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Abstract— We study different variations of the random
walk (RW) such as RW with memory, RW with look-
ahead, RW using highest degree and RW proportional
to the degree for random graphs. One of our insights is
that comparison of different RW strategies based on the
expected hopcount or weight is not sufficient. The expected
hopcount for certain RW variations such as RW using
highest degree is small. However, these strategies generally
lead to infinite loops. Furthermore, the simulations show
that RW using highest degree with look-ahead and memory
is the most efficient algorithm for searching in random
graphs.

I. INTRODUCTION

Random walk (RW) is a routing or search algorithm
that uses no topology information. Since RW does not
use any topology information, the next hop is chosen
uniformly among the neighbors of the node. Other vari-
ations of the RW use partial topology information such
as the RW strategy where the next hop is chosen as the
node with maximum degree, and the RW strategy where
the probability of choosing the next node is proportional
to the nodal degree. The term local search algorithm or
path finding strategies is also used for different variations
of RWs [1], [10].

Random walks (RWs) have numerous applications in
ad hoc networks and overlay networks. Overlay networks
such as Gia [3] and Gnutella1 use RWs for resource
discovery. RWs and its variations have also been used as
a tool for searching on different graph topologies [1]. As
a sampling technique, RWs have been used for providing
membership services in ad hoc networks [5], [19] that
provide the nodes in the network with a view of the
other nodes in network and that are used by various

1The Gnutella 0.4 protocol specification,
http://www9.limewire.com/developer/gnutella_protocol_0.4.pdf.

applications such as location services, peer sampling
services and random overlay constructions [19].

In this paper, we investigate the efficiency of search-
ing with different RW strategies in ER random graphs
Gp(N ) [12]. Since wireless ad hoc networks can be
modeled by a geometric random graph [18], we believe
our analysis is particularly important in the case of ad
hoc networks. Our analysis shows that RW strategy using
a combination of highest degree, look-ahead and com-
plete memory is the most effective strategy for searching
on random graph topologies. Also, for different RW
strategies, if the probability of finding the destination is
large, the expected hopcount for the particular strategy
is also large and vice versa.

The rest of this paper is organized as follows. A
literature overview of RWs and their applications is
presented in Section 2. Section 3 explains our analysis of
RWs and how our RW strategies differ from the previous
search strategies. In section 4, we compute the hopcount
distribution for a RW and a RW with no retracing of steps
in a complete graph. Sections 5 and 6 present the analysis
of RW strategies on random graphs and weighted random
graphs respectively. Finally, we give the conclusions in
section 7.

II. LITERATURE REVIEW

RWs have been studied as search algorithms on scale-
free and power law graphs [1], [9], [10]. In [1] and
[10], RW strategies where the next hop is chosen as the
node with the highest degree and with no retracing of
steps have been analyzed in terms of expected hopcount
and weight. We show that strategies such as RW using
highest degree and RW with no retracing of steps can
lead to infinite loops. Therefore, the comparison of
different RW strategies should also include an analysis



of infinite loops, in addition, to the expected hopcount
comparison.

Unstructured overlay networks such as Gia proposed
by Chawathe et al. [3] and Gnutella build a random
graph and use flooding or RWs to discover data stored at
different nodes. RWs have been shown to induce lower
overhead than constrained flooding used by the current
versions of Gnutella [4], [14]. In the original Gia [3], the
RWs were biased to prefer nodes with higher capacity
but Castro et al. [2] have shown that preferring nodes
with higher degree leads to a higher success rate and
a lower delay. Thus, further improvements have been
proposed to Gia in which RWs are biased towards the
higher degree nodes [2]. Also, variations of RWs have
been proposed in which there are no loops [2].

In mobile agent based routing, the mobile agents
perform a RW or a variant of the RW. In Ant-Net, loop-
erased RWs are used by the mobile agents [6]. Mobile
agents using RW have been proposed for providing mem-
bership services for ad-hoc networks by Dolev et al. [8].
In [19], Bar-Yossef et al. develop a membership service
for ad hoc networks based on RW using highest degree.
They show that the performance of such membership
service is superior to other existing membership services
based on gossiping or flooding [19].

The analysis of RWs has been an active topic of re-
search [7], [8], [11], [16]. Lovász [8] presents a detailed
survey of the RWs. An exact analysis of RWs on graph
topologies such as lattice, 1 dimension, torus has been
studied in [7]. For a detailed mathematical analysis of
RWs, we refer the reader to Chung [11].

