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Abstract 

Understanding the electrophysiological basis of resting state networks (RSNs) in the human 

brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain 

function. In recent years, the relationship between RSNs (typically measured using 

haemodynamic signals) and electrophysiology has been explored using functional Magnetic 

Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has 

been made, with similar spatial structure observable in both modalities. However, there is a 

pressing need to understand this relationship beyond simple visual similarity of RSN 

patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. 

Our unique model, based upon a multivariate Taylor series, incorporates both phase and 

amplitude based MEG connectivity metrics, as well as linear and non-linear interactions 

within and between neural oscillations measured in multiple frequency bands. We show that 

including non-linear interactions, multiple frequency bands and cross-frequency terms 

significantly improves fMRI network prediction. This shows that fMRI connectivity is not only 

the result of direct electrophysiological connections, but is also driven by the overlap of 

connectivity profiles between separate regions. Our results indicate that a complete 

understanding of the electrophysiological basis of RSNs goes beyond simple frequency-

specific analysis, and further exploration of non-linear and cross-frequency interactions will 

shed new light on distributed network connectivity, and its perturbation in pathology. 
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1) Introduction 

Functional neuroimaging has brought about a revolution in neuroscience following the 

discovery of spatio-temporal patterns in measurable (resting and task positive) brain 

“activity” (Deco et al., 2011; Engel et al., 2001). In this context, functional Magnetic 

Resonance Imaging (fMRI) has been the dominant imaging modality and has provided the 

neuroscience community with a wealth of information about brain networks and the 

functional connectivities that define them (Bullmore and Sporns, 2009). However, given the 

limited temporal resolution and the indirect assessment of neuronal activity with fMRI, 

research groups are increasingly beginning to employ magnetoencephalography (MEG), 

either alone or alongside fMRI, to better characterise patterns of functional connectivity 

(Larson-Prior et al., 2013). MEG offers specific advantages for network characterisation, 

including (i) more direct assessment of electrophysiological activity and (ii) excellent 

(millisecond) temporal resolution. These advantages suggest that the role of MEG in network 

characterisation will become even more prominent, particularly given the increasing interest 

in the dynamics of functional connectivity (Baker et al., 2014; Hutchison et al., 2013; O'Neill 

et al., 2015). However, despite excellent promise, the relationship between functional 

networks obtained from haemodynamic and electrophysiological measurements remains 

poorly understood and in order to reach the full potential of multimodal studies there is a 

pressing need for a quantitative framework that better elucidates this relationship. 

 

Initial studies on the relationship between MEG and fMRI measured functional connectivity 

have highlighted a degree of spatial overlap between networks reconstructed independently 

from these two modalities (Brookes et al., 2011a; de Pasquale et al., 2010; de Pasquale et 

al., 2012; Hipp et al., 2012). This spatial overlap extended to the well-known independent 

component analysis (ICA) obtained resting state networks (RSNs) (Brookes et al., 2012a; 

Brookes et al., 2011b; Hall et al., 2013; Luckhoo et al., 2012) and to parcellation based 

whole brain functional connectivity (Liljeström et al., 2015; Tewarie et al., 2014). The 

observed similarity between RSNs measured using the two modalities is compelling and 

extends the relationship between haemodynamics and electrophysiology that has been 

observed previously in task based studies (Brookes et al., 2005; Logothetis, 2003; Menon et 

al., 1997; Mullinger et al., 2013; Musso et al., 2010; Singh, 2012; Singh et al., 2002; 

Stevenson et al., 2012). This said, there are significant limitations to the previous 

approaches. Firstly, whilst most studies were based upon measurements of neural 

oscillations (rhythmic electrophysiological activity in large scale cell assemblies), many 

studies probed individual frequency bands in isolation (e.g. alpha, beta etc.), without 

reference to a bigger ‘pan-spectral’ picture. In fact, rather than reflecting a single frequency 

band, fMRI networks more likely result from an amalgam of electrophysiological connectivity 
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across all frequency bands (Hipp and Siegel, 2015). Secondly, the rich nature of the 

electrophysiological signal facilitates multiple independent measurements of functional 

connectivity (Schölvinck et al., 2013). For example some studies (Stam et al., 2007) look for 

a phase relationship (e.g. phase synchronization) between signals from separate regions; 

others look for correlation between the amplitude envelopes of oscillations (Brookes et al., 

2011a). These separate mechanisms of interaction have been described as independent 

and intrinsic modes of coupling in the brain (Engel et al., 2013). However, for comparison 

with fMRI, they are typically treated in isolation whereas haemodynamic functional 

connectivity is likely to be derived from a combination of these modes. In addition, most 

studies employ only a simple visual inspection of network patterns (Brookes et al., 2011a; 

Brookes et al., 2011b; Hipp et al., 2012), and no studies have yet tested for non-linear 

interactions between MEG derived measurements and fMRI. It follows therefore that a single 

framework enabling (i) integration of electrophysiological data from multiple frequency 

bands, (ii) integration of multiple metrics of functional connectivity and (iii) the combination of 

both linear and non-linear interactions within and between MEG frequency bands and 

metrics, would represent a powerful step forward in understanding the relationship between 

haemodynamic and electrophysiological functional networks.   

 

In the present study, we introduce a framework to characterise the potentially multivariate, 

(non)-linear relationships between MEG and fMRI obtained functional networks. Our method 

is based upon the assumption that the relationship between MEG and fMRI can be 

translated to a multi-dimensional mathematical function, which can be approximated using a 

multivariate Taylor series (Van Mieghem, 2010). It is noteworthy that an approach 

conceptually similar to this (although univariate) has been applied successfully to the 

relationship between structural and functional networks (Meier et al., 2016). Here we use a 

multivariate Taylor expansion to investigate the relationship between fMRI and MEG 

networks. This expansion allows us not only to integrate network estimates for different 

frequency bands in a linear and non-linear combination, but also to question the extent to 

which each frequency-specific MEG network explains observable fMRI network structure. In 

addition, since a multivariate Taylor expansion also contains cross-terms, the contribution of 

cross-frequency coupling to the measured fMRI networks can also be probed.  
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2) Theory 

It is well known that a truncation of Taylor series can be used as an approximation of a 

function around a development point. In general, Taylor series are evaluated for known 

functions, the accuracy of the expansion being critically dependent on the number of terms 

used. This can be quantified by a reduction in the error between the function itself and the 

truncated expansion. In the case of a mapping between MEG and fMRI, the function itself is 

unknown and therefore our Taylor coefficients are also unknown. However, if the function 

between MEG and fMRI is analytical around a development point, we can use a Taylor 

series, even in the absence of a known function, because we are able to estimate Taylor 

coefficients for every term using non-linear least-squared fitting methods. 

  

We consider MEG derived connectivity matrices 𝐖𝑓 , where 𝑓 refers to frequency band (1 = 

delta, 2 = theta, 3 = alpha, 4 = beta, 5 = gamma), and the fMRI connectivity matrix 𝐕. The 

matrices 𝐖𝑓 (for all 𝑓) and 𝐕 are symmetric weighted adjacency matrices, where the 

elements can take real values between [-1, 1]. The 𝐖𝑓 matrices can be grouped together, for 

which we write 𝐖 = (𝐖1,𝐖2,,𝐖3,,𝐖4,,𝐖5,). Every element corresponds to a functional 

connectivity value between two brain regions in some specific frequency band, where 

regions are defined by a parcellation atlas (Tzourio-Mazoyer et al., 2002). We assume that 

there is a dependency between MEG and fMRI connectivity matrices, which implies that 

there is a function, 

 

𝐕 = 𝐹(𝐖),           (1) 

 

which maps MEG connectivity matrices 𝑊 onto an fMRI connectivity matrix 𝑉. If we assume 

that this function is analytical in a region around some point, 𝒉 (𝒉 = [ℎ1 ℎ2 ℎ3 ℎ4 ℎ5]), then we 

may express the fMRI matrix, 𝐕, as an expansion of the MEG matrices 𝐖𝑓 using a 

multivariate Taylor series.  

