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An inequality of Gauss

In this article Gerard Hooghiemstra and Piet van Mieghem explain why the Gauss inequality is
overshadowed by the Chebychev inequality. Furthermore, they present a proof of the Gauss
inequality in modern notation.

In his general analysis on measurement er-
rors [4], Gauss treats random errors in a prob-
abilistic manner, which is, with respect to to-
day’s standards, surprisingly modern. Our in-
terest here is a particularly general inequali-
ty involving probabilities, stated and proved
by Gauss in [4], that does not seem to be
well-known in the stochastic community. The
Gauss inequality is, for instance, not men-
tioned in either of the two introductory vol-
umes [2–3] written by William Feller. The main
goal of this note is to explain why this inequal-
ity is overshadowed by the well-known Cheby-
chev inequality and to present (a slightly mod-
ified) proof of the Gauss inequality.

We start by restating Gauss’ inequality in
modern notation. We consider a random vari-
able X having a density fX , which is symmet-
ric around 0 (i.e., fX (−x) = fX (x), ∀x > 0),
and which is non-increasing for x > 0. More-
over, we assume a finite second moment
E[X2] =

∫∞
−∞ x2fX (x)dx < ∞. By symme-

try, the first moment (also called the mean µ)
satisfies µ = E[X] =

∫∞
−∞ xfX (x)dx = 0, so

that the variance of X satisfies:

σ2 = Var [X] = E[(X − µ)2] = E[X2].

Theorem 1 (Gauss [4]). Consider a random
variableX having a density fX , which is sym-
metric around 0 (i.e., fX (−x) = fX (x), ∀x >
0), and which is non-increasing for x > 0.
Moreover, we assume that σ2 = E[X2] =∫∞
−∞ x2fX (x)dx <∞. Defining for a > 0

m = Pr [|X| ≤ aσ] ,

it holds that

if m ≤ 2
3

then a ≤m
√

3, (1)

if m >
2
3

then a ≤ 2
3
√

1−m, (2)

At first glance, the two inequalities (1) and
(2) provide little insight. After rearranging, (1)
and (2) can be rewritten as,

if m ≤ 2
3

then m ≥ a√
3
, (3)

if m >
2
3

then m ≥ 1− 4
9a2 . (4)

The conclusions in (3) and (4) are somewhat
peculiar, since the magnitude of m (m ≤ 2

3

or m > 2
3 ) is needed, before the respective

statement gives a lower bound for m. The
conclusion in (4) is

Pr [|X| ≤ aσ] ≥ 1− 4
9a2 , (5)

which is valid in the tail of the distribu-
tion, i.e., for a large enough such that
Pr [|X| > aσ] < 1

3 , very closely resembles
the inequality of Chebychev given below. The
inequality of Chebychev below involves the
mean µ = E[X] =

∫∞
−∞ xfX (x)dx of X, which,

in general, is unequal to 0.

Chebychev’s inequality
We assume that X has a finite second mo-
ment. Let us denote the mean by µ = E[X] =∫∞
−∞ xfX (x)dx and the variance by σ2 =

Var[X]= E[(X − µ)2]= E[X2] − µ2. In 1867,
Chebychev [6] has proved that

Pr [|X − µ| ≤ aσ] ≥ 1− 1
a2 , a > 0. (6)

The proof of Chebychev’s inequality [3, p. 151]
or [5, p. 103] needs a few lines only:
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1. apply the Markov inequality to

Y = ((X − µ)/σ )2 ≥ 0,

where
2. the Markov inequality is given by

E[Y ] =
∫∞

0
yfY (y)dy

≥
∫∞
a
yfY (y)dy

≥ a
∫∞
a
fY (y)dy

= aPr [Y > a] .

Comparison of the two inequalities
Before we proceed with the comparison of the
inequalities of Gauss and Chebychev, let us
first treat some examples.

Example 1. Let X possess a uniform distribu-
tion on the interval (−s, s), i.e.,

fX (x) =


1
2s , −s < x < s,
0, |x| ≥ s.

The distribution function FX (x), defined by
FX (x) = Pr [X ≤ x], for real numbers x,
reads:

FX (x) =


0, x ≤ −s,∫ x
−s

1
2sdt = x+s

2s , −s < x < s,
1, x ≥ s.