III. RANDOM WALKS

The topology and link weight structure are essential
for characterizing the network [15]. Therefore, we study
the RW strategies under two distinct regimes. In the first
case, we assume that all the link weights are 1. Thus, the
RW strategies use only topological information such as
degree for choosing one of the neighbors as the next hop.
In the second case, we investigate different RW strategies
on weighted random graphs. The weighted graphs offer
a more realistic view of network. For example, the link
capacities in ad hoc networks [2], [4] can be represented
as weighted edges. In weighted graphs, the RW strategies
can use link weights, in addition to any topological
information, for choosing the next hop.

A. Random Walk with memory M

A first-in first-out (FIFO) list, called the memory list
M, is maintained. The memory listM contains the node

identifiers nj of the last M nodes visited during the RW,
i.e. M = {n1, n2, .., nM}, where M =| M | represents
the number of elements in the memory list M. The next
hop is chosen uniformly among the neighbors of the node
that are not in the memory list M. The RWM strategy
is equivalent to the search queries proposed for overlay
networks where the structure is used to ensure that nodes
are visited only once during a query [2].

Using memory, the loops are eliminated in RWs. The
one hop loops can be prevented by using M = 1, both
the two hop and one hop loops can be prevented by using
M = 2 and so on. Thus, a complete memory M =
N − 1 totally eliminates loops in the RWs. However,
the introduction of memory (M ≥ 1) in RWs leads to
a deadlock. Fig. 1 explains the concept of deadlock in
a RW with memory. Let us assume that the RW has
a memory M = 3 represented as M = {n1, n2, n3}
where n3 represents the last node visited. Consider the
situation where the RW enters the cluster B at node 1.
Suppose that the RW leads to a path 1 −→ 2 −→ 3 −→
4 in the cluster B. At node 2, the memory listM contains
{1} and at node 3 the memory list M contains {1, 2}. At
node 4, the memory list M contains {1, 2, 3} and since
all the neighbors of node 4 are in the memory listM and
no self loops are allowed, the RW cannot move forward
nor backward. Therefore, a deadlock prevents the RW
from ever reaching the destination. The above analysis
shows that there are two distinct regimes possible for
RWs. Without memory, i.e. M = 0, the RWs can have
loops but no deadlocks. For complete memory, the RWs
can only have deadlocks and no loops. When the value of
the memory M is such that 0 < M < N − 1, the RWs
can have loops and deadlocks. In the implementation
of Gia, Castro et al. [2] have used RWs with complete
memory as a query.

B. Random Walk with look-ahead
The RW with look-ahead (RWLA) is a RW that uses

information about the neighbors [17]. In RWLA = 1, the
destination is chosen as the next node if it is among
the neighbors of the node, else the next hop is chosen
uniformly among all the neighbors of the node. The use
of look-ahead 1 has been assumed in recent work [1],
[9] in searching on graphs. In RWLA = 1, there are no
deadlocks. The RWLA = 1 can also be used in combination
with memory M (see Table I).

C. Random Walk using highest degree
In RW using highest degree (RWHD), at any node u the

next node v is chosen such that dv = max
t�Nu

dt, where Nu
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Fig. 1. Explanation of deadlock in (a) RW with memory: The path
1 → 2 → 3 → 4 is shown by arrows. At node 4, the dashed lines
indicate the links that cannot be used with memory M ≥ 3. (b) RW
using highest degree: Node A1 chooses node 1 as next hop and node
1 chooses node A1 as next hop leading to an infinite loop.

is the set of neighbors of u. If the degree of neighboring
nodes is equal, then the next hop is chosen randomly
among the equal degree neighbors. The RWHD strategy
can end in a deadlock. Fig. 1 illustrates the concept of
deadlock in RWHD. At node A1, node 1 is chosen as the
next node since it is the highest degree neighbor of node
A1. At node 1, node A1 is chosen as the next hop since
node A1 is the highest degree neighbor of node 1. Thus,
the RWHD ends in an infinite loop or a deadlock. The
RWHD can be used in combination with different values
of memory M and look-ahead (see Table I).

D. Random Walk proportional to the degree
The probability of choosing the neighboring node

is proportional to the degree of the neighboring node
(RWPD). At node u, qut ∝ dt where qut is the probability
of choosing the neighbor t. By normalization, we obtain
qut =

dt

t�Nu

dt
. There are no deadlocks in RWPD. In a

regular graph, the RWPD is equivalent to RW.

