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3 Charit́e – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin

Institute of Health, Department of Neurology, Brain Simulation Section, Berlin, Germany
4 School of Mathematics and Statistics, University College Dublin, Dublin, Ireland
5 Fondazione Bruno Kessler, Povo (TN), Italy
6 Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam

Neuroscience, Amsterdam, The Netherlands
7 Amsterdam Movement Science & Institute for Brain and Behavior Amsterdam, Faculty of Behavioural and Movement Sciences,

Vrije Universiteit Amsterdam, The Netherlands
8 School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
∗ Author to whom any correspondence should be addressed.
9 Equal contribution.
10 Present address: Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park,

Nottingham.

E-mail: prejaas.tewarie@nottingham.ac.uk

Keywords: multiplex networks, magnetoencephalography, multilayer brain networks, phase oscillators, Kuramoto model, neural mass
model, multilayer networks

Supplementary material for this article is available online

Abstract
Large-scale neurophysiological networks are often reconstructed from band-pass filtered time
series derived from magnetoencephalography (MEG) data. Common practice is to reconstruct
these networks separately for different frequency bands and to treat them independently. Recent
evidence suggests that this separation may be inadequate, as there can be significant coupling
between frequency bands (interlayer connectivity). A multilayer network approach offers a
solution to analyze frequency-specific networks in one framework. We propose to use a recently
developed network reconstruction method in conjunction with phase oscillator models to estimate
interlayer connectivity that optimally fits the empirical data. This approach determines interlayer
connectivity based on observed frequency-specific time series of the phase and a connectome
derived from diffusion weighted imaging. The performance of this interlayer reconstruction
method was evaluated in-silico. Our reconstruction of the underlying interlayer connectivity
agreed to very high degree with the ground truth. Subsequently, we applied our method to
empirical resting-state MEG data obtained from healthy subjects and reconstructed two-layered
networks consisting of either alpha-to-beta or theta-to-gamma band connectivity. Our analysis
revealed that interlayer connectivity is dominated by a multiplex structure, i.e. by one-to-one
interactions for both alpha-to-beta band and theta-to-gamma band networks. For theta–gamma
band networks, we also found a plenitude of interlayer connections between distant nodes, though
weaker connectivity relative to the one-to-one connections. Our work is an stepping stone towards
the identification of interdependencies across frequency-specific networks. Our results lay the
ground for the use of the promising multilayer framework in this field with more-informed and
justified interlayer connections.
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1. Introduction

Human brain functioning is widely believed to emerge from neuronal network activity operating at distinct
spatiotemporal scales. At the macroscopic level, these functional brain networks may be derived from
functional MRI (fMRI), electroencephalography and magnetoencephalography (MEG) [1]. The topology of
these networks can be characterized using metrics from the field of network science [2]. This approach has
provided a plenitude of new insights into temporal fluctuations of brain states during e.g. cognitive tasks,
and revealed common pathways in several neurological disorders [3, 4]. Admittedly, the application of
network science to EEG and MEG data comes with the challenge of reconstructing frequency-specific
functional networks. Once defined, these arguably distinct networks are usually analyzed in isolation,
despite the observations that oscillations in different frequency bands might have common neuronal
sources and that distinct band limited oscillations may show functional interactions [5–8]. This probable
interdependency calls for studying the frequency-specific functional networks in unison [9, 10].

Several studies have demonstrated advantages of multilayer networks [11–13] to integrate multivariate
biological information [14], especially in the context of neuroscience [9, 10, 15–22]. Here, functional
networks have been considered as interconnected networks, in which different frequency-specific networks
make up different layers with an identical number of nodes and a certain connectivity pattern between
layers. However, there is no consensus on how to deal with, or even determine, the interlayer connectivity.
This lack of consensus is unfortunate since the choice for interlayer connectivity topology may have a
significant impact on the properties of a multilayer network [23, 24]. In the case of encephalography,
interlayer connectivity can be regarded as a proxy for cross-frequency coupling [8, 25–31]. Estimation of
the cross-frequency coupling with existing metrics remains difficult in practice and it remains an open
question whether these can be observed in non-invasive resting-state data [27, 32]. Recent studies hint at
the presence of cross-frequency coupling in resting-state data [25, 31, 33]. Here, we push this notion further
by incorporating a new data driven approach for the estimation of cross-frequency coupling within the
framework of multilayer networks. This approach eventually allows for integration of within band
functional connectivity and between band cross-frequency coupling into a single framework.

In the current study, we reconstructed the interlayer connectivity structure for empirical multilayer
MEG networks using a recently introduced network reconstruction approach. This approach has been
originally developed for a different area of network science, namely the modelling of epidemic outbreaks in
a population network [34, 35]. As an advantage, the proposed method does not require prior information
about interlayer connectivity and estimates interlayer connectivity directly from observed nodal activities
using a quantitative description of the nodal activities. In brief, one identifies the sparsest interlayer
connectivity matrix given the observed time series of the phase at every node and an a priori defined
structural network. Hence, interlayer connectivity is viewed in terms of cross-frequency phase
synchronization [36], similarly as in [37], where we extend previous work by considering a multilayer
network framework. Our approach requires a quantitative phase description of MEG data. Here, we used
two phase oscillator models to provide such a description: a Kuramoto-like network model [38], and a
phase oscillator network model derived from the Jansen–Rit (JR) neural mass model [39]. Both models
reflect some characteristics of our empirically observed data [39–41] where the phase dynamics of the JR
model arguably includes a realistic and neurobiologically informed phase interaction function.

