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ABSTRACT

Epilepsy surgery is the treatment of choice for drug-resistant epilepsy patients, but up to 50% of patients16

continue to have seizures one year after the resection. In order to aid presurgical planning and predict17

postsurgical outcome on a patient-by-patient basis, we developed a framework of individualized18

computational models that combines epidemic spreading with patient-specific connectivity and19

epileptogeneity maps: the Epidemic Spreading Seizure and Epilepsy Surgery framework (ESSES).20

ESSES parameters were fitted in a retrospective study (N = 15) to reproduce invasive21
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electroencephalography (iEEG)-recorded seizures. ESSES reproduced the iEEG-recorded seizures, and22

significantly better so for patients with good (seizure-free, SF) than bad (non-seizure-free, NSF)23

outcome. We illustrate here the clinical applicability of ESSES with a pseudo-prospective study24

(N = 34) with a blind setting (to the resection strategy and surgical outcome) that emulated presurgical25

conditions. By setting the model parameters in the retrospective study, ESSES could be applied also to26

patients without iEEG data. ESSES could predict the chances of good outcome after any resection by27

finding patient-specific model-based optimal resection strategies, which we found to be smaller for SF28

than NSF patients, suggesting an intrinsic difference in the network organization or presurgical29

evaluation results of NSF patients. The actual surgical plan overlapped more with the model-based30

optimal resection, and had a larger effect in decreasing modeled seizure propagation, for SF patients than31

for NSF patients. Overall, ESSES could correctly predict 75% of NSF and 80.8% of SF cases32

pseudo-prospectively. Our results show that individualised computational models may inform surgical33

planning by suggesting alternative resections and providing information on the likelihood of a good34

outcome after a proposed resection. This is the first time that such a model is validated with a fully35

independent cohort and without the need for iEEG recordings.36

AUTHOR SUMMARY

Individualized computational models of epilepsy surgery capture some of the key aspects of seizure37

propagation and the resective surgery. It is to be established whether this information can be integrated38

during the presurgical evaluation of the patient to improve surgical planning and the changes of a good39

surgical outcome. Here we address this question with a pseudo-prospective study that applies a40

computational framework of seizure propagation and epilepsy surgery – the ESSES framework– in a41

pseudo-prospective study mimicking the presurgical conditions. We found that, within this42

pseudo-prospective setting, ESSES could correctly predict 75% of NSF and 80.8% of SF cases. This43

finding suggests the potential of individualised computational models to inform surgical planning by44

suggesting alternative resections and providing information on the likelihood of a good outcome after a45

proposed resection.46
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INTRODUCTION

Surgical resection is often the most effective treatment to achieve seizure control for patients with47

drug-resistant focal epilepsy. The surgery requires the generation of an hypothesis of the epileptogenic48

zone (EZ) by means of extensive presurgical evaluations, and its subsequent removal or disconnection49

during surgery (Lüders, Najm, Nair, Widdess-Walsh, and Bingman (2006)). Despite extensive50

investigations, there has only been a slight improvement in prognosis over the past two decades51

(Baxendale et al. (2019); Jehi et al. (2015)), and between 30 to 50% of the patients who undergo surgery52

continue to have seizures one year later, depending on etiology and location of the EZ (Englot et al.53

(2015)). A key conceptual change in recent years is the notion of epileptogenic networks, which takes54

into account the complex interplay between different brain regions in promoting and inhibiting seizure55

generation and propagation (Bartolomei et al. (2017); Kramer and Cash (2012); van Diessen, Diederen,56

Braun, Jansen, and Stam (2013)). As a consequence, the effect of a given surgery is to be measured57

against the whole epileptogenic network: a small resection involving heavily connected regions may have58

widespread effects, but it may also be compensated for by the remaining network (Hebbink, Meijer,59

Huiskamp, van Gils, and Leijten (2017); Nissen et al. (2018)). This perspective aligns with the60

commonly accepted view that large-scale brain organization can be regarded as an emerging61

phenomenon taking place on a complex network, which has spurred numerous data- and model-based62

studies (Seguin, Jedynak, et al. (2023); Seguin, Sporns, and Zalesky (2023)). Several network-based63

studies have found group-level differences between seizure-free and non-seizure-free patients (da Silva et64

al. (2020); Nissen et al. (2018); Taylor et al. (2018)), with removal of pathological hub (i.e. central)65

regions typically associated with seizure-freedom (Nissen et al. (2017)). These results highlight the need66

to consider patient-specific connectivity (van den Heuvel and Sporns (2019)) in order to tailor the surgery67

to each patient (Gerster et al. (2021)).68

A data-driven manner to study the relation between individual brain networks and surgical outcomes69

involves computational models of seizure dynamics, which allow us to simulate seizure propagation in70

silico. Different resection strategies can be tested on the computational model before the actual surgery71

(Goodfellow et al. (2016); Hutchings et al. (2015); V. Jirsa et al. (2017); Laiou et al. (2019); Lopes et al.72

(2017); Nissen et al. (2021); Olmi, Petkoski, Guye, Bartolomei, and Jirsa (2019); Proix, Bartolomei,73

Chauvel, Bernard, and Jirsa (2014); Sinha et al. (2017); Taylor, Kaiser, and Dauwels (2014)). The models74
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can be fitted to patient-specific data of brain structure and seizure dynamics, allowing us to tailor the75

resection strategy for each patient. Within this perspective, previous studies have obtained remarkable76

success at a group level: Sinha et al. (2017) found that the removal of regions identified as epileptogenic77

according to an EEG-brain network dynamical model predicted surgical outcome with 81.3% accuracy.78

Proix, Bartolomei, Guye, and Jirsa (2017), using a seizure model known as the epileptor (V. K. Jirsa,79

Stacey, Quilichini, Ivanov, and Bernard (2014)) based on MRI (magnetic resonance imaging)80

connectivity, found significant differences in the overlap between the model-based propagation zone and81

the area sampled by iEEG between patients with good (Engel class I) and bad (Engel class III) outcomes82

at the group level. Subsequent studies also found a better match between the modeled and clinically83

observed epileptogenic regions for seizure-free than non-seizure-free patients (Makhalova et al. (2022);84

Vattikonda et al. (2021)). Similarly, Sip et al. (2021) simulated patient-specific resection strategies by85

means of virtual resections, and found that virtual resections in their model correlated with surgical86

outcome, with larger effects found for patients with good outcome (Engel classes I and II). In an87

independent study, Goodfellow et al. (2016) also found significant differences in the model prediction88

between Engel class I and class IV patients, using an electrocorticogram modeling framework.89

Following the same rationale, we developed a computational model of seizure propagation and epilepsy90

surgery based on epidemic spreading dynamics and patient-specific MEG brain connectivity (Millán et91

al. (2022)), to which we refer here as the Epidemic Spreading Seizure and Epilepsy Surgery model92

(ESSES). Epidemic models describe the spread of an infectious agent through a network. Epidemic93

processes on fixed networks have a rich mathematical history (Pastor-Satorras, Castellano, Van Mieghem,94

and Vespignani (2015)) with a plethora of models that can be exploited for epilepsy surgery optimization95

(Millán et al. (2022); Nissen et al. (2021)). Although such models ignore the underlying bio-physical96

processes that lead to seizure generation and propagation, they describe the basic rules that govern97

spreading processes. In previous studies (Millán et al. (2022, 2023)), we found that epidemic spreading98

models could reproduce stereotypical patterns of seizure propagation as recorded via invasive99

electroencephalography (iEEG) recordings. Moreover, once fitted with patient-specific data, ESSES100

could identify alternative resection strategies, either of smaller size or at a different location than the101

actual surgery (Millán et al. (2022); Nissen et al. (2021)). In a more recent study Millán et al. (2023), we102

showed that the goodness-of-fit of ESSES seizures to those recorded via iEEG predicted surgical103
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outcome –with an area under the curve of 88.6% – indicating that ESSES not only reproduces the basic104

aspects of seizure propagation, but it also captures the differences, either in the location of the resection105

area relative to the EZ, or intrinsically in the iEEG or MEG data, between patients with good and bad106

outcome. Importantly, ESSES’s global parameters were defined at the population level, and the model107

was individualized for each patient via patient-specific MEG networks, which characterized the local108

spreading probabilities. As a consequence, ESSES can be extended to patients without iEEG recordings,109

in contrast to previous modeling studies, which typically required the existence of patient-specific iEEG110

data to individualize the model for each patient (Bernabei et al. (2023); Gunnarsdottir et al. (2022);111

Makhalova et al. (2022); Proix et al. (2017); Runfola, Sheheitli, Bartolomei, Wang, and Jirsa (2023);112

Sinha et al. (2017); Y. Wang et al. (2023)). IEEG allows for a highly resolved description of seizure113

dynamics, but its spatial sampling is sparse and it is highly invasive. Consequently, it is only part of the114

presurgical evaluation in a selection of patients.115

Here we performed a pseudo-prospective blind study (34-patient validation cohort) to validate the clinical116

applicability of ESSES to a) identify model-based optimal resection strategies and b) predict the117

likelihood of a good outcome after a proposed resection strategy, on a patient-by-patient basis. In order to118

emulate the clinical presurgical conditions, the research team was blind to the patients’ postsurgical data,119

namely the resection area and surgical outcome, during ESSES’s analyses, and the multimodal120

presurgical information available for each patient was integrated into ESSES. ESSES can identify121

resection strategies that perform optimally in the model, i.e. by minimizing modeled seizure propagation,122

for a given resection size. We refer to these resections as optimal resections, in agreement with previous123

works (An, Bartolomei, Guye, and Jirsa (2019); Millán et al. (2022); Nissen et al. (2021); Sinha et al.124