E. Random Walk using minimum link weight
In RW using minimum link weight (RWW), at any

node u the next node v is chosen such that wuv =
min
t�Nu

wut, where wut is the weight of link between node
u and node t. Deadlocks in RW using minimum link
weight are similar to the deadlocks occurring in RWHD.
Indeed, the degree can be considered as a special kind
of link weight.

Table II gives the complexity of different RW strate-
gies in random graphs. The convergence time is the worst
case hopcount to reach a destination and is equal to the

TABLE I
EXPLANATION OF DIFFERENT RW STRATEGIES.

RW strategy Next hop
RW uniformly among the neighbors.
RWM uniformly among the neighbors that

are not in the memory list M.

RWLA = 1 destination, if it is a neighbor, else
uniformly among the neighbors.

RWLA = 1; M destination, if it is a neighbor, else
uniformly among the neighbors that
are not in the memory list M.

RWHD neighbor with the highest degree.
RWHD; M highest degree neighbor that is not in

the memory list M.
RWHD; LA = 1 destination, if it is a neighbor, else

highest degree neighbor.
RWHD; LA = 1; M destination, if it is a neighbor, else

highest degree neighbor not in the
memory list M.

RWPD probability of choosing the neighbor
is proportional to the degree of neigh-
bor. RWPD; M and RWPD; LA = 1 use
RWPD with memory and look-ahead
respectively.

RWPD; LA = 1; M destination, if it is a neighbor, else
probability of choosing the node is
proportional to the degree of the node
but nodes in the memory list M are
not considered.

RWW link with minimum weight.
RWW; LA = 1; M destination, if it is among the neigh-

bors, else neighbor with minimum
weight among the neighbors that are
not in the memory list M .

cover time [8]. h represents the hopcount for the RW
strategy and the maximum value of h is given by the
convergence time for the particular RW strategy.

Some of the RW strategies listed in Table I have been
compared in literature. Adamic et al. [9] have analyzed
two RW strategies, i.e. RW with memory M = 1
and look-ahead 1, and RW using look-ahead 1, highest
degree and complete memory. However, an analysis
of deadlocks and how they affect the performance of
different RW strategies is missing. Some of the other
studies use alternative approaches to remove deadlocks.
In [1], Kim et al. compare RW, RW with highest degree
and RW proportional to the degree but remove loops in
the paths while calculating the mean hopcount between
the source and destination nodes. Thadakamalla et al.



TABLE II
COMPLEXITY OF DIFFERENT RW STRATEGIES.

RW strat-
egy

convergence
time

Memory
overhead

Complexity

RW O(N logN) O (1) O(h)
RWM O(N) O (pN) O (hMpN)
RWHD O(N) O (pN) O(hpN)
RWLA O(N logN) O (pN) O(hpN)

[10] compare RW strategies such as RW, RW using
minimum link weight, RW using highest degree, look-
ahead and complete memory on weighted networks. In
their comparison, Thadakamalla et al. [10] have assumed
that when a deadlock happens, the next hop is chosen as
the previous hop.

IV. RANDOM WALK ON A COMPLETE GRAPH

The probability distribution of RW on a complete
graph KN follows a geometric distribution [8],

Pr[H = m] =
1

N − 1

µ
1− 1

N − 1

¶m−1
(1)

We calculate the expression for RWM on a complete
graph KN for m ≤ M . The probability that the des-
tination is found in hop m equals the probability that
destination has not been found in the last m − 1 hops
multiplied by the probability that the next chosen node
is the destination. Let us denote the event that the RWM
process is not at the destination after m − 1 hops by

Bm−1. Then, Pr[Bm−1] = 1 −
m−1P
j=1

Pr
h
Ĥ = j

i
. Since

m − 1 nodes have been visited previously and no self
loops are allowed, the next hop can be chosen as any
of the remaining N − ((m− 1) + 1) nodes. Therefore,
the probability that a chosen node is the destination is
1

N−m . Hence,

Pr
h
Ĥ = m

i
= Pr[Xm = j|Bm−1] · Pr[Bm−1]

=
1

N −m

µ
1−

µ
m− 1
N − 1

¶¶
=

1

N − 1 (2)

which means that the hopcount for RWM is a uniform
random variable on [1,N − 1] when 1 ≤ m ≤M .

