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A B S T R A C T

Functional brain networks are shaped and constrained by the underlying structural network. However, functional
networks are not merely a one-to-one reflection of the structural network. Several theories have been put forward
to understand the relationship between structural and functional networks. However, it remains unclear how
these theories can be unified. Two existing recent theories state that 1) functional networks can be explained by
all possible walks in the structural network, which we will refer to as the series expansion approach, and 2)
functional networks can be explained by a weighted combination of the eigenmodes of the structural network, the
so-called eigenmode approach. To elucidate the unique or common explanatory power of these approaches to
estimate functional networks from the structural network, we analysed the relationship between these two
existing views. Using linear algebra, we first show that the eigenmode approach can be written in terms of the
series expansion approach, i.e., walks on the structural network associated with different hop counts correspond
to different weightings of the eigenvectors of this network. Second, we provide explicit expressions for the co-
efficients for both the eigenmode and series expansion approach. These theoretical results were verified by
empirical data from Diffusion Tensor Imaging (DTI) and functional Magnetic Resonance Imaging (fMRI),
demonstrating a strong correlation between the mappings based on both approaches. Third, we analytically and
empirically demonstrate that the fit of the eigenmode approach to measured functional data is always at least as
good as the fit of the series expansion approach, and that errors in the structural data lead to large errors of the
estimated coefficients for the series expansion approach. Therefore, we argue that the eigenmode approach should
be preferred over the series expansion approach. Results hold for eigenmodes of the weighted adjacency matrices
as well as eigenmodes of the graph Laplacian. Taken together, these results provide an important step towards
unification of existing theories regarding the structure-function relationships in brain networks.
1. Introduction

For many years, structural and functional brain networks have been
studied independently (Bullmore and Sporns, 2012; Sotiropoulos et al.,
2013), revealing partly overlapping and partly divergent connectivity
patterns. The last two decades have brought a wealth of studies that
specifically aimed to elucidate the relationship between the two (Wang
et al., 2015; Fjell et al., 2017; Avena-Koenigsberger et al., 2018; Honey
et al., 2009; Greicius et al., 2009). Structural networks are believed to
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shape and provide constraints for the dynamics of functional connec-
tivity, which can be measured at different time-scales (O’Neill et al.,
2017). Given this stance, it has been widely acknowledged that, to some
extent, functional networks can be predicted from the underlying struc-
tural connectome (Rosenthal et al., 2018; Mi�si�c et al., 2016; Honey et al.,
2007). However, local neuronal dynamics can impact the emergence of
functional connectivity, especially on shorter time scales (Forrester et al.,
2019; Ton et al., 2014), rendering a direct mapping between structural
and functional networks limited to the domain where functional
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connectivity is estimated at longer time scales.
A vital observation is that functional networks are not merely a one-

to-one reflection of the underlying structural network (Honey et al.,
2009), which motivated the search for explanations. Apart from the
direct connections within the structural network, additional properties of
the structural network were also found to shape the functional networks.
These influencing properties include the Euclidean distance between
regions (Alexander-Bloch et al., 2012), the outer product of the structural
degree sequence (Tewarie et al., 2014; Stam et al., 2016), detours along
the shortest paths in the structural network (Go~ni et al., 2014), and
diffusion properties of the structural network (Kuceyeski et al., 2016;
Abdelnour et al., 2014). Also approaches using coupled neural mass
models have been successful in explaining the emergence of resting state
functional networks from the underlying structural network, with the
prevalent view that resting state functional networks appear if the un-
derlying system operates in a metastable2 regime (Deco et al., 2017b;
Deco and Kringelbach, 2016; Wens et al., 2019) or, as also assumed, in a
multistable3 regime (Deco et al., 2013, 2009; Deco and Jirsa, 2012;
Tewarie et al., 2019).

Several studies have aimed to formalise the mapping between struc-
tural and functional networks (Robinson, 2012; Meier et al., 2016; Saggio
et al., 2016; Deco et al., 2014). Since the seminal work by Robinson
(2012), several groups have independently demonstrated that functional
connectivity can be represented in terms of the sum of all possible walks
on the underlying structural network (Robinson, 2012; Meier et al., 2016;
Bettinardi et al., 2017; Mehta-Pandejee et al., 2017; Robinson et al.,
2014; Becker et al., 2018; Gilson et al., 2018), which can also be un-
derstood in terms of flow equations or propagator theory on the network
(Van Mieghem et al., 2017; Robinson, 2012). The elegance of this
approach is that it also incorporates other concepts, such as, for example,
the importance of shortest paths and detours from these paths (Go~ni
et al., 2014), as well as indirect paths of length two (V�ertes et al., 2012),
for the formation of functional networks. One of the ways to describe this
‘mapping’ approach between structure and function is to express the
relationship as a series expansion (Meier et al., 2016).

Recent years have also seen a wealth of explorations by several in-
dependent groups of the eigenmode4 approach, in which eigenvectors of
the structural network are believed to form a basis-set to explain func-
tional networks (Atasoy et al., 2016; Robinson et al., 2016; Wang et al.,
2017; Tewarie et al., 2019; Abdelnour et al., 2018; Gabay et al., 2018).
Several of these structural eigenmodes have been related to known
functional subnetworks (Atasoy et al., 2016), and combinations of ei-
genmodes were able to explain the occurrence of frequency-specific
functional networks (Tewarie et al., 2019). This approach has also
found its way to applications in neuroscience and was able to detect al-
terations in brain states during sleep (Tokariev et al., 2019). Most of these
studies extract the eigenmodes from the Laplacian5 of the structural
connectome (Abdelnour et al., 2018; Atasoy et al., 2016), or even from
the Laplacian of structural connectivity along the cortical surface (Gabay
et al., 2017; Robinson et al., 2016), although eigenmodes of the weighted
adjacency matrix itself have also been used (Tewarie et al., 2019). We
refer the reader to (Van Mieghem, 2016) for a theoretical underpinning
of the eigenmode approach for the Laplacian.

