Blåsjö, The isoperimetric problem, Amer. Math. Monthly 112 (2005) 526–566.
[6] M. Blum, R.M. Karp, O. Vornberger, C.H. Papadimitriu, M. Yannakakis, The complexity of testing 

whether a graph is a superconcentrator, Inform. Process. Lett. 13 (1981) 164–167.
[7] J. Cheeger, A lower bound for the smallest eigenvalue of the laplacian, in: Proceedings of the 

Princeton Conference in Honor of Professor S. Bochner, 1969, pp. 195–199.
[8] F. Chung, Discrete isoperimetric inequalities, Discrete Math. Theor. Comput. Sci., 1996.
[9] N.M.M. de Abreu, Old and new results on algebraic connectivity of graphs, Linear Algebra Appl. 

423 (2007) 53–73.
[10] C. Delorme, S. Poljak, Laplacian eigenvalues and the maximum cut problem, Math. Program. 62 

(1993) 557–574.
[11] K. Devriendt, P. Van Mieghem, Unified mean-field framework for susceptible-infected-susceptible 

epidemics on networks, based on graph partitioning and the isoperimetric inequality, Phys. Rev. E 
96 (2017) 052314.

[12] J. Dodziuk, Difference equations, isoperimetric inequality and transience of certain random walks, 
Trans. Amer. Math. Soc. 284 (1984) 787–794.

[13] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Math. J. 23 (1973) 298–305.
[14] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satis-

fiability problems using semidefinite programming, J. ACM 42 (1995) 1115–1145.
[15] M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in: Recent Advances 

in Learning and Control, in: Lecture Notes in Control and Information Sciences, Springer-Verlag 
Limited, 2008, pp. 95–110.

http://refhub.elsevier.com/S0024-3795(19)30101-6/bib416C6F6E5F313938365F63686565676572s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4368756E675F313938385F454D4Cs1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4368756E675F313938385F454D4Cs1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib416C6F6E5F4D696C6D616E5F31393835s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib416C6F6E5F4D696C6D616E5F31393835s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4152565F32303039s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4152565F32303039s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib626C61736A6F5F323030355F69736F706572696D6574726963s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib426C756D4B617270s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib426C756D4B617270s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib436865656765725F31393639s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib436865656765725F31393639s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4368756E675F313939365F69736F706572696D6574726963s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib446541627265755F32303036s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib446541627265755F32303036s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib44656C6F726D65506F6C6A616Bs1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib44656C6F726D65506F6C6A616Bs1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib6B726C5F554D4646s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib6B726C5F554D4646s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib6B726C5F554D4646s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib446F647A69756B5F313938345F63686565676572s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib446F647A69756B5F313938345F63686565676572s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib466965646C65725F31393733s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib476F656D616E7357696C6C69616D736F6Es1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib476F656D616E7357696C6C69616D736F6Es1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib43565832s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib43565832s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib43565832s1


K. Devriendt, P. Van Mieghem / Linear Algebra and its Applications 572 (2019) 68–91 91
[16] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 
(1966) 385–393.

[17] S. Hoory, S. Linial, A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. 
43 (2006) 439–561.

[18] R. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computations, 
Plenum Press, 1972, pp. 85–103.

[19] B. Mohar, Isoperimetric numbers of graphs, J. Combin. Theory Ser. B 47 (1989) 274–291.
[20] B. Mohar, S. Poljak, Eigenvalues and the max-cut problem, Czechoslovak Math. J. 40 (1990) 

343–352.
[21] R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex 

networks, Rev. Modern Phys. 87 (2015) 925–979.
[22] P. Van Mieghem, Graph Spectra for Complex Networks, Cambridge University Press, Cambridge, 

UK, 2011.
[23] P. Van Mieghem, Performance Analysis of Complex Networks and Systems, Cambridge University 

Press, Cambridge, UK, 2014.
[24] P. Van Mieghem, Approximate formula and bounds for the time-varying susceptible-infected-

susceptible prevalence in networks, Phys. Rev. E 93 (2016) 052312.

http://refhub.elsevier.com/S0024-3795(19)30101-6/bib486172706572s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib486172706572s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib486F6F72795F323030365F657870616E64657273s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib486F6F72795F323030365F657870616E64657273s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4B617270s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4B617270s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4D6F6861725F31393839s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4D6F686172506F6C6A616Bs1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib4D6F686172506F6C6A616Bs1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib506173746F722D5361746F727261735F323031355F65706964656D696373s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib506173746F722D5361746F727261735F323031355F65706964656D696373s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib70766D5F323031315F6773s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib70766D5F323031315F6773s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib70766D5F5041s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib70766D5F5041s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib70766D5F323031365F74616E68s1
http://refhub.elsevier.com/S0024-3795(19)30101-6/bib70766D5F323031365F74616E68s1

	Tighter spectral bounds for the cut size, based on Laplacian eigenvectors
	1 Introduction
	2 Preliminaries
	2.1 Graphs and the Laplacian matrix
	2.2 Cut size: deﬁnition, quadratic form and constraints

	3 Deriving the constrained relaxation bounds
	3.1 The Exact Method
	3.2 The Standard Relaxation Method
	3.3 The Constrained Relaxation Method
	3.4 Comparison between bounds

	4 Applications of the improved bound
	4.1 The Cheeger constant
	4.2 The Max Cut problem
	4.3 The Expander Mixing Lemma
	4.4 Spectral lower bounds in the hypercube graph Hd
	4.5 Bounding the spread of epidemics and mean-ﬁeld accuracy

	5 Conclusion
	Appendix A Proof of spectral constraints
	Appendix B Derivation of constrained relaxation bounds
	Appendix C Hierarchy of bounds
	Appendix D Proof of Tighter Expander Mixing Lemma
	Appendix E The General Expander Mixing Lemma
	References