 

In general, for vector functions, a multivariate Taylor series with five dependent variables up 

to second order terms can be expressed as  

 

𝐹(𝒙) = 𝐹(𝒉) + (𝛻𝐹(𝒉))
𝑇
(𝒙 − 𝒉) +

1

2
(𝒙 − 𝒉)𝑇𝐻(𝒉)(𝒙 − 𝒉) + 𝑅                         (2a) 

 

where R is the remainder of the order 𝑂(‖𝒙 − 𝒉‖3), 𝒙 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5], T denotes the 

transpose of a matrix and ‖𝒙 − 𝒉‖ is the Euclidean norm of the vector 𝒙 − 𝒉 (Van Mieghem, 

2010). The gradient vector is defined by  
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𝛻𝐹(𝒉) = (
𝜕𝐹(𝒙)

𝜕𝑥1
|𝒙=𝒉,

𝜕𝐹(𝒙)

𝜕𝑥2
|𝒙=𝒉, … ,

𝜕𝐹(𝒙)

𝜕𝑥5
|𝒙=𝒉)                              (2b) 

and the 5 x 5 Hessian matrix 𝐻(ℎ) is  

 

𝐻(𝒉) =

[
 
 
 
 
𝜕2𝐹(𝒙)

𝜕𝑥1
2 |𝒙=𝒉 ⋯

𝜕2𝐹(𝒙)

𝜕𝑥1𝜕𝑥5
|𝒙=𝒉

⋮ ⋱ ⋮
𝜕2𝐹(𝒙)

𝜕𝑥5𝜕𝑥1
|𝒙=𝒉 ⋯

𝜕2𝐹(𝒙)

𝜕𝑥5
2 |𝒙=𝒉 ]

 
 
 
 

                  (2c) 

 

If we rewrite Equation (2a) in sum notation, we obtain 

 

𝐹(𝒙) = 𝐹(𝒉) + ∑
𝜕𝐹(𝒙)

𝜕𝑥𝑚
|𝒙=𝒉(𝑥𝑚 − ℎ𝑚) +

1

2
∑ ∑

𝜕2𝐹(𝒙)

𝜕𝑥𝑚𝜕𝑥𝑛
|𝒙=𝒉(𝑥𝑚 − ℎ𝑚)5

𝑛 (𝑥𝑛 − ℎ𝑛)5
𝑚

5
𝑚 + 𝑅        (2d) 

 

The expansion can be extended to ten dependent variables when combining two 

connectivity metrics (e.g. phase-based and amplitude-based), which will result in a 10 x 10 

Hessian matrix. For Equation (2a) we require that ||𝒙 − 𝒉|| < 𝑟, where r is the radius of 

convergence, i.e. the radius of the largest disk in the complex plane in which the Taylor 

series converges (Brown et al., 1996). Note that in the present form we ignored terms larger 

than the second order because a multivariate Taylor series up to the third order would lead 

to complicated tensors and extraction of the expansion would lead to an explosion of cross-

terms (Kollo and von Rosen, 2006). In addition, neurobiological interpretation of terms up to 

the second order is straightforward (see below).  

 

In the specific case of mapping MEG connectivity matrices, 𝐖𝑓, onto the fMRI connectivity 

matrix, 𝐕, we assume that 𝐹(𝐖) is indeed analytical around 𝒉, where we replace 𝒙 by 𝐖, 

which holds when the eigenvalues 𝜆 of the matrices 𝐖𝑓 obey ||𝜆 − ℎ𝑓|| < 𝑟 (Van Mieghem, 

2010). We consider 𝒉 = 𝟎 in our estimations for two reasons: (1) this choice for 𝒉 is close to 

the data points. (2) Since 𝑡𝑟𝑎𝑐𝑒(𝐖𝑓) = 0, therefore ∑𝜆 = 0 holds and so if 𝜆𝑚𝑎𝑥 < 𝑟, 

convergence of the series is guaranteed (see SI for an explanation about the development 

point in a multivariate Taylor series). In the current functional neuroimaging setting, the 

partial derivatives evaluated at 𝒙 = 𝒉 are unknown for the connectivity matrices, but these 

can be estimated using a fitting procedure (see section 3.6). Therefore, we replace the 

partial derivatives by scalar coefficients. The matrix version of the expansion (2a) in a more 

tractable form then reads 

 

𝐹(𝐖) = 𝐹(0) + ∑ 𝑎𝑚𝐖𝑚 +
1

2
∑ ∑ 𝑏𝑚𝑛

5
𝑚=1

5
𝑛=1  5

𝑚=1 𝐖𝑚𝐖𝑛 + 𝑅                                               (3)  
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The first term in Equation (3) provides an offset to the diagonal elements in our estimated 

matrix. The second term corresponds to a linear combination of MEG adjacency matrices 

across-frequency bands. The third term contains non-linear and cross-frequency 

interactions. 

 

It is important to understand the difference between linear and non-linear terms with respect 

to their physical interpretation. The linear term simply allows for a weighted addition of MEG 

derived adjacency matrices. Each individual element of a MEG adjacency matrix 

corresponds to the strength of a connection (i.e. amount of phase synchronisation, or 

strength of envelope correlation) between two brain regions in some frequency band. We 

therefore denote this linear term ‘direct connectivity’ since it corresponds simply to the 

combination of the strength of electrophysiological connections between two brain regions. 

The non-linear terms however require further explanation. Mathematically, the non-linear 

terms (for 𝑚 = 𝑛 (i.e. within a single frequency band) can (accounting for diagonal 

symmetry) be written:   
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   (4) 

 

where 𝒘𝑞 represents a P x 1 column vector corresponding to the qth column in 𝐖𝑚. This 

means that 𝒘𝑞 contains the connectivity estimates (phase or amplitude), for a given 

frequency band, between brain area q and all other brain regions. Equation (4) shows that, 

in the case where 𝑚 = 𝑛, the diagonal elements of the matrix product correspond to the un-

normalised variance of a given column vector, 𝒘𝑞. The off-diagonal elements correspond to 

un-normalised covariance between two column vectors, meaning that these values 

represent the overlap, or similarity, between the connectivity profiles of two brain regions. In 

other words, a particular matrix element, say (1,q), will contain a high value if the 

connectivity between region 1 and the rest of the brain is similar to the connectivity between 

region q and the rest of the brain. For the non-linear terms where 𝑚 ≠ 𝑛 we obtain cross-

terms (a product of two matrices obtained from different frequency bands). The same 

concept of a shared connectivity profile applies but with the difference that a matrix element 

in the product now corresponds to similarity in connectivity profile of two brain regions in 

different frequency bands. In other words, matrix element (1,q) will be high if the connectivity 
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between region 1 and the rest of the brain in frequency band A is similar to connectivity 

between region q and the rest of the brain in frequency band B. Overall, the non-linear term 

gives information about the potential contribution of shared electrophysiological connectivity 

profiles (within and between frequency bands) to fMRI networks. We therefore term this non-

linear contribution ‘shared connectivity’. 

 

Finally, note that as a further simplification for Equation (3), we consider an error matrix 𝐄 

instead of the remainder R (= remainder of higher order terms) in order to compensate for 

the unexplained portion of the approximation. This error matrix, E, contains an offset for all 

non-diagonal elements, where 𝐄 = 𝑐(𝒖𝒖𝑇) and 𝒖 being the all-one vector and 𝑐 a scalar 

coefficient (similar to the approach in (Meier et al., 2016)).  

 

3) Methods 

We used MEG and fMRI data obtained from two different datasets and research centres. 

 

3.1) Subjects: dataset 1 

Dataset 1 was acquired at the Sir Peter Mansfield Magnetic Resonance Centre, University of 

Nottingham. Thirty-one healthy control subjects (age 27.4±6.4 (mean and standard 

deviation), 40% female) with no history of neurological impairment were originally enrolled 

and scanned as part of the University of Nottingham’s Multi-modal Imaging Study in 

Psychosis. A number of subjects were excluded due to insufficient coverage in fMRI. This 

resulted in a total of 15 participants (age 27.7±6.5 (mean and standard deviation), 60% 

female) in the final analysis. The study was approved by the University of Nottingham 

Medical School Ethics Committee, and all subjects gave written informed consent prior to 

participation. 