(2017)). ESSES can also simulate the effect of a given resection in silico. Within this set-up, we tested125

three hypotheses: a) seizure-free (SF) patients would have smaller optimal resections than126

non-seizure-free (NSF) patients, b) SF patients would have a larger overlap between optimal and planned127

(clinical) resections, and c) the planned resection would have a larger effect (in ESSES) for SF than for128

NSF patients. We found that these three ESSES biomarkers, namely the size of the optimal resection,129

their overlap with the planned resection, and the effect of the planned resection on ESSES seizures,130

provided estimates of the likelihood of a good outcome after the surgery, as well as suggesting alternative131

resection strategies that performed optimally in the model. We envisage that the implementation of a132
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modeling scheme such as ESSES in clinical practice may inform the planning of epilepsy surgery.133

Different surgical plans can be tested with ESSES for each patient, such that strategies that lead to a large134

decrease of propagation in the model are more likely to lead to seizure freedom. ESSES may also suggest135

optimal (alternative) resection strategies, for cases where ESSES predicts a bad outcome with the planned136

resection. Optimal strategies can then lead to new surgical plans, the effect of which can then be tested in137

ESSES again.138

RESULTS

Here we validated the clinical applicability of ESSES to A) identify optimal resection strategies that may139

improve surgical outcomes and B) provide estimates of the probability of postsurgical seizure freedom,140

given a surgical plan. The key goal of ESSES is to identify surgical candidates who would have a bad141

outcome (NSF patients) so that the surgical plan can be adjusted. This study combined a retrospective142

analysis on a modeling cohort (N = 15) that was used to set the model hyperparameters (following our143

previous retrospective study (Millán et al. (2023)) on this same cohort), and a pseudo-prospective study144

on a validation cohort (N = 34) to validate ESSES findings and to emulate its clinical application in a145

blind set-up that mimics the clinical presurgical conditions. The researchers were blind to the performed146

surgery and surgical outcome during the application of ESSES to the validation cohort.147

The study was performed as follows:148

1. Seizure model: definition and fitting (modeling cohort). An SIR-type of epidemic spreading149

process modeled seizure propagation over patient-specific brain connectivity. IEEG data from the150

modeling cohort was used to fit the global parameters of the spreading model so that151

ESSES-modeled seizures matched those recorded via iEEG, as shown in figure 1A.152

2. Individualized ESSES framework: patient-specific models. ESSES was individualized for each153

patient: patient-specific MEG brain connectivity defined the network on which ESSES computed154

seizure propagation. Multi-modal patient-specific data, available from presurgical evaluations,155

defined the seed regions (i.e. the seizure onset regions) based on epileptogenicity or seed-probability156

maps.157
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3. Alternative resection strategies (aim A). ESSES incorporates an optimization algorithm to158

determine model-based optimal resection strategies for each patient. These acted as a benchmark159

against which the planned resection for each patient could be tested. These resections were optimal160

in the model in the sense that they minimized modeled seizure propagation.161

4. Simulation of the planned resection strategy (aim B). The resection plan for each patient was162

simulated in ESSES with a virtual resection that emulated the actual surgical resection, and the163

subsequent decrease in seizure propagation was measured.164

5. Statistical analyses (aim B). We compared ESSES’s predictions (steps 3 and 4) between patients165

with good and bad outcome. We defined the NSF class as the positive class for classification and166

prediction testing.167

This analysis pipeline was first implemented in the modeling cohort in a retrospective study that served to168

set all model hyperparameters. Then, steps 2− 5 were applied to the validation cohort in a169

pseudo-prospective study with a blind set-up. The pipeline for the model implementation, detailing at170

which step the de-blinding of each data-type took place, is illustrated in figure 2. A detailed pipeline171

including also the model set-up (modeling cohort) is also included as Supp. figure 7.172

Seizure propagation as an epidemic spreading process173

We modeled seizure propagation by a Susceptible-Infected-Recovered (SIR) epidemic process, as192

illustrated in figure 1. The S-I-R states account respectively for the healthy (pre-ictal), ictal and healthy193

(post-ictal) states, coupled with patient-specific brain connectivity (derived from MEG data) to define the194

local spreading probabilities. The SIR model describes the spread of an infection from an initial set of195

infected nodes, the seed regions, to the other nodes in the network, and the recovery of the infected196

nodes, without re-infections (Barrat, Barthelemy, and Vespignani (2008); Pastor-Satorras et al. (2015)).197

Here we confined ourselves to one of the simplest compartmental SIR models, using a discrete-time198

setting where the spreading probability from node i to node j corresponded to the coupling strength wij199

on the patient-specific brain network and where the recovery probability γ was set to be equal for all200

nodes. The brain network was initially thresholded (by setting the weakest links to zero) at different201

densities ρ indicating the fraction of non-zero links remaining in the network after thresholding (see202

Methods section and Supp. section 5).203
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Figure 1. A Sketch of ESSES’s parameter-fitting scheme. The parameters controlling seizure propagation, namely the

density of links in the network ρ and the global recovery probability γ, were set so as to maximize the similarity between

ESSES-modeled seizures and iEEG-recorded ones for the modeling cohort (eq. 1). Seizures were simulated via SIR dynamics

over MEG patient-specific brain networks, and setting the resection area as the seed of epidemic spreading. B C̄(ρ, γ) map

displaying the average model fit (modeling cohort). The data points indicate the parameters corresponding to the best individual

fit for each patient, with circles (triangles) indicating SF (NSF) cases (corresponding C values can be seen in Supp. figure 2).

Most individual best fits (data-points) fall within the same region (SIR phase transition) but there is large variability (in fact, we

found low signal to noise ratios of approx. 1/2, see Supp. figure 3A). The blue square marks the maximum of the goodness-of-

fit, and the corresponding (ρ, γ) values were used for the subsequent analyses. The y-axis is shown using a logarithmic scale.

174

175

176

177

178

179

180

181

182

The two control parameters of ESSES are thus the global recovery probability γ and the network density204

ρ. We followed the inference method presented in our previous study (Millán et al. (2023)) to fit the205

model parameters to iEEG-recorded seizures of the modeling cohort. We note that the modeling206

framework as presented here differs slightly from the one in Millán et al. (2023), which included an extra207

parameter to set the global spreading rate. The details of the model fit can be found in the methods208
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Figure 2. Processing and analysis pipeline. The patient data were processed in three different steps (blue boxes) for the

validation cohort. Firstly, ESSES’s key ingredients, the patient-specific MEG brain network and the seed-likelihood map, were

processed. The research team remained blind to the resection area and outcome of each patient. The first analysis (AIM A:

Optimization of alternative resections, pink boxes) then took place and the first result (Result 1: Size of the optimal resection

Rop) was obtained. Then, the patients’s resection areas were processed (de-blinding step 1) and the second result was obtained

(Result 2: overlap of Rop with the resection area, RA). AIM B (Simulation of the resection plan, yellow boxes) could then take

place: the simulation of the resection plan, by performing a virtual resection of the resection area. The third and final result

(Result 3: Decrease of spreading δIR(RA)) was then obtained. Then, the second and final de-blinding took place to recover

the outcome of each patient and perform the statistical analyses.
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184

185

186

187

188

189

190

191

section, and the fit results are reported in the supplementary information (Supp. section 5.2, see also209

Supp. figures 2 and 3).210

The degree of similarity between the ESSES and iEEG seizures was measured with the goodness-of-fit211

C(ρ, γ) (eq. 1). The resulting diagram resembled a familiar phase transition (figure 1B), with an interface212

of high goodness-of-fit (yellow regions) corresponding to a roughly constant spreading-to-recovery ratio213

ρ/γ = const, in agreement with other studies (Moosavi, Jirsa, and Truccolo (2022)). The maximum214

goodness-of-fit is indicated by a blue square in figure 1B, and sets the working point of ESSES for the215
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remaining analyses. At this working point, the SF group presented a significantly better fit than the NSF216

group (p = 0.04, see Supp. table 3 and Supp. figure 3B for details).217

A ROC classification analysis indicated a good classification (AUC = 0.79, see Supp. table 4 and Supp.218

figure 3C) between the SF and NSF groups. At the optimal classification point (Youden criterion, Supp.219

figure 3D), all NSF patients were correctly identified. The high sensitivity suggests that all patients220

identified as SF by ESSES could proceed to surgery with high expectations (100% in this group) of a221

good outcome. On the contrary, patients identified as NSF should be examined further (e.g. by222

performing further presurgical evaluations or considering other resection plans) as they had a 57% chance223

of bad outcome with the proposed surgery (to be compared with a 26% chance of bad outcome expected224

simply from the relative group sizes).225

Presurgical hypothesis of the seed regions228

A key ingredient of ESSES is the definition of the epileptogenic or seed regions. Here we defined229

epileptogenicity or seed-probability maps SPi, indicating the probability that each brain region i gave230

rise to a seizure. The seed-probability maps integrated patient-specific multimodal presurgical231

information (encoded in the local patient database (Castor Electronic Data Capture. (n.d.))) in a232

quantitative and systematic manner that was adapted for each patient to include the data from the233

presurgical evaluations that they had undergone (see Methods section and Supp. section 4 for details).234

The resulting seed-probability maps for two representative patients (modeling cohort) are illustrated in235

figure 3B,D together with the corresponding resection areas (panels A, C). The seed-probability maps236

show wider spatial patterns than the resection areas, and may involve several lobes in both hemispheres.237

The resection areas for the two cases shown here were contained within the most likely seed regions. In238

general, the resection areas had a larger seed-probability than expected by chance for all patients. We did239

not find significant differences in the overlap between the resection areas and the seed-probability maps240

between SF and NSF patients (see Supp. figure 1).241

Optimal resection strategies242

ESSES can derive individualized alternative resection strategies –that minimize modeled seizure253

propagation– via an optimization algorithm based on simulated annealing (Millán et al. (2022); Nissen et254
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Figure 3. Seed-probability maps. Resection areas (left) and seed-probability maps (right) as derived from the database with

presurgical information for two representative cases from the modeling cohort: patient 3 (SF, top) and 6 (NSF, bottom).