Instead of exploring an abundance of unrelated or complementary
theories simultaneously, we strive for unification of theories regarding
the relationship between the structural and functional brain networks.
Given the robustness and generalizability of the series expansion and
eigenmode approaches (which have been applied to different datasets by
independent groups), we aim to understand the theoretical link between
3 Multistability refers to the co-existence of multiple attractors.
4 An eigenmode refers to the eigenvalue and corresponding eigenvector of the

weighted adjacency matrix or graph Laplacian.
5 Laplacian is defined as diagonal matrix with the degrees on the diagonal

minus the adjacency matrix.
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the eigenmode and series expansion approaches. The theoretical frame-
work to prove the equivalency between the series expansion and eigen-
mode approach has recently been put forward in (Robinson, 2019). The
author demonstrated that the series approach can be formulated in terms
of the spectral approach, and demonstrated the same mapping between
structural and functional brain networks for the topological and spectral
domain. Here we take this notion further, we first illustrate a theoretical
link between the eigenmode and series expansion approach model co-
efficients. We then analyse the strength of this relationship in empirical
data from Diffusion Tensor Imaging (DTI) and resting-state functional
Magnetic Resonance Imaging (fMRI). We subsequently analyse both
approaches in terms of an optimization problem by comparing analyti-
cally derived expressions for their goodness of fit, followed by a com-
parison of the goodness of fit in empirical data. Since empirical data lacks
ground truth, we also verify the link between eigenmode and series
expansion approaches in neural mass based network simulations. In
addition, we also analyse whether eigenvectors of the structural and
functional networks in empirical data are indeed similar.

2. Theoretical link between series expansion and eigenmode
approaches

We consider structural and functional networks, which can be
described by a set of nodes and links, where link weights are described by
the corresponding connectivity matrices. We consider the structural
connectivity matrix A 2 RN�N , and the functional connectivity matrix
W 2 RN�N , where N denotes the number of nodes (regions) in both
networks. Both matrices are symmetric with zeros along the diagonal.
Here, for the eigenmode approach, we consider the eigenvector matrix V
of A, where each column corresponds to one of the eigenvectors of A,
rather than eigenvectors of the Laplacian of the structural network (Van
Mieghem, 2010) (see section Extension of theoretical and numerical com-
parisons using the eigenmodes of the graph Laplacian below for an analysis in
terms of the graph Laplacian). The eigenmode approach assumes the
following:

W � VSVT ; (1)

where S is a diagonal matrix. Elements si on the diagonal of S, i ¼ 1;…;N,
correspond to the weighting coefficients that can be estimated from
empirical data (Tewarie et al., 2019) or can be derived analytically (see
section below on Fitting coefficients of the eigenmode and series expansion
approaches to experimental data). The assumption in the eigenmode
approach is that a functional network can be partly explained as a
weighted linear combination of the eigenvectors of the structural
network. Previous work has demonstrated that besides this linear com-
bination, a non-linear combination of the eigenvectors does significantly
contribute to the prediction of functional networks (Tewarie et al., 2019).
However, the linear combination could by itself already explain a large
proportion of the explained variance of frequency-specific functional
networks (Tewarie et al., 2019).

In the series approach, the functional connectivity matrix is expressed
as a Taylor series expansion of the structural matrix, with unknown co-
efficients cm, m ¼ 1;…; d, and can be reduced to (see equation (4) in
(Meier et al., 2016))

W �
Xd
m¼1

cm
kAmk2

Am; (2)

where d is the diameter (length of the longest shortest path) of the
structural network. Dividing the coefficients cm by the 2-norm k…k2 is
done since powers of A diverge quickly for increase in m. The series is
truncated at m ¼ d, as previous work has demonstrated that the fit with
empirical fMRI or magnetoencephalography (MEG) data converges for
this value (Meier et al., 2016). However, the precise underlying phe-
nomenon why the diameter seems a sufficient bound is a graph
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theoretical open question. A normalization by m! instead of kAmk2 has
also been used in literature (Gilson et al., 2018), which would transform
equation (2) into an expression of communicability if d is changed to
infinity (Estrada and Hatano, 2008). The relationship between the two
definitions or normalisations can be readily understood using the Borel
transform (Borel, 1899). Powers of A for unweighted networks corre-
spond to configurations of walks in the structural network with lengthm.
The Taylor series coefficients cm can be estimated from the empirical data
or analytically derived (see section below on Fitting coefficients of the
eigenmode and series expansion approaches to experimental data). Since
the matrix A is symmetric, we can diagonalise A to obtain its real ei-
genvalues λi and eigenvectors vi, where i ¼ 1;…;N. The eigenvectors are
orthogonal, hence, Am ¼ VDmVT holds and we can rewrite equation (2)
as

W �
Xd
m¼1

cm
kAmk2

VDmVT ; (3)

where D ¼ diagðλ1; λ2;…; λNÞ. The series approach thus states that for
every addend in equation (3), there is a different weighting of the ei-
genvectors, which is determined by the powers of the eigenvalues λi and
the Taylor coefficients cm. The series and eigenmode approach are thus
equivalent (or strongly related) if the weighting coefficients on the di-
agonal of S for the eigenmodes are (approximately) equal to the series
coefficients:

S �
Xd
m¼1

cm
kAmk2

Dm: (4)

Despite the fact that a relationship between the two approaches can
be readily demonstrated using linear algebra, it remains to be elucidated
whether the coefficients as estimated from empirical data are indeed
similar for both approaches.