(7)

In this example, µ = E[X] = 0 and σ2 =∫ s
−s

x2

2s dx = s2/3, so that σ = s/
√

3. By
straightforward calculation, we have

Pr [|X| ≤ aσ]
= FX (min{s, aσ})− FX (−min{s, aσ})
= min{1, a/

√
3}.

a 1
2 1 3

2 2 5
2 3

Pr[|X| < aσ ] for Example 1. 0.289 0.577 0.866 1 1 1

Pr[|X| < aσ ] for Example 2. 0.383 0.683 0.866 0.954 0.988 0.997

Pr[|X| < aσ ] for Example 3. 0.704 0.875 0.936 0.963 0.977 0.984

Lower bound from Gauss (m ≤ 2
3 ) (cf. (3)) 0.289 0.577 n.r. n.r. n.r. n.r.

Lower bound from Gauss (m > 2
3 ) (cf. (4)) −0.778 0.556 0.802 0.889 0.929 0.951

Lower bound from Chebychev (cf. (6)) −3 0 0.556 0.750 0.840 0.889

Table 1 Comparison table.

Example 2. We perform the same computa-
tions for X, now having a normal distribution
with parameters µ = 0 and σ2 = E[X2]. The
probability distribution function

FX (x) =
1

σ
√

2π

∫ x
−∞
e−t

2/2σ dt,

cannot be expressed in elementary functions,
but the specific probabilities can be found
from tables of the standard normal distribu-
tion. An accurate series for the inverse F−1

X (x)

exists [5, p. 44]. LetZ have a standard normal
distribution, i.e., a normal distribution with
parameters µ = 0 and σ2 = 1, then

Pr [|X| ≤ aσ]
= Pr[X ≤ aσ ]− Pr[X ≤ −aσ ]

= Pr[Z ≤ a]− Pr[Z ≤ −a]

= 1− 2 Pr[Z > a],

where the probability Pr[Z > a] can be found
in many places, for instance, in [1, Table B.1,
p. 432].

Example 3. As a third example, we take a sym-
metric distribution with heavy tails. Roughly
speaking, a distribution has a heavy tail, if the
survival function Pr [|X| > t] decays polyno-
mially in t. A well-known example is the Pare-
to distribution [1, p. 63]. A random variable
X is said to have a Pareto distribution with
parameter α > 0, if its probability density
gα(x) = 0 is, for x < 1, and equal to

gα(x) =
α
xα+1 , for x ≥ 1.

To satisfy the conditions of Theorem 1, we
make the density fX symmetric by defining,

fX (x) =


1
2gα(1 + x), x ≥ 0,
1
2gα(1− x), x ≤ 0.

Rather than computing the distribution func-
tion FX , we instead derive Pr [|X| ≤ aσ] di-
rectly from the density fX . By construction,
E[X] = 0 and the second moment is

σ2 = E[X2] =
∫∞
−∞
x2fX (x)dx

= 2
∫∞

0
x2 1

2
gα(1 + x)dx

=
∫∞

1

α(x − 1)2

xα+1 dx

=
2

(α− 1)(α− 2)
,

since
∫∞
1

αxβ
xα+1 dx = α/(α − β) for α > β.

Hence, we need to require thatα > 2 in order
to have a finite variance E[X2] <∞. We shall
take α = 3 (and hence σ = 1) and find by
integration:

Pr [|X| ≤ aσ] = 2
∫ a

0

1
2
g3(1 + x)dx

=
∫ a

0

3
(x + 1)4

dx

= 1− 1
(1 + a)3

.

In Table 1, we present Pr [|X| ≤ aσ] for the
distributions of Examples 1,2 and 3 and com-
pare for various values of a the lower bounds
of Gauss (5) and Chebychev (6), respective-
ly. In the table, the abbreviation ‘n.r.’ stands
for ‘not relevant’, since for the correspond-
ing values of a in all three cases, we have
m > 2

3 .
The lower bound (5) of Gauss is in all exam-

ples tighter than (6) of Chebychev. However,
two remarks are in order: (i) the lower bound
of Gauss is only valid under more stringent
conditions, but more importantly (ii) we must
know, whether m = Pr(|X| < aσ ) is larger or
smaller than 2

3 , which is not straightforward
at all.
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Figure 1 A distribution function u=FX (x) (in the inset) of a random variable X that is symmetric around x=0 and its in-
verse function x=F−1

X (u).