226

227

al. (2021)). The optimization algorithm parameters were set on the modeling cohort data (see Methods255

section for the algorithm details, and Supp. section 5.3 and Supp. figures 4 and 5 for the modeling cohort256

results), and the algorithm was then applied to the validation cohort in a blind setting.257

The optimization algorithm searched for resections R of increasing size S(R) that minimized the seed258

efficiency ER(seed), i.e. the average distance (on the network) from the seed nodes to the other network259

nodes. This procedure exploits the link between epidemic spreading dynamics and network structure,260

such that spreading to a region is strongly influenced by its distance to the seed (Pastor-Satorras et al.261

(2015)). In figure 4A we show the normalized seed efficiency eR(seed), which is normalized to the seed262

efficiency in the unresected network so as to diminish differences due to seed extent and initial efficiency.263

eR(seed) decreased with the size of the resection for all patients. At the group level, the SF group showed264
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Figure 4. Optimal (alternative) resection strategies (validation cohort). Effect of optimal virtual resections of size S(R) as

measured by A the normalized seed efficiency eR(seed), and B normalized decrease in seizure propagation δIR(R). Blue

dashed lines stand for NSF patients, and pink solid lines for SF patients. Thin lines show individual patients, and darker wide

lines the group averages, with shaded areas indicating the standard deviations. The apparent darker pink line at the top of the

plot arises from overlap of several individual lines. C-H Group level comparison of the size of optimal resections S(Rop) (C-E)

and their overlap with the resection area Ov(Rop, RA) (F-H). Panels C and F show the distribution of values of each patient

group, with significance results obtained with exact two-sided Wilcoxon ranksum tests. Panels D and G show the corresponding

ROC classification analyses, where TPR and FPR stand respectively for the true positive (NSF cases classified as NSF) and

false positive (SF cases classified as NSF) rates. Finally, panels E and H show the confusion matrices corresponding to the

optimal point (Youden criterion, black asterisks in the middle panels) of the ROC curves.

243
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247

248

249

250

251

252
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a significantly smaller eR(seed) than the NSF group (repeated measures ANOVA test, F (19) = 37.95,265

p < 10−89), for all considered seed sizes except S(R) = 1. Moreover, the effect of increasing the266

resection size on eR(seed) was larger for the SF than for the NSF group (F (19) = 3.78, p < 10−6).267

The actual effect of a resection R on modeled seizure propagation was quantified by measuring the268

normalized decrease in seizure propagation due to the resection, δIR(R) (figure 4B), again relative to269

propagation on the unresected network. Seizure propagation depended heavily on the seed realization270

such that a bi-stable regime emerged in which ESSES seizures either propagated macroscopically or died271

locally (an exemplary case is shown in Supp. figure 4). Thus, results reported here were averaged over272

300 independent realizations of the seed regions and SIR dynamics. At the group level, the SF group273

presented a larger decrease in seizure propagation (F (19) = 25.88, p < 10−65), and a larger effect of274

increasing the resection size (F (19) = 2.90, p = 4 · 10−5). There were large differences in the275

dependence of δIR(R) on the resection size between different patients. Whereas in the majority of the276

cases δIR(R) increased roughly exponentially with S(R), for several patients there was an abrupt277

(discontinuous) jump at a given resection size.278

We defined the optimal resection Rop as the one leading to a 90% decrease in seizure propagation,279

δIR(Rop) = 0.90. The SF group had significantly smaller optimal resections, and these presented a280

significantly larger overlap with the actual resection strategy Ov(Rop, RA) (see panels C and F of figure281

4, and table 1), than the NSF group. We found good classification results using either of these variables to282

classify between the SF and NSF groups (AUC = 0.71, 0.69 respectively for S(Rop) and Ov(Rop, RA),283

see figure 4D,G). Both variables led to very similar classification results at the optimal classification284

point (Youden criterion), correctly identifying 6/8 NSF cases (panels E and H). The classification results285

for the validation cohort are summarized in table 2 (see Supp. table 4 for the modeling cohort results).286

In summary, these results indicate that the planned resection strategy (accounted for here by the resection287

area) presented a larger overlap with the optimal resection for patients with good outcome. In particular,288

90.0% of SF and 42.9% of NSF patients were correctly classified by Ov(RA,Rop). Remarkably, ESSES289

could also distinguish between SF and NSF patients without taking into account the information of the290

surgical plan. In fact, up to 90.4% of SF and 46% of NSF patients were correctly identified by S(Rop) (in291

relation to only a 76.5% SF-chance and 23.5% NSF-chance according to the group ratios). As this292

analysis did not depend on the planned resection strategy, a bad prognosis would be indicative of the need293
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to perform a more exhaustive presurgical evaluation, and potentially imply an unavoidable294

non-seizure-free outcome after any surgery.295

Finally, we note that almost equivalent results may be obtained by considering the disconnecting296

resection, i.e. the smallest resection leading to disconnection of the seed, instead of the optimal resection297

(see Supp. section 5.4 and Supp. figure 6). This is due to the strong link between network topology and298

emergent SIR dynamics, a result that can be used to speed up computations considerably, by using a299

purely network-based analysis of the effect of different resection strategies.300

Simulation of the surgical plan301

We simulated the effect of the planned surgery in ESSES for each patient by performing virtual302

resections of the resection area, which was considered as a proxy for the surgical plan here. We report303

here on the results for the validation cohort (figure 5), results for the modeling cohort can be found in the304

supplementary information (Supp. section 7, Supp. figure 8). As in previous sections, all modeling305

details had already been set during the modeling step. The effect of the resection strategy on (modeled)306

seizure propagation, δIR(RA), was significantly larger for the SF than the NSF group (figure 5B, table307

1). A ROC classification analysis revealed a good classification between the two groups (AUC = 0.78,308

figure 5C) and at the optimal point (Youden criterion, black asterisk in panel C) the majority of the309

patients were correctly identified (figure 5D, table 2). In particular, there was a 91.3% chance that a310

patient classified as SF had a good outcome, and a 54.5% chance that a patient classified as NSF had a311

bad outcome, compared to a 76.5% and 23.5% chance based on the relative group sizes.312

Prediction of surgical outcome321

The classification analyses in the previous sections were informed by each patient’s surgical outcome. In322

a prospective setting the outcome for the patient is not yet known, and thus cannot be used to build the323

classification model. In order to emulate a true prospective setting, we performed a prediction analysis324

based on leave-one-out crossvalidation. That is, in order to predict the outcome of each patient of the325

validation cohort, a prediction model was built using data from the remaining 33 cases. Results from this326

analysis are shown in figure 6, with the statistical details reported in table 3. The prediction results were327

slightly worse than the classification ones (previous sections), particularly for the NSF class where there328
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Figure 5. Simulation of the planned resection strategy (validation cohort). A The top panel shows seizure propagation IR

before (left point cloud for each patient) and after (right point clouds) the resection, for 300 iterations of the seed regions, for

each patient. The bottom panel shows the average relative decrease in seizure propagation δIR(RA), with errorbars given by

the standard deviation over seed iterations. B Comparison of the relative decrease in seizure propagation δIR(RA) between

the SF and NSF groups. Each point corresponds to one patient. C ROC curve of the group classification based on δIR(RA).

TPR and FPR indicate respectively the true positive (NSF cases classified as NSF) and false positive (SF cases classified as

NSF) rates. D Classification results for the optimal point (black asterisk in panel C) of the ROC curve according to the Youden

criterion.

313

314

315

316

317

318

319

320

was a 12.5% reduction in the group size. In any case, respectively 4, 5 and 5 NSF cases and 19, 18 and 21329

SF cases were correctly identified by each ESSES biomarker (figure 6A). Moreover, 75% of NSF cases330

(6/8) and only 19.2% (5/26) of SF cases were identified by two or more biomarkers as NSF (figure 6B).331

For this cohort, if ESSES predicted a good outcome with at least two markers, there was a 80.8% chance332
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of seizure freedom after the surgery (compared to a 76.5% expectancy of surgery success according to the333

group rates). Conversely, if the model predicted a bad outcome, then there was a 75% chance that the334

surgery would fail (compared to a 23.5% expectancy of surgery failure according to the group rates). In335

clinical practice, a good ESSES prediction could then be interpreted as a large (80.8%) chance of seizure336

freedom after the surgery and thus support the decision to proceed with surgery. On the contrary, a bad337

ESSES prediction would indicate a 76.5% chance that the surgery would fail. This may be suggestive of338

the need of more presurgical evaluations or a different resection strategy, and eventually indicate a low339

probabily of complete seizure freedom after the surgery.340

Finally, in order to test whether the information provided by the three biomarkers could be combined to341

improve the prediction results, we performed a machine learning analysis using an adaptive boosting342

algorithm with random undersampling and leave-one-out cross-validation (figure 7A,B). The input343

variables for the classification algorithm were δIR(RA), S(Rop) and Ov(RA,Rop). We found that, even344

though the accuracy of the model was good (0.71) the machine learning model was biased towards the345

majority class (SF), with only 35% of NSF cases correctly identified (precision = 0.37, sensitivity346