Given a lack of ground truth in empirical data, we first evaluated the performance of the interlayer
reconstruction approach using in silico data with known ground truth for interlayer connectivity. We
subsequently applied the reconstruction approach to, and inferred interlayer connectivity from, empirical
MEG data using the multilayer Kuramoto (Kur)-like model. To test the null hypothesis that the
reconstructed interlayer connectivity was obtained from a system without underlying interlayer
connectivity, we compared the reconstructed interlayer connectivity from genuine empirical data with
interlayer connectivity reconstructed from phase randomized surrogates. Apart from inference of interlayer
connectivity from empirical data, we also evaluated the reverse of the previous step. We tested whether
using the interlayer connectivity as input to the multilayer Kur-like model would result in patterns of
intra-layer functional connectivity and layer dependencies similar to those observed in the empirical data.
Furthermore, we also reconstructed the interlayer connectivity from the empirical data using the
neurobiologically informed phase oscillator network model. The similarity between the reconstructed
interlayer connectivity from the Kur-like model and the neurobiologically informed model was estimated in
order to evaluate the stability and generalizability of the interlayer connectivity solutions across the different
models. The reconstruction approach was applied to experimental resting-state MEG data in order to
estimate interlayer connectivity for a two-layered alpha and beta band network, and for a two-layered theta
and gamma band network.
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2. Interlayer network reconstruction for multilayer brain networks

An illustration of the general framework is shown in figure 1. While a detailed description of the network
reconstruction can be found as supplementary material (https://stacks.iop.org/NJP/23/063065/mmedia),
here we briefly sketch the main steps. We consider a two-layered (M = 2) network with identical number of
nodes N per layer to model MEG networks, e.g. one layer resembles the phase connectivity in the alpha and
the other that of the beta band. Moreover, coupling between nodes within a layer is informed by an N × N
anatomical connectivity matrix A with elements ajl, with j, l ∈ {1, . . . N}. Similarly, we considered the
symmetric N × N interlayer connectivity matrix B with elements bjl, again with j, l ∈ {1, . . . N}. Recall that
this interlayer connectivity characterizes the cross-frequency coupling. This structure gives rise to a
multilayer phase oscillator network model, in which the phase dynamics θL

j ∈ [0, 2π) of node j ∈ {1, . . . , N}
in layer L ∈ {1, 2}evolve according to

dθL
j

dt
= ωL

j +
c
N

N∑

l=1,l ̸=j

ajlH
(
θL

l − θL
j

)
+

N∑

l=1,l ̸=j

bjlH
(

nθL′
l − mθL

j

)
. (1)

Here, H corresponds to the phase-interaction function between the nodes, and the integer scalars n, m
represent the frequency ratio between different layers, and c to a global coupling strength. The integer
scalars n, m are required since phase locking between oscillators with different intrinsic frequencies occurs
in an n:m ratio, i.e. for every n cycles of one oscillator co-occurs with m cycles of the other oscillator. We
assume that H is the same for within and between layers. We refer the reader to [37] for an extensive
overview on phase interaction functions (or also called coupling functions). The two layers differ in their
mean and standard deviation of the respective distributions of natural frequencies g

(
ωL

)
, which we both

considered to be Gaussian. By approximating the temporal derivative dθL
j /dt as a finite difference, one can

rewrite equation (1) as

T
N∑

l=1,l ̸=j

bjlH
(

nθL′
l [k] − mθL

j [k]
)

= θL
j [k + 1] − θL

j [k] − TωL
j −

Tc
N

N∑

l=1,l ̸=j

ajlH
(
θL

l [k] − θL
j [k]

)
, (2)

with discrete time point k and sampling step length T. For every time step k, we can further define the
vectors

ΥL
j [k] = T ·

(
H
(

nθL′
1 [k] − mθL

j [k]
)

, . . . , H
(

nθL′
N [k] − mθL

j [k]
))

, (3)

and the scalars

αL
j [k] = θL

j [k + 1] − θL
j [k] − TωL

j −
Tc
N

N∑

l=1,l ̸=j

ajlH
(
θL

l [k] − θL
j [k]

)
, (4)

that we stack across layers and time steps k. By this, equation (2) obeys the form

ΥjBj = αj, (5)

where Bj denotes the jth column of the interlayer connectivity matrix B. Estimation of the interlayer
connectivity Bj can, hence, be based on solving the set of linear equations in equation (5). However, in the
presence of dynamics, noise and/or measurement errors, a mere QR decomposition of Υj might be
inappropriate. Therefore, following [35], we estimated Bj by considering the interlayer reconstruction
problem as a constrained least absolute shrinkage and selection operator problem (LASSO problem
[42, 43])

B̂j
(
ρj
)

= arg minBj ∥ΥjBj − αj∥ 2
2 + ρj∥ Bj||1 subjectto 0 ! Bj ! u. (6)

Here, ρj > 0 refers to a regularization parameter and u to the all-one vector, ∥ . . . ||1 and ∥ . . . ||2 denote
the one-norm and two-norm, respectively. The first term on the right-hand side of equation (6)
corresponds to the mismatch between empirically derived phases and the multilayer phase oscillator
network model, while the second one tunes the sparsity of the solution B̂j by the regularization parameter
ρj. We apply κ-fold cross-validation using training and test sets (split data into half) to estimate the value of
the parameter ρj within a pre-defined range. This cross-validation yields the minimum mean squared error
between the phases obtained for the phase oscillator network model and the measured data. This
implementation allows for non-zero elements on the diagonal of the estimated B matrix, i.e. it may include
one-to-one interlayer coupling.
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Figure 1. General framework and phase interaction function Jansen–Rit model. Phase data from two layers, be it empirical data
or simulated data θL

j , is used as input together with a given structural network A. Here, we assume that the quantitative model
(Kuramoto-like or Jansen–Rit) provides a good description of the phase data that is used as input, or in other words, that the
phase interaction function H is accurate. This leaves the interlayer connectivity B as the only unknown term in the equation, for
which the equation is subsequently solved. We either use the Kuramoto-like description (H is a sine function), or we derive H
from the Jansen–Rit model using a phase reduction formalism. Panel (B) shows the phase interaction function H derived from
the Jansen–Rit (JR) model with the external input P = 150, i.e. with the model operating in the oscillatory regime.