One might consider to approximatem by the
lower bound, because we know that m falls
in between the lower bound and 1. This ap-
proximation is rather crude, however in the
tail (m > 2

3 ), the lower bound of Gauss is
definitely better than that of Chebychev. Also
note that in case (i), the uniform distribution,
the lower bound of Gauss gives the exact val-
ues form = Pr (|X| < aσ ), form < 2

3 .
For the theoretical value of the lower

bounds, we consider an important applica-
tion, namely the weak law of large numbers
[3, p. 234]. Informally, the weak law of large
numbers states that the average of repetitive
and independent measurements converges
(in probability) to the mean of the distribu-
tion. Indeed, for a series of repetitive and
independent measurements X1, X2, . . . , Xn
with density satisfying the conditions of Theo-
rem 1, the mean of the underlying distribution
is 0 and

X̄n =
X1 +X2 + · · · +Xn

n

converges to 0, in the sense that for each ε >
0,

lim
n→∞

Pr[|X̄n| > ε] = 0.

This follows directly from the inequality (5) of
Gauss, since

Var
[
X̄n
]

= Var
[
X1 +X2 + · · · +Xn

n

]
=

1
n2 Var [X1 +X2 + · · · +Xn]

=
1
n2 {Var [X1] + · · · + Var [Xn]}

=
1
n2nσ

2 =
σ2

n
.

Indeed, we find that, for n → ∞, and with
a = ε

√
n/σ ,

Pr
[
|X̄n| > ε

]
= 1− Pr

[
|X̄n| < ε

]
= 1− Pr

[
|X̄n| <

σ√
n
ε
√
n
σ

]
≤ 4σ2

9ε2n
→ 0.

However, the same conclusion can be drawn
by applying the Chebychev inequality (6), in
which case the upper bound is replaced by

1(
ε
√
n
σ

)2 =
σ2

ε2n
,

which also converges to 0. Hence, for theoret-
ical purposes, the advantage of the factor 4

9

in Gauss’ inequality (5) compared to Cheby-
chev’s inequality (6) is unimportant and is
washed out entirely by the fact that Cheby-
chev’s inequality holds under the single con-
dition that X must have a finite second mo-
ment. We believe that this explains why
Gauss’ inequality (5) is barely known in the
stochastic community.

Proof of the Gauss inequality
In this section we present a proof of the Gauss
inequality in modern notation. In his proof [4]
in Latin (translated to English in [5, pp. 111–
112]), Gauss uses the inverse of the function
hdefined byh(x) = FX (x)−FX (−x), x ≥ 0. It
is slightly easier to concentrate on the inverse
function F−1

X , which we define below. Since,
in the framework of Theorem 1, we exclusively
work with continuous distribution functions
and since these functions are by definition
non-decreasing, we can define

F−1
X (u) = inf{x : F (x) = u}, 0 < u < 1,

and, on intervals where fX (x) = 0, or sim-
ilarly, where FX (x) is constant, we take the
left-endpoint of that interval.

The general definition of the expectation
of a function g of X is

E
[
g(X)

]
=
∫∞
−∞
g(x)dFX (x) . (8)

After the substitution x = F−1
X (u) or u =

FX (x) and du = dFX (x) = fX (x)dx, we
obtain

E
[
g (X)

]
=
∫ 1

0
g
(
F−1
X (u)

)
du,

from which the mean

µ = E [X] =
∫ 1

0
F−1
X (u)du

and the second moment

E[X2] =
∫ 1

0
(F−1
X (u))2 du

follows. A probabilistic way to obtain the
same result is as follows. Let U be a uni-
form random variable on (0,1), then for all
real numbers x,

{U ≤ FX (x}) = {F−1
X (U ) ≤ x}. (9)

For a random variable with a uniform distribu-
tion on (0,1), we have

Pr[U ≤ u] =
∫ u

0
dx = u, 0 < u < 1,

so that substitution of u = FX (x) yields

Pr[U ≤ FX (x)] = FX (x). (10)
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Combining (9) and (10) gives:

Pr[F−1
X (U ) ≤ x] = FX (x),

so that X and F−1
X (U) are equal in distribu-

tion. Thus, also the expectations E
[
g (X)

]
and E

[
g
(
F−1
X (U)

)]
are equal, for any func-

tion g. Invoking the general definition (8), we
find again

E
[
g(X)

]
=
∫ 1

0
g
(
F−1
X (u)

)
dFU (u)

=
∫ 1

0
g
(
F−1
X (u)

)
du.