 

3.2) MEG data collection and pre-processing: dataset 1 

MEG data were acquired using the third order synthetic gradiometer configuration of a 275 

channel CTF MEG system (MISL, Coquitlam, Canada), at a sampling rate of 600Hz and 

using a 150Hz low pass anti-aliasing filter. Magnetic fields were recorded during a task-free, 

eyes-open condition for 10 minutes in a supine position. Subjects were asked to fixate on a 

red cross throughout. Three coils were attached to the participant’s head as fiducial markers 

at the nasion, left and right preauricular points. These coils were energised continuously 

throughout acquisition to allow localisation of the head relative to the geometry of the MEG 

sensor array. Before MEG acquisition, the surface of the participant’s head was digitised 

using a 3D digitiser (Polhemus Inc., Vermont). Subsequent surface matching of the digitised 

head shape to an equivalent head shape extracted from an anatomical magnetic resonance 
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(MR) image (see below for acquisition details) allowed coregistration of brain anatomy to 

MEG sensor geometry.  

 

Following collection, MEG data were inspected for artefacts generated by, for example, the 

magnetomyogram, magnetooculogram and magnetocardiogram. Any trials deemed to 

contain excessive interference generated via such sources were removed. In addition, trials 

in which the participant was found to have moved more than 7 mm from their starting 

position were also removed.  

 

An atlas-based beamforming approach was adopted to project MEG sensor level data into 

source-space (Hillebrand and Barnes, 2005; Hillebrand et al., 2012). The cortex was 

parcellated into 78 individual regions according to the automated anatomical labelling (AAL) 

atlas (Tzourio-Mazoyer et al., 2002). This was done by registering each subject’s anatomical 

MR image to an MNI template and labelling all cortical voxels according to the 78 cortical 

ROIs (Gong et al., 2009). Subsequently, an inverse registration to anatomical subject space 

was performed. A beamformer (Robinson et al., 2012) was then employed to generate a 

single signal representative of electrophysiological activity within each of these AAL regions. 

To achieve this, for each region, first the centre of mass was derived. Voxels were then 

defined on a regular 4 mm grid covering the entire region, and the beamformer estimated 

timecourse of electrical activity was derived for each voxel. To generate a single timecourse 

representing the whole region, denoted by �̂�𝑅(𝑡), individual voxel signals were weighted 

according to their distance from the centre of mass such that,  

  

�̂�𝑅(𝑡) = ∑ 𝑒𝑥𝑝(−
𝑟𝑖

2

400
⁄ )𝑖 �̂�𝑖(𝑡),                   (5) 

 

where 𝑖 represents a count over all voxels within the AAL region, �̂�𝑖(𝑡) represents the 

beamformer projected timecourse for voxel 𝑖, and 𝑟𝑖 denotes the distance (measured in 

millimetres) to the centre of mass of the region. Note that the Gaussian weighting function 

ensures that the regional timecourse �̂�𝑅(𝑡) was biased towards the centre of the region. The 

full width at half maximum of the weighting was ~17mm. 

 

To calculate the individual �̂�𝑖(𝑡), a scalar beamformer was used (Robinson et al., 2012). 

Covariance was computed within a 1–150 Hz frequency window and a time window 

spanning the whole experiment (excluding those trials removed due to interference)  

(Brookes et al., 2008). Regularisation was applied to the data covariance matrix using the 
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Tikhonov method with a regularisation parameter equal to 5% of the maximum eigenvalue of 

the unregularised covariance matrix. The forward model was based upon a dipole 

approximation (Sarvas, 1987) and a multiple local sphere head model (Huang, 1999) fitted to 

the MRI scalp surface as extracted from the co-registered MRI. Dipole orientation was 

determined using a non-linear search for optimum signal to noise ratio (SNR, here computed 

as the pseudo-Z value (Robinson et al., 2012)). Beamformer time-courses were sign-flipped 

where necessary in order to account for the arbitrary polarity introduced by the beamformer 

source orientation estimation.  

 

This complete process resulted in 78 electrophysiological time-courses each representative 

of a separate AAL region. This approach was applied to each subject individually. 

 

3.3) fMRI data collection and pre-processing: dataset 1 

MRI data were collected using a 7T-MRI system (Philips Achieva) with a volume transmit 

and 32 channel receive head coil. The anatomical MR image (used for MEG source 

reconstruction as well as fMRI processing) was acquired using an MPRAGE sequence (1 

mm isotropic resolution, TE = 3 ms, TR = 7 ms, flip angle = 8˚). Bias fields were corrected 

using SPM8 and brain extraction for the MPRAGE was achieved using the Brain Extraction 

Tool (BET v2.1, FSL (FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl)) (Smith et al., 

2004). Resting-state fMRI data were acquired using a gradient-echo echo planar imaging 

sequence (TR = 2s, TE = 25ms, flip angle = 75 ˚, voxel dimensions = 2x2x2 mm3
, 150 

volume acquisitions). Participants were asked to keep their eyes open during the scan and 

to fixate on a cross presented on a back projection screen and viewed through a mirror. Data 

were motion corrected using SPM8 (Ashburner et al., 1999). Subject-specific masks of grey 

matter, white matter, and cerebrospinal fluid (CSF) were obtained via automatic 

segmentation of the MPRAGE data (FAST v4.1 FSL (Smith, 2002)).  

 

The AAL atlas was used to parcellate the brain into the same 78 regions of interest (ROI) as 

used for connectivity analysis in the MEG data (Gong et al., 2009). The fMRI data were 

registered to the corresponding MPRAGE image, which was in turn registered to the MNI-

152 template brain (FLIRT v5.5, FSL, (Smith et al., 2004)). Inverse transformations were 

calculated and used to register a grey matter mask and the AAL ROIs to the functional 

space for each subject. These masks were then combined, to exclude white matter and CSF 

voxels from further analysis. In order to maintain consistency between the fMRI and MEG 

pipeline, a weighted average fMRI signal was computed to obtain a single signal for every 

ROI. This was done using the function in Equation (5). See SI Figure S1 for comparison with 

unweighted average over voxels in a ROI, which showed no measurable difference in 

http://www.fmrib.ox.ac.uk/fsl)
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connectivity between the two approaches. We then regressed out average cerebrospinal 

fluid signal, average white matter signal, motion and 2nd order polynomials (i.e. low 

frequency trends) from each regional BOLD timecourse using a general linear model in order 

to remove non-neuronal signals. Note that the effect of ordering (averaging and then 

regressing out nuisance variables or vice versa) was assessed; the results can be found in 

SI Figure S2. The effect of average translational motion during the fMRI scan on the average 

functional connectivity was also assessed (Spearman correlation R=0.01, p=0.9).  

 

3.4) Dataset 2 

Dataset 2 was acquired at the VU Medical Centre (VUmc), VU University, Amsterdam. 

Twenty-one healthy control subjects with no history of neurological impairment (age 

42.5±10.3 (mean and standard deviation), 65.1% female) were scanned as part of an 

ongoing multiple sclerosis study (Tewarie et al., 2015). The study was approved by the 

Ethics Review Board of the VUmc and all subjects gave written informed consent prior to 

participation. The data collection and pre-processing steps of the second dataset are 

described in a previous paper (Tewarie et al., 2015) and in the supplementary material. This 

dataset was used here for validation of the Taylor coefficients obtained from dataset 1. The 

main differences to dataset 1 with respect to MEG were 1) The instrument manufacturer (a 

306 channel Elekta-NeuroMag system was employed) and 2) A peak voxel approach was 

employed, meaning that the voxel with maximum power in each AAL region was used as 

representative time-series for each ROI (as distinct from the Gaussian weighting). For fMRI, 

there were more pipeline differences between the two datasets: 1) A 3T MRI system, rather 

than a 7T system, was used. 2) We employed non-linear registration rather than linear 

registration. 3) Spatial smoothing was used, and high-pass filtering rather than polynomial 

regression was employed. 4) We omitted regression of average cerebrospinal fluid signal, 

average white matter signal and motion parameters. 5) We computed an unweighted 

average over voxels across each AAL region rather than a weighted average to derive a 

representative time signal for a ROI.  

