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The Waxman graphs are frequently chosen in simulations as topologies resembling
communications network§&or the Waxman graphw/e present analytiexact ex-
pressions for the link densitaverage number of linkgnd the average number of
paths between two nodeEhese results show the similarity of Waxman graphs to
the simpler clas$,(N). The first result enables one to compare simulations per-
formed on the Waxman graph with those on other graphs with same link density
The average number of paths in Waxman graphs can be useful to diméasion
estimate routing paths in network#\lthough higher-order moments of the number

of paths inG,(N) are difficult to compute analyticallghe probability distribution

of the hopcount of a path between two arbitrary nodes seems well approximated by
a Poisson law

1. INTRODUCTION

The current prominent position of the Internet has fueled network topological stud-
ies Whereas a couple of years ago the design and performance evaluation of ATM
switch fabrics spurred queuing analydise Internet has shifted the focal domain
somewhat more toward the network topologiere are at least two reasons why
graph theory seems increasingly useful

First, the Internet topology itself justifies investigations in its own righite
Internet is a complex system that is growing and changing over, 8inglar to a
living organism Increasing numbers of studies are being publisiseme refer-
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ences can be found [6,9-11]. Secondmany of the properties of network protocol
behavior require a graph on which to perform actidssually only simulations are
feasible and the graph-theoretical aspects reduce to the choice of a class of easily
generated topologieth many casesvery specific network topologies are consid-
ered andclearly, the conclusions applgin most casesonly to the considered to-
pology, although often more general statements are posdisigecially in routing
algorithm studiesclasses of random grapkisg.’s), as explained in Section 2re
employedIn generalthe set of topologies of a certain class .gf's is complete in
the sense that any graph can be represented by thatThasproperty is interesting
for determining the actual or average complexity of routing algorittand not only
the worst caseas illustrated ir4,8]). Indeed by simulating a large number afyr's
and by analyzing the behavior of interest in evegy, a probability density function
of the behavior of interest is obtained from which any other informagoich as the
averagevariancemaximum etc) can be deduced@he completeness of the class of
r.g.’s ensures that all possible modes of the routing algorithm are exsitedar to
impulse responses in linear system theory

In practice simulations can never exhaust the class@fsrwith N nodes angd
on averageE[L] links because the number of different topologies averagge

N(N - 1)/2
E[L]

r.g.’s, a particular topology structure features a higher probability of occurrence than
in another class ofg.’s. Deciding which class ofg.’s for simulations is most suited
is often intuitively justified

In communications network simulationd/axman graphs are frequently used
Waxman graphs are named after Bernard¥dxmanwho introduced them ifiL2].
Although the Waxman graphs belong to a broader class of random gesgdtsown
in Section 2the relation and some basic properties of Waxman graphs havar
as we knownot been previously publishedere we present analytic results which
closely show the similarity in link densitaverage number of linksnd the average
number of paths between two nodes with a simpler clasg¢f.rAlthough at first
glance the rg. classes differ substantiajlghese results show that average behavior
seems not so differenthe first result allows one to compare simulations performed
on the Waxman graph with those computed on other graphs with the same link
density The average number of paths in Waxman graphs can be useful to dimension
(or estimatgrouting paths in networks

In addition to the averagéhe explicit computation of the complete distribution
of the number of paths between two arbitrary nodes in random graphs is shown to be
a hard problemHowever the related probability of the hopcount of a path between
two arbitrary nodes iG,(N) seems well approximated by a relatively simple Pois-
son distribution

equals( ) Hence depending on the specific properties of the class of

2. RANDOM GRAPHS

There exists an astonishingly large amount of properties of random gfag/s
[2]. We refer to the book of Bollobal®] for an excellent discussignhe recent
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update of Bollobas’s book by Janson et[&8], and the survey article on recursive
trees by Smythe and Mahmo(8l]. The two most frequently occurring models for
r.g.’sareG(N, E) andGy(N). The clas$G(N, E) constitutes the set of graphs with
nodes andE edgesThe class of.g.’s denoted byG,(N) consists of all graphs with
N nodes in which the edgéer links) are chosen independently and with probabil-
ity p. A natural refinement oG,(N) is the modelG, pij}(N), where the edges are
still chosen independently but where the probabilityi 6f j being an edge is
exactlyp;. The Waxman graph is an example@{fpij}(N). In the classG,(N), the
number of links is not deterministibut is known on averageaspEg,a, Where the
maximum number of link&,,,,in a(bidirectiona) topology withN nodes i€ ,.x=

N(N — 1)/2= (}}). This situation is coined full meshandGi(N) = G(N, Eng) is

called the complete gragfy.