3. Common eigenvectors between structural and functional
brain networks

An exact spectral mapping would indicate that the eigenvectors of the
structural and functional networks would be identical, i.e., one would
have a basis that simultaneously diagonalizes both structural and func-
tional connectomes (Estrada and Hatano, 2008). A necessary condition
for a simultaneous diagonalisation is the commutation of both structural
and functional adjacency matrices ½A;W � ¼ 0, with ½A;W � ¼ AW � WA.
Since, we would like to analyse how close the commutator is relative to A
and W respectively, we evaluate i) kAW �WAkF=

��A2
��
F and ii)

kAW �WAkF=
��W2

��
F (Higham, 2008). Here kAkF and kWkF denote the

Frobenius norm of matrix A and W, respectively. The closer i) is to zero,
the better is the approximation that a basis of W would span A. Similarly,
the closer ii) to zero, the better is the approximation that a basis of A
would spanW. If both i) and ii) are close to zero, then this indicates that a
simultaneous basis of bothmatrices spans each individual matrix. Table 1
Table 1
Statistics of the intraclass correlation coefficient is displayed alongside the square of
approaches (R2), the diameter of the structural network (longest shortest path), the Fr
κ21(P). The diameter of the structural networks was obtained after binarizing their c

Network
size N

Intraclass correlation coefficient RICC eigenmode vs
series expansion

R2 se
eigen

R Lower - upper
bounds R

Degrees of
freedom

p-
value

Dataset 1 78 0.97 0.96–0.98 79 <.001 0.92
Dataset 2 188 0.87 0.83–0.90 189 <.001 0.79
Dataset 3 264 0.89 0.86–0.91 265 <.001 0.78
Dataset 4 78 0.98 0.97–0.99 79 <.001 0.95
Simulations 78 0.98 0.97–0.99 79 <.001 0.97

3

shows the normalised commutators for empirical and simulated data.

4. Fitting coefficients of the eigenmode and series expansion
approaches to experimental data

The fitting error of the eigenmode approach depends on the eigen-
mode coefficients s1;…; sN and follows from equation (1) as

εeigenðSÞ¼
��W � VSVT

��
F
: (5)

The smaller the error εeigenðSÞ, the better is the fit of the eigenmode
approach. In other words, a smaller εeigenðSÞ corresponds to a higher
explanatory power of the eigenmode approach. Hence, to obtain the
relationship between the structural connectivity matrix A and the func-
tional connectivity matrix W, we aim to find the diagonal matrix S that
minimises the error εeigenðSÞ. Note that W refers to the empirical or
simulated functional connectivity matrix. Lemma 1 gives an explicit
expression for the diagonal matrix S.

Lemma 1. The diagonal matrix S that minimises the fitting error εeigenðSÞ
equals

S¼ diag
�
vT1Wv1;…; vTNWvN

�
: (6)

The proof can be found in Appendix A.
The fitting error of the series expansion approach depends on the

coefficient vector c and follows from equation (3) as

εseriesðcÞ¼
�����W �

Xd
m¼1

cm
kAmkF

VDmVT

�����
F

: (7)

Similarly as for the eigenmode approach, the smaller εseriesðcÞ, the
better is the fit and the higher the explanatory power of the series
expansion approach. We now aim to find the coefficient vector c that
minimises the error εseriesðcÞ. Similarly to Lemma 1, we can derive an
expression for the coefficient vector c of the series expansion approach.

Lemma 2. Determining the coefficient vector c that minimises the fitting
error εseriesðcÞ is equivalent to solving the linear least-squares problem

minc
��z� cTP

��2
2
: (8)

Here, the 1� N vector z equals

z¼ �vT1Wv1;…; vTNWvN
�
;

and the d� N matrix P is a Vandermonde matrix given by

P¼

0
BBBB@

λ1
λ1

λ2
λ1

…

⋮ ⋮ ⋱

λd1
λd1

λd2
λd1

…

λN
λ1

⋮

λdN
λd1

1
CCCCA:
the correlation between the two estimated connectivity matrices from the two
obenius norm of the commutator of A and W, and the squared condition number
orresponding weighted adjacency matrices.

ries vs
mode

Diameter
structural network
d

commutator
kAW �WAk

kWk2

commutator
kAW �WAk

kAk2

Condition
number κ2(P)

6 0.11 0.96 1.60x105

5 0.51 0.35 5.21 x104

6 0.56 0.43 1.68 x105

5 0.42 0.46 5.25 x104

6 0.31 0.34 1.60x105
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The proof can be found in Appendix B.
Provided that all eigenvalues λ1;…; λN are distinct, we obtain from

equation (8) that the coefficient vector c is given by (Boyd and Van-
denberghe, 2018)

c¼ðPPT Þ�1PzT : (9)

To compute the coefficient vector c in practice, there are numerically
stable methods, such as the

Matlab command mldivide that solve the least-squares problem in
equation (8) without computing the inverse as in equation (9).

We would like to stress that Lemma 1 and 2 follow from basic linear
algebra concepts and should not be considered as new theoretical results.
Here, we present these results within the context of mappings between
structural and functional networks in the field of neuroimaging. In
addition to εeigenðSÞ and εseriesðcÞ as goodness of fit measure, we also
computed the Pearson correlation coefficient between predicted and
actual functional connectivity matrices to allow for better interpretability
for readers who are more familiar with this statistical measure.

5. Numerical errors for the series expansion approach

Suppose the functional connectivity matrix W contains small esti-
mation or measurement errors, hence the perturbed matrix ~W ¼ W þ
ΔW , for some small error matrix ΔW 2 RN�N . Due to the perturbed
matrix ~W , the coefficients that minimise equation (8) are also perturbed
as ~c ¼ cþΔc, where we denote the d� 1 coefficient error vector byΔc ¼
ðΔc1;…;ΔcdÞT . We are interested in the sensitivity of the series approach
to errors of ΔW . More precisely, we are interested in the question: How
great is the impact of small errorsΔW on the errorΔc of the series coefficients?
The condition number of the Vandermondematrix P expressed in Lemma 2
equals (Van Loan and Golub, 2012)

κðPÞ¼ σ1

σd
; (10)

where σ1 and σd denote the largest and smallest singular value of the
matrix P, respectively. A small error ΔW results in an error Δc. on the
series coefficients that scales with the square of the condition number
κðPÞ (Van Loan and Golub, 2012)

kΔck2
kck2

� κ2ðPÞ kΔWk2
kWk2

þ O
�kΔW2k2

kW2k2

�
: (11)

To be more precise, the left-hand side of Equation (11) is upper-
bounded by some constant multiplied by the right-hand side of equa-
tion (13) (Van Loan and Golub, 2012). Hence, the square of the condition
number κðPÞ determines the sensitivity of the computed series co-
efficients c to errorsΔW . We emphasise that this sensitivity is an inherent
property of the task of computing the coefficients c1;…; cd and does not
depend on the specific numerical method that is employed to solve
equation (8).