3. Phase oscillator models

We consider two seminal phase oscillator models to express the phase interaction function H in
equation (1). For the first model, we examined

H (ψ) = sin (ψ) , (7)

resulting in a multilayer Kur-like model [44, 45]. Since this ‘simple’ form arguably lacks a proper
neurobiological underpinning, we also consider a phase interaction function based on neural mass
dynamics. In more detail, we derive a phase interaction function from the JR model [39], which is known to
generate realistic MEG/EEG oscillations [46–48]. This model describes the evolution of the synaptic activity
and the firing rate for three interconnected neuronal populations (i.e. an inhibitory, excitatory and
pyramidal neuronal population) in terms of six coupled first-order differential equations dx/dt = F (x),
with x = [x1, . . . , x6]T provided in the supplementary material. The phase interaction function can be
derived via the phase reduction technique based on weakly coupled oscillator theory described by Ashwin
and coworkers [49], see also [50] for recent literature on phase reduction techniques. The two main
assumptions of weakly coupled oscillator theory are: (1) weak coupling (i.e. a perturbed system stays close
to the intrinsic limit cycle); (2) (nearly) identical oscillators. One first computes the phase response curve
for a single population that displays limit-cycle oscillation. The phase response curve Q =

[
q1, . . . , q6

]

describes the response of a limit-cycle to a small perturbation and can be given by the periodic solution of
the adjoint equation [49]

dQ
dt

= −DFT (x) Q with ⟨Q (0) , F (x (0))⟩ = ω, (8)

where DF corresponds to the Jacobian of F, evaluated along the limit-cycle x. The expression ⟨· · ·⟩ denotes
the Euclidean inner product, ω is the frequency (which here is equal to 2π divided by the period of the
limit-cycle). Equation (8) can be solved by backward integration in time [51]. Rewriting the system in terms
of phases by introducing x (t) = x

(
θ/ω

)
and considering that all oscillators lie on the same limit-cycle of a

system, one can treat their interactions as small perturbations µ (x, t) = [µ1 (x1, t) , . . . , µ6 (x6, t)] acting on
the intrinsic dynamics of the oscillators that hence becomes

dθ
dt

= ω + c⟨Q (x (θ)) , µ (x (θ) , t)⟩. (9)
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Figure 2. Overview of the data analysis steps. Panel (A) refers to the extraction of interlayer connectivity B in simulations of the
multilayer Kuramoto-like and Jansen–Rit model with known ground truth for B. The matrix A is the structural connectivity matrix.
The term ‘B algorithm using A’ refers to the reconstruction algorithm using the matrix A, and the term beneath this (either
Kuramoto-like or Jansen–Rit) refers to the choice for the phase interaction function H. In panel (A), the B matrices are subscripted
with ‘sim’ to denote that the initial B matrices were obtained from a synthetic/simulated network model (i.e. range dependent random
network). Panels (B) and (D) cover the reconstruction of interlayer connectivity B from empirical MEG phase data. Panel (C) covers
simulations informed by this reconstructed empirical interlayer connectivity B and the resulting simulated intra-layer functional
connectivity W sim in relation to empirical functional connectivity W emp. Red arrows correspond to final analysis steps in each panel that
yielded outcome metrics. Abbreviations: ‘surr’ refers to surrogate data, ‘Kur’ to Kuramoto-like model, ‘JR’ to Jansen–Rit model.

5



New J. Phys. 23 (2021) 063065 P Tewarie et al

Figure 3. Simulations with ground truth interlayer connectivity. Performance of the interlayer network reconstruction algorithm
in simulations with ground truth for interlayer connectivity. Results in panels (A)–(D) are averaged over 20 realizations; vertical
bars indicate the standard deviations. Panel (A) shows false positive/negative rate for reconstructed networks based on the
Kuramoto-like model (Kur) and Jansen–Rit model (JR). Simulations were fed with ground truth networks B from range
dependent random networks with increasing link density. The corresponding relative true positive deviation (RTPD) is
illustrated in panel (B). Panels (C) and (D) show the effect of increasing levels of noise on the performance of the algorithm in
terms of FPR/FPN and RTPD with a link density in B of 0.14 (α = 0.9). Panel (E) shows an example of a ground truth network
for a link density of 0.14 (α = 0.9) and a noise level of 0.05 next to the reconstructed interlayer connectivity matrices B based on
the Jansen–Rit and Kuramoto-like model. Reconstruction of interlayer connectivity for empirical MEG networks.

We restrict our analysis to phase response components of the excitatory population q2, and, hence, set
µ (x) = [0, µ2 (x2) , 0, 0, 0, 0]. This choice is justified by the fact that interaction between neuronal
populations is mediated by excitatory neurons. By introducing a rotating phase ψ = θ − Tt/∆, and when
assuming coupling c to be very small, ψ evolves very slowly, dψ/dt is approximately zero, and averaging
over one period T of the rotating phase gives [49]

dψ
dt

≃ −δ + cH (ψ) , with H (ψ) =
1
T

∫ T

0
⟨Q (x (ψ + s)) , µ (x (ψ + s))⟩ds, (10)

and δ =
(
T/∆

)
− ω. H (ψ) corresponds to the phase interaction function, which has to be evaluated

numerically. For this purpose, one can express H as a Fourier series (up to the 3rd term)

H (ψ) =
1
2

d0 +
3∑

n=1

dn cos (nψ) +
3∑

n=1

en sin (nψ) + ε, (11)

where dn and en are the Fourier cosine and sine coefficients, respectively, and ε denotes the remainder.
Using parameters as in [52], with the external input P = 150 (see supplementary material), the JR

model operates in the oscillatory regime, for which we illustrate the phase interaction function in
figure 1(B). As can be observed from figure 1(B), the derived phase interaction function will not necessarily
result in a higher order periodic function, but could also be a shifted sine function, much like the so-called
Kuramoto–Sakaguchi model [53]. In addition, the shape of the obtained phase interaction function is very
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similar to a phase interaction function that resulted from a data driven approach using EEG data [54]. The
bifurcation diagrams for the two employed phase interaction functions can be found in the supplementary
material.