 

3.5) Construction of fMRI/MEG networks 

For each subject’s fMRI data, we computed pairwise Pearson correlation coefficients 

between all possible 78 fMRI AAL signal pairs in order to obtain a symmetric 78x78 fMRI 

network, described by its weighted adjacency matrix. Negative correlation values were left 

intact. For MEG, we evaluated two different intrinsic modes of functional connectivity; a 

phase based and an amplitude based measure. Specifically, the phase lag index (PLI) (Stam 

et al., 2007) and the average envelope correlation (AEC) (Brookes et al., 2011a) were 

computed between all possible pairs of beamformer projected regional time-series to obtain 
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symmetric 78x78 MEG networks for each subject. Note that this was done independently 

within 5 separate frequency bands (delta (1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-

30Hz), gamma (30-48)). The PLI is a metric that captures the asymmetry of the phase 

difference distribution of two time-series (see SI for further details), whereas the AEC 

computes the correlation between the envelope of two time-series (see SI for further details; 

(Brookes et al., 2012b; Hipp et al., 2012)). Note that PLI is inherently robust to source 

leakage artifact. An orthogonalisation procedure (as in (Brookes et al., 2012b)) was 

employed for AEC to ensure that adjacency matrices were not dominated by the leakage 

artefact. Overall applying these metrics to the data resulted in 11 adjacency matrices per 

subject; 5 MEG based PLI matrices; 5 MEG based AEC matrices, and a single fMRI matrix. 

These 11 separate adjacency matrices were averaged across subjects and taken forward for 

further analysis. The rationale for the latter is that averaging across subjects will lead to a 

reduction of noise in the adjacency matrices.  

 

3.6) Taylor series combination of weighted adjacency matrices 

 

Figure 1: Flow chart of the analysis pipeline. For both MEG and fMRI we averaged the connectivity 

matrices across subjects to obtain one group averaged connectivity matrix. For MEG, this was done 

for each frequency band and connectivity metric separately. The MEG matrices displayed here 

correspond to the AEC measurement obtained from the first dataset. We then followed a step-by-step 

approach to approximate group averaged fMRI networks based upon MEG matrices (level 1). We 

included: individual frequency bands for each metric separately (model a); multiple frequency bands 

in a linear combination for each metric separately (model b), multiple frequency bands in a linear plus 

non-linear combination for each metric separately, (cross-terms excluded) (model c); Equivalent to 

model c but now with the cross-terms included (model d), multiple frequency bands and metrics in a 
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linear plus non-linear combination with intact cross-terms (model e). We aimed to test the hypothesis 

that as models got more complex, fMRI data would be better approximated by the MEG matrices. In 

post-hoc analyses we examined the regional contribution of each frequency band to fMRI networks 

(level 2) and data fitting at the subject level (level 3).  

 

The Taylor expansion model described in section 2 was used to study the multivariate and 

non-linear relationships between MEG and fMRI networks. Since the Taylor coefficients in 

Equation (3) were unknown, we estimated them using an iterative non-linear least square 

fitting method (Byrd et al., 1987). All analyses were done using Matlab 2013b. Three 

separate levels of analysis were performed (see Figure 1). 

 

 

Level 1: Model generation and statistical testing 

We performed a sequential stepwise approximation of the fMRI weighted adjacency matrix, 

based upon progressively more complex combinations of the 10 MEG based weighted 

adjacency matrices, computed across 5 frequency bands and using 2 different connectivity 

metrics. Five different models were employed, based on different Taylor expansions (see 

also Figure 1): 

a. Single frequency model: fMRI matrix approximated using a single MEG matrix, 

belonging to a single frequency band, one FC metric (PLI or AEC), and only 

evaluating the linear term (direct connectivity) in Equation (3).  

b. Linear model: fMRI matrix approximated using MEG matrices from all frequency 

bands together, but using only a single FC metric (PLI or AEC) and only evaluating 

the linear terms (direct connectivity) in Equation (3). 

c. Non-linear model: fMRI matrix approximated using MEG matrices from all frequency 

bands together, only a single FC metric, and evaluating both the linear and non-linear 

terms in Equation (3) (direct and shared connectivity), and setting the cross-

frequency-terms to zero (𝐖𝑚𝐖𝑛 = 0 if 𝑚 ≠ 𝑛).  

d. Non-linear cross-term model: fMRI matrix approximated using MEG matrices from 

all frequency bands together, one FC metric, and evaluating the linear and non-linear 

terms in Equation (3) (direct and shared connectivity), with the inclusion of cross-

frequency-terms. 

e. Full model: fMRI matrix approximated using MEG matrices from all frequency bands 

together, using both FC metrics, and evaluating the linear and non-linear parts in 

Equation (3) (direct and shared connectivity), with the inclusion of cross-frequency-

terms.  
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For models a-e above, the success of combined MEG matrices in predicting the fMRI matrix 

was evaluated using a goodness-of-fit measure (R2).  

 

We aimed to test two separate hypotheses: 

1) MEG derived matrices, combined using all of the Taylor based models listed above, 

predict a significant amount of variance in the fMRI matrix. 

2) Moving to progressively more complex models (i.e. adding extra terms) significantly 

improves prediction of the fMRI matrix. 

In order to test these two hypotheses statistically, we employed a permutation approach in 

which pseudo-matrices were generated. To obtain these pseudo-matrices we first performed 

an eigenvalue decomposition of the real MEG derived matrices. Each eigenvector was then 

randomised using a phase based technique (O'Neill et al., 2015; Prichard and Theiler, 1994) 

(see appendix for further details). Reconstruction of the matrix post-randomisation yielded a 

pseudo-matrix, similar in mathematical structure to the genuine adjacency matrices, but not 

reflecting genuine MEG derived functional connectivity. Using these pseudo-matrices we 

performed the following tests: 

 Test 1: To test hypothesis 1 we employed 1000 iterations of a permutation test (Nichols 

and Holmes, 2002). On each iteration, a new set of 10 MEG pseudo matrices were 

generated (each based upon the 10 genuine MEG derived matrices). They were 

combined using the Taylor expansion for all models (a-e above), and the extent to which 

they could predict the fMRI matrix was measured via the R2 value. This generated an 

empirical null distribution based upon 1000 R2 values denoting the extent to which fMRI 

connectivity could be predicted by pseudo-matrices. Comparison of this null distribution 

with the genuine R2 value (from the real MEG matrices) then allowed calculation of a p-

value representing the probability that variance explained in fMRI by models a-e above 

could have occurred by chance. Results were considered significant at a p-value of up to 

0.05, corrected for multiple comparisons (Bonferroni) for the 5 separate tests over all five 

models. 

Testing hypothesis 2 is non-trivial, since it is always the case that adding more terms to a 

model would likely improve variance explained. Two separate tests were run: 

 Test 2a: We first derived R2 values from each of the models (a-e) using real MEG 

derived matrices. A gradient was measured representing the rate of improvement of R2 

with increasing model complexity. Across 1000 iterations, we then constructed a null 

distribution where this same gradient was measured, but using ‘sham’ R2 values derived 

from pseudo-matrices. Note that for the ‘sham’ R2 values we would also expect an 

improvement in variance explained with increasing model complexity, and therefore a 

positive gradient (since adding additional terms usually leads to more variance 
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explained). However rejection of the null hypothesis would suggest that the rate of 

improvement observed in real data did not occur by chance. Comparison of this 

empirical null distribution with the genuine gradient allowed calculation of a p-value. 

Results were considered significant at p<0.05. 

 Test 2b: For each of the 3 increments in model complexity (1: moving from a single 

frequency to a linear model; 2: moving from a linear to a non-linear model; 3: moving 

from a non-linear to a non-linear plus cross term model) we tested whether each step 

generated a significant increase in R2. To do this, we first measured the difference in R2 

between successive models using the MEG derived matrices. Again over 1000 

iterations, we then measured the same difference using pseudo-matrices, thus 

constructing a null distribution. Comparison of the null distribution with the genuine R2 

difference allowed calculation of a p-value. Results were considered significant at a p- 

value of less than 0.05, corrected for multiple comparisons (Bonferroni) for the 3 

separate tests. 

These three separate tests (1a, 2a, 2b) allowed direct testing of our two primary hypotheses. 

Finally, in order to further validate our Taylor models, we measured correlation in the Taylor 

parameters (i.e. am, bmn from Equation (3)) derived via application of the models to dataset 1 

and dataset 2. Here, we reasoned that if the models used were genuinely reflective of an 

MEG to fMRI network mapping, then the parameters would be significantly correlated across 

these two completely independent datasets. 