It is known from literature that a Vandermonde matrix P can have
large condition numbers (Pan, 2016). The squared condition numbers
κ2ðPÞ for structural connectivity matrices A used in dataset one to four is
illustrated in the rightmost column of Table 1. Large κ2ðPÞ are reported,
indicating that small errors in W can have very large impact on the error
in c. Likewise, measurement errors ΔA on the structural connectivity
matrix A have a similar effect on the error of c. Furthermore, we
emphasise that the structural and functional connectivity matrices A and
W are digitally stored and processed with finite-precision arithmetic,
2 Metastability refers to the dwelling tendency of trajectories in phase space
without convergence to an attractor (attractor refers to subspace in phase space
to which a trajectory converges).
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which can result in large errors of c when κ2ðPÞ is large - even if the
matrices A and W themselves had been measured with perfect accuracy.

6. Comparing the eigenmode and series expansion approach

Similarity between the series and eigenmode approaches would entail
that the eigenmode coefficients s1;…; sN would be approximately equal
to the series coefficients cm multiplied by the powers of the eigenvalues of
A (right hand side of Equation (4)). In order to quantify this similarity for
empirical and simulated data, we computed the intraclass correlation
coefficient between the diagonal of the left-hand and the diagonal of the
right-hand side of Equation (4), i.e. computing the intraclass correlation
between the respective coefficients. The intraclass correlation coefficient
can be considered as a more rigorous method to quantify whether the
methods capture the same underlying link between structural and func-
tional brain networks than conventional Pearson or Spearman correla-
tions. In addition, we also quantified the similarity in estimated
functional network connectivity between the two approaches in terms of
the R2, i.e. by applying a linear least-squared regression between esti-
mated connectivity from the series expansion and eigenmode approach.
To this end, we vectorised the upper triangle of the estimated functional
connectivity matrix from both approaches and applied the linear least-
squared regression to test the link-wise dependency between ap-
proaches (see Table 1 for results). In addition to this, we also compared
the fitting errors of both approaches (εeigenðSÞ and εseriesðcÞ). Moreover, we
analytically show that the fitting error of the eigenmode approach is
smaller than or equal to the fit of the series approach:

Lemma 3. For every structural connectivity matrix A and every functional
connectivity matrix W, the optimal fit of the eigenmode approach is at least as
good as the optimal fit of the series approach. More precisely, it holds

mins εeigenðSÞ � minc εseriesðcÞ: (12)

The proof can be found in Appendix C.
Furthermore, as shown in Appendix C, equation (12) holds true

almost always with strict inequality. In other words, Lemma 3 states that
the series approach never explains the experimental data better than the
eigenmode approach. Thus, the eigenmode approach is a more accurate
model for the relationship between the structural connectivity matrix A
and the functional connectivity matrix W.

7. Application of both approaches to empirical and simulated
networks

We used multimodal data (DTI and resting-state fMRI data) from four
previously published empirical datasets. The first dataset (Dataset 1)
consisted of a literature-based structural network for 80 healthy subjects
(Gong et al., 2008) combined with a group-averaged functional network
based on fMRI data from 21 healthy adults, and making use of the
automated anatomical labelling atlas (AAL) (cortical nodes, N ¼ 78)
(Tzourio-Mazoyer et al., 2002). This fMRI dataset has previously been
analysed by our group using the series approach (Meier et al., 2016;
Tewarie et al., 2014). The second and third datasets were retrieved from
the University of California Los Angeles (UCLA) multimodal connectivity
database (Brown et al., 2012). The second dataset (Dataset 2) consisted of
a group-averaged structural network and a group-averaged resting-state
fMRI network from 381 healthy adults from the Nathan Kline Institute
(NKI)/Rockland Sample (Nooner et al., 2012). For this dataset, the
Craddock atlas was used (N ¼ 188) (Craddock et al., 2012). The third
dataset (Dataset 3) consisted of a group-averaged structural and resting
state-fMRI network obtained from 79 typically developing children from
a UCLA autism dataset (Brown et al., 2012). For this dataset, the Power
atlas was used (N ¼ 264) (Power et al., 2011). We refer to these cited
papers for information about pre-processing pipelines. The fourth data
set consisted of a group-averaged structural and resting-state fMRI
network (N ¼ 78) from 10 healthy subjects from the human connectome



P. Tewarie et al. NeuroImage 216 (2020) 116805
data (Van Essen et al., 2013), again making use of the AAL atlas. Pro-
cessing pipelines for the structural connectome can be found in (Tewarie
et al., 2019), processing pipeline for the resting-state fMRI network can
be found in Appendix D. The functional connectivity matrix W for all
datasets was obtained by computing the Pearson correlation coefficient
between fMRI timecourses. The eigenvalues and eigenvectors of all
structural connectivity matrices were obtained using the function eig.m in
MATLAB (version R2018b; Mathworks, Massachusetts, USA).