4. Simulations with ground truths for interlayer connectivity

An overview of our analysis is provided in figure 2. We evaluated the interlayer network reconstruction by
providing input from simulations with ground truth for interlayer connectivity. We generated phase time
series using the network dynamics described in equation (1) with the phase interaction function given
either by equation (7) or (11). We also added uncorrelated white Gaussian fluctuations wL

j with zero mean
and variance σ2 to the right-hand side of (1) to account for dynamic noise; see, e.g., [55]. We simulated

dθL
j =

⎡

⎣ωL
j +

c
N

N∑

l=1,l ̸=j

ajlH
(
θL

l − θL
j

)
+

N∑

l=1,l ̸=j

bjlH
(

nθL′
j − mθL

j

)
⎤

⎦ dt + dwL
j . (12)

Equation (12) is solved using an Euler–Maruyama scheme with a sampling time T = 0.01. For the
Kur-like model, every node in layer L had a natural frequency ωL

j randomly drawn from a Gaussian
distribution, centred around ωL

0 , with ω1
0 = 1 and ω2

0 = 2. In general, two coupled phase oscillator networks
with (symmetric) unimodal frequency distributions are equivalent to a single phase oscillator network with
a bimodal frequency distribution [45]. The ratio ω2

0/ω
1
0 = 2 was also used for the neurobiologically

informed (JR) model. For the JR model we set ωL
j = ωL

0 as we assumed identical node dynamics for every
layer in this case; otherwise all settings agreed with the Kur-like model. These identical node dynamics were
the result of the underlying assumptions of weakly coupled oscillator theory, not applicable to the Kur-like
model.

For a first set of simulations (figure 3(A)), we tested the estimation accuracy versus network sparsity or
link density (i.e. the ratio of the number of links to the maximum possible number of links given the
network size). We generated an unweighted and connected structural connectivity matrix A using the
Erdös–Rényi random model with an approximate link density of 0.2 and only included network realisations
that were connected [56]. The network size agreed with our empirical data (N = 78; see below in section
‘reconstruction of interlayer connectivity for empirical MEG networks’). In order to avoid that the network
reconstruction of B was biased by network A, we constructed interlayer connectivity B with a different
topology. Hence, We computed B using a range-dependent random graph model [57] using the Contest
toolbox for Matlab [58]. The probability of two nodes i and j in different layers being connected was given
as pij = αλ|j−i|−1; j, i ∈ {1, . . . , N}, with λ = 0.9 and α was varied over the interval [0.5, 1.75], resulting in
networks with different link densities. Equal increases in α do not result in a linear increase in link densities
(figures 3(A)–(D)). Furthermore, the interlayer coupling matrix was constrained to be symmetric by setting
B →

(
B + BT

)
/2. In a second set of simulations, we tested the estimation accuracy versus the variance σ2 of

the Gaussian white noise in the dynamics of equation (12). We used the same range-dependent random
graph model to generate B, with α = 0.9. We varied the variance of the noise in the interval [0.05, 0.5]. The
other parameters for the network models for all Kuramoto-like simulations were: c = 1, m = 1 and n = 2,
sampling time T = 0.01 and the number of observations K = 10 × N2.

In order to evaluate the accuracy of our interlayer connectivity reconstruction algorithm, we employed
three error metrics. The first one was the false positive rate (FPR) for the interlayer links, and equals the
fraction of node pairs

(
i, j
)

for which bij = 0 but b̂ij > 0, where b̂ij refers to a link between node pairs
(
i, j
)

in the estimated interlayer connectivity matrix B̂. The second one was false negative rate (FNR) for the
interlayer links, which equals the fraction of node pairs

(
i, j
)

for which bij > 0 but b̂ij = 0. FPR and FNR
were normalised (divided) by the link density of the ground truth B matrix in order to provide a sense of
the relative error compared to the number of links in the network. The third metric was the relative true

positive deviation (RTPD), which measures the deviation on the link weights and equals
∣∣∣bij − b̂ij

∣∣∣ /bij

averaged over all node pairs
(
i, j
)

for which bij > 0 and b̂ij > 0. The RTPD captures different information
compared to FNR and FPR and estimates whether the link weights of the reconstructed links are similar to
the corresponding link weights in the ground truth network.

Figure 3(A) shows the effect of different link densities on FPR and FNR for both the multilayer Kur-like
model and the JR model. There was an increase in FPR for the Kur-like model with increasing link density,
whereas the JR model stayed close to zero false positives for increasing link density (figure 3(A)). The
reverse was true for FNR, i.e. FNR for the Kuramoto model remained close to zero, while for the JR model
there was an increase in the FNR for increasing link densities. RTPD showed a different picture
(figure 3(B)): for both models the RTPD remained stable for different link densities, with lower errors for
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the Kur-like model than for the JR model, i.e. there was (in this case) a systematic underestimation
(figure 3(E)) of the link weights for the JR model (see figure 3(E)). When increasing the noise in the system
with a fixed link density for the ground truth interlayer connectivity B of 0.14 (α = 0.9), FPR for the
Kuramoto based simulations slightly increased (figure 3(C)). Again, RTPD (figure 3(D)) was hardly
affected, with the Kur-like model yielding a smaller error than the JR model over the whole range of noise
levels. Figure 3(E) shows an example of a ground truth interlayer connectivity matrix and the reconstructed
B matrices for the Kur-like and JR model, which show quite high accuracy of estimation of the ground truth
links. On average, smaller link weights (systematic underestimation) with more false negatives could be
observed for the JR model, while more false positives and a more accurate estimation of the link weights
were present for the Kur-like model.

5. Reconstruction of interlayer connectivity for empirical MEG networks

Empirical MEG and diffusion weighted imaging data
We used MEG data from the Human Connectome Project [59, 60], consisting of resting-state MEG data

from 89 healthy subjects. Every subject underwent three separate recording sessions. The three separate
recording sessions were used as training and validation datasets for separate analysis steps (see figure 2).