From the point of view of telecommunication networky far the most inter-
esting graphs are those with connected topaldgys limitation restricts the value
of p from below by a critical thresholdi.e., p > p.), where for large N, p. ~
(InN)/N corresponds to the link density leading to disconnectivity in tgesr
Connectedness ofx’s has received considerable attention in the pasthap 7].

The Waxman graphs are believed to be better representatives of telecommuni-
cation networks thang.’s of the classG,(N). The Waxman graph belongs to the
family Gy, (N) with p; = f(r; — 1}), where the vector; represents the position of a
nodei and all nodes are uniformly distributed in a hypercube of gize the
m-dimensional spacé&he dependence on distance is reflected @3y, which is a
positive real function of them coordinates of the vectat For examplefor the
Waxman graphthe distance function i(7) = e /", where| | is a norm denoting
a distance from the origiriThe idea of relating the probability of a link between
nodes andj to some function of the distance between those nodes stems from the
correspondence with realistic telecommunications netwditks farther two nodes
lie separatedhe less the need for a direct link between th&me example in Fig-
ure 1illustrates the topology of a random grapligfN) and a Waxman graph with
the same identifierp andN.

') «\\: N
XY

W72 SR
ot g

Ficure 1. Waxman and random graph®) A Waxman graph(N = 100, a = 11,
p = 0.04); (b) the graphGg4(100).
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3. THE LINK DENSITY pIN Gpl_/_(N)
The number of linkd_[{f}] in a particular Waxman graph specified by the nodal
positions{r} = {ry, ,,...,In}is

Ll =2 > f(r-f=2 > el

i=1j=i+1 i=1j=i+1

The average over all possible configurations of nodes in a chosen finite vafe
them-dimensional spacer the average over all possible Waxman topologies with
N nodes and generated b)) reads

E[L]= fP[{F}]L[{F}]d[{f}]-

Since the position of every node in the volume-restriatedimensional space is
equally likely the probability distribution is simply uniform or

P{r}d[{r}] = H 7
k=1

Hence

E[L] )

%f%fvi—j
fdrj—gf(r 9. (1)

Immediately the link density forig.’s in Gy, (N) follows as

E[tx] fdrf—f(r’ 9). )

m

Il
T\_':lz

Il
HMZ

Unfortunately in most casesthe integral in the last equation cannot be executed
explicitly. However for the Waxman graph in a squdrra = 2) with sizeZ and where
f(F) = e Il explicit computation is possible as illustrated in AppendixThe
decay rate = aZ of the existence of the link is expressed uniquely in terms of the
link densityp as for a > 0,

2
p(a) = [6(1-2e+ e V2a) 4 2a(—4 — 2672 4 3\2e V22)

8 8
+a2(4e7\/§a+77)]+ g;(a) + 0:(a)

~ ®
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with, of course p(0) = 1 and where

\2
a(y) = _dg;;y) =f1 e Y\x2 —1dx, (4)
,\/—
0(y) = ’ e Y\1—1/x2dx (5)

1

Relation(3) shows that the link density(a) is only a function of the decay rate
(and not of other parameters @3. Zegura et al[13] have consideregy; =
aexp(—|r; — rj|/BL) and were led to the same conclusion concerrpia) via
extensive simulations

In[9], we have shown that when both tBg(N) and the Waxman graph possess
exponentially or uniformly distributed link weightthe probability distribution of
the hopcount of the shortest path between two arbitrary nodes is almost identical in
both graphs for the same link densfiyrelated via(3), even for a relatively small
number of nodesl.