Given a lack of ground truth with empirical functional connectivity
data, we also simulated functional networks using a neural mass model
(Wilson and Cowan, 1972). The Wilson-Cowan neural mass model for
every node consists of two distinct neuronal populations, an excitatory
and an inhibitory neuronal population. The dynamics for each node j are
characterised in terms of their mean firing rates (EjðtÞ ¼ excitatory, YjðtÞ
¼ inhibitory). The sum of all inputs to a population is converted using a
sigmoid function gðxÞ ¼ ð1þ expð�xÞÞ�1, with threshold θa (with a2 fe;
ygÞ. The mean firing rate for every node can be understood by the
following dynamical system:

τ
d
dt
EjðtÞ¼ �EjðtÞþ g

"
ceeEjðtÞ� cyeYjðtÞ� θe þPext þ η

N

XN
i¼1; i 6¼j

AjiEi

�
t� τji

�#

þ ξdW

(13a)

τ
d
dt
YjðtÞ¼ �YjðtÞ þ g

�
ceyEjðtÞ� cyyYjðtÞ� θy

�
: (13b)

The parameters cab (with a 2 fy; eg and b 2 fy;eg) correspond to strength
of the connections between the populations, τ (in s) to a relaxation time
constant, and ξ to Gaussian noise with zero mean and unit variance. The
incoming firing rates from distant nodes are tuned by the global coupling
strength parameter η and incoming firing rates EiðtÞ are delayed by a
Euclidean distance dependent delay τji. Nodes undergo saddle node and
Hopf bifurcations when the external input parameter Pext is tuned (see
Fig. 5B in (Tewarie et al., 2019)). The working point for the model was
near the Hopf bifurcation since this regime seemed to be consistent with
empirical data (Deco et al., 2017a; Tewarie et al., 2019). Time series of
EjðtÞwere used as the model output and model parameters were identical
as in (Tewarie et al., 2019). Equation (13) was numerically solved using a
4th order Runge-Kutta scheme with a sufficiently small time step (Δt ¼ 1
� 10�4 s) (Lemar�echal et al., 2018). The structural network from dataset
1 was used as input for A in the simulations.

Fig. 1 shows the empirical functional connectivity matrix and the
estimated functional connectivity matrices using the series expansion
and eigenmode approaches for all four empirical datasets and the sim-
ulations. Estimations are based on the analytical expressions described in
equations (6) and (9). For every dataset, it also shows a scatter plot of the
magnitude of the eigenmode coefficients si (diagonal of S), i.e. weights
for the different eigenvectors of the structural network, versus the
aggregated coefficients for the series expansion approach, i.e. the sum of
the powers of the eigenvalues of the structural network weighted by cm

kAmk
(right-hand side of equation (4)). The number of points in the scatter
plots correspond to the number of eigenvalues of the structural network,
which is equal to N. Intraclass correlation coefficients are shown in each
scatter plot. For all four independent datasets, with different network
sizes N, there were strong and significant correlations R between the
coefficients from the eigenmode and the series approach (see also
Table 1). This strong correlation between the two approaches was also
the case for the Wilson-Cowan based neural mass simulations. This high
similarity between the two approaches was also reflected in the obser-
vation that the estimated connectivity matrices were highly correlated
(see Table 1 column 7 for the R2). Note that εeigenðSÞ < εseriesðcÞ for all
cases, in agreement with Lemma 3.
5

8. Extension of theoretical and numerical comparisons using the
eigenmodes of the graph Laplacian

So far, we have analysed the eigenmodes of the structural connec-
tivity matrix A in relation to the series expansion approach. In contrast,
other studies focused on the eigenmodes of the graph Laplacian (Atasoy
et al., 2016; Abdelnour et al., 2018). Analysis of the graph Laplacian is
attractive due to well-behaved properties, such as the boundedness of its
eigenvalues (Van Mieghem, 2010). The graph Laplacian is defined as
QA ¼ KA � A, where KA ¼ diagðAxÞ refers to the degree matrix with x
being the all-one vector. We further normalised the graph Laplacian

QAs ¼ K�1=2
A QAK

�1=2
A to allow for comparison with (Abdelnour et al.,

2018). In the same way we computed the normalised graph Laplacian
QWs of the functional connectivity matrixW . We denoted the eigenvalues
of the Laplacians QAs and QWs by μ1; …; μN and γ1; …; γN , respectively,
and decomposed the Laplacians as QAs ¼ Udiagðμ1; …; μNÞUT and
QWs ¼ Zdiagðγ1; …; γNÞZT . Here, the columns of the matrices U and Z
are the eigenvectors of the respective Laplacians. We then estimated the
coefficients for the eigenmode approach in the same way as described
above. Furthermore, below we also provide a comparison to the
approach by Abdelnour and colleagues (Abdelnour et al., 2018), which is
based on an exponential relationship between eigenvalues of the struc-
tural and functional connectivity matrices.

First, we determine the fitting errors for Taylor expansion and
eigenmode approach when using the graph Laplacian. For the Taylor
expansion approach, since A ¼ KA � QA; we can rewrite equation (2) as

W �
Xd
m¼1

cm
kAmk2

ðKA � QAÞm: (14)

Since equation (14) is equivalent to equation (2), the coefficients cm and
the fitting error εseriesðcÞ remain unaltered.

Similarly as in equation (1), the claim for the eigenmode approach is
that the graph Laplacian QWs of the functional connectivity matrixW can
be approximated by a linear combination of the eigenvectors U of the
graph Laplacian of the structural network

QWs � UPUT ; (15)

where diagonal matrix P corresponds to the weighting coefficients. In the
same way as for the eigenmode approach for A, we define the fitting error

εQðPÞ¼
��QWs � UPUT

��
F
: (16)

By using the same reasoning as for εeigenðSÞ (i.e. Lemma 1), the diag-
onal matrix that minimises εQðPÞ equals

P¼ diag
�
uT1QWsu1;…; uTNQWsuN

�
: (17)

By definition QW ¼ KW � W , the estimated functional connectivity ma-
trix can subsequently be obtained by evaluating

W �KW � K1=2
W ðUPUTÞK1=2

W ; (18)

where KW refers to a diagonal matrix with the degrees of W on the di-
agonal.