We refer to [61] for details of the pre-processing pipeline for this dataset. The data have partly been
provided pre-processed [59], after passing through a pipeline to remove any artefactual segments of time
from the recordings. We performed additional processing steps for source localization. An atlas-based
beamforming approach was adopted to project MEG sensor level data into source-space [62]. The cortex
was parcellated into 78 cortical regions according to the automated anatomical labelling (AAL) atlas [63]
and the centroid voxel for every region of interest was extracted to serve as representative voxel for every
region [64]. Pre-computed single-shell source models are provided by the HCP at multiple resolutions [65],
registered into the standard co-ordinate space of the Montreal Neuroimaging Institute. Data were
beamformed with depth normalization onto centroid voxels using normalised lead fields and estimates of
the data covariance. Covariance was computed based on broad band data with a time window spanning the
whole experiment [66]. Regularization was applied to the data covariance matrix using the Tikhonov
method with a regularization parameter equal to 5% of the maximum eigenvalue of the unregularized
covariance matrix. Dipole orientation was determined using a non-linear search for optimum signal to
noise ratio [67]. This complete process resulted in N = 78 electrophysiological timecourses, each
representative of a separate AAL region.

Symmetric multivariate orthogonalisation was applied to reduce signal leakage [68]. The
source-reconstructed timecourses were bandpass filtered into the theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz), and low gamma (30–48 Hz) band. We subsequently extracted the instantaneous phases from
the corresponding analytic signals determined via Hilbert transform. After concatenating signals from all
subjects (from session one) the corresponding phases served as θL

j to our network reconstruction approach
(equations (5) and (6); see figure 2(B)). In addition, intra-layer phase connectivity was also estimated after
leakage reduction and band-pass filtering based on data from session two for the alpha and beta band
(figure 2(C)). This was realised by computing the phase locking value (PLV) in windows of 13 seconds for

every subject, PLVjl =
∣∣∣ 1

U

∑U
t=1ei∆θjl(t)

∣∣∣ [69] for every pair
(
j, l
)

of phases of the band-pass filtered time

courses, j, l ∈ {1, . . . , N}. Here, U corresponds to the window width (in samples), ∆θjl to the instantaneous
phase difference, and i denotes the imaginary unit. Phase connectivity matrices were averaged across
windows (on average 22 windows per subject) and subjects to obtain one group averaged intra-layer
connectivity matrix (N × N) per frequency band, WL,emp (e.g. alpha and beta band), where emp refers to
empirical data, L ∈ {1, 2}.

The anatomical network data was also obtained from the Human Connectome Project. Details of the
data collection and processing pipeline for this diffusion weighting-based anatomical network can be found
in [61].

Reconstruction of interlayer connectivity from empirical data using the multilayer Kuramoto model
Since neither model clearly outperformed the other one for the numerically simulated data (figure 3),

we first used the arguably simpler multilayer Kur-like model for the following analyses. An overview of the
analysis for this part of the study can be found in figure 2(B). We first considered interlayer connectivity
between the alpha and beta band. Concatenated phase data from all subjects from session one together with
the empirical connectome A were fed into equations (5) and (6) with c = 1, m = 1 and n = 2. The choice
for c = 1 is justified since we have no knowledge of the optimal value beforehand and a too small value for c
could erroneously result in the absence of phase synchronization (see supplementary material on phase
interaction functions. Thus, we assumed that our quantitative description of the phases is an appropriate
model for the empirical phase data. We also used surrogate phase data to test the outcome in case of no
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Figure 4. Reconstructed interlayer connectivity for two-layered alpha and beta band network. Reconstructed empirical interlayer
connectivity matrix B based on the multilayer Kuramoto-like model (far left, panel (A)). Reconstructed interlayer connectivity
matrix B for phase randomised surrogate data, based on the multilayer Kuramoto-like model (middle left, panel (B)).
Reconstructed empirical interlayer connectivity matrix B, based on the multilayer Jansen–Rit model (middle right, panel (C)).
Reconstructed interlayer connectivity B for phase randomised surrogate data, based on the multilayer Jansen–Rit model (far
right, panel (D)). Simulations of multilayer networks informed by reconstructed interlayer connectivity to explain empirical
intra-layer MEG networks.

Figure 5. Simulations and fit with empirical data. Panel (A) shows the Kuramoto order parameter r for both layers of the
multilayer network for a range of coupling values c. Panel (B) shows the adjusted R2, i.e. fit of simulated intra-layer functional
connectivity matrices to empirical functional connectivity matrices WL,emp for a range of coupling values c. Panel (C) displays the
(simulated) between layer correlation for a range of coupling values c. Results were averaged over 20 realizations (and
subsequently smoothed using a moving average). Validation of empirical interlayer connectivity reconstruction using the
Jansen–Rit model.

genuine underlying phase synchronization in the data. Surrogate time series were reconstructed by
non-uniform phase randomisation of the original empirical source-reconstructed time series, i.e. for every
nodal time series a different sample of Gaussian white noise was added to the Fourier phases, followed by
the inverse Fourier transform. The instantaneous phases were subsequently extracted (as described above)
before the interlayer network reconstruction via equations (5) and (6). The output of the algorithm applied
to empirical phase data yielded a very sparse interlayer connectivity matrix, with predominant, and strong,
one-to-one connections (diagonal of B, see figure 4(A)), and a few weak connections between distant nodes.
Application of our interlayer network reconstruction to surrogate data resulted in an even sparser and
almost empty B matrix (figure 4(B)), which did not resemble the interlayer connectivity as reconstructed
from genuine experimental data. This result indicates that one-to-one coupling as interlayer connectivity is
not necessarily the minimal or sparsest solution of the interlayer network reconstruction problem, and that
reconstructed interlayer connectivity for the empirical data could not have been obtained from a system
without underlying interlayer connectivity. Application of our interlayer network reconstruction to a
different session for all subjects revealed similar interlayer connectivity with strong one-to-one connections
(diagonal of B, see figure S2), however, with a slightly different set of much weaker connections between
distant nodes, i.e. off-diagonal elements in the B matrix. Thus, these weaker estimated connections show
lower between session consistency.