4. THE AVERAGE NUMBER OF PATHS

Paths from a source nogdsayA, to a destination nodesayB, can be categorized
according to the number of hopsr the hopcountof that pathwhich equals 1 plus
the number of different intermediate nodes along the path #kamB. A path with
hopcountj is completely characterized by a list pf- 1 different nodesPa_,g =
[N, Mo, ..., Mg ] with ng = A, nj,; = B, andn, # ny for allk, m€ [1,j + 1]. Some-
times a more illustrative representationis givench asP,_,g = (n; — ny) (N, — ng3)
-+ (N, = nj41). The maximum number of hops is cleaNy- 1, otherwise a node will
appear twice in the path lisindicating that there is a loop

We first give the general definition of the number of paths wittops from
which we compute the average number of paths for both the Glg$é) ande”_ (N)
in the next sections

4.1. The Number of Paths with jHops

Let Xj(A — B;N) denote the random variablev.) of the number of paths with
hops between a source nofland a destination nod&in G,(N). The most general
expression for the number of paths wjthops between nod& and nodeB is

X[(A—B;N) = z E E N P '1kj,1—>|3,
ki#{A, B} ko#{A ky, B} ki1 #{A Ky, ..., K, B}

(6)

where 1 is the indicator function which equals 1 if the conditiriis trug else it
is 0. Clearly, the number of paths with one hop equAlgA — B;N) = 1,_,5. The
maximum number of hop paths is attained in the complete graph and equals
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max(X(A—B;N)= > > .. D 1o _(N=2)

K #{A, B} ky#{A k;, B} K- 1#{AKp.... K. B} (N—j—1t"
(7)

In an earlier pap€l7], we demonstrated thaor N = 3, the total number of paths
between two nodes in the complete graph is precife(N — 2)!], wheree =
2.71828... and[x] denotes the largest integer smaller than or equal 8ince any
graph is a subgraph of the complete graftis implies that the maximum total
number of paths between two nodes in any graph is upper-boundediy- 2)!].

In the sequelwe will simplify the notationX;(A — B;N) to X;, because we are not
interested in a specific “sourde-destinatiorB” pair.

4.2. The Class G,(N)

THeorEM 1: For the class G(N), it holds that

NZ2E =N )
(N—=j—1!
Proor: We give two different proofs

E[Xj]:

A. The maximum number of different paths with precisghops is given by
(7). Since each individual path wifthops has probabilitp’, we obtain(8)
immediately

B. From(6), we have

E[Xj] =

E T 1Aekl : 1k1—>k2
ki #{A, B} ky#{A kq, B} K_1#{A Ky, ..., k_2,B}

2 E [1A—>k1 Lk,

ky#{A, B} ko#{A kq, B} kjfl#{A, k1,~~->kj—2,B}

RPN P )

Since all linksk,, = ky1 for all 0 = m = j are different and independergach
having equal probabilitp, we have

ElLak, Liok,s o '1kj_ﬁB] = E[Lai - E[Le i, ]+ -+ ’E[lkj_ﬁs] =pl.
Thus
ky#{A, B} ko {A ky, B} K1 #{AKg, o, K2, B}
=p > > - > 1=p’ max(X;)

ki#{A, B} kKp#{A, ky, B} K 1#{AKy....K B}

from which (8) follows. u
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The average total number of paths betwdeandB follows from (8), as
N-1 N—-2 p—l
E[ > Xj] =(N=21p"* >~
j=1 =0 I*

SinceX L (p /1) = e¥P — 321 (p /1Y), we denoteQ = 2y (p~/I1). An
upper bound

ph i(i)k: PNt pN
(N—1)! &\ pN (N—1)! pN—1

for p> 1/Nis readily obtainedA close lower bound fof is derived invoking the
beta functior( 1, Sect 6.2.1]. Since

1 k
e G

1
Qz(B) 2 N=15 k)

Q<

and
1 B 1 B(NK)
(N—1+Kk! T(N+k T(N)T(K)’
we have
(o)
1\N-1 1 1 = \p
Q= <5> N-D TN o PR
B G
p 12 1
ST 5; fotNl(l—t)kdt
<}>N—l (})N—l
P 1 N—14(1—t _ P i/p
=(N_1)! <1+F_3J;)t el >/Pdt>—(N_1)! <1+ 0 I),
where
' N—1,—t e P
I=fot e /Pdt> N

Combining lower and upper bounds yields

B )

1 1
(N- D! (”p_N) DTy <l+ pN—l)
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and finally, for p > 1/N,

(N—2)!pN-tet’ — S — <E Nilx- < (N-2)tpN-tet?
(PN—=1)(N—-1) =
pN+1
~ pN(N-1)° ©

In particular for the complete graphp = 1), randomness disappears and the total
number of paths must be an integgince 0< N/(N—1)(N —1) < 1, for N= 3, the
above bounds lead to the exact regeliN — 2)!], mentioned earlier