= 0.35) and a poor result for F1 = 0.36, even though the considered algorithm (RUSboost) was designed347

to correct for class imbalance. However, the minority class in our case contained only 8 cases, likely348

preventing the model from being able to generalize. In order to address this issue, we created a combined349

cohort (N = 49) pooling together the patients from the modeling and validation cohorts (figure 7C,D).350

The combined cohort had 12 NSF cases (50% increase), and the new model was able to identify the351

majority of NSF cases correctly (72% of SF cases and 63% of NSF cases). Even though the accuracy of352

the model (0.70) did not improve, the remaining measures, which are less affected by class imbalance,353

did (precision = 0.42, sensitivity = 0.63, F1 = 0.51). Overall, the machine learning model was not able354

to improve upon the results found using the individual variables (see table 3), and indeed the prediction355

was predominantly based only on one biomarker, namely the effect of the planned resection on the356

modeled seizures, δIR(RA). Due to the small sample size, we could not determine whether this was due357

to intrinsic model limitations, suboptimal hyperparameters, or simply a too small group size (particularly358

of the minority class). Our set-up (leave-one-out cross-validation combined with random undersampling)359

was designed to minimize the effects of the small sample size, but could not avoid them fully.360
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Figure 6. Prediction of surgical outcome: validation cohort. A Prediction results using each of the three model-based

biomarkers of surgical outcome: the size of optimal resections S(Rop), the overlap between optimal resections and the resection

area, Ov(Rop, RA), and the decrease in seizure propagation due to simulation of the planned resection strategy, δIR(RA). NSF

(SF) cases are shown by black (white) rectangles. The bottom row shows the fraction of biomarkers (0 − 3 out of 3) with a

positive (i.e. NSF) classification (refereed to as “Average model prediction” in the figure), for each patient. Surgical outcome

is shown in the top row. NSF cases are highlighted by a red arrow and by red labels. B Relative number of cases identified as

NSF by n biomarkers, n = 0, 1, 2, 3, respectively for the SF (blue, left-side bars, N = 26) and NSF (red, right-side bars,

N = 8) groups.
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362
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364
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367

368

Metric diff rks p

δIR(Rop) −4.34 411.5 0.03

Ov(Rop, RA) 0.20 495.5 0.03

δIR(RA) 0.26 513 0.02
Table 1. Summary of statistical comparisons: difference between SF and NSF groups (validation cohort). diff and rks stand respectively for the difference

between the SF and NSF groups and the ranksum value.
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Figure 7. Prediction of surgical outcome using a machine learning algorithm (RUSBoost) with leave-one-out cross validation.

As input variables we used the normalized decrease in seizure propagation after virtual resection of the RA, δIR(RA), the size

of optimal resections S(Rop) and the overlap of optimal and clinical resections Ov(Rop, RA). Panels A,B show the confusion

matrix and predictor importance for the validation cohort (N = 34, 8 NSF), and panels C,D are for the combined cohort

(N = 49, 12 NSF).

369

370

371

372

373

Variable True negatives: SF True positives: NSF Acc. Prec. Sensitivity F1 AUC

S(Rop) 19 0.73 6 0.75 0.74 0.46 0.75 0.57 0.71

Ov(RA,Rop) 18 0.69 6 0.75 0.71 0.43 0.75 0.55 0.69

δIR(RA) 21 0.81 6 0.75 0.79 0.55 0.75 0.63 0.78

Table 2. Results of the classification analyses for the validation cohort. Results correspond to the optimal points of the ROC

curves according to the Youden criterion to account for class imbalance. For each group (SF, NSF), we show the number of

correctly identified cases by absolute number and relative frequency. The remaining columns correspond respectively to the

accuracy (Acc.), precision (Prec.), sensitivity, F1 statistic and area under the curve (AUC).

376

377

378

379
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Variable True negatives: SF True positives: NSF Acc. Prec. Sensitivity F1
V

al
id

at
io

n

S(Rop) 19/26 (= 0.73) 4/8 (= 0.50) 0.68 0.26 0.50 0.38

Ov(RA,Rop) 18/26 (= 0.69) 5/8 (= 0.63) 0.68 0.38 0.63 0.51

δIR(RA) 21/26 (= 0.81) 5/8 (= 0.63) 0.76 0.50 0.63 0.57

Combined 21/26 (= 0.81) 6/8 (= 0.75) 0.79 0.55 0.75 0.65

RUSboost 0.82 0.35 0.71 0.37 0.35 0.36

Combined RUSboost 0.72 0.63 0.70 0.42 0.63 0.51

Table 3. Results of the prediction analyses for the validation and combined cohorts. For each analysis, we used a leave-

one-out crossvalidation such that a predictive model was build to predict the outcome of each patient using the data from the

remaining N−1 patients. For the individual variables, the results correspond to the optimal points of the ROC curves according

to the Youden criterion. For the machine learning analyses, they were derived from an adaptive boosting (AdaBoost1, Matlab

2018) algorithm with leave-one-out crossvalidation, combined with random undersampling (RUSboost) to account for class

imbalance. Results were averaged over 10 iterations of the AdaBoost1 algorithm. For the combined method, the results from

the three individual analyses were combined, and a NSF classification was assigned to patients with at least two positive

(NSF) classifications. For each group (SF, NSF), we show the number of correctly identified cases by absolute number and

relative frequency. The remaining columns correspond respectively to the accuracy (Acc.), precision (Prec.), sensitivity and F1

statistic. For machine learning analyses only the average fraction of correctly predicted cases is shown in the true negatives and

true positives columns, since absolute results can vary per realization of the prediction algorithm.
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390

DISCUSSION

Personalized models of brain dynamics can aid the treatment of patients with neurological disorders. In391

this study we presented ESSES (Epidemic Spreading Seizure and Epilepsy Surgery model): a framework392

to aid epilepsy surgery planning on a patient-by-patient basis. ESSES defines individualized seizure393

propagation models that integrate multimodal presurgical data, and can propose alternative resection394

strategies and provide confidence bounds for the probability of success of a given strategy. The395

implementation of ESSES in clinical practice may thus eventually improve the chances of achieving a396

good postsurgical outcome.397
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In this study we proposed a combined setting such that ESSES’ parameters were fitted in a retrospective398

study (N = 15) using iEEG data of ictal activity, in analogy with previous studies (Goodfellow et al.399

(2016); V. Jirsa et al. (2017); Kini et al. (2019); Makhalova et al. (2022); Moosavi et al. (2022);400

H. E. Wang et al. (2023)). We validated that ESSES captured the main aspects of seizure propagation and401

was able to reproduce the iEEG-recorded seizures, in agreement with our previous studies (Millán et al.402

(2022, 2023)). Remarkably, the goodness-of-fit of ESSES-modeled seizures to iEEG data could identify403

patients with a bad outcome with AUC = 0.79, 100% sensitivity and 57% precision. Such information404

may be integrated in the presurgical evaluation of the patients for whom iEEG data is available: different405

resection strategies may be tested as the origin of the ESSES-modeled seizures (Millán et al. (2023)),406

with a low goodness-of-fit being indicative of a low chance of seizure freedom. In particular, a bad407

prediction by the model would indicate (in this cohort) a 57% chance of a bad outcome (to be compared408

with only a 26.7% NSF rate in this cohort). Conversely, all patients identified as SF by the model could409

proceed to surgery with high expectations (100% in this group) of good outcome.410

The novel aspect of this study consisted of a subsequent pseudo-prospective study with an independent411

cohort and in a blind setting. Importantly, we did not require the presence of iEEG data in the412

pseudo-prospective study, and instead the multimodal presurgical information available for each patient413

was integrated into seed-probability maps. In this manner ESSES can be adapted to the information414

available for each patient, in a quantitative and systematic manner. IEEG data is highly invasive and415

burdensome for the patient, and thus not always part of the presurgical evaluation. For instance, only 19416

of the 34 patients of the validation cohort had undergone it. Thus, by not requiring iEEG data ESSES can417

be applied to a much larger patient population than traditional approaches (Goodfellow et al. (2016);418

V. Jirsa et al. (2017); Kini et al. (2019)), with the expected wider impact.419

ESSES may be applied prospectively as follows. First of all, ESSES may suggest optimal resection420

strategies, in analogy with previous studies (An et al. (2019); Laiou et al. (2019); Millán et al. (2022);421

Nissen et al. (2021)), with the advantage that all multi-modal presurgical information available for each422

patient is integrated into ESSES, instead of considering only one source used for network reconstruction.423

We note that these resections are optimal within the framework of the model, and this does therefore not424

guarantee optimal clinical outcome. Nevertheless, we have found that these virtual resections have good425

predictive value of surgical outcome. The optimal resection strategy, defined here as the smallest426
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resection leading to a 90% decrease in (modeled) seizure propagation, can be used as a first indicator of427

the chances of seizure-freedom after any surgery. In our pseudo-prospective predictive framework428

(emulating the presurgical conditions) the size of this resection could predict 50% of patients with bad429

outcome (table 3), whereas the relative NSF rate in this group was 23.5%. This result is independent of430

the resection strategy and it is completely characterized by the presurgical information available for each431

patient. Thus, a bad prognosis could indicate that either the presurgical information available is not of432

sufficient quality, or that the patient is unlikely to be seizure-free with any resection strategy.433

ESSES can also provide information about the prognosis after a particular resection by i) comparing it to434

the optimal ESSES resection strategy and ii) quantifying its effect on seizure propagation in the435

patient-specific ESSES model. Here we found that resections with a larger overlap with the optimal436

virtual resection were more likely to lead to seizure freedom, in agreement with previous studies437