However, one-to-one coupling for alpha to beta is influenced by spectral leakage between frequency
filtered time series due to the small overlapping decaying tails after band pass filtering for these adjacent
frequency bands (see supplementary material). Nevertheless, even in the absence of spectral leakage
between frequency filtered time series, one-to-one coupling remained nonzero for alpha to beta band
connectivity (see supplementary material), and therefore interlayer connectivity is not merely an artefact of
spectral leakage. We adhered to the use of classical frequency bands since these are widely accepted in the
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field. Although readers should be aware of this potential bias due to band pass filtering and the alternative is
to use adjusted frequency bands.

Simulations of multilayer networks informed by reconstructed interlayer connectivity to explain
empirical intra-layer MEG networks

An overview of the analysis steps for this section is given in figure 2(C). Apart from inferring the
interlayer connectivity from the empirical phase data in the previous section, it remains to be elucidated
whether this interlayer connectivity would result in empirically observed intra-layer MEG connectivity and
correlations between intra-layers. We therefore simulated equation (12) using the Kur-like model with the
reconstructed interlayer connectivity B from the previous section and the empirical connectome A, and
analysed how similar the simulated intra-layer functional connectivity was to the empirically determined
functional connectivity. In the previous section we used phase information from MEG data as input
variable to find B. Now we use the reconstructed B matrix as input in order to simulate the phases θL

j (that
is, we are not solving equations (5) and (6), but just simulating equation (12)). We simulated equation (12)
using the Kur-like model for a range of c. For every value of c, we computed the (i) Kuramoto order

parameter for each layer, rL = 1
N

∣∣∣
∑N

j=1eiθL
j

∣∣∣; (ii) and evaluated the fit between simulated and empirical

functional connectivity for every layer (WL,sim vs WL,emp) in terms of the variance of the empirical data
explained by the simulations (expressed as adjusted R2); (iii) we estimated functional connectivity for each
layer using the PLV, resulting in WL,sim, and subsequently computed a correlation between the functional
connectivity patterns of the two intra-layers, ρ = corr

(
W1,sim, W2,sim

)
using the Spearman correlation

coefficient with the upper-triangular part of these symmetrical matrices.
As shown in figure 5(A), there was a rapid transition for the Kuramoto order parameter from weak

overall phase synchronization to strong overall phase synchronization without a clear plateau for lower
coupling values. The absence of such a plateau for smaller coupling values, as typically seen for single layer
Kuramoto models [41], might be due to the non-zero interlayer connectivity. The best fit of simulated PLV
connectivity matrices with group averaged empirical PLV connectivity matrices was observed for
intermediate coupling values (around c = 0.5, figure 5(B)), i.e. at the transition between high and low rL.
Adjusted R2 values of around 0.3 to 0.4 indicate that to some extent multilayer Kuramoto network models
can approximate patterns of functional connectivity as observed in empirical MEG data. There was a
slightly better fit for the alpha band intra-layer network than for the beta band intra-layer network.
Correlation between intra-layers for empirical data was ρ = 0.62. The coupling for which we obtained the
best match of simulated and empirical ρ was found for c = 0.6 (figure 5(C)).

Validation of empirical interlayer connectivity reconstruction using the Jansen-Rit model
We next applied our network reconstruction algorithm to concatenated phase data from all healthy

adults, this time from session three, together with the empirical connectome A (see figure 2(D)), i.e.
empirical data was fed into equations (5) and (6). The phase interaction function derived from the JR
model operating in the oscillatory regime was now used for equation (1). Analysis was otherwise identical
to that outlined in figure 2(B). Again, we also reconstructed interlayer connectivity for phase randomised
surrogate data. As shown in figure 4(C), we found a strong one-to-one interlayer coupling similar as for the
Kur-like model (figure 4(A)) but with fewer off-diagonal elements in B. The link weights on the diagonal of
the reconstructed interlayer connectivity matrix B were close to one, as was the case with the Kur-like
model. When applied to surrogate data, a very sparse interlayer coupling matrix with a few off-diagonal
non-zero elements was obtained (figure 4(D)). This B matrix obtained for surrogate data did not resemble
interlayer connectivity from genuine phase data. In addition, application of our interlayer network
reconstruction to a different session for all subjects revealed similar interlayer connectivity with strong
one-to-one connections (diagonal of B, see figure S2). However, the analysis resulted in a slightly different
set of much weaker connections between distant nodes, i.e. off-diagonal elements in the B matrix. Again,
these weaker estimated long distance connections show lower between session consistency.

6. Reconstruction of multilayer networks using a different set of frequency bands

So far, we reconstructed a two-layer network based on the alpha and beta band. Previous work has also
demonstrated cross-frequency coupling between theta and gamma bands [25]. Similar to figure 4, we
reconstructed the interlayer connectivity matrix based on a two-layered network consisting of theta and
gamma band networks. Concatenated phase data, obtained from band-pass filtering into the theta and
gamma bands, from all subjects from session one together with the empirical connectome A were fed into
equations (5) and (6) with c = 1, m = 1 and n = 6. As outlined above, we also used surrogate phase data to
test the outcome in the absence of genuine underlying phase synchronization in the data. Results for both
the multilayer Kur-like model and the JR model are illustrated in figure 6. The estimated interlayer
connectivity matrices between theta and gamma band layers show many more off-diagonal elements
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Figure 6. Reconstructed interlayer connectivity for two-layered two-layered theta and gamma band network. Reconstructed
empirical interlayer connectivity matrix B, based on the multilayer Kuramoto model (panel (A)) using the theta and gamma
band as layers. The mean interlayer connectivity (matrix B in panel (A)) for each region of interest is displayed on a template
brain viewed from the top (panel (B)). Reconstructed interlayer connectivity matrix B for phase randomised surrogate data,
based on the multilayer Kuramoto-like model (panel (C)). Reconstructed empirical interlayer connectivity matrix B, based on
the multilayer Jansen–Rit model (panel (D)). The mean interlayer connectivity (matrix B in panel (D)) for each ROI is displayed
in panel (E). Reconstructed interlayer connectivity B for phase randomised surrogate data, based on the Jansen–Rit model (panel
(F)).

compared to the alpha-beta band case (compare figures 4(A) and (C) with 6(A) and (D)), and as well in
comparison to surrogate data. This indicates the presence of long-range interlayer connections between
regions. For the mean connectivity for every brain region (figures 6(B) and (E)), we found the main
off-diagonal connections to involve occipital and fronto-parietal areas. The Spearman correlation between
the estimated interlayer connectivity matrix from the Kur-like model and the JR model was
R = 0.9, p < 0.001. Link weights from the interlayer connectivity matrix obtained from the Kur-like model
were on average higher than link weights in the interlayer connectivity matrix obtained from the JR model
(Mann–Whitney test, p < 0.001, Z = 4.4). The latter results are in line with the plots obtained from the
simulations (figure 3(E)), where the JR based model was shown to underestimate the link weights from
ground truth networks, and the Kur-like model prone to false positives.