If there is a link between the series expansion and Laplacian eigen-
mode approaches, we can equate equations (14) and (18) and solve for P

P� I �
Xd
m¼1

	
cm

kAmk2
UTK�1=2

W ðKA � QAÞmK�1=2
W U



(19)

Unlike equation (4), the eigenvectors U cannot be eliminated on the
right-hand side of equation (19).

In addition to equation (18), previous work has expressedW in terms
of an exponential relationship between the eigenvalues of the structural
graph Laplacian and the functional connectivity matrix (Abdelnour et al.,



Fig. 1. Series expansion versus eigenmode approach (weighted adjacency matrix): Empirical fMRI connectivity for all four independent datasets are illustrated
(A–D), together with results from neural mass simulations (E). The estimated functional connectivity matrices for the series expansion and eigenmode approach are
also displayed, alongside the error, expressed as εeigenðSÞ or εseriesðcÞ, and the Pearson correlation R between predicted and actual connectivity matrices. The scatter plot
on the right shows the estimated coefficients for the eigenmodes, si and the diagonal elements of the right hand side of equation (4), here called aggregated series
coefficients. A strong and significant correlation was found for all datasets.
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2018)

W �
XN
i¼1

uiuTi ðae�αμi þ bÞ; (20)

where ui is the ith column ofU. The coefficients a, α and b are found using
a non-linear minimisation method (Abdelnour et al., 2018). The fitting
error for this methods equals

εexpða; α; bÞ¼
�����W �

XN
i¼1

uiuTi ðae�αμi þ bÞ
�����
F

: (21)

Fig. 2 shows the actual and estimated functional connectivity
matrices using the graph Laplacian eigenmode approaches for all four
empirical datasets and the simulations. The second column shows the
estimated functional connectivity matrices based on equation (20), while
the third column shows the estimated functional connectivity matrices
based on equation (18). Both graph Laplacian approaches are able to
predict the actual functional connectivity matrices. Correlations with the
actual functional connectivity based on predictions from equation (18)
(i.e. graph Laplacian) seem to be the strongest (compare 3rd column in
Fig. 2 with 3rd column in Figs. 1 and 2nd column in Fig. 2). The diagonal
elements of the right and left-hand side of equation (19) are depicted in
the scatter plots in Fig. 2 (i.e. the potential link between the series
expansion approach and graph Laplacian eigenmode approach). These
scatter plots show for both the empirical data and neural mass simula-
tions strong correlations between the series expansion and graph Lap-
lacian eigenmode approach.

9. Discussion

Recent years have seen a rise in studies that make use of the approach
that functional networks can be partly understood in terms of the ei-
genmodes of the structural network (Atasoy et al., 2016; Robinson et al.,
2016; Wang et al., 2017; Tewarie et al., 2019; Abdelnour et al., 2018).
Another existing theory is that functional networks emerge from the
weighted sum of all possible walks in the structural network, an idea that
was inspired by the use of path integrals in quantum mechanics (Rob-
inson, 2012). Here, we have shown by simple linear algebra that the
weighted sum of all possible walks corresponds to different weightings of
the eigenmodes of the structural network, i.e. both approaches are
theoretically strongly related. This was true for eigenmodes based on the
weighted adjacency matrix as well as eigenmodes based on the graph
Laplacian. We also derived expressions for the weighting coefficients that
are used for both approaches. The theoretical correspondence between
the two approaches was verified in four independent empirical datasets
and in neural mass simulations. As expected, both approaches identified
very similar mappings between structural and functional networks,
encouraging the search for unifying theories of structural-functional
network relationships in the future. However, analytical results further
showed that the errors made by the eigenmode approach are always
smaller or equal to the error of the series expansion approach. In addi-
tion, due to the large condition number of the Vandermonde matrix,
measurement and estimation errors of, as well as finite-precision in the
storage of, and computations with the functional and structural con-
nectivity matrices, can lead to large errors for the series approach.
Indeed, for both experimental and simulated data the fit of the eigen-
mode approach was better than for the series approach. Taken together,
these findings advocate the use of the eigenmode approach.

A few aspects of the results warrant further discussion. First, for both
approaches, there was a larger fitting error for the larger networks
(datasets 2 and 3) when compared to using a smaller network. This
dimension dependence could be related to the fact that both publically
available fMRI networks were provided after a threshold had been
applied, resulting in many zeros in the matrix, which are difficult to es-
timate. In addition, a threshold could have led to a change in its basis.
7

Note that the difference in errors for the series approach between larger
and smaller networks could not be explained by a difference in truncation
of the series, as the diameter for all networks was approximately equal
(five or six). If we assume that structural networks have small-world
characteristics (Yan et al., 2010), then similarity in the diameter of the
different structural networks could be explained by the reasoning that the
path length between two randomly chosen nodes in networks scale with
logðNÞ. Second, making use of simulated data clearly illustrated that in a
system with ground truth structural connectivity, the emerging func-
tional connectivity can be adequately estimated using the series expan-
sion and eigenmode approaches with lower errors compared to the
application of the approaches to empirical fMRI data. Third, eigenmodes
of the weighted adjacency matrix and eigenmodes of the graph Laplacian
were both strongly related to the series expansions approach. The
goodness of fit with actual functional connectivity data was slightly
higher for the graph Laplacian approach. However, since analysis was
performed at the group level we could not perform statistics to compare
two distributions of the goodness of fit (e.g. graph Laplacian versus
weighted adjacency matrix) in order to conclude that predictions based
on the eigenmodes of the graph Laplacian outperform predictions based
on the eigenmodes of the weighted adjacency matrix.