(Goodfellow et al. (2016); Kini et al. (2019); Makhalova et al. (2022)). Similarly, resections leading to a438

larger decrease in seizure propagation in ESSES were associated with a larger probability of439

seizure-freedom after the resection, in agreement with other modeling (Goodfellow et al. (2016); Kini et440

al. (2019)) and network-based (Bartolomei et al. (2017); Lopes et al. (2017); Nissen et al. (2017)) studies.441

Here we considered only the planned resection strategy, which was approximated here by the resection442

area, since this information could be derived in a systematic manner, and this set-up allowed us to443

validate ESSES’ findings. In a presurgical setting, different strategies could be tested to measure the444

probability of seizure freedom after each one. In particular, we found that, when combining the445

information from the three model-based biomarkers (namely the size of the optimal resection, its overlap446

with the planned resections, and the effect of the planned resection on modeled seizure propagation)447

could predict pseudo-prospectively 81% and 75% of SF and NSF cases (see table 3), whereas the relative448

group ratios were 76.5% and 23.5%, respectively. Clinically, this implies that if a good prognosis is found449

by at least two biomarkers, then there is a 91.3% (true negative rate, 21 cases were SF of the 23 predicted450

by the model) chance that the patient will be seizure-free, and the patient can proceed with the surgery451

with the knowledge that they will likely have a good outcome. Conversely, a bad prognosis by at least452

two biomarkers indicates a 55% chance of bad outcome, and may be interpreted as an ESSES suggestion453

to perform more presurgical testing or consider alternative resection strategies. Importantly, epilepsy454

surgery may still improve the quality of life of the patient even when complete seizure freedom can not455
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be achieved. Thus, moderate a priori chance of a bad outcome is not necessarily a contraindication for456

surgery, but it is important in the presurgical counseling of the patients.457

Our findings here did not depend on the presence of iEEG data, and even when iEEG data were available458

we only included a low-resolution description of them. IEEG data does provide the most detailed459

information of epileptogenic activity, and is it often the most valuable tool to identify the epileptogenic460

zone or predict surgical outcome for patients with complicated ethiology (Bernabei et al. (2023);461

Gunnarsdottir et al. (2022); Makhalova et al. (2022); Proix et al. (2017); Runfola et al. (2023); Sinha et462

al. (2017); Y. Wang et al. (2023)). In fact, for the modeling cohort we found the best classification results463

when using the goodness-of-fit of ESSES-predicted seizure propagation patterns to the iEEG seizures, in464

agreement with previous studies (Makhalova et al. (2022)). IEEG imaging however is burdensome to the465

patient, has risk of complications, and has limited spatial coverage. A first prediction of surgical outcome466

could thus be performed with ESSES when the results of non-invasive testing have been obtained, and an467

iEEG study might be avoided if the model already predicts a good outcome with the existing data.468

In summary, we showed here that ESSES could identify patients with good outcome presurgically based469

on i) the smaller size of the optimal ESSES resection strategies, ii) a larger overlap of the planned470

resection strategy with the optimal ESSES resection, and iii) a larger effect of the planned resection471

strategy on decreasing (modeled) seizure propagation. Our findings here indicate that ESSES could be472

generalized to other patient populations (as we did with the validation cohort), with the only requirement473

of a patient-specific brain network, and can incorporate multimodal information from the existing474

presurgical evaluation, in particular without requiring the presence of iEEG data. The ESSES-based475

biomarkers identified here could be taken into account during presurgical planning to evaluate the need476

for more testing, or may lead to the decision to forgo the surgery, if a bad outcome is predicted. This477

extra information may be particularly valuable for patients with complicated ethiology (e.g. discordant478

information from different modalities, variable seizure propagation patterns, multiple seizure onset479

zones), for whom the discussion of whether or not to perform the surgery is challenging.480

ESSES modeling framework481

ESSES consists of different interconnected elements, namely i) the underlying network structure; ii) the482

seizure propagation model (and parameter fitting); iii) the seizure onset zone model; iv) the virtual483
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resection model; and v) the virtual resection optimization algorithm. Each of these different elements was484

designed to model a particular aspect of epilepsy surgery in a synergistic manner. For instance, the485

emergent properties of the seizure propagation model (the SIR model) led the design of the virtual486

resection optimization algorithm. At the same time, the modular organization of the framework allows487

for the independent improvement or modification of each of the modules. In fact, different modules were488

developed and analyzed in detail in our previous studies. For instance, the virtual resection algorithm489

model was initially designed in Nissen et al. (2021) and improved in Millán et al. (2022), whereas the490

seizure propagation and parameter fitting model as used here was mainly defined in Millán et al. (2023).491

Below we discuss the main modeling considerations and results for each ESSES module.492

As the underlying network structure we considered MEG-derived whole-brain networks as a proxy for493

structural connectivity, following our previous works (Millán et al. (2022, 2023)), and in contrast with494

other works (An et al. (2019); V. Jirsa et al. (2017); Nissen et al. (2021); Sip et al. (2021)). MEG provides495

highly temporally resolved information with good spatial resolution and uniform coverage. Our previous496

studies showed that MEG networks based on the amplitude envelope correlation (AEC) can integrate497

information from both short-range structural connections (by not correcting for volume conduction) and498

long-range functional coupling. Thus, AEC-MEG networks can be used as a cost-effective proxy for499

structural connectivity (Millán et al. (2022)) with much lower computational cost than DWI500

(Diffusion-Weighted Imaging) networks, whilst also being more sensitive to long range connections, in501

particular inter-hemispheric ones, that may often be missed by DWI (Chen et al. (2015)). It would be an502

interesting question for future studies to discriminate whether structural or functional connections drive503

seizure propagation, in analogy to recent studies on the spreading of abnormal proteins associated with504

Alzheimer’s disease (Schoonhoven et al. (2023)).505

The MEG networks were thresholded at different levels to prune out spurious connections, following506

previous studies (Millán et al. (2022, 2023); Nissen et al. (2021); Schoonhoven et al. (2023)). This507

requires the use of an arbitrary threshold, which we fitted to the iEEG data. In all cases we considered508

sparse networks (the maximum density considered was 0.35), and the operating point of ESSES was set509

at a very low density (0.03). This small density prevented weak or negative correlations from being510

included in the thresholded network. The proposed thresholding method can become a limitation if511

denser networks, including more connections, are considered.512
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ESSES was based on a simple epidemic spreading model, the SIR model. Epidemic spreading models,513

such as the SIR or SIS (Susceptible-Infected-Susceptible) models, describe the basic aspects of spreading514

phenomena on networked systems (Pastor-Satorras et al. (2015)), and have been used to describe other515

neuro-physiological processes before, such as the spreading of pathological proteins on brain networks516

(Peraza et al. (2019); Schoonhoven et al. (2023)) or the relation between brain structure and function517

(Stam et al. (2016)). Epidemic spreading models have been extensively studied on different network518

substrates (Pastor-Satorras et al. (2015)) and are supported by a well-grounded mathematical and519

computational framework that we can use to our advantage in the context of epilepsy surgery. For520

instance, from an epidemic spreading perspective, it is to be expected that hub removal plays a major role521

in the decrease of seizure propagation, as found experimentally (Lopes et al. (2017); Nissen et al.522

(2017)), with the spreading threshold heavily influenced by the existence of hubs (Pastor-Satorras et al.523

(2015)). This theoretical background guided the design of an efficient virtual resection optimization524

algorithm, such that the decrease in seizure propagation after a virtual resection could be approximated525

by the decrease of centrality of the seed regions.526

As we showed here and in previous works, epidemic spreading models can also reproduce the527

fundamental aspects of seizure propagation at the whole-brain level in epilepsy patients (Millán et al.528

(2022, 2023)). As ESSES’s working point we chose here the values of the global parameters that led to529

the maximum average goodness-of-fit of the modeling cohort (figure 1). Importantly, ESSES was still530

individualized for each patient by means of the patient-specific brain connectivity, setting the local531

spreading probabilities, and the patient-specific seed regions (based on the seed-probability maps built532

with multi-modal presurgical information). As we showed in our previous study (Millán et al. (2023))533

and in the supplementary information here (Supp. section 5.2), by not individualizing the global model534

parameters (namely ρ and γ) for each patient we were able to reduce noise effects by integrating together535

ictal data from different patients. Moreover, this formulation allowed us to generalize ESSES to patients536

for whom iEEG seizure-propagation patterns were not available.537

Our findings in this study indicated that the iEEG seizure propagation patterns were significantly better538

explained by ESSES for SF patients, and in fact all NSF cases could by identified by a bad ESSES fit,539

and 73% of the SF cases by a good fit. There are several possible explanations for these findings. Given540

that the epidemic seed was based on the resection area for each patient in this part of the analyses, a541
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simple explanation is that the resection strategy might have been better for SF patients given the existing542

information. However, the difference could also arise from the iEEG data: the sampling may have been543

inadequate for NSF patients (Sip et al. (2021)), or these may have presented seizure dynamotypes (Saggio544

et al. (2020)) that were not well-explained by the considered epidemic spreading model (SIR model). The545

fact that the optimization of virtual resections analysis –which did not depend on the clinical resection546

area– also found differences between the SF and NSF groups points towards an intrinsic difference547

between the presurgical data of the two groups, and not only to a sub-optimal surgical strategy for the548