Using Stirling’s [1, formula 61.38] approximation(N — 2)! = V27 (N —
2)N=3/2g=(N=2)0/12(N=-2) in (9) and p = 1/(N — 2) demonstrates that
E[Z]5 %] = O(1/VN) for largeN. Since ¥(N — 2) < p., the absence of paths
between two arbitrary nodes for lardgé is expected The value ofp = pp for
which E[E,»N;f X;]1 < 1 may be regarded as a total disconnectivity threshold and
is computed accurately a®6) in Appendix C or less precisepp = 1/N +
O(\](Iog N)/N3) < pe. With this link densitypp, a node inG,(N) is connected
on averaggto only one other nodeust below or around the disconnectivity thresh-
old p., a sufficiently large cluster may exist in which communication among a
majority of (Interne} users is still possibléAround pp (only a logarithmic factor
in N smaller tharp.), communication is not possible anymore

4.3. The Class Gpi/_(N)
THEOREM 2: For the class @u(N), it holds that

(N—2)!

(N—j——l)!Fj’ 1=j=N-1, (10)

E[Xj] =
where

dry [ dr, i .
Rl el v v S LR AR (LR TV kD

Proor: With (6), whereE[1,_,;] = p;, we have

E[xj<{r"}>]=E[ S S . > Ta Ly -1kj,ﬁs]
ki#{A, B} ko#{A ky, B} K 1#{AKg, ..., Ko, B}
= > > > E[1ak,]
ki#{A, B} ko#{A ky, B} Ki—1#{AKy,...,Kj_2,B}
E[L ] - .E[lkjfﬁB] (by independenge
= > F(Fa— Fi) T (P, — Fi)

ki #{A, B} kp#{A, ky, B} Ki—1#{A Ky,....Kj_0. B}

- £(Fy, — To),
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where{r} refers to a set oN nodal position vectors defining the Waxman graph
Averaging over all possible Waxman topologies yields

E[X]1= 2 > > FArD, (12)

KiFABY K= {A K, BY Ky #{AKy ...k, B}

where

F{r) = H V F(Fa— Fi) (i, — i) -+ F(Th — Ta)

dr’A drg
N7 f(rA rkl)f(?kl - sz) f(rkj — 7)),
\Y%

where theN-fold m-dimensional integral reduces t¢-#old one because If# k; with
ki, one of the summation indices in th¢old summation [y dr, /V = 1. This multi-
dimensional integral can be evaluated step by.dtefeed we can first perform the
average oveff, that only appears in the first factor of the product 0J’s. The result
is clearly dependent of , sayg(ry, ). Next the average ovei, can be computed
thus Jy (dry, /V)g(ry ) f(F, — Fi,), which only depends on,. Proceeding with this
reasoning shows th&t({r}) = F; is independent of the summation indidgén (12)
but dependent op the number ofm-dimensional integration® more direct argu-
ment to see this follows from the fact that the positiépd’ , ..., FKH, g are equal
in distribution tory, 1, ..., Ij+1. Hence using(7) leads to(10). |

In the case of the Waxman grapttheref (f) = e /", we can prove somewhat
more We can write(11) as

i
F = E{exp(—a > Fen— F|<|>]-
k=1

The functionx— e™*is a convex functiofso by Jensen’s inequaljtipr any random
variableX,

E[e *] = e EX],

Applying this inequality with X = —aSl i|fr — Rl with E[X] =
—aZh=1 E[|ia — ] = —ajE[|T — 8] yields
F=F]
where
dr
F=e‘“EW‘§‘]:f —f(r—29) (13)
vV

andE[|F — §|] is the average distance between two arbitrary pairesds in the
m-dimensional volum&. The distribution function of the lattedenoted byg(r), is



544 P. Van Mieghem

also computed in Appendix A for a square in two dimensidtence for the Wax-
man graphit holds that

E[X ]= M Ei 14
If Fis associated to a link density the right-hand side in upper bound (h4)
equals the expected number of patBsin the simple clas&,(N). WhenV — oo,
Jydrf(r—38) = [y drf(r) andV'F = (VF)) holds Since for the Waxman graph
Jvdrf(r) is finite for finite dimensionan, and fora > 0, limy_,.F = Fil=o0.
Hence only in the limitV — oo, which is equivalent t@ = 0, the equality sign
holds in(14).