 

Level 2: The contribution of each frequency band 

Given the prior knowledge that MEG networks show frequency specific structure, we 

expected to see the same patterns in the prediction of fMRI networks. Therefore, we 

examined the contribution of each MEG frequency band separately to the fMRI network by 

inspecting the regional connections explained by each band. Results were based on the 

approximation from our single frequency model (model a), and the percentage of 

connections shown was based on the obtained R2 (e.g. for R2 = 0.1, top 10% of connections 

displayed). These analyses were only done for model a since the end results of estimations 

from the other models were obtained by a weighted sum of all frequencies.  

 

Level 3: Individual subject analysis 

The most accurate model from level 1a-d was used within each individual subject in order to 

address how well MEG weighted adjacency matrices computed within a single individual can 

predict their fMRI counterpart. PLI and AEC obtained results were compared using a Mann-

Whitney U test. In order to assess this statistically, we performed permutation analysis 

(Nichols and Holmes, 2002). We reasoned that if the two modalities contained subject 
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specific information, then the MEG derived networks from subject A would be a better 

predictor of the fMRI network from subject A, compared to, for example, the MEG networks 

from subject B. To this end, we swapped MEG networks randomly across subjects to get 

unmatched pairs of MEG and fMRI networks, from which a null-distribution of R2 values was 

generated (N = 1000 permutations). The genuine R2 was compared against this null 

distribution using a significance level of 5%.  

 

4) Results 

4.1) Approximation of group level fMRI networks by MEG networks 

Using our expansion framework, our primary aims were to test firstly whether MEG derived 

matrices, combined using all of the Taylor based models listed in Figure 1, predict a 

significant amount of variance in the fMRI matrix. Secondly we aimed to test whether moving 

to progressively more complex models (i.e. from single frequency to multiple frequencies; 

linear to non–linear, within band to within and between band, and from single connectivity 

metric to using two connectivity metrics) significantly improves prediction of fMRI based 

functional connectivity. These primary results are shown in Figures 2 and 3: 

 

Figure 2: Stepwise approximation of fMRI networks through Taylor series: Dataset 1. fMRI 

network approximations are displayed from the left to the right. The first row shows approximations 

based on the AEC (A-D), the second row shows approximations based on the PLI (E-H) and the fMRI 
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network is displayed in the third row (I) together with a colour bar that is the same for all the matrices 

shown. The ROIs are ordered according to (Gong et al., 2009). Results are shown, from left to right, 

for the single frequency model (A, E), the linear model (B, F), the non-linear model (C, G), and the 

non-linear cross-term model (D, H). In the third row, the bar chart shows the R
2
 values using either 

combinations of AEC matrices (green) or PLI matrices (blue) (J). A clear improvement in explained 

variance can be seen as more terms are included in the model, i.e. when moving from the specific 

frequency band predictions, to the approximations that include multiple frequency bands, nonlinearity 

and cross-terms. This is the case for both the AEC and PLI. These improvements are significant 

beyond chance, as can be seen by the results of the permutation tests; here * denotes statistical 

significance (p<0.015; Bonferroni corrected for three tests; test 2b). Note that only the best single 

frequency model (beta band) was included for the analysis). This stepwise improvement is also 

apparent from the estimated fMRI matrices (first and second row), with the best approximations in the 

right hand column (E, H). This can be seen from the increasing number of strong connections near 

the diagonal and the two off-diagonals. A gradient for the genuine rate of improvement of R
2
 (blue) 

with increasing model complexity and rate of improvement from 1000 permutations (red) is depicted in 

(K) for PLI (test 2a; p<0.001) and in (L) for AEC (test 2a; p<0.001).  

 

Figure 3: Stepwise approximation of fMRI networks through Taylor series: dataset 2. Note that 

this Figure is equivalent to Figure 2, but is constructed using dataset 2. The Figure shows fMRI 

network approximations based on AEC (A-D), and PLI (E-H). Results are shown, from left to right, for 

the single frequency model (A, E), the linear model (B, F), the non-linear model (C, G), the non-linear 



18 

 

cross-term model (D, H) and the full model (I), together with a colour bar that is equivalent for all 

matrices. The fMRI matrix is displayed in (J). In the third row, the bar charts show R
2
 values using 

either combinations of AEC matrices or PLI matrices (K). As with dataset 1 (Figure 2), a clear 

improvement in explained variance can be seen as more terms are included in the model. Again * 

denotes significant (p<0.015; Bonferroni corrected for three tests) improvement in R
2
. A gradient for 

the genuine rate of improvement of R
2
 (blue) with increasing model complexity and rate of 

improvement from 1000 permutations (red) is depicted in (L) for PLI (test 2a; p<0.001) and in (M) for 

AEC (test 2a; p<0.001). 

Overall, our results confirm our two hypotheses. Firstly, all of the models used, even the 

single frequency model, were able to predict significant variance in the fMRI connectivity 

matrix when compared to the empirical null distributions (test 1 null hypothesis rejected). 

This simple finding adds weight to previous papers showing a significant overlap between 

fMRI and MEG based connectivity matrices, even when only single frequency bands are 

used (Liljeström et al., 2015; Tewarie et al., 2014). Secondly, adding 1) multiple frequency 

bands together, 2) non-linear interactions (shared connectivity) and 3) cross-frequency terms 

led to significantly better prediction of the fMRI matrix; this was shown by the measured 

gradient, depicting the increase in R2 across progressively more complex models, being 

significantly larger for real data compared to the pseudo-networks (test 2a null hypothesis 

rejected). Secondly, when measuring the improvement in R2 for each incremental increase 

of model complexity, we observed a significant increase in explained variance. This was the 

case for all three model increments for AEC, and 2 out of the three for PLI (test 2b null 

hypothesis rejected). It proves helpful to now discuss each model in detail. 

Single frequency model:  When using only individual frequency bands, the beta band 

network, for both PLI and AEC, outperformed all other frequency bands as predictors of fMRI 

(first dataset; Figure 2J). This was followed by gamma, theta and alpha network matrices for 

AEC and by gamma and alpha network matrices for PLI (Figure 2J). Note that on average, 

the variance explained for AEC (0.01 < R2
AEC

 < 0.12) was higher than for PLI (0.001 < R2
PLI

 < 

0.06). However, these low R2 values for PLI still explain a significantly more information in 

fMRI compared to pseudo-matrices. These findings were replicated in dataset 2 (Figure 3).  

Linear Model: Adding all frequency bands to the Taylor expansion, in a linear combination, 

led to a better approximation of the fMRI network (higher R2) for both AEC and PLI 

compared to only the beta band (R2
PLI

 = 0.10, R2
AEC

 = 0.20; Figure 2J); however this 

measured improvement was only significant for AEC. Approximations made using dataset 2 

showed equivalent results (R2
PLI

 = 0.07, R2
AEC

 = 0.15; Figure 3). Note that connectivity 

matrices estimated by the linear model show, on average, higher connectivity values for the 

second dataset compared to the first dataset; this could be explained by the higher average 
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connectivity in the fMRI matrix and/or the shorter window length used for the second dataset, 

which can bias the AEC/PLI towards higher values. The confidence intervals of the 

estimated Taylor coefficients for datasets 1 and 2 overlapped (Figure S3 and S4) and the 

coefficients themselves showed significant correlation for both functional connectivity metrics 

(rPLI(6) = 0.86 p = 0.03; rAEC(6) = 0.93 p = 0.006), indicating robustness of the mapping 

across two independent datasets.  