7. Discussion

We reconstructed the interlayer connectivity for MEG networks using a recently developed network
reconstruction algorithm for epidemic spreading models [35]. We used two types of phase interaction
functions, namely a sine function for the Kur-like model, and a phase interaction function obtained from
weakly coupled JR neural mass models operating in the oscillatory regime. We demonstrated that the
network reconstruction approach accurately captures simulated interlayer connectivity for both types of
phase oscillator network models, and is robust to different levels of dynamic noise in the phase data and
increasing levels of link density. Application to empirical MEG data revealed that, when alpha and beta
bands were considered, empirical interlayer connectivity was dominated by one-to-one connectivity
between layers, which was consistent for both phase oscillator models for different MEG recording sessions.
However, when theta and gamma band layers were considered, there were also widespread long distance
connections between regions, i.e. strong off-diagonal elements in the B matrix.

The main result of the current analysis is that the topology of interlayer coupling strongly depends on
the combination of frequency bands. While alpha-to-beta band interlayer connectivity was dominated by
one-to-one interlayer coupling, theta-to-gamma band interlayer connectivity, in contrast, also showed
strong connectivity between multiple distant nodes. This result is in line with previous work that has
reported on long-distance cross-frequency connections [70]. The current dominant connections involving
the parieto-occipital areas in the theta–gamma band were also observed for cross-frequency
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amplitude–amplitude coupling in resting-state data MEG data [9, 10]. For example, recent studies reported
on the presence of hippocampal-prefrontal theta–gamma coupling in local field potentials recorded in
animals during a spatial working memory task [71] and on the presence of frontotemporal theta–gamma
coupling during working memory tasks in adults [70]. These findings are assumed to relate to the tendency
of interaction between neural network motifs that generate theta and gamma oscillations [5]. Our results
appeared consistent for both phase oscillator network models, with the difference that for theta–gamma
coupling the use of the Kur-like model resulted in more and stronger off-diagonal elements compared to the
JR model. Results from our simulations suggest that the observation of fewer connections between distant
nodes for the JR model in the empirical theta–gamma coupling could be due to false negatives for this
model, an underestimation of link weights for this model, and due to false positives for the multilayer
Kur-like model. By using surrogate data, we also showed that a one-to-one coupling matrix for the alpha
and beta band is not the minimal solution of the algorithm and does not emerge from a system with no
underlying functional connectivity.

In the current paper, we pave the way towards standardization of the usage of multilayer brain networks,
which is important for comparison between studies. Although the use of multilayer brain networks is still in
its infancy, many different methodological options have already been published [14, 17], yielding promising
results. Several studies choose one-to-one connectivity for the multilayer network analysis [20, 72] and were
able to show disease induced effects in centrality of brain regions and differences indisrupted core-periphery
structure in Alzheimer’s disease. Also a portion of literature opted for all-to-all connectivity [10] and
demonstrated disease induced effects for interlayer coupling for patients suffering from major depression
[73, 74].

Though the estimated interlayer connectivity matrix is considered to be an approximation for
cross-frequency functional connectivity, we stress that the estimated interlayer connectivity and
cross-frequency coupling are not equivalent. Cross-frequency functional connectivity is usually the result of
estimation of a pairwise statistical dependency, whereas the current interlayer connectivity estimation is the
result of a multivariate assessment and optimization using an a priori defined structural network and phase
interaction function. We therefore cannot draw firm conclusions about the existence or non-existence of
cross-frequency coupling between pairwise nodes for two reasons: (i) we only considered phase connectivity
[31, 75], whereas cross-frequency coupling is usually assessed in terms of phase–amplitude coupling
[6, 76–79] or sometimes even amplitude–amplitude coupling [9, 10]; (ii) our algorithm merely estimates
the sparsest interlayer connectivity matrix that can explain the data, it does not assess whether a specific
cross-frequency connection is neurobiologically plausible or not [25, 26]. More importantly, the goal of the
current work was to reconstruct interlayer network topology rather than the estimation of pairwise strength
of cross-frequency coupling. The advantage of the current approach is that it makes use of a priori
information of the structural network and that its multivariate assessment of interlayer connectivity is also
less influenced by several factors (e.g. non-sinusoidal signal properties) known to give rise to spurious
estimates of pairwise cross-frequency coupling [27].

There was a difference in reconstruction accuracy in terms of FPR and FPN for the JR and Kur-like
model. The trade-off between decreasing FPR and increasing FNR translates into setting the regularization
parameter ρj: a greater value of ρj results in more zero elements of Bj and, hence, a lower FPR and higher
FNR; a smaller value of ρj results in more non-zero elements of Bj and, hence, a lower FNR and higher FPR.
We set the value for ρj by cross-validation with the main objective to maximise the fit of the phase oscillator
model (1) to the data. Thus, the trade-off between FPR and FNR is done implicitly. In fact, figure 3 shows
that for the Kur model a smaller value for ρj (which results in a higher FPR and a lower FNR) has more
predictive power, as assessed by cross-validation, than a larger value for ρj. For the JR model, the opposite
holds.