NSF group.549

The next ingredient of ESSES was the definition of the seizure onset zone in the model, that is, the set of550

brain regions from which seizures originate. In this study we presented a method to combine the551

multimodal presurgical information available for each patient into seed-probability maps. This set-up552

thus emulated the clinical situation prior to the surgery, where a surgical strategy has been devised based553

on the information that is available from the presurgical evaluation. It would also allow for flexibility in554

the clinical application of ESSES: if more evaluations become available these could be readily integrated555

into the seed-probability map to update ESSES’s results.556

The final key ingredients of ESSES were the simulation and optimization of resection strategies. Here we557

considered a node-based resection such that the resected nodes were disconnected from the network. This558

approach however does not take into account possible widespread effects or plasticity mechanisms,559

which could also be included into the model (Demuru et al. (2020)). The virtual resection optimization560

algorithm was originally validated in our previous studies (Millán et al. (2022); Nissen et al. (2021)).561

Given that optimizing virtual resections is highly computationally demanding, the algorithm took562

advantage of the mathematical link between network structure and SIR dynamics to reduce the563

dynamics-based optimization problem (i.e. finding the resection leading to a minimum seizure564

propagation) into a network optimization problem (i.e. finding the resection leading to a minimum seed565

efficiency). This was also motivated by our previous finding that the effect of a resection on the model566

depended strongly on the centrality of the seed regions after the resection (Millán et al. (2022); Nissen et567

al. (2021)). In particular, Nissen et al. (2021) found that removing connections to the network hubs was568

the most efficient way to decrease seizure propagation, whereas Millán et al. (2022) verified a strong569

correlation between a decrease in closeness centrality of the seed and a decrease in seizure propagation570
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following a virtual resection. The effect of a resection on seizure propagation is also influenced by other571

network and model properties, and as a consequence the optimal network-based and SIR-based572

resections may differ slightly (Millán et al. (2022)). However, the intrinsic noise in the seed definition, in573

the seed-probability maps, and in the actual origin and propagation patterns of iEEG-recorded seizures574

created variability in the clinical data that absorbed the differences between the network-based and575

SIR-based optimal resections (which we previously found to be small anyway (Millán et al. (2022))).576

The virtual resection optimization algorithm considered here imposed no conditions on the location of577

the resected regions, nor did it force that the resection strategy was made up of only one set of adjacent578

regions. Conditions on the resection strategies could be imposed, such as preserving eloquent cortex or579

forbidding bi-hemispheric resections (An et al. (2019); Laiou et al. (2019)). This would limit the580

dimensionality of the space of possible resection strategies and simplify the computations. However, by581

not imposing any conditions here we derived an optimal ESSES resection against which other, perhaps582

clinically more realistic, strategies could be tested (by e.g. measuring their overlap as we did here).583

Modeling considerations and limitations584

There are inherent limitations in the modeling of virtual resections, as the findings cannot be directly585

tested and we often rely on retrospective data. Here we have attempted to simulate how an epilepsy586

surgery model could be used in the clinic, i.e. prospectively, by considering only the presurgical587

information that is typically available to the clinical team. However, the optimal resections suggested by588

ESSES can still not be tested in practice, and in fact can only be considered optimal within the context of589

the model. Only long-term testing of the framework in the clinic can truly validate the use of590

computational models in epilepsy surgery.591

ESSES is an abstraction of seizure dynamics that does not aim to reproduce the detailed592

bio-physiological processes involved in seizure generation and propagation, but aims to focus only on the593

most relevant features of seizure propagation (Millán et al. (2022, 2023); Nissen et al. (2021); Sip et al.594

(2021)). In order to validate ESSES as a framework to simulate seizures, we compared the modeled595

seizures with those recorded via iEEG. This required, however, a simplified representation of the iEEG596

data. In particular, as there was no intrinsic time-scale in the SIR model, and to avoid introducing an597

arbitrary one, we reduced the iEEG data to a pattern that describes the activation order of the sampled598
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ROIs. Furthermore, even if ESSES provides a good representation of the iEEG seizures, extrapolating599

these results to the simulation of the effect of a resection is not trivial. Moreover, our virtual resection600

technique assumed that the effect of a surgery could be approximated simply by removing or601

disconnecting the resected regions, whereas in practice widespread effects and compensation mechanisms602

are expected (Demuru et al. (2020)). Here we validated ESSES’ results against postsurgical outcome, but603

seizure freedom is not a perfect gold standard either. For instance, in cases with a good outcome a smaller604

resection could potentially also have led to seizure freedom (Millán et al. (2022); Nissen et al. (2021)).605

All modeling frameworks are affected by the need to (sometimes arbitrarily) choose modeling606

parameters, which go from the data reduction process to the choices of thresholds and metrics for the607

final analyses. Here we considered well-established data preprocessing techniques (Hillebrand et al.608

(2016)). ESSES was validated in previous studies (Millán et al. (2022, 2023); Nissen et al. (2021)), and609

importantly we found that the results held for an independent cohort, and that modeling details (such as610

the simulation algorithm for the SIR model) did not affect the main results (Millán et al. (2023)). A611

simple model to simulate seizure propagation (the SIR model), also reduced the number of modeling612

parameters so that the findings could be more easily generalized. Some arbitrary choices were still613

needed, such as the definition of the 90% threshold to select the optimal resection strategy. However we614

validated that similar results were obtained when another resection (the disconnecting resection) was615

considered.616

The seed-probability maps were based on an existing low-resolution database (Castor Electronic Data617

Capture. (n.d.)). Seed regions were consequently widespread over the network. This also led to a large618

variability in the results of different simulations for each patient (see for instance figures 4A,B and 5A),619

as these depended strongly on the seed realization. In order to improve the resolution of the model and620

minimize noise, the data from each modality could be integrated directly into the model, skipping the621

34-region description in the database.622

Finally, a limitation of this study is the small size of the non-seizure-free group, with only 4 cases in the623

modeling cohort and 8 in the validation cohort. This small size limited the classification and prediction624

analyses, and prevented us from building a more sophisticated machine learning model based on our625

analysis. With the proposed leave-one-out-crossvalidation method, combined with random626

undersampling and a small input space (only three data-points per patient), we attempted to overcome627
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these limitations, but we were not able to improve upon the simpler ROC-based prediction results. Future628

studies involving more that one center have the potential to at least diminish this limitation.629

CONCLUSION AND OUTLOOK

Individualized computational models of seizure propagation and epilepsy surgery based on630

patient-specific brain connectivity can reproduce individual iEEG seizure propagation patterns and aid631

epilepsy surgery planning by proposing alternative resection strategies and providing estimates on the632

likelihood of seizure freedom after the surgery. Here we presented the ESSES framework for seizure633

propagation and epilepsy surgery. ESSES combines SIR epidemic spreading dynamics over634

patient-specific MEG brain connectivity with a virtual resection framework. We defined a method to635

derive patient-specific regional epileptogenicity maps from the presurgical evaluations of the patients in a636

systematic and quantitative manner, and integrated them into ESSES. We performed a637

pseudo-prospective study emulating the use of ESSES in clinical practice, prior to surgery. In the638

pseudo-prospective analyses we did not require the presence of iEEG data, demonstrating that the model639

could be applied to larger patient populations. We found that the goodness-of-fit of ESSES to the iEEG640

seizures (in a retrospective study), the effect of the planned resection strategy, as well as the size of641

ESSES optimal resections and their overlap with the planned resection, predicted surgical outcome with642

0.68− 0.76 AUC and 0.50− 0.63 sensitivity to identify non-seizure-free patients. Our results thus643

prescribe the use of ESSES during the presurgical evaluation to evaluate the need for further presurgical644

testing on a case-by-case basis or, conversely, support the decision to proceed with surgery in the case of645

a good-outcome prediction. For cases where a bad outcome is predicted, the surgical plan may be altered646

to include ESSES’s results.647

METHODS

The general design of the study is detailed in figure 2 and Supp. figure 7. Namely, we first set the648

hyperparameters of ESSES using a modeling cohort (N = 15) for which seizure propagation patterns649

derived from iEEG recordings were available. Then, ESSES was fitted with multimodal patient-specific650

data (in the form of seed-probability maps), and it was used to a) identify optimal resection strategies for651

each patient and b) predict the chance of a good outcome after a given resection. Then, ESSES was652
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applied to a validation cohort (N = 34) in a pseudo-prospective analysis with a blind setting to emulate653

the presurgical conditions. That is, during the application of ESSES to determine optimal resection654

strategies, the researchers were blind to the actual clinical resection and surgical outcome of each patient.655

This data was subsequently de-blinded in two stages. First, the resection areas were obtained to be used656

as a proxy for the surgical plan of each patient to a) compare them with ESSES’s optimal resection657

strategy, and b) simulate the effect of the surgical plan in ESSES. Finally, we de-blinded the one-year658

surgical outcome to enable a statistical validation of the results.659

Patient groups660

We included two patient groups in this study, the modeling cohort for the model definition (retrospective661

study) and the validation cohort for the pseudo-prospective validation. All patients had undergone662

resective surgery for epilepsy at the Amsterdam University Medical Center, location VUmc, between663

2013 and 2019. All patients had received an MEG recording, and underwent pre- and post-surgical664

magnetic resonance imaging (MRI). All patients gave written informed consent and the study was665

performed in accordance with the Declaration of Helsinki and approved by the VUmc Medical Ethics666

Committee. The excluding criterion was the existence of a prior brain surgery.667

Both patient groups were heterogeneous with temporal and extratemporal resection locations and668

different etiology (see Supp. tables 1 and 2 for details). Surgical outcome was classified according to the669

Engel classification at least one year after the surgery (Engel Jr (1993)). Patients with Engel class 1A670

were labelled as seizure-free (SF), and patients with any other class were labelled as non-seizure-free671