Non-linear model: We evaluated the Taylor coefficients corresponding to both linear and 

non-linear terms in order to investigate potential contribution of shared electrophysiogical 

connectivity to fMRI. To exclude cross-frequency interactions, we removed the cross-terms 

in Equation (3) (i.e. all 𝑚 ≠ 𝑛). A significant increase in explained variance was observed for 

both AEC and PLI compared to including linear terms only (R2
PLI

 = 0.14, R2
AEC

 = 0.29; Figure 

2C, G). The second dataset showed equivalent results (R2
PLI

 = 0.16, R2
AEC

 = 0.22). There 

was significant correlation between the Taylor coefficients for datasets 1 and 2 for AEC 

(rAEC(11) = 0.76 p = 0.007) indicating robustness of the mapping. However this was not the 

case for PLI, rPLI(11) = 0.49 and p = 0.14) 

Non-linear model with cross-terms: We repeated the non-linear model, but with cross-

terms retained, which allows examination of the contribution of cross-frequency shared 

connectivity to fMRI. Adding cross-frequency terms led to significantly better fMRI network 

approximations for both dataset 1 (R2
PLI

 = 0.25, R2
AEC

 = 0.36; Figure 2J) and dataset 2 (R2
PLI

 

= 0.29, R2
AEC

 = 0.36; Figure 3K), for both PLI and AEC, compared to the approximation when 

cross-terms were ignored. The Taylor coefficients and their confidence intervals for the 

approximation based on the AEC again largely overlapped and correlated significantly 

(rAEC(30) = 0.48, p = 0.007; Figure S5). For PLI this was not the case (rPLI(30) = 0.26, p = 

0.15; Figure S6) since the Taylor coefficients of the first dataset displayed large confidence 

intervals. For all analysis levels up to the linear cross-term model we analysed whether we 

could observe standard resting state networks (RSNs ) in the whole brain approximations as 

credibility check for our results (e.g. default mode-, sensorimotor-, salience-, fronto-parietal-, 

executive-, and the visual-network). The clearest RSN patterns could be observed for AEC 

in the approximations based on the non-linear cross-term model (see Figure S7). 

Full Model: Finally, we assessed whether adding the two modes of connectivity (AEC and 

PLI) would improve our approximation. Since estimated parameters for PLI were associated 

with large confidence intervals in the non-linear cross-term model for dataset 1, we restricted 

this analysis to dataset 2. Note that adding PLI and AEC network matrices together into 

Equation (3) resulted in ten different matrices, and therefore 110 Taylor coefficients to 

estimate. Given the number of matrix elements (
𝑁2−𝑁

2
= 3003), the number of coefficients is 
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still relatively small so that overfitting based on numerous parameters is not an issue. After 

evaluation of Equation (3) we obtained an R2 = 0.53 (Figures 3I and 3K). Although the 

current fit involved estimation of 110 coefficients, the confidence intervals were still small 

and did not become unstable, as was the case for the analysis with PLI (non-linear cross-

term model) for dataset 1 (Figure S8).  

Overall, results show that, using AEC, the best model for fMRI connectivity results from the 

non-linear model with cross-frequency terms included. This predicted significantly greater 

variance in the fMRI network matrix than the other models, and extracted Taylor series 

parameters correlated significantly across the two independent datasets. These results are 

visualised in Figure 4, which shows a simple comparison (using AEC in dataset 1) of 

connectivity patterns, derived from fMRI and the combined MEG model, for three arbitrarily 

chosen but strongly connected AAL regions (right precuneus, left motor cortex and left 

cuneus). Note that the connectivity profiles measured in fMRI, and using the non-linear cross 

term model applied to MEG, were similar for all three chosen brain regions.  

In contrast, PLI was somewhat more variable. This was particularly the case for the non-

linear cross term model in dataset 1, where parameter estimation was unstable. However, 

the generic finding showed a significantly better fit to fMRI with increasing model complexity, 

implying again that shared connectivity contributes significantly to fMRI connectivity. 
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Figure 4: Estimated fMRI connections for individual regions. Arbitrary thresholded fMRI 

connections for three regions (right precuneus, left motor cortex and left cuneus) are shown in (A) on 

a template mesh. Panel (B) shows connectivity from the same seed regions based on the non-linear 

cross-term model, obtained with AEC. 

 

4.2) Regional contribution of individual MEG frequency bands 

Using the single frequency model, we examined to what extent MEG networks in individual 

frequency bands were able to predict fMRI. Figure 5 shows the predictions for all frequency 

bands using AEC (dataset 1). The fraction of connections shown in each graph is based on 

the R2 value calculated (e.g. for R2 = 0.1, threshold of 10% connections; Figure 5A). Figure 

5B shows the average functional connectivity for each ROI for the different frequency bands. 

Results reveal that different MEG frequency bands explain specific regional connections. 

The delta band predominantly explains fMRI connections in frontal areas. Theta AEC 

networks show dominant patterns in frontal and occipital areas whilst connections explained 

by alpha band AEC are predominantly posterior. Beta band AEC was able to explain 16% of 

the variance in the fMRI matrix. Especially parietal, sensorimotor and occipital as well as 

temporal fMRI connections were explained by the beta band. Lastly, the gamma band AEC 
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explained fMRI structure in frontal areas. For PLI, the R2 values were generally lower and 

therefore fewer connections were displayed (see Figure S9).        

 

 

Figure 5: Regional contribution of individual MEG frequency bands. The linear approximations 

based on individual frequency bands (single frequency model) are shown in order to understand the 

regional contribution of each MEG frequency band to fMRI. Results are shown for estimations using 

AEC (dataset 1). The upper panel illustrates the predicted connections, where the threshold for the 

number of connections shown is based on R
2
 (e.g. for R

2
 = 0.1, top 10% of connections displayed). 

The size of the spheres in the bottom panel denotes the predicted average connectivity per ROI, i.e. 

node strength. Note that, in agreement with the results for the whole network analysis (Figures 2 and 

4) the beta band connections were able to predict most fMRI connections, with dominant patterns in 

parietal, sensorimotor, occipital and temporal areas. Note the more frontally dominated patterns for 

the delta and gamma band, and split pattern in the theta band.  

 

4.3) Approximation of fMRI networks at the subject level 

Finally, we applied the same Taylor series expansion approach to estimate fMRI networks 

for each individual subject. For both datasets and both FC metrics we evaluated Equation (3) 

using the non-linear model with cross-terms. For dataset 2, individual predictions based on 

the AEC performed better than predictions based on the PLI (Mann-Whitney Z = 1.98, p = 

0.05; Figure 6). However, this was not the case for dataset 1 where the distributions of the 

explained variances were similar (Mann-Whitney Z = 0.93, p = 0.35). Note that for both 

datasets the individual predictions were generally lower than the group-level predictions 

(compare R2 values of Figure 6 with R2 values of Figure 2J and Figure 3K). For dataset 2, we 

also evaluated Equation (3) using the full model. Individual predictions based on this model 
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were significantly better than predictions based on the non-linear model with cross-terms 

(Mann-Whitney Z = 5.13, p<0.001). We performed a permutation analysis by swapping 

individual fMRI and MEG networks to investigate if the fMRI network of a specific subject 

was better predicted by his or her MEG data, compared to MEG data from another 

individual. However, no subjects showed a significant result (Figure 6), for either the non-

linear model with cross terms or the full model. 

 

Figure 6: Subject level prediction of fMRI networks. Illustrated are predictions using our non-linear 

cross-term model for individual subjects, for both PLI and AEC. For dataset 2, results from the full-

model are also illustrated. For both datasets the R
2
 values are shown for the matched subject pairs as 

well as one realisation for the unmatched (permuted) pairs. Note that the R
2
 values of the matched 

pairs do not outperform the unmatched pairs. 
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5) Discussion 

In this study we investigated the relationship between electrophysiological and 

haemodynamic networks, using a unique mathematical framework based upon the 

assumption that the relationship between MEG and fMRI can be considered as a 

mathematical function that can be analysed using a multivariate Taylor series. This 

framework allowed us to integrate MEG data from multiple frequency bands and connectivity 

metrics, together with linear and non-linear interaction terms, to predict fMRI networks. Our 

main finding is that, although single frequency band MEG derived networks explain 

significant variance in the fMRI network matrix, the accuracy of predicted fMRI networks 

drastically improved when we considered the multivariate, linear, non-linear and cross-

frequency combinations of MEG features.   