Some other aspects of our work also warrant further discussion. Firstly, we only included two layers in
our multilayer network model, whereas usually more than two layers can be estimated from MEG data. For
example, delta (1–4 Hz) to low gamma (30–48 Hz) networks are typically estimated, which would entail at
least five layers. However, analytical work and bifurcation analysis on phase oscillator networks has
incorporated not more than three multimodal frequency distributions [45]. Therefore, without theoretical
background it is difficult to predict model behaviour of phase oscillator models given the width and
distance between the multimodal frequency distributions. In addition, it is difficult to assess a priori
whether the solution to the multilayer phase oscillator model equations is expected to be stable or unstable.
We therefore restricted our analysis to two layers. Secondly, previous literature demonstrated that the
inclusion of conduction delays increases the power of neuronal models to explain empirical patterns of
intra-layer functional connectivity [40, 80, 81]. However, we neglected conduction delays in the dynamics of
our model. Even without delays, the match with empirical MEG data was fairly good. Yet, future work may
examine if the inclusion of delays would indeed lead to even better descriptions of multilayer functional
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networks. Thirdly, since our aim was to test the null hypothesis of no underlying interlayer connectivity, we
did not to apply a uniform phase randomization to preserve the linear correlations or static connectivity
between timecourses [82, 83]. Fourthly, we restricted our analysis to resting-state (task-free) data, implying
that no conclusions can be drawn from the current analyzes with regards to the topology of interlayer
connections in task-based MEG networks. Fifthly, the presence of periodic signals in the alpha and beta
band in empirical data [84] justifies the treatment of phase synchronization in these canonical frequency
bands and further treat these as layers in a multilayer network framework. However, recent interest in
treating neural power spectra in terms of periodic and aperiodic components challenges the use of (only)
canonical frequency bands [85]. It remains an open question how this new approach would influence
connectivity estimation, and hence how to reconstruct interdependent networks. An alternative way to treat
interdependent electrophysiological networks is to consider connectivity for the aperiodic part of the
spectrum as one layer, and consider connectivity for all periodic components on top of the aperiodic part of
the spectrum as separate layers. Sixthly, it remains an open question whether pairwise interactions form the
adequate building blocks to assess (multilayer) network topology and recent studies have demonstrated the
potential role of higher order coupling in this context [86–88]. Lastly, it is an open question whether the
assumption of identical phase interaction functions for within and between layer interactions is justified.

We demonstrated the robustness of an interlayer network reconstruction algorithm in simulated brain
networks. Application to empirical multilayer brain networks revealed that interlayer connectivity is
dominated by one-to-one coupling for a two-layered alpha and beta band network, and revealed additional
widespread long distance interlayer connections for a two-layered theta and gamma band network.
Therefore, in future resting-state empirical multilayer network analyzes, a one-to-one coupling, i.e. a
multiplex network description, is only justified for specific combinations of frequency bands. For other
scenarios, one may require a complete multilayer network description.
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formulation of multilayer networks Phys. Rev. X 3 041022

13

https://orcid.org/0000-0002-3311-4990
https://orcid.org/0000-0002-3311-4990
https://orcid.org/0000-0002-7935-9109
https://orcid.org/0000-0002-7935-9109
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nrn3214
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1038/nn.4502
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1073/pnas.1018985108
https://doi.org/10.1038/nrn3801
https://doi.org/10.1038/nrn3801
https://doi.org/10.1038/nrn3801
https://doi.org/10.1038/nrn3801
https://doi.org/10.1038/nn.3764
https://doi.org/10.1038/nn.3764
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.1016/j.tics.2010.09.001
https://doi.org/10.7554/elife.21792
https://doi.org/10.7554/elife.21792
https://doi.org/10.1016/j.tics.2007.05.003
https://doi.org/10.1016/j.tics.2007.05.003
https://doi.org/10.1016/j.tics.2007.05.003
https://doi.org/10.1016/j.tics.2007.05.003
https://doi.org/10.1016/j.neuroimage.2016.07.057
https://doi.org/10.1016/j.neuroimage.2016.07.057
https://doi.org/10.1016/j.neuroimage.2016.07.057
https://doi.org/10.1016/j.neuroimage.2016.07.057
https://doi.org/10.1016/j.neuroimage.2016.02.045
https://doi.org/10.1016/j.neuroimage.2016.02.045
https://doi.org/10.1016/j.neuroimage.2016.02.045
https://doi.org/10.1016/j.neuroimage.2016.02.045
https://doi.org/10.1103/physrevx.3.041022
https://doi.org/10.1103/physrevx.3.041022


New J. Phys. 23 (2021) 063065 P Tewarie et al

[12] Kivel̈a M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y and Porter M A 2014 Multilayer networks J. Complex Netw. 2 203–71
[13] Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómez-Gardeñes J, Romance M, Sendiña-Nadal I, Wang Z and Zanin M 2014

The structure and dynamics of multilayer networks Phys. Rep. 544 1–122
[14] De Domenico M 2018 Multilayer network modeling of integrated biological systems (arXiv:1802.01523)
[15] Vaiana M and Muldoon S F 2020 Multilayer brain networks J. Nonlinear Sci. 30 2147–69
[16] De Domenico M, Sasai S and Arenas A 2016 Mapping multiplex hubs in human functional brain networks Front. Neurosci. 10 326
[17] Mandke K, Meier J, Brookes M J, O’dea R D, Van Mieghem P, Stam C J, Hillebrand A and Tewarie P 2018 Comparing multilayer

brain networks between groups: introducing graph metrics and recommendations NeuroImage 166 371–84
[18] Crofts J J, Forrester M and O’Dea R D 2016 Structure-function clustering in multiplex brain networks Europhys. Lett. 116 18003
[19] Betzel R F and Bassett D S 2017 Multi-scale brain networks NeuroImage 160 73–83
[20] Guillon J et al 2019 Disrupted core-periphery structure of multimodal brain networks in Alzheimer’s disease Netw. Neurosci. 3

635–52
[21] Battiston F, Nicosia V, Chavez M and Latora V 2017 Multilayer motif analysis of brain networks Chaos 27 047404
[22] Muldoon S F and Bassett D S 2016 Network and multilayer network approaches to understanding human brain dynamics Phil.

Sci. 83 710–20
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