We now compute the probability distribution for RWM
for hopcount > M . Let us denote the event that the RWM
is not at the destination after M hops by BM . Then,

Pr[BM ] = 1−
MP
j=1

Pr
h
Ĥ = j

i
. Since in KN each node

is connected to all other nodes and M nodes are in the
memory list M and no self loops are allowed, the next
hop can be chosen as any of the remaining N−(M + 1)
nodes. Therefore, the probability that a chosen node is
the destination is 1

N−(M+1) . Hence,

Pr [HM =M + 1] = Pr[XM+1 = j|BM ] · Pr[BM ]

=
1

N − (M + 1)

µ
1− M

N − 1

¶
=

1

N − 1
The probability that the destination is found in hop
M +2 can be computed as follows. The probability that
the RWM is in a non-destination after M + 1 hops is

Pr[BM+1] = 1 −
MP
j=1

Pr
h
Ĥ = j

i
− Pr [HM =M + 1].

The next hop can be chosen as any of the N − (M + 1)
nodes that are not in the memory list M. (The source
node can now be chosen as the next node since it is no
longer in the memory list M.) The probability that a
chosen node is the destination is 1

N−(M+1) . Thus,

Pr [HM =M + 2] = Pr[XM+2 = j|BM+1] · Pr[BM+1]

=
1

N − 1

µ
N − (M + 2)

N − (M + 1)

¶
The probability distribution of RW with memory M for
m ≥M + 1 is,

Pr [HM = m] =
1

N − 1

µ
N − (M + 2)

N − (M + 1)

¶m−M−1
(3)

Thus, the probability distribution for a RWM on complete
graph KN is a uniform random variable on [1,M ] and
geometric variable on [M + 1, N − 1].

V. RANDOM WALKS ON RANDOM GRAPHS

In this section, we study the hopcount distribution
of the RW on ER random graphs Gp(N ). In each
simulation, 106 random graphs of the class Gp(N )
are constructed. The source and destination are chosen
uniformly. Fig. 2 shows the pdf of the hopcount for RW
between a source and a destination in a random graph
without memory for N = 25 and for different values of
the link density p. Fig. 2 also shows the analytic result
(5) for the complete graph. In general, the hopcount
distribution for RW is close to a geometric random
variable. Furthermore, the legend in Fig. 2 shows that
the mean hopcount increases as the link density p is
decreased and that for p < 1, the pdf deviates from the
geometric distribution (1).
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Fig. 2. The pdf of the hopcount for RW on a complete graph eq.
(1) and a random graph for N = 25 and for different values of the
link density p.

Fig. 3 shows the pdf of the hopcount for RWM = 1,
RWM = 5 and RWM = 10 strategies on a random graph for
N = 25 and for different values of the link density p.
The introduction of memory in RWs leads to a reduced
average hopcount at the expense of deadlocks. Fig. 3
(a) shows that the hopcount distribution for RWM = 1,
RWM = 5 and RWM = 10 is close to a geometric random
variable. Moreover, for large values of the link density
p, the hopcount distribution (2, 3) for RWM on a random
graph is similar to hopcount distribution for RWM on a
complete graph. In Fig. 3, the average hopcount is cal-
culated over the iterations in which there is no deadlock.
However, the pdf is plotted over all the iterations. If the
RW ends in deadlock, then the cumulative distribution
function (cdf ) of the hopcount distribution, Pr [H ≤ k],
does not tend to 1 as k →∞. Thus,

Pr [deadlock] = 1− lim
k→∞

Pr [H ≤ k] (4)

shows the probability of ending in deadlocks. Fig. 3(b)
shows that the probability of a deadlock increases with
decreasing link density p.

A. RWLA = 1

In RWLA = 1, each node has information about the
neighbors and the destination is chosen as the next
hop if it is among the neighbors (Table I). When the
link density p is increased, the expected hopcount for
RWLA = 1 decreases (The mean node degree in a random
graph [12] is p(N−1)). Additional simulations show that
at large values of link density p, the hopcount distribution
for RWLA=1 is close to a geometric random variable with
parameter p.
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Fig. 3. (a) The pdf of the hopcount for RWM = 1, RWM = 5 and
RWM = 10 in a complete graph eq. (2 and 3) and a random graph
for N = 25 and for different values of the link density p. (b) The
distribution of the hopcount Pr[H ≤ k].