 

Using a single frequency model, we were able to find spectral specificity in regional fMRI 

connections. Overall, the beta frequency band was the best predictor of fMRI connections in 

both AEC and PLI and this finding is in agreement with earlier studies that have generally 

shown significant agreement between fMRI and MEG beta band derived resting state 

networks (see (Hall et al., 2014) for a review). Here (Figure 5) we have shown that parietal, 

sensorimotor, occipital and temporal fMRI connections were well explained by MEG beta 

band networks. Interestingly however, frontal connections in fMRI were better explained by 

the theta and gamma frequency bands, whereas the alpha band predominantly explained 

occipital/parietal connectivity. Anterior-posterior connections were observed in both the 

alpha and theta bands, which has also been shown in a previous directed connectivity study 

(Hillebrand et al., 2015). The presence of frequency specific regional connections, and their 

regional distribution, is in line with recent work on the relationship between MEG and fMRI 

(Hipp and Siegel, 2015). Overall this implies that fMRI must be seen as an integral of 

multiple electrophysiological networks that occur on a variety of temporal scales.  

 

The spatial inhomogeneity in MEG connectivity across-frequency bands suggests that   

integrating multiple frequencies into a single description, using a linear model, would 

improve prediction of fMRI. We used our Taylor model to show that, for envelope based 

networks, this was indeed the case with a significant improvement in R2 when using a linear 

combination of frequency bands. Therefore, fMRI networks may well result from a 

combination of frequency bands, where each separate band adds regionally specific 

information (Mantini et al., 2007). In regions where two frequency bands show similarity, for 

example in occipital areas where alpha and beta connections overlap, an fMRI connection 

could be considered as a weighted sum across those bands. Whilst PLI showed 
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improvement in R2 between the single frequency and the linear model, this failed to reach 

significance. It is important to note that the estimated Taylor coefficients for the linear model 

suggested that all frequency bands were represented, with no disproportionally high 

coefficients, and no bands that could be neglected. This said, delta band connectivity 

consistently contributed the least to fMRI. Importantly, the linear contribution of separate 

frequency bands to the fMRI predictions was consistent between both datasets; this was 

shown by both overlap in estimated Taylor coefficients as well as a significant correlation 

between them. This result is extremely important as it underlines the robustness of our 

mapping approach.  

 

Adding non-linearity to the Taylor expansion significantly improved our approximation of 

fMRI networks; this was true for both AEC and PLI. Importantly, this was not simply the 

result of adding increased model complexity, since this was accounted for in our statistical 

testing. The non-linear models included quadratic terms for each individual frequency band 

as well as cross-terms between frequency bands. Here the independent addition of both 

generated a significant improvement in fMRI prediction. The non-linear terms effectively 

measure covariance between the neuronal connectivity profiles of separate regions (see 

Equation (4)). The physical interpretation of the non-linear terms helps explain why their 

addition improves the prediction of fMRI matrices: If two regions are electrophysiologically 

interacting with similar areas, i.e. share the same connectivity profile, then it is likely that 

their energy demands (i.e. their BOLD signals) are influenced in a similar fashion by those 

shared connections. This likely increases the temporal correlation between BOLD signals, 

and hence increases haemodynamic functional connectivity. The effect of shared 

connectivity profiles on BOLD correlations also extends to cross-frequency terms. The 

reader should note that the cross-frequency terms in our model do not contain direct cross-

frequency coupling between regions (e.g. a direct link between, for example, alpha in region 

1 and gamma in region 2, as is often derived in, e.g. phase-amplitude coupling (Aru et al., 

2015; Jensen and Colgin, 2007)). Rather, our cross-frequency terms correspond to shared 

connectivity patterns between independent networks existing within different frequency 

bands. Their interpretation is therefore similar to that for non-linear terms within frequency 

bands. Overall, our result suggests that BOLD connectivity results from not only direct 

neuronal connectivity (i.e. an electrophysiological connection between the two regions in 

question) but also shared connectivity profiles both within and between frequency bands. 

This important result should be considered in future multi-modal connectivity studies. 

 

In our Taylor series approximations, we also evaluated the role of the different intrinsic 

coupling modes (phase (PLI) and amplitude (AEC)). Separate analysis for the AEC and PLI 



26 

 

revealed that AEC derived networks were better predictors for fMRI than PLI derived 

networks. This was the case for all models (single frequency, linear and non-linear (with and 

without cross-terms), and for both datasets). This result is also in agreement with previous 

work on phase versus amplitude based interhemispheric sensorimotor network coupling 

(Brookes et al., 2011a).  The reason for this might be twofold: Firstly, the AEC networks 

show more spatial structure than the PLI networks, which have a more random appearance 

(see Figures S10 and S11 for spatial structure of the MEG matrices). This higher noise 

would likely lead to less explained variance for the PLI estimations. The more random 

appearance of PLI could result from multiple effects. This could be related to the fact that 

larger phase differences are needed for AEC than for PLI in order to be able to detect a 

functional connection (Hipp et al., 2012), and therefore the AEC matrices might contain more 

false negative values and PLI more false-positive values, leading to a more structured 

network for AEC. The more random appearance of PLI compared to AEC is certainly a 

consistent feature of all data in this study, and future investigation using 1) voxel rather than 

regional time-courses and 2) non-stationary rather than stationary connectivity might shed 

light on this observation. A second possible reason for the close relationship between AEC 

and fMRI may be that AEC is based on the envelopes of a time-series, which evolves on a 

slower time-scale than the phase information; it may therefore be more closely related to the 

BOLD signal. This said, combining AEC and PLI does add information in terms of explaining 

fMRI networks: Using our full model, we combined AEC and PLI in a multivariate non-linear 

approximation and this led to a higher explained variance than an approximation based on 

AEC alone (or PLI alone), indicating that fMRI networks also reflect the sum of amplitude 

and phase interactions. However, note that a multivariate non-linear approximation with two 

connectivity measures only gave a maximum R2
 of 0.5.It is possible that addition of higher 

order terms would improve the approximation, or that the unexplained variance in fMRI is the 

result of non-neuronal signal (Birn et al., 2008), noise in the MEG and fMRI measurements, 

or differences in the spatially inhomogeneous signal-to-noise ratio of both modalities. 

 

Finally, our analysis included approximation of fMRI networks at the individual subject level. 

Using our non-linear model with cross terms included, we were able to predict variance in 

fMRI connectivity matrices within individual subjects, although these approximations were 

not as good (in terms of variance explained) as their group level equivalent. In addition, 

results suggested that a subject’s own MEG networks were no better at predicting their fMRI 

than MEG networks derived from different subjects. The reason for this is unclear: it could be 

that, since connectivity matrices are so well matched across individuals, any inter-individual 

differences are lost in noise. In fact, a previous study supports this lack of subject specificity 

between fMRI and MEG networks at the global level (Hipp and Siegel, 2015). However, it is 
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also important to note that relatively poor within subject reliability of MEG connectivity 

measurements has been shown previously. For example, Wens et al (Wens et al., 2014) 

show that whilst group level static connectivity within several well-known distributed 

networks is stable, there is significant variability at the individual subject level. Such 

variability may originate from a number of sources including artefacts in the MEG data, 

source modelling and connectivity estimators. Given such findings of large inter-individual 

differences, it is not necessarily surprising that our individual measures do not offer extra 

insight in predicting fMRI measurements. This said, ultimately, if techniques like the one 

presented here are to be useful clinically, then we must derive means to ensure their 

robustness in individuals. Further effort is thus needed in this area. 

 

Methodological considerations 

The key assumption underlying our model is that the relationship between MEG and fMRI 

can be described by an analytical multivariate mathematical function. Although we did not 

verify that our function is indeed analytical, there is good reason to expect that our 

assumption is valid. Firstly, our fitted Taylor coefficients were highly stable across multiple 

iterations of the fitting algorithm. Secondly, our fitting using real MEG derived adjacency 

matrices consistently outperformed equivalent fitting using the pseudo-matrices; this also 

showed that our obtained increase in goodness-of-fit values was not simply the result of 

increased model complexity. Finally, when deriving our Taylor coefficients using two 

completely independent multi-subject datasets, we observed significant correlation between 

the fitted Taylor coefficients, showing definite structure to the estimated parameters that 

relate directly to the function itself. This critical final point shows the robustness of our fitting; 

given the significant differences between the two datasets in terms of both acquisition and 

analysis, it is very comforting that entirely different processing pipelines yield significantly 

correlated mapping parameters which are not affected by scanner type or processing 

pipeline. It should of course be noted that neither correlation nor overlap of estimated 

parameters were perfect. Also the adjacency matrices between the datasets differed. 