5. ON THE GENERATING FUNCTION ¢ (2) = E[z%] IN G,(N)

The analytic computation of higher-order momer$X/], becomes exceedingly
difficult due to the high correlation structu¢everlap of the paths betweeiandB.
Hence the computation of the probability distribution of the number of paths jvith
hops between two arbitrary nodes@g(N) is, to the best of our knowledgestill an
open problemAt least the variance vdiX; | seems desirable to estimgt@m G,(N),
more closely the number of paths witthops in a network witiN nodes and link
densityp. In this last sectionwe motivate the difficulty of the probleppartly by
computationgpartly via simulations

The probability generating functidip.g.f.) of the number of paths withhops
is denoted by (2) = E[29] = 2o P[X; = k]z¥

Inthe cas¢=1, we have thaK, =1,_,y. Thus X; = 0ifthere is no link between
node 1 andN, which occurs with probability + p, or X; =1 if there is a link between
node 1 and, an event that has probabilify The pg.f. ¢x (z) = P[X; = 0] +
P[X,=1]z=(1—-p) + pz

In the casg = 2, initially, all paths with two hops start at 1 and visit an inter-
mediate nodedifferent from 1 andN, from which they depart to the final destination

N. Thus X, = SNM1, 1y andP[X, = k] = (N . 2)( p?)%(1 — p?)N~2 K pbecause

>N, 1, canonly attain the valueif there are preciselgnonzero termsThe
latter event has probability? because both the linkL — i) and the link(i — N)
must exist In all the remainingN — 2 — k terms there must be at least one link
(1 —=1i)or(i - N) absentan event with probability + p2 Finally, the binomial
coefficient appears since we can choose ttkgsmzero terms out dfl — 2 possible

precisely in(N . 2) ways So we arrive at

N-2 /N — 2
ox,(2) = k20< K >(pzz)k(1— p?)N-27k=(1—p? + p?2)N-2

The casg = 3 is illustrated in Figure 2Forj > 2, we observe that it is
possible that paths withhops overlap partlywhich implies that there is a depen-
dence between certain patfi$is dependence seriously complicates a probabilis-
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Node
1 2 3 4 5 6 7 8 9 N
Hops
§ \
1
2 —
\
§ §
3

FIGURE 2. A sketch of a counting method of paths with three hops

tic analysis as in the case with one and two hdpgse maximum overlap between
paths withj jops consists of — 2 shared linksHence each path with hops has
at least two links different from other paths in the sej-bbp pathsThis property
suggests that the dependence is rather weak fo8, as also confirmed by sim-
ulations plotted in Figure .3Vioreovey for j = 3, the variance can be computed
As shown in Appendix Bthe result suggests that the case 3 can be approxi-
mated by a Gaussiaffior largeN).

T T T T T T v T T T
0.11 - =

0.10 -_ simulation _-

binomial

0091 | -3 p=08N=10 ]

0.08 i
0.07

0.06 i
0.05 I
0.04 I
0.03 I
0.02 [
0.01 [

0.00
-0.01 [ N 1 ' 1 1 1 L 1 L 1

FiGcure 3. Forj = 3 hops the width of the Gaussian fit for the simulated results is
16.182 and is 5 for the binomial The centers are 282 and 2876, respectively
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Ignoring the possible overlap or dependeribe rv. for the number of paths
W|th three hOpS iSX3 = Zi#(l,N) zj#(l,i,N) 11—>i 1,_)1 1]4N and P[X3 = k] =
((N ~2)(N-3)

k
three hop paths iSN — 2)(N — 3), and a nonzero term in the double summation
requires that all three factors be unitihis event has probabilitg®. Thus we ob-
serve that the double summation ¥£ is separated in “contributing” terms and
“noncontributing” terms resulting ipy_(z) = (1 — p* + p32)N"2N"3), Arguments
similar to those abovessuming negligible dependentsad to

)(p?’)k(l — p3)(N=2(N=3-k hacausenow, the maximum number of

max(

Xj) ik j ymax(X;)—k
B [CDRCEN:Dhcts (15)

and
¢x(2) = (L= pl + pig)®-2/ni-w, (16)

The simulations below show that formula5), referred to as “binomial” in the
figures is seriously deficient foy > 2 and that the correlation structure in the over-
lap is very dominantAlso, a Gaussian approximation still adequate in the case
j = 3, as shown in Appendix Bseems not possihl&he pd.f.’s shown in Figures 5
and 6 indicate that analytic computati¢a combinatorial analysisseems hardly
tractable

0.05 . , , .