(NSF). The modeling cohort consisted of 15 patients (4 NSF, 11 females) who had also undergone an672

iEEG (invasive electroencephalography) study, including post-implantation CT-scans. This same cohort673

was already included in Millán et al. (2023), and partially in Millán et al. (2022). The validation cohort674

consisted of 34 patients (8 NSF, 13 females). No extra requirements (other than the presence of an MEG675

recording of sufficient quality) were placed. In order to maintain the pseudo-prospective setting, the676

research team was blind to the resection area and outcome of the validation cohort patients. In order to677

perform the final analyses, for which this information was needed, the data was coded to avoid678

identification. For two cases of the validation cohort (cases 2 and 9) the data of surgical outcome was679
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de-blinded together with the data of the resection area as the research team became aware of a subsequent680

resective surgery (indicative of a bad outcome of the first surgery).681

Individualized Brain Networks682

Seizure propagation was modeled on the patient-specific brain networks, as derived from MEG data, for683

both cohorts (see Supp. figure 7). For each patient, a 10 to 15 minutes eyes-closed resting-state (supine684

position) MEG recording was used to derive broadband (0.5 - 48.0 Hz) MEG functional connectivity. All685

instrumental and methodological details were equal to our previous studies (Millán et al. (2022, 2023))686

and are detailed in the supplementary information (Supp. section 2). Functional networks were generated687

considering each of the 246 ROIs of the Brainnetome (BNA) atlas (Fan et al. (2016)) as nodes. The688

elements wij of the connectivity matrix, indicating the strength of the connection between ROIs i and j,689

were estimated by the AEC (Amplitude Envelop Correlation) (Brookes et al. (2011); Bruns, Eckhorn,690

Jokeit, and Ebner (2000); Colclough et al. (2016); Hipp, Hawellek, Corbetta, Siegel, and Engel (2012)),691

without including a correction for volume conduction. The uncorrected AEC maintains information692

about the structural connections, which are mainly determined by the distance between each ROI pair, by693

not correcting for volume conduction. We validated the relationship between AEC-MEG and structural694

networks in a previous study (Millán et al. (2022)) by comparing them with a well-validated model for695

structural connectivity: the exponential distance rule (EDR) network. Based on animal studies, the EDR696

specifies that the weights of structural connections in the brain, wij , decay exponentially with the697

distance between the ROIs dij (Ercsey-Ravasz et al. (2013); Gămănuţ et al. (2018); Theodoni et al.698

(2022)), i.e. wij ∝ exp(−αdij). Recent studies have corroborated this behavior also in human structural699

connectivity (Deco and Kringelbach (2020); Deco et al. (2021); Roberts, Perry, Roberts, Mitchell, and700

Breakspear (2017)), although the EDR cannot capture all details of white matter connectivity, as this is701

not isotropic (Betzel and Bassett (2018); Jbabdi, Sotiropoulos, Haber, Van Essen, and Behrens (2015);702

Markov et al. (2013)), and includes long-range connections that are missed by the EDR (Roberts et al.703

(2016)). However, the EDR is enough to capture the overall scaling of structural connections with the704

distance as observed in the human structural connectome. In Millán et al. (2022) we validated that705

AEC-MEG networks were strongly correlated (R2 = 0.50) with the corresponding EDR networks,706

therefore showing that AEC-MEG reproduces at least partially the overall organization of structural707

connectivity. Moreover, AEC-MEG networks also include long-range connections that may promote708
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seizure propagation, but that may be missing from structural (i.e. DWI) networks (Jones, Knösche, and709

Turner (2013); Reveley et al. (2015)). Thus, uncorrected AEC-MEG networks are a convenient way to710

construct a network that resembles a structural network and includes long-range connections.711

AEC values were re-scaled between 0 (perfect anti-correlation) and 1 (perfect correlation), with 0.5712

indicating no coupling (Briels et al. (2020)). Functional networks were thresholded at different network713

densities ρ indicating the fraction of links remaining in the network. We note that the networks were714

thresholded but not binearized, so that wij could take values between 0 and 1. The density thresholds715

were chosen to be logarithmically distributed between 0.01 to 0.35. The weakest non-zero link included716

in the network had an average weight of 0.54 (range: 0.52 - 0.56) for ρ = 0.35. At ESSES’s operating717

point (best model fit) the density was ρ = 0.03, and the weakest non-zero weight was 0.71 (range: 0.67 -718

0.76).719

Resection Area720

The resection area (RA) was determined from the three-month post-operative MRI. For the modeling721

cohort the resection areas were obtained as part of two previous studies (Millán et al. (2022, 2023)). For722

the validation cohort, to maintain a completely blind setting for the first analysis (Optimization of723

alternative resections), the resection areas were obtained during a second pre-processing step, as724

described in figure 2. Cases 9 and 20 of the validation cohort underwent the post-operative MRI on a725

different MRI scanner at their resection center, respectively one day and three weeks after the surgery.726

Case 9 also lacked a 3-month postoperative MRI, an MRI from 2 years after the surgery was used instead.727

The post-resection MRIs were co-registered to the pre-operative MRI using FSP FLIRT (version 4.1.6)728

12 parameter affine transformation. The resection area was then visually identified and assigned to the729

corresponding BNA ROIs, namely those for which the centroid had been removed during surgery.730

iEEG Seizure Propagation Pattern731

Patients in the modeling cohort underwent invasive EEG recordings using stereotactic electrode732

implantation as described in Millán et al. (2023). One characteristic iEEG-recorded seizure from each733

patient was used to derive a seizure propagation pattern in terms on the BNA ROIs, the iEEG seizure734

pattern, as described in Millán et al. (2023) and in the Supp. section 3.735
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Seizure Propagation Model736

ESSES was based on our previous studies (Millán et al. (2022, 2023); Nissen et al. (2021)) where we737

showed that simple epidemic spreading models could reproduce the spatio-temporal seizure-propagation738

patterns derived from invasive EEG recordings, and that they could be used to simulate the effect of739

different resection strategies in silico. ESSES was based on a well-known epidemic spreading model: the740

Susceptible-Infected-Recovered (SIR) model (Pastor-Satorras et al. (2015)), which was simulated on the741

patient-specific MEG brain network. The SIR model simulated the propagation of ictal activity from a set742

of seed regions that were set to be infected at the beginning of the simulation to the remaining nodes in743

the network, and the subsequent recovery of infected nodes. The SIR dynamics were defined by two744

parameters: the probability βij that each infected node i propagates the infection to a neighbour j745

(S → I), and the probability γi that each infected node i recovers (I → R). For simplicity, we considered746

here a global recovery probability γi = γ, and spreading probabilities given by the MEG network747

connectivity: βij = wij . Thus, the spreading rate was determined by the density of connections in748

network ρ. The two control parameters of ESSES are thus the network density ρ, and the recovery749

probability γ. Depending on the network structure, the epidemics can show different spatio-temporal750

spreading profiles described by the probability pi(t) that each ROI i becomes infected at step t.751

ρ and γ were fitted to the iEEG seizure-propagation patterns at the group level. The resection area was set752

as the seed of epidemic spreading, and an ESSES seizure propagation pattern was built that described the753

set of infected and non-infected ROIs during the SIR-simulated seizures, as well as the order in which754

infected ROIs became infected. In order to take into account the stochastic nature of the SIR dynamics,755

the participation of each ROI was weighted by the fraction of realizations in which it was involved in the756

simulated seizure (since different ROIs became infected in different realizations). The goodness-of-fit of757

the model, C(ρ, γ) (Millán et al. (2023)), quantified how similar the ESSES and iEEG patterns were. It758

took into account two factors: the weighted correlation between activation orders of ROIs that were active759

in both patterns, Cw, and the overlap between the active and inactive ROI sets of both patterns, Poverlap, i.e.760

C = Cw · Poverlap. (1)

The details of this definition can be found in Supp. section 5.2.761
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We estimated C for a range of values ρ and γ logarithmically distributed (between 0.01 and 0.35 for ρ762

and between 0.01 and 1.00 for γ), considering NR = 104 iterations of the SIR dynamics 10 times in order763

to determine average C values and their fluctuation for each patient. We then found the parameter set that764

maximized C for each patient (see Supp. section 5.2 and Supp. figure 2) and at the group level (figure765

1A). The model parameters that lead to the best fit at the population level defined the ESSES model and766

were carried over to the pseudo-prospective analyses. Importantly, even though the SIR global767

parameters were set equal for all patients, ESSES was individualized for each patient by means of their768

patient-specific MEG brain connectivity, which defined the spreading probabilities, and their769

patient-specific seed-probability map, which defined the seed regions.770

The SIR dynamics was simulated by an adaptive Monte Carlo method (the BKL algoritihm) in Matlab in771

discrete time, such that at each time step one new node became infected. NR = 104 iterations of the772

dynamics were run for each model configuration in all analyses.773

Presurgical hypothesis of the seed regions774

We built seed-probability maps indicating the probability that each ROI started a seizure, for each patient775

of both cohorts. This is a key difference with our previous studies, where the seed regions were either776

derived from the resection area (Millán et al. (2022, 2023); Nissen et al. (2021)), which can only be777

known after the surgery, or from the iEEG data (Millán et al. (2022, 2023)). Here we defined a778

framework to integrate data from the different presurgical evaluations that were available for each patient,779

which was encoded in an existing database (Castor EDC, Ciwit B.V., Amsterdam (Castor Electronic780

Data Capture. (n.d.))).781

To compute the seed-probability maps, we considered the information available from 6 presurgical782

modalities: i) presence of ictal activity in EEG, ii) MRI lesions, iii) MEG abnormalities, iv) PET lesions,783

v) SPECT abnormalities and vi) iEEG recordings of ictal activity. All patients had undergone an EEG,784