A few aspects of the methodology warrant further discussion. First,
we gave explicit expressions for the coefficients used by the eigenmode
approach and by the series expansion approach. These coefficients can be
computed efficiently, which avoids the usage of fitting algorithms, such
as the Matlab function nlinfit used in previous work (Meier et al., 2016).
Second, in our initial work (Meier et al., 2016), we argued that the
functional network may be a function of the structural network: W ¼
f ðAÞ. If this function is analytic, it can be approximated by a Taylor se-
ries. A Taylor series in the topology domain (at the level of A) would also
translate to the spectral domain, where the same function would map the
eigenvalues of the structural network to the functional network. This
correspondence would also assume identical eigenvectors for the struc-
tural and functional network. Our results showed that the commutator of
A and W was close, but not equal to zero, hence the estimated structural
and functional networks were not simultaneously diagonalizable and
therefore did not share the exact same eigenvectors. However, as the
normalised commutator were close to zero, the functional and structural
connectivity matrices were almost jointly diagonalizable, and they had
similar eigenvectors (Glashoff and Bronstein, 2013). The most important
reasons for this mismatch between the eigenvectors of structural and
functional networks may be 1) systematic and random errors in the
estimation of structural and functional networks (Sotiropoulos and
Zalesky, 2019; Noble et al., 2019); 2), the function f being dependent on
other state variables such as local or nodal dynamics (Harush and Barzel,
2017; Deco et al., 2014; Forrester et al., 2019). However, given the sig-
nificant contribution of (weighted) powers of the structural network to
explain functional connectivity matrices in comparison with surrogate
data (Meier et al., 2016), and given the plausible explanation that indi-
rect routes on the structural network could indeed contribute to func-
tional connectivity (Honey et al., 2009), we may not have to refute the
notion of an analytical function between structural and functional net-
worksW ¼ f ðAÞ, with A being the only argument. Instead, we may have
to attenuate/relax the statement of W ¼ f ðAÞ, and restate that possible
walks on the structural network contribute to the explanation of the
functional network. Another remark with respect to these approaches is
that they assume that the networks are symmetric. However, especially
(directed) functional connectivity matrices can be asymmetric. In addi-
tion, there is evidence for asymmetries in structural networks (Oh et al.,
2014), and further work will be required to analyse the use of mapping
methods for asymmetric networks. Lastly, we would like to make the
reader aware that we have presented a correspondence with the series
expansion approach using eigenmodes of the structural connectivity
matrix and the Laplacian of the structural connectivity matrix. This use of
eigenmodes should not be confused with other uses of eigenmodes,
which can be estimated from the cortical surface (Gabay et al., 2017;



Fig. 2. Series expansion versus eigenmode approach (graph Laplacian): Empirical fMRI connectivity for all four independent datasets are illustrated (A–D),
together with results from neural mass simulations (E). The estimated functional connectivity matrices for the graph Laplacian approaches, i.e. based on an exponential
mapping between eigenvalues (equation (20)) and based on minimising the fitting error (equation (16)), alongside the errors, expressed as εexpða; α; bÞ or εQðPÞ, and
the Pearson correlation R between predicted and actual connectivity matrices. The scatter plot on the right shows the estimated coefficients for the eigenmodes, pi and
the diagonal elements of the right hand side of equation (19), here called aggregated series coefficients. A strong and significant correlation was found for all datasets.
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Robinson et al., 2016), or for the Laplacian of the cortical surface and
structural connectivity combined (Atasoy et al., 2016).

Having said this, we have demonstrated that the series expansion and
eigenmode approach identify very similar mappings between structural
and functional networks and verified this for the first time in empirical
data, encouraging the search for unification of theories for structural-
functional network relationships. However, given the numerical hurdle
of the sensitivity of the series expansion approach to small errors in
connectivity data, the eigenmode approach should be preferred over the
series approach.
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Appendix

A. Proof of Lemma 1

We derive the S matrix that minimises the error εeigenðSÞ. The Frobenius norm of an N � N matrix M is defined as (Van Mieghem, 2010)

kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

XN
j¼1

ðMÞ2ij

vuut : (A1)

For a symmetric matrix M, the Frobenius norm can be expressed in terms of the eigenvalues λiðMÞ of the matrix M as

kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

λ2i ðMÞ
vuut :

Thus, the Frobenius norm of a symmetric matrix M is completely determined by the eigenvalues of M. For any orthogonal matrix B and any
symmetric matrix M ; the matrix ~M ¼ BMBT is symmetric and has the same set of eigenvalues as the matrix M: Hence, the Frobenius norm of the
matrices M and ~M is equal, i.e.,

kMkF ¼
��BMBT

��
F

for any symmetric matrix M and any orthogonal matrix B.
In particular, by identifying M ¼ ðW �VSVTÞ and B ¼ VT , the definition of the error εeigenðSÞ by equation (5) is equivalent to

εeigenðSÞ ¼
��ðW � VSVT Þ��

F

¼ ��VTðW � VSVTÞV��
F

¼ ��VTWV � VTVSVTV
��
F

¼ ��VTWV � S
��
F

(A2)

where the last equality follows from the orthogonality of the matrix V, hence VTV ¼ I. Minimising the non-negative error εeigenðSÞ is equivalent to
minimising its square ε2eigenðSÞ. With the definition of the Frobenius norm, equation (A1), we obtain

ε2eigenðSÞ ¼
XN
i¼1

XN
j¼1

ðVTWV � SÞ2ij

¼
XN
i¼1

 
ððVTWVÞii � siÞ2 þ

XN
j¼1;j6¼i

ðVTWVÞ2ij
!
;

(A3)

where the last equality follows from the fact that the matrix S is diagonal. The second addend in equation (A2) does not depend on the matrix S. Hence,
minimising the error εeigenðSÞ is equivalent to minimising

~εeigenðSÞ ¼
XN
i¼1

ððVTWVÞii � siÞ2

¼
XN
i¼1

�
vTi Wvi � si

�2
;
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which is minimal if vTi Wvi ¼ si for all nodes i ¼ 1;…;N. Note that ðVTWVÞii and vTi Wvi are equal, which follows from writing out the matrix product
VTWV and identifying the eigenvectors vi as the columns of the matrix V ¼ ðvi;…;vNÞ.