simulation

0.04 b1no@al
< Gaussian

j=4,p=08,N=10

0.03 |-

0.02 -

PIX,=k]

0.01 |-

0.00

0 100 200 300
k

FIGURE 4. Forj = 4 hops the width of the Gaussian fit for the simulated results is
88.21 and is 18 for the binomialhe centers are 13 and 13758, respectively
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T T
: - 0.0035 o
0.020 simulation |
binomial 0.0030
L - Gaussian
j=5p=08N=10 0.0025 -
0.015 )
0.0020 o
r 0.0015 4
=~
>I<Im 0.010 - 0.0010 i
[y
B 0.0005 -
0.005 - 0.0000 -
0.000 =
1 | N 1 )
0 500 1000 1500

FiGure 5. Forj = 5 hops the width of the Gaussian fit for the simulated results is
410 and is 3818 for the binomialThe centers are 512 and 5504, respectively

0.012 T T T T
simulation
0.010 H binomial i
Gaussian
j=6,p=0.8,N=10
0.008 |- E
i~
I, 0.006 |- —
X,
=
0.004 |-
0.002 |-
0.000
N 1 ) 1
0 2000 4000

FiGURE 6. Forj = 6 hops the width of the Gaussian fit for the simulated results is
15047 and is 721 for the binomial The centers are 1584 and 176&spectively
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In spite of the difficulty in determining the.@.f. for the number of paths with
hops simulationg indicate that the probability that an arbitrary path between node
A and nodeB consists of hops denoted byP[ path= j hopd, is well approximated
by a Poisson distributionin a particular 1g. Q of G,(N), the probability of g§-hop
path equal| (Q)/S -1 X (Q), whereX,(Q) denotes the number of paths in thg r
Q with k hops Hence averaging over alQ € G,(N) yields

X (Q)
N-1 :

gl X«(Q)

P[path=i hopd = Eq

Since the . X, the number of paths withhops is also averaged over & €
Gp(N), we can write
X

P[path=ihopd =E| —— |. (17)

> X
k=1

Unfortunately (17) is intractable to compute for largd. However simula-
tions (Fig. 7) show that the ml.f. of the hopcount in a connected.rof G,(N) is,
for p > p., well approximated by

< 1>N—i—1
p

(N—i—1)

P[path= i hopg = T (18)
< (5)
20

Indeed assuming thatn (17), SEIX, = ¢, wherec is a constantthe probability
that a path between two arbitrary nodes in a random gragb,0¥l) consists of

hops becomes proportional to the expected number of pathsjwidpsE[X;].

Hence

_ _ 1 (N—2)! i
P[path=ihopg =c m p',
where the proportionality factar™? follows from the probability normalization
condition S¥' P[path= i hopg = 1. SinceS-&(1/p)/k! < e'P we obtain a
Poisson lower bound

1 Only relatively smalN can be simulated since the total number of paths grows proportioffdH®)!,
as follows from(9).
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Prob[path
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0.00 |y r— \ 1 . 1 . 1 : I
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i/N (normalized hopcount)

FIGURE 7. Acomparison of the jl.f. of the hopcount foG(N, E) andG,(N) com-

puted respectively via the simulations and approximated by the Poisson lower. bound
The difference between the Poisson lower bound and the simulation results cannot
be distinguished on this graph fer= 15.

})N—i—lel/p
_ p
P[path=i hopg =~ m,

which agrees remarkably well with simulation respdts shown in Figure.Hence

the assumptior>y_; X, = ¢ seems a good approximatiowhich indicates that
summing over all possible hops considerably smooths the peculiar correlation struc-
tures for the larger hops
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APPENDIX A
Expression for the Link Density in Two-Dimensional Waxman Graphs

The expression for the link density given ) is explicitly computed here assuming that all
nodes lie within a square with siZe We use Cartesian coordinat&sus we have the integral

= 14 fozdxlj;zdxzfozdylj:dyzf(\/(xl — %)% + (Y1 — ¥2)?). (19)

In the first stagewe use symmetry to reduce the fourfold integral to a double inte§rdd-
stituteu = x; — X, with x, as constanfilso, definew =y, — y». Then

fdxlf dxzf(\/m)—f dxzf “duf(ViZ + wP),

-,

and after partial integration we obtain
f:dxlfozdxzf(\/m) - szZ(z_ W) du (VT W)
A similar treatment on thg coordinate leads us to
P=—: f duf dw(Z — u)(Z — w)f(Vu? + w?). (20)