MRI and MEG study, but not all of them presented PET, SPECT or iEEG data. The presence (1) or785

absence (0) of data of each modality was encoded in a variable Dm = 0, 1, m = 1, 2, ..., 6, for each786

patient.787

The database included information at the level of 34 regions, consisting of 6 frontal regions788

(fronto-orbital, frontal-basal, frontal-parasagitaal, frontal-periventricular, frontal-lateral,789
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frontal-operculum), 6 temporal regions (hippocampus, amygdala, uncus, anterior-neocortical,790

posterior-neocortical, gyrus-parahippocampalis), 2 insular regions (anterior and posterior insula), 1791

central, 1 parietal and 1 occipital region, for each hemisphere. The temporal and frontal lobes are the792

most often involved in EZ and resection strategies, and thus are described in more detail in the database.793

For each region i and modality m, the database indicates the presence (1) or absence (0) of abnormalities,794

from which we derived binary abnormality maps ai,m = 0, 1. The overall abnormality map Ai was795

obtained by aggregating over all modalities available for each patient. Not all modalities are equally796

relevant to establish the probability that a region is involved in epileptogenic activity: EEG is the least797

focal, whereas iEEG provides the most localized information, and its results also integrate information798

from the other modalities (as these affect where the iEEG electrodes are placed). In order to gauge these799

differences, we weighted each modality m by a relevance factor ωm, with ω = 1 for EEG, 2 for MRI,800

MEG, PET and ISPECT, and 4 for iEEG. Thus, the overall abnormality map was defined as801

Ai = n−1

6∑
m=1

Dmωmai,m, (2)

where the normalization factor n is defined as n =
∑6

m=1Dmωm802

A clinician (ECWvS) defined a unique projection of the regions in the database on to the BNA ROIs. In803

most cases the database regions corresponded to well-defined gyri that are also well-described in the804

BNA documentation. A table describing the projection is included as supplementary material. We805

projected the abnormality map Ai from the low-resolution description into the BNA atlas to obtain the806

seed-probability maps SPi, with i = 1, 2, ..., 246. Given that the description provided by the database807

was broad and homogeneous (i.e. the considered ROIs are much larger than the BNA ROIs), and that808

co-occurrence of abnormalities in different modalities is a strong indicator of the epileptogenic zone, we809

included a re-scaling factor R to produce more focal seed-probability maps: SPi = (Aj)
R, where j is the810

region in the database corresponding to the BNA ROI i. We found that for R > 2 the results did not811

depend strongly on R, and report here for R = 3.812

Virtual Resections813

We conducted virtual resections of sets of nodes R by disconnecting them from the network, by setting to814

0 all their connections. The effect of each resection was characterized by the normalized decrease in815
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seizure propagation δIR(R) in the resected network (R) with respect to the original (0) one:816

δIR(RA) = (IR0 − IRR)/IR0, (3)

where IR is the fraction of nodes that became infected at any point during the modeled seizure, namely,817

IR = I(t → ∞) +R(t → ∞). (4)

That is, IR takes into account all nodes that became infected during the simulated seizure, regardless of818

whether they eventually recovered or not. This characterizes the total extent of the simulated seizure.819

We performed two virtual resection studies, as detailed in figure 2. Firstly, we performed an Optimization820

of alternative resections analysis. We derived optimal virtual resections R of increasing sizes S(R)821

(defined as the number of resected nodes) with an optimization algorithm based on simulated annealing822

(Kirkpatrick, Gelatt, and Vecchi (1983)) and derived in our previous studies (Millán et al. (2022); Nissen823

et al. (2021)). The optimization method took advantage of the relationship between SIR spreading and824

network structure to use a structural metric –the seed efficiency– as a proxy for the actual effect of the825

resection on seizure propagation δIR(R). Thus, for each resection size S(R), the simulated annealing826

algorithm searched for the resection R that minimized the seed efficiency ER(seed) (Barrat et al. (2008);827

Brockmann and Helbing (2013); Pinto, Thiran, and Vetterli (2012)). ER(seed) measures the inverse828

average distance from the seed nodes to the remaining nodes in the network:829

ER(seed) =
1

NseedN2

∑
i∈seed

∑
j∈S2

1

dij
, (5)

where dij is the distance (in the network sense) between nodes i and j, S2 is the set of nodes that do not830

belong to the seed, N2 the size of this set, and Nseed the number of nodes that belong to the seed. In case831

of network disconnection, only nodes in the giant component were included in the seed and S2 sets.832

All nodes were considered as possible targets of the resection. To compare between different patients we833

defined the normalized seed efficiency834

eR(seed) = ER(seed)/E0(seed), (6)

where E0(seed) is the seed efficiency in the original (un-resected) network. The actual effect of each835

resection was quantified by the seizure propagation level after the resection, IR(R), and the normalized836
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decrease in seizure propagation δIR(R). We defined the optimal ESSES resection Rop, as the smallest837

resection leading to (at least) a 90% decrease in (modeled) seizure propagation. This resection was838

characterized by its size S(Rop) and overlap with the resection area Ov(RA,Rop). We also defined the839

disconnecting resection RD as the smallest resection that lead to seed disconnection (see Supp. section840

5.4 and Supp. figure 6).841

In the second virtual resection study, we simulated the effect of the planned resection for each patient, to842

measure its effectiveness in reducing seizure propagation. The resection area was used as a proxy for the843

resection strategy (figure 2: Simulation of the resection plan), since it could be derived in a systematic844

manner from the data.845

For all virtual resection analyses the seed regions were derived from the patient-specific seed-probability846

maps, and the underlying network was given from the patient-specific MEG network as before. In order847

to obtain precise results, the effect of each resection was averaged over 300 independent realizations of848

the seed regions from the seed-probability maps. As described in figure 2, for the validation cohort we849

first performed the Optimization of alternative resections in a blind setting. Then the resection areas were850

de-blinded and used as a proxy of the planed resection strategy to i) quantify the overlap of ESSES’s851

optimal resections with the resection strategy and ii) measure the effect of the planed resection in852

decreasing (modeled) seizure propagation. Finally the one-year postoperative outcome was also853

de-blinded and used for the statistical analyses.854

Statistics855

The weighted correlation coefficient was used to determine the correlation between the iEEG and ESSES856

seizure propagation patterns for the modeling cohort. In all analyses, for comparisons between SF and857

NSF patients, we used a two-sided Wilcoxon ranksum test. Significance thresholds for statistical858

comparisons were set at p < 0.05.859

We performed receiver-operating characteristic (ROC) curve analyses to study the patient classification860

based on i) the goodness-of-fit of the model (modeling cohort), ii) the size of optimal and disconnecting861

resections (modeling and validation cohorts), iii) the overlap between optimal resections and the planed862

resection (modeling and validation cohorts), and iv) the effect of the planed resection on modeled seizure863
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propagation (modeling and validation cohorts). A positive result was defined as bad outcome864

(non-seizure-free, NSF) classification.865

In order to account for the noise in the SIR model, the spreading dynamics were averaged over 104866

iterations of the SIR dynamics to derive each ESSES seizure pattern. The model fit analyses were867

repeated 10 times to obtain averaged values. For the Virtual resection analyses we performed 300868

independent realizations of the seed regions and SIR dynamics. Each seed realization was used to869

measure seizure propagation in the original (before any resections) network and after the selected870

resection of each size. For the Optimization of resections analysis we also ran the simulated annealing871

algorithm 10 times for each resection size and selected the iteration that led to the minimal seed872

efficiency.873

For the classification analyses we report the accuracy= (TP + TN)/(TP +FP +FN + TN), precision874

= TP/(TP + FP ), sensitivity= TP/(TP + FN), F1 statistic (harmonic mean between precision and875

sensitivity) = 2TP/(2TP + FP + FN), and area under the curve AUC. For the prediction analyses, we876

built a predictive model for each patient using the data from the remaining patients, in a leave-one-out877

crossvalidation-type setting. The predictive model compounded the prediction results from these N = 34878

models. We measured its accuracy, precision, sensitivity and F1 statistic.879

In the final analysis of the study we performed a predictive Machine Learning analysis based on the880

AdaboostM1 algorithm (Matlab 2018) combined with random undersampling. AdaBoost is an adaptive881

boosting machine learning algorithm in which the weights of mis-classified instances are adjusted882

iteratively to improve the model. By combining adaptive boosting with random undersampling of the883

majority class (SF group), the classification algorithm effectively addresses class imbalance and reduces884

bias to the majority class and overfitting risks (AdaboostM1 - Matlab 2018. (n.d.); Friedman, Hastie, and885

Tibshirani (2000)).886

For each patient, three variables were considered as input for the prediction analysis: the size of the887

optimal resection S(Rop), its overlap with the resection area Ov(Rop, RA), and the effect of the resection888

strategy on modeled seizure propagation δIR(RA)). The goal of the machine learning algorithm was to889

predict surgical outcome. Due to the small cohort size, we performed a leave-one-out-cross-validation890

procedure, such that Npat different training sets were created, each leaving out one patient, which was891
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then used to test the prediction model. The training sets were formed by randomly undersampling the892

majority class (SF) to the size of the minority (NSF) class. The small cohort size also prevented us from893

including a validation set and performing parameter-tuning. Thus, we used default hyperparameters of894

AdaboostM1 (see AdaboostM1 - Matlab 2018. (n.d.) for details): the number of learners in each model895

was set equal to the group size minus one, the learning rate was set to 1.0 (default) and results were896

averaged over 10 iterations of the undersampling and AdaboostM1 procedures for each classification897

model. The machine learning analysis was performed twice: first considering only the patients in the898

validation cohort (Npat = 34), and secondly considering all patients (combined cohort, Npat = 49).899
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