Thus, the matrix S that results in the best fit of the eigenmode approach equals

S¼ diag
�
vT1Wv1;…; vTNWvN

�
:

B. Proof of Lemma 2

We derive the cm coefficients that minimise the error εseriesðcÞ. The coefficients cm can be obtained by minimising the difference of the left-hand side
to the right-hand side in equation (3). Since the matrix A is symmetric, it holds

kAmk2 ¼ λm1 : (A4)

A similar calculation as in Appendix A yields that minimising the error

εseriesðcÞ¼
�����W �

Xd
m¼1

cm
kAmk2

VDmVT

�����
F

(A5)

is equivalent to minimising

~εseriesðcÞ¼
XN
i¼1

 
vTi Wvi �

Xd
m¼1

cm
λmi
λm1

!2

: (A6)

Rewriting equation (A6) in terms of the vector z and the matrix P completes the proof of Lemma 2.

C. Proof of Lemma 3

We prove Lemma 3 by two steps. As the first step, we rewrite the error εseriesðcÞ of the series approach. From equations (A4) and (A5), we obtain that
the error εseriesðcÞ of the series approach can be expressed, for any coefficients c, as

εseriesðcÞ¼
��W � VYVT

��
F
; (A7)

where the N � N matrix Y equals

Y ¼ diag

 Xd
m¼1

cm
λm1
λm1
;…;

Xd
m¼1

cm
λmN
λm1

!
:

The expression (A7) of the error εseriesðcÞ closely resembles the error εeigenðSÞ of the eigenmode approach (5). Particularly, as the second step of the
proof, we notice that by choosing the eigenmode coefficients si as

si ¼
Xd
m¼1

cm
λmi
λm1
; i ¼ 1;…;N; (A8)

the diagonal matrix S ¼ diagðs1;…; sNÞ equals S ¼ Y : Hence, for any matrix Y ; we obtain by choosing S ¼ Y from equation (5) that

εeigen ðYÞ ¼
��W � VYVT

��
F¼ εseriesðcÞ;

where the last equality follows from equation (A7). Thus, for any coefficients c, the choice (A8) for the eigenmode coefficients s1; …; sN results in
εeigenðYÞ ¼ εseriesðcÞ. Hence, we obtain that

min
S

εeigenðSÞ� εeigenðYÞ ¼ min
c
εseriesðcÞ; (A9)

which proves Lemma 3. Please note that the argument used is analogous to the classical linear algebra idea used to compute the remainder term (and the
associated error) of a Taylor polynomial of a matrix function (Deadman and Relton, 2016). We emphasise that (A9) almost always holds true with strict
inequality, i.e.,

min
S

εeigenðSÞ < min
c
εseriesðcÞ: (A10)

To arrive at (A10), we stack (A8) and obtain a linear system for the coefficients c1; …; cd as
10
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0 λ1
λ

⋯
λd1
λd
10 1 0 1
BBBBB@

1 1

⋮ ⋱ ⋮

λN
λ1

⋯
λdN
λd1

CCCCCA@
c1
⋮
cd

A¼@ s1
⋮
sN

A: (A11)

With Lemma 1, we obtain that (A9) holds with equality if and only if

0
BBBBB@

λ1
λ1

⋯
λd1
λd1

⋮ ⋱ ⋮

λN
λ1

⋯
λdN
λd1

1
CCCCCA
0
@ c1

⋮
cd

1
A¼

0
BB@

vT1Wv1
⋮

vTNWvN

1
CCA: (A12)

The linear system (A12) is overdetermined since it has N equations but only d unknowns c1; …; cd. More specifically, the linear system (A12) can be
solved for the coefficients c1; …; cd only if the N � 1 vector

0
BB@

vT1Wv1
⋮

vTNWvN

1
CCA (A13)

is element of the image (or range) of the N � d matrix

0
BBBBB@

λ1
λ1

⋯
λd1
λd1

⋮ ⋱ ⋮

λN
λ1

⋯
λdN
λd1

1
CCCCCA: (A14)

Thus, (A9) holds with equality only if the vector (A13) is in the image of (A14). Since the image of the matrix (A14) is a subspace of RN with
dimension not greater than d, this is a highly restrictive condition. In particular, if we consider that the N � N matrix W follows some random
distribution, then the vector (A13) is not in the image of the matrix (A14) with probability 1 for the vast majority of distributions of the matrix
W .

D. Processing pipeline fMRI data for dataset 4

The HCP 100 unrelated subjects resting state fMRI dataset (REST1) was included for this project, which was already pre-processed using the
optimized HCP minimal processing pipeline before downloading, including normalization, motion correction and intensity normalization (Glasser
et al., 2013). Subsequently, the data were motion-corrected again using ICA-AROMA (v0.4-beta 2017, Nijmegen, the Netherlands), which identifies
which ICA-based components are strongly correlated with already available motion parameters, and removed these components from the data. All
subsequent processing was performed using FSL 5.09 (https://fsl.fmrib.ox.ac.uk/fsl/FMRIB, Oxford, UK). 3D T1-weighted data from the dataset was
processed using SIENAX, to create grey matter (GM) and white matter (WM) as well as cerebrospinal fluid (CSF) masks, which were registered to the
functional images using inverted boundary-based registration (BBR) parameters. WM and CSF masks were used to regress out average signals within
these masks on the ICA-AROMA processed data. The automated anatomical labelling atlas (AAL) was registered to T1-weighted images using inverted
FNIRT parameters (Tzourio-Mazoyer et al., 2002), after which SIENAX-derived GM masks were used to mask the cortical atlas in T1-space. Subse-
quently, this modified atlas was transferred to the fMRI images, again using inverted BBR parameters. Finally, mean time series were calculated for each
region within the atlas.
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