Indeed, both the imperfection of the overlap and the difference in matrices could be due to 

differences in analysis pipelines, data acquisition, MRI scanner type/magnetic field strength, 

MEG system type, eyes-closed versus eyes-open condition during MEG acquisition and 

even gender and age differences between the cohorts used for the datasets. This difference 

between datasets also hampered our use of cross-validation analysis, which is a procedure 

whereby the estimated parameters from one dataset are applied on another dataset to check 

for generalisation of a model. Here, it appeared that there was more common mode 

interference in dataset 2, leading to generally higher connectivity estimates in fMRI (likely a 

result of lower magnetic field strength and different analysis pipeline). This means that the 
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range of the correlation coefficients was reduced in dataset 2, with genuine physiological 

variation across the brain occupying a smaller range in dataset 2 compared to dataset 1. 

This indicates that a straightforward swap of Taylor coefficients between datasets is not 

applicable, but correlation between Taylor coefficients is, since the correlation is not affected 

by the magnitude of parameters, only the pattern.    
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6) Conclusion 

In conclusion, we have, for the first time, employed a multivariate Taylor expansion 

framework to investigate the relationship between networks of functional connectivity 

measured in MEG and fMRI. Our results show that the relationship between these two 

modalities extends far beyond simple mapping of frequency specific MEG networks to fMRI. 

In fact, fMRI connections are a reflection of direct neuronal connectivity, summed across 

multiple frequency bands, superimposed upon shared neuronal connectivity profiles within 

and between frequency bands as well as the summation of multiple modes of connectivity. 

Further exploration of non-linear and cross-frequency interactions will therefore shed new 

light on distributed networks in the task positive and resting states, and their perturbation in 

multiple pathologies. 

 

7) Appendix: Construction of pseudo-MEG-connectivity matrices 

Core to the statistical test applied in this paper is construction of null distributions using 

pseudo-matrices. For these null distributions to be realistic, the mathematical structure of the 

pseudo-matrices must mimic effectively the genuine structure of resting state MEG 

adjacency matrices. To explain this, consider first the example of measuring correlation 

between time series: If time series are temporally smooth, the effective number of degrees of 

freedom is reduced. This means a high correlation coefficient may not necessarily imply 

significant correlation because as smoothness is increased, high correlation is more likely to 

occur by chance. The same applies to our matrices: the real MEG and fMRI matrices exhibit 

natural smoothness due to the logical ordering of brain regions in the AAL atlas. If that same 

spatial smoothness is not maintained in the pseudo-matrices, (for example if pseudo-

matrices were generated by random shuffling of the order of AAL regions) correlation 

coefficients measured between a pseudo-matrix and the fMRI matrix will always be lower. 

This would lead to a biased null distribution and artefactual assignment of significance. In 

order to solve this problem we must construct pseudo-matrices with an inherently smooth 

spatial structure which mimics the genuine MEG derived matrices. To do this we employ a 

methodology based upon eigenvalue decomposition and phase randomisation. First assume 

that the original MEG derived adjacency matrix is denoted as 𝐖𝑓. Eigenvalue decomposition 

allows this to be deconstructed such that, 

 

𝐖𝑓 = 𝐔𝐒𝐔𝑇                                                                                                                  (A1) 
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where 𝐒 is a diagonal matrix whose elements contain the eigenvalues of 𝐖𝑓 and the 

columns of 𝐔 contain the associated eigenvectors, 𝒖𝑖, where 1 ≤ 𝑖 ≤ 78, so that 𝐔 =

[𝒖1 … 𝒖78] (recall we have 78 AAL regions). We next manipulate the eigenvectors, 𝒖𝑖, in 

a meaningful way in order to define a new pseudo-matrix with similar structure to 𝐖𝑓. First 

note that all 𝒖𝑖 are 78 element vectors, with a single element for every region, thus we can 

write 𝒖𝑖 = 𝒖𝑖(𝑟) where r represents brain region. Fourier transformation of 𝒖𝑖(𝑟) gives: 

 

𝒇𝑖(𝑘𝑟) = 𝑨(𝑘𝑟)𝑒
𝑖∅(𝑘𝑟)                                                                                                  (A2) 

 

where 𝑨(𝑘𝑟) represents the Fourier amplitudes and ∅(𝑘𝑟) represents the Fourier phases. 

Note that, although the Fourier conjugate dimension, 𝑘𝑟, is not physically meaningful, it can 

be thought of as representing spatial frequency across the 78 ordered AAL brain regions. To 

manipulate the eigenvectors, we employ an approach used by Prichard et al (Prichard and 

Theiler, 1994) based upon phase randomisation. We first construct phase randomised 

eigenvectors in Fourier space as: 

 

𝒈𝑖(𝑘𝑟) = 𝑨(𝑘𝑟)𝑒
𝑖(∅(𝑘𝑟)+𝜽(𝑘𝑟))                                                                                               (A3) 

 

where 𝜃(𝑘𝑟) contains random numbers sampled from a uniform distribution between 0 and 

2π. Inverse Fourier transform of 𝒈𝑖(𝑘𝑟) gives 𝒗𝑖(𝑟), the phase randomised eigenvectors for 

all 78 AAL regions. It should be noted that phase randomisation in this way maintains the 

spatial frequencies (hence smoothness across AAL regions) in the eigenvector, but destroys 

the phase information. Application of this methodology to all eigenvectors allows 

construction of a new randomised set of eigenvectors so that 𝐕 = [𝒗1 … 𝒗78]. The final 

pseudo-matrix can then be constructed as: 

 

𝐖𝑝𝑠𝑒𝑢𝑑𝑜 = 𝐕𝐒𝐕𝑇                                                                                                                  (A4) 

 

Multiple realisations of 𝐖𝑝𝑠𝑒𝑢𝑑𝑜 can be generated based upon different realisations of  𝜽(𝑘𝑟).  

 

Figure A1A shows the effect of phase randomisation on a single eigenvector. The blue trace 

shows a single eigenvector taken from a genuine MEG (alpha band AEC) adjacency matrix, 

whilst the green trace shows the phase randomised version. In Figure A1B, the left hand 

panel shows the same genuine MEG adjacency matrix whilst the right hand panel shows a 

phase randomised pseudo-matrix 
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Figure A1: Example construction of a pseudo-matrix. A) The blue trace shows the second 

eigenvector of a genuine MEG alpha band AEC adjacency matrix. The green trace shows the phase 

randomised version. Note that the periodicity (which reflects spatial symmetry in the ordering of brain 

regions across the two hemispheres in the AAL parcellation) has been maintained. B) The left hand 

panel shows the genuine MEG adjacency matrix. The right hand panel shows a single example of a 

phase randomised pseudo-matrix. Note overall visual similarity in structure and smoothness. 

 

As noted above, the mathematical structure (smoothness) in our real MEG and fMRI derived 

adjacency matrices results from the ordering of the 78 AAL brain regions; regions are 

ordered by hemisphere (left followed by right) and run approximately anterior to posterior. 

This logical ordering promotes periodicity in the matrix. For example, the four red squares 

that are prominent in the left panel of Figure A1B are generated by genuine visual cortex 

connectivity. The two squares close to the leading diagonal represent left and right visual 

cortex connectivity, whereas the off diagonal squares represent interhemispheric 

connectivity. This structure is only apparent because of the way in which visual regions are 

clustered together, and the way the left and right hemispheres are split; i.e. if the ordering of 

the brain regions was randomised, such structure (and therefore the spatial smoothness of 



32 

 

the matrix) would be destroyed. In the phase randomisation approach, the periodicity (hence 

smoothness) in the genuine eigenvector shown in Figure 1A (blue trace) (which results from 

the cross hemisphere split in the AAL region ordering) is mimicked in the phase randomised 

eigenvector (green trace). This is because the amplitudes of the Fourier components of the 

eigenvector are maintained. However, the precise brain regions involved differ. Application 

of this approach to all eigenvectors means that the spatial smoothness and periodicity, 

inherent to the genuine MEG matrices, is also apparent in the pseudo-matrices. However 

any genuine connectivity information is destroyed making them appropriate for null 

distribution calculation. 
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