An estimate of the hopcount distribution for
RWLA = 1; M = N-1 on a random graph Gp (N) is
Pr [H = k] ∼= p (1− p)k−1. In RWLA = 1; M = N-1, the
probability that the hopcount is one is equal to p i.e.,
the probability that the destination is directly connected
to the source node. If the destination is not reached in
hop 1, then the RW process is in one of the N − 2
nodes with a probability 1 − p. With no retracing of
steps allowed, the probability that the destination is
connected directly to the current node is p. Hence, the
probability that the hopcount is two equals p(1 − p).
This analysis can be extended to compute the general
hopcount distribution for RWLA = 1; M = N-1. However, the
above analysis is an approximation since we neglect the
probability of deadlocks and history of the links that
disappear2. Intuitively, for large values of link density
p, the Pr [H ≥ 1] is small and the above analysis is

2Since no retracing of path is allowed, the probability of destination
being connected to the current node is less than p.
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Fig. 4. Comparison of the expression Pr [H = k] ∼= p (1− p)k−1

and simulation results for RWLA = 1; M = N-1 on a random graph for
N = 25, 100 and different values of the link density p.

a good approximation. Fig. 4 compares the simulation
results and the analytical results for RWLA = 1; M = N-1 for
N = 25, 100 and different values of the link density p.

1) RWLA = k: The RWLA = k is a RW strategy in which
each node has topology information upto k hops, i.e.
each node maintains a level set3 LN upto level k. If the
destination is located within the level set LN , a shortest
path is chosen. However, if the destination is not located
within the level set LN , then the next node is chosen
uniformly among the neighbors of the node. When
each node maintains topology information of the whole
network, the RWLA = k strategy leads to deterministic
routing. Moreover, there is a phase transition in the
performance of RWLA = k when k is equal to the average
path length and for k greater than average path length,
the performance of RWLA = k is similar to the shortest
path routing [13].

When look-ahead ≥ 2, the probabilities that the
hopcount is one and two can be calculated exactly for
ER random graphs [15]: Pr [HN = 1] = p and

Pr [HN = 2] = (1− p)
³
1−

¡
1− p2

¢N−2´ (5)

As the link density p and the network size N are
increased, Pr[HN > 2] = (1− p)

£
1− p2

¤N−2 becomes
negligible. Therefore, for large values of link density
p, the performance of RWLA = 2 is comparable to the
Dijkstra’s shortest path algorithm. Fig. 5 shows the
comparison for RWLA = 2 and the Dijkstra’s shortest path

3Level set at level 1 is defined [15] as the set of nodes 1 hop away
from the source node, level set at level 2 is defined as the set of
nodes 2 hops away from the source node and so on.
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Fig. 5. Comparison of the RWLA = 2 and the Dijkstra’s shortest path
algorithm for N = 100 and different values of the link density p. The
insert shows expected hopcount for different values of look-ahead for
N = 800 and p = 0.0084.

algorithm for N = 100 and different values of the link
density p. The insert in Fig. 5 shows expected hopcount
for different values of look-ahead for N = 800 and
p = 0.0084. As shown in [15], the expected hopcount
between any two nodes in ER random graphs can be
approximated by logN

log p(N−1) . Therefore, for look-ahead
greater than logN

log p(N−1) = 3.5, the expected hopcount for
RWLA = k is constant and equal to the expected hopcount
obtained by using Dijkstra’s algorithm (see insert Fig.
5).

B. RWHD

In RWHD, the next hop is chosen as the neighbor-
ing node with the highest degree (Table I). Fig. 6
shows the simulation results for RWHD, RWHD; M = N-1,
RWHD; LA = 1, and RWHD; LA = 1; M = N-1 for the random
graph with N = 25, 100 and different values of the
link density p. Fig. 6 shows that the RWHD ends up
in an infinite loop with a high probability. The expected
hopcount E[hopcount]:

RWHD <RWHD; LA=1 <RWHD; LA=1; M=N-1 <RWHD; M=N-1

and the probability of deadlock for different strategies
Pr[deadlock] :

RWHD >RWHD; M=N-1 >RWHD; LA=1 >RWHD; LA=1; M=N-1

By comparing the expected hopcount for different RW
strategies, it may be concluded that RWHD performs best.
However, the probability of deadlocks is maximum in