After this preparation, we start with the proof.
Since Gauss assumed that fX is symmetric
around 0 and that fX (x) is non-increasing for
x > 0, the function u = FX (x) is concave for
x > 0. As a consequence and also illustrated
in Figure 1, the inverse function x = F−1

X (u) is
convex for u ∈ [ 1

2 ,1].
The idea of the proof is that, for the uniform

distribution on a symmetric interval around
zero, the inequality (1) is sharp for a ≤

√
3,

as was shown in Example 1, where we de-
rived that m = a/

√
3 for a ≤

√
3. Since

the uniform distribution function is a linear
function on its support (see (7)), we will re-
place F−1

X (u) on a sub-interval of [ 1
2 ,1] by

the tangent to the function F−1
X (u) in the

point u = FX (aσ ), where a is any positive
real number (see Figure 1). From the ba-
sic identity F−1

X (FX (y)) = y, we find that
(F−1
X )′(FX (y))fX (y) = 1. Hence, the equation

of the tangent at u = FX (aσ ) reads

x − aσ =
1

fX (aσ )
(u− FX (aσ )).

The intersection of the tangent to the func-
tion F−1

X (u) at u = FX (aσ ) with the u-
axis is given by u? = FX (aσ ) − aσfX (aσ ).

Now, by symmetry of fX (x), the relation
FX (x) = 1 − FX (−x), x > 0, holds, so that
F−1
X ( 1

2 + u) = −F−1
X ( 1

2 − u), 1
2 < u < 1, and

as a consequence

σ2 = E[X2] =
∫ 1

0
(F−1
X (u))2 du

= 2
∫ 1

1
2

(F−1
X (u))2 du.

(11)

Since F−1
X is convex on [ 1

2 ,1], the tangent
does not intersect the graph of F−1

X (u), and
the intersection u? of the tangent with the
u-axis satisfies u? ≥ 1

2 , so that the follow-
ing inequalities are satisfied (note that we
first use that u? ≥ 1

2 and secondly that

F−1
X (u) ≥ u−u?

fX (aσ ) ; when the inequalities are
performed the other way around, the reason-
ing is false),

2
∫ 1

1
2

(F−1
X (u))2 du

≥ 2
∫ 1

u?
(F−1
X (u))2 du

≥ 2
∫ 1

u?

(
u−u?
fX (aσ )

)2

du.

(12)

A simple computation gives

2
∫ 1

u?

(
u−u?
fX (aσ )

)2

du =
2

3(fX (aσ ))2

· [1− FX (aσ ) + aσfX (aσ )]3 .

(13)

After combining (11), (12) and (13), we end up
with

σ2 ≥ 2
3(fX (aσ ))2

· [1− FX (aσ ) + aσfX (aσ )]3 .
(14)

Let z = u − u? = aσfX (aσ ) and recall that
m = FX (aσ )−FX (−aσ ) = 2FX (aσ )−1. Sub-
stitution in (14) yields

2a2σ2

3z2

[
1−m

2
+ z

]3

≤ σ2. (15)

Define the functionG(z) by the left-hand side
of (15). Obviously z = u − u? > 0. On the
other hand z ≤m/2, since by hypothesis fX
is non-increasing on (0,∞), so that for x > 0,

xfX (x) ≤
∫ x

0
fX (y)dy

= FX (x)− FX (0)

= FX (x)− 1
2 (FX (0) = 1

2 ),

and if we take x = aσ , we obtain:
aσfX (aσ ) ≤ FX (aσ )− 1

2 or z ≤m/2.
In order to find the minimum value of

G(z) on the interval (0,m/2], we compute the
derivative

G′(z) =
2a2σ2

3z2

[
1−m

2
+ z

]2 [
1− 1−m

z

]
.

The minimum of G is attained at z = 1 −m,
when 1−m ≤m/2, or equivalently for m ≥
2
3 , and in the point z = m/2, when 1 −m >
m/2 or m < 2

3 . Substitution of z = 1 −m,
which corresponds tom ≥ 2

3 , gives

9
4
a2(1−m) ≤ 1 or a ≤ 2

3
√

1−m.

Form < 2
3 , we obtain

2a2σ2

3(m/2)2
· 1

8
≤ σ2 or a ≤m

√
3.

This yields (1) and (2), since for m = 2
3 we

havem
√

3 = 2
3
√

1−m = 2
3

√
3. k
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