In the second stagéhe integral is transformed from Cartesian coordinates to polar co-
ordinates as

4 Z /2 )
p—?[fo rer; dep(Z —rcosp)(Z—rsing)f(r)

z\2 7/2—arcco$Z/r)
+ J rer dp(Z —rcose)(Z — rsin¢)f(r)]. (22)

z arccosZ/r)
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Clearly, the ¢ integral is elementary

b

a

b r-2
J (Z—rcosp)(Z—rsing)dp = Z?(b—a) — rZ(sin¢ — cose) |2 — 7 cos 2p
Applied to the first integral if21), this yields

2

/2 T r
f (Z*I’COS¢)(Z*I’Sin¢)d¢=EZZ*ZI’Z‘FE.
(o]

Analogouslythe second integral becomes

7r/2—arccosZ/r) T 22
J (Z—rcos¢)(z—rsin¢)d¢:22<——1)+2rZ 1-—
arccosZ/r) 2 r

z r?
— 277 arccos<—> - —.
r 2

Using these results if21) gives

_ 2 fzf() Tz D) g
p_Z“ or r 5 r > r
zN2 T 72
+f finr\z?| - -1)+2rz /1- —
z 2 r
z r2
— 2Z?arcco T 37 dr|. (22)

This is about as far as we can go without specifyfiig). In passing we note that(22)
immediately gives the probability distribution functigiir) of the distance between two
arbitrary points in the square with siZeFor, the average number of links can also be written
asp = IOZ\/Eg(r)f(r) dr and from(22), it follows that

1
g(r) = Za (2mrz2 —8r2Z+ 2r%) 0=r=2)
1 Z
=72 Z2(27 — 4&)r + 8Zr\r2 — 72 — 8Z2r arcco T —2r3

(z=r=+22). (23)

Hereg we choosé (r) = e~ *". In this case(22) can be further simplifiedn particular the first

integral is
z T r2
f re=e (— 22 —-2rZ+ —> dr
0 2 2

1
= 5.0 [(6 — 8aZ+ a?Z2m)
a

— e (6 — 2aZ + a?Z?(m — 5) + a3Z3(7 — 3))].
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The second integral if22) is separated into two partEhe first part is

fzx/_zre‘“r <22<z - 1) - r—z) dr
z 2 2
—aZ
N 2a*
o VEaz
2a*

(—6—6aZ+ a?Z%(m — 5) + a3Z%(7w — 3))

(—6— 6\2aZ + a?Z%(m —8) + \[50(323(77 — 4)).

The second part becomester a partial integratign

z\z z2 z
f re '\ 2rz./1— e 2Z?arcco T dr
z

e \/Eucz

- (Z2(1+ \2aZ)(7 — 4))

2z (N2z 1 z?
+ — e*“’<r+— 1-——dr
o z o r

Unfortunatelythe last integral cannot be evaluated analytic&lries expansion is possible
but does not lead to attractive resultherefore we rewrite that integral into a suitable form
for numerical integration as

N2z 1 zz Z
f e <r + _> 1- — dr=Z%g,(Za) + — ,(Za),
z « r *

whereg; (y) andg,(y) are given in4) and(5), respectivelyPutting all pieces together yields
the final result(3), wherea = aZ. The latter demonstrates that the link density is only a
function of one parametea. At last, we list some numerical valugapart from the trivial
p(0) =1 andp(cc) = O:

p(0.2) = 0.902077
p(0.6) = 0.739417
p(1.0) = 0.611868
p(1.4) = 0511000
p(1.8) = 0.430557
p(2.2) = 0.365868
p(2.6) = 0.313420
p(3.0) = 0.270557
p(3.4) = 0.235251
p(3.8) = 0.205951

p(0.4) = 0.815725
p(0.8) = 0.671840
p(1.2) = 0.558533
p(1.6) = 0.468548
p(2.0) = 0.396486
p(2.4) = 0.338297
p(2.8) = 0.290930
p(3.2) = 0.252066
p(3.6) = 0.219933
p(4.0) = 0.193166
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APPENDIX B
Computation of E[XZ]

From definition(6), we immediately have that

E[X3]= > > > > Ellasi, Lo Lioe Tassk, - Lok, T,oe -
j17#{A B} jo#{Aj1,B} ki#{A B} ko#{A Ky, B}

(24)

The computation oE[1a -1, ., 1,5 Iassk, 1, -k,  1k,6] IS @ combinatorial exercise
The(in)equalities between the sfgt, j»} and{ki, k,} must be investigateavith a total of 2*
possibilities In general for j hops this amount increases as!2” and rapidly leads to
infeasible analytic treatmenthe path restriction amounts jp+# j, and similarly, k; # ko.
Table B1 contains all possibilities Whejre?: kis coded by 1 if true and by 0 if not truEach
of the seven nonzero cases contribute@#® as shown in Table BZSumming all contribu-
tions finally leads to

(N—=2)! 6+2(N_2)!(p5+p6)+(N_2)!