RWHD. Therefore, considering both the mean hopcount
and the probability of deadlocks, RWHD; LA = 1; M = N-1
performs best among the RW strategies compared. In
conclusion, RWHD without look-ahead or memory is
ineffective on random graphs.
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Fig. 6. (a) The pdf of the hopcount for RWHD, RWHD; M = N-1,
RWHD; LA = 1 and RWHD; LA = 1; M = N-1 for N = 25, 100 and for
different values of the link density p. (b) The distribution of the
hopcount Pr[H ≤ k]

C. Comparison of RW strategies for sparse graphs
We compare the performance of RW strategies in

sparse graphs i.e., random graphs with small link density
p. When the link density p is large, the results for
different RW strategies on a random graph Gp (N) are
similar to a complete graph KN that can be solved
analytically. Moreover, the average degree for most real
networks like Gnutella [4] and Internet [9] is known to
be small.

We first compare the expected hopcount for different
RW strategies in which there are no deadlocks. In these
strategies, the final destination is always reached. The
four strategies that are compared include RW, RWLA = 1,
RWPD and RWPD; LA = 1. Fig. 7 shows the mean hopcount

for these strategies for different values of N with con-
stant number of neighbors, i.e. p (N − 1) ∼ pN = 5.
The simulations indicate that the mean hopcount is linear
in N for these strategies and the mean hopcount for
the RWLA = 1 and the RW strategies are related by the
expression E[HRWLA = 1 ] ∼

E[HRW]
pN . Moreover, for large

values of the link density p, E[HRW] ∼ N and therefore
E[HRWLA = 1 ] ∼ 1

p (see Section 5(A)).
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Fig. 7. The mean hopcount for different RW strategies without
deadlocks as a function of N with constant number of neighbors
(pN = 5).

We now compare different RW strategies
with complete memory. The strategies that are
compared include RWM = N-1, RWLA = 1; M = N-1,
RWPD; M = N-1, RWHD; M = N-1, RWPD; LA = 1;M = N-1 and
RWHD; LA = 1; M = N-1. We also plot the cdf obtained
with different RW strategies since with complete
memory since the RW strategies may end in deadlocks.
Fig. 8 shows the mean hopcount for these strategies
for different values of N with constant number of
neighbors (p (N − 1) ∼ pN = 5), and the cdf of the
hopcount distributions for N = 200 and p = 0.025.
The results in Fig. 8 (a) are on log-log scale.
RWHD; LA = 1; M = N-1 performs the best among the RW
strategies compared. Thus, the RWHD performs well
on random graphs provided that the search strategy
uses look-ahead and memory. In terms of expected
hopcount, the performance of RWLA = 1; M = N-1 is similar
to RWHD; LA = 1; M = N-1. However, the probability of
a deadlock in RWLA = 1; M = N-1 is much more than
RWHD; LA = 1;M = N-1.

Additional simulation for ER random graphs
with uniformly distributed link weights show that
RWW; LA = 1; M = N-1 performs best in terms of expected
weight while RWHD; LA = 1; M = N-1 performs best in terms
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Fig. 8. (a) The mean hopcount for different RW strategies with
complete memory as a function of N with constant number of
neighbors (pN = 5). (b) The distribution of the hopcount Pr [H ≤ k]
for different RW strategies for N = 200 and link density p = 0.025.

of expected hopcount. Moreover, the probability of
deadlocks is least in RWHD; LA = 1; M = N-1. Castro et al.
[2] have shown that the RWHD; LA = 1; M = N-1 strategy
leads to a lower probability of deadlock as compared to
the RWW; LA = 1; M = N-1 strategy for a specific topology
and link weight structure. Our simulations validate these
observations for ER random graphs with uniformly
distributed link weights.

VI. CONCLUSION

In this paper, we have analyzed RWs and different
search strategies based on the RWs. The hopcount dis-
tribution for RW strategies based on memory and look-
ahead is close to a geometric variable for random graphs.
We also investigated the occurrence of deadlocks in
various RW strategies. Deadlocks have been neglected
in most of the previous search strategy comparisons. A
mere comparison of the expected hopcount or weight
of different RW strategies gives little insight into the
performance of these strategies. The simulations showed

that for RW strategies using highest degree or minimum
link weight, the expected hopcount or weight is small
but these strategies generally lead to deadlocks. In con-
clusion, RW strategies using highest degree or minimum
link weight perform well when used in combination with
memory or look-ahead.
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