E[X5] = N—61” TT(N_5) (N— 4)!

(p* +p®). (25)
On the other handapproximation16) gives

N-—2)! 2 N—2)!
e~ ot = | | P

N—a P ] TiNmap P

TABLE B1. All Possibilities

[0

No. ji=ki ja=ks ji=ks |2 z K1 E[1A—>jl'1j1—>jz'112—>B'1A—>k1'1k1—>k2'1k2—>s]
0 0 0 0 0 pé
1 0 0 0 1 pb
2 0 0 1 0 pb
3 0 0 1 1 p°
4 0 1 0 0 p°
5 0 1 0 1 0
6 0 1 1 0 0
7 0 1 1 1 0
8 1 0 0 0 p°
9 1 0 0 1 0

10 1 0 1 0 0

11 1 0 1 1 0

12 1 1 0 0 ps

13 1 1 0 1 0

14 1 1 1 0 0

15 1 1 1 1 0
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TaBLE B2. Nonzero Cases

No. Contribution
0 PO A(a B D AL Bl 2k A 2B koA {A i ki, 8) 1= [(N = 2)I/(N = 6)!]p®
1 P Zisas i a8 SkAa e 1= [(N—2)!/(N—5)!]p°
2 PR AB 2irA LB SkAA L, e 1= [((N—2)/(N—-5)!]p°
3 p5211¢{A,B}EjZ¢{Ajl,B}1=[(N_ 2/(N—4)!]p°
4 P I can ZitA LB 2kAALL e 1= [(N=2)!/(N-5!]p°
8 P XA i AILB DkAALLe 1 = [((N=2)!/(N=5)!]p°
12 pPZjsam Zeag.e L= [(N=2)!1/(N—4)!]p°

Hence for large N and fixedp, we observe that the exact and approximate results yield
E[X2]~ N“%p®+ 2N3(p® + p®) + O(N?) andE[XZ] ~ N*p® + O(N?), respectivelyhence
agreeing to first order iiN. With E[X3] ~ N?p2, the exact variance is vBX3] ~ 2N3(p® +

p®) + O(N?) and

Xs— E[Xs]  VN(Xs/N? — p%) <1+ O(i))
\var[Xs] N2(p° +p®) N/J

which suggests that the random variahfial (X, /N2 — p®) tends to a Gaussian with mean 0
and variance 2p® + p®) for largeN.

APPENDIX C
The Total Disconnectivity Threshold pp
Using the asymptotic formulil, formula 61.41] for logI'(N) for largeN in (9) yields
N—1 l
log|E| > X; || <logT'(N—1) + (N—1)logp + 0
j=1

2

1 1 1
=(N71)Iog(p(N71))f§Iog f(N71)+F—)+O<N>.

Letp= (N —1)*f(N — 1) with f(-) > 0 andf (x) = o(x) for largex. Setx=N — 1. Then

log| E ix <xlI atlf —}I X +X_a+o}
og j:1j xlog(x (x)) 209277 X ) <)

Only if « = —1 does the right-hand side tend to a finite linpitovidedf (x) is suitably chosen
If we chooseg(x) = O(1/x#) with 0 < 8 < 1, the requirement fof (x) to achieve that
log (E[X;21X;]) — 0 for largex, is

log(fo) + — —1= 90 L o9 X
0g(f(x)) f(x) X ox 90,
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Since the right-hand side can be made arbitrarily small for laygeTaylor expansion of the
left-hand side around= f(x) = 1 is sufficiently accuraté/Ne have
(z—12% 2

5 é(z—l)3+0((z—1)4).

[ ()+1 1
7 _ — =
(0]¢] 5

Confining to first order yields

gx) 1
f9 =1 2\/ X 2x 9 2

Hence we arrive at

(26)



