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A network consists of two interdependent parts: the network topology or graph,
consisting of the links between nodes and the network dynamics, specified by some
governing equations. A crucial challenge is the prediction of dynamics on networks,
such as forecasting the spread of an infectious disease on a human contact network.
Unfortunately, an accurate prediction of the dynamics seems hardly feasible, because
the network is often complicated and unknown. In this work, given past observations
of the dynamics on a fixed graph, we show the contrary: Even without knowing the
network topology, we can predict the dynamics. Specifically, for a general class of
deterministic governing equations, we propose a two-step prediction algorithm. First,
we obtain a surrogate network by fitting past observations of every nodal state to the
dynamical model. Second, we iterate the governing equations on the surrogate network
to predict the dynamics. Surprisingly, even though there is no similarity between the
surrogate topology and the true topology, the predictions are accurate, for a considerable
prediction time horizon, for a broad range of observation times, and in the presence
of a reasonable noise level. The true topology is not needed for predicting dynamics
on networks, since the dynamics evolve in a subspace of astonishingly low dimension
compared to the size and heterogeneity of the graph. Our results constitute a fresh
perspective on the broad field of nonlinear dynamics on complex networks.

dynamics on networks | predicting dynamics | network reconstruction

The interplay of dynamics and structure lies at the heart of myriad processes on net-
works, ranging from predator–prey interactions on ecological networks (1) and epidemic
outbreaks on physical contact networks (2) to brain activity on neural networks (3). To
relate the network structure, or graph, and the process dynamics, there are two approaches
of opposing directions. On the one hand, a large body of research (4–6) focuses on the
question, What is the impact of the network structure on the dynamics of a process? For
instance, what is the impact of the network of online social media friendships on the spread
of fake news. On the other hand, network reconstruction methods (7–11) consider the
inverse problem: Given some observations of the dynamics, to what extent can the network
structure be inferred? As an example, one may ask to determine the path of an infectious
virus from one individual to another, given observations of the epidemic outbreak.

The prediction of the dynamics on an unknown network seems to require the combina-
tion of both directions (see, e.g., the discussion in ref. 12): first, the reconstruction of the
network structure based on past observations of the dynamics and, second, the estimation
of the future dynamics based on the inferred network. Intuitively, one may expect that an
accurate prediction of the dynamics is possible only if the network topology is available. In
this work, paradoxically, we show the contrary: It is possible to accurately predict a general
class of dynamics without the network structure!

1. Modeling Dynamics on Networks

The network’s graph is represented by the N × N weighted adjacency matrix A whose
elements are denoted by aij . If there is a directed link from node j to node i , then aij > 0;
otherwise aij = 0. Hence, we focus on nonnegative entries aij ≥ 0 in this work, which is
in agreement with the considered empirical networks detailed in SI Appendix, section A.
However, our prediction approach can be adjusted to entries aij ∈ R in a straightforward
manner, as we argue in Section 3. Furthermore, we consider a fixed weighted adjacency
matrix A and that the underlying graph does not change with time.

We denote the nodal state of node i at time t by xi(t) and the nodal state vector
by x (t) = (x1(t), . . . , xN (t))T . We consider a general class of dynamical models on
networks (7, 12–14) that describe the evolution of the nodal state xi(t) of any node i as

dxi(t)

dt
= fi (xi(t)) +

N∑
j=1

aij g (xi(t), xj (t)) . [1]

Significance

Dynamics on networks describe a
plethora of physical phenomena,
including the viral spread on
contact networks, the competition
between species on
predator–prey networks, and
magnetoencephalography activity
on the human connectome. Of
particular interest is the
prediction of dynamics on
networks. While the network is
decisive for the dynamics, the
precise network structure is
unknown in most applications.
Thus, it seems necessary to
reconstruct the underlying
network, which constitutes a
tremendous, if not infeasible,
obstacle to predicting dynamics.
Here, we show the opposite: The
prediction of a general class of
dynamics may be possible, even if
the underlying graph cannot be
reconstructed. Our work is an
important step toward reducing
the obstacle of an accurate
network reconstruction to predict
dynamics.

Author affiliations: aFaculty of Electrical Engineering,
Mathematics and Computer Science, Delft University of
Technology, 2600 GA Delft, The Netherlands

Author contributions: B.P. and P.V.M. designed research;
B.P. performed research; B.P. and P.V.M. analyzed data;
and B.P. and P.V.M. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
bastian.prasse@rwth-aachen.de.

This article contains supporting information online at
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2205517119/-/DCSupplemental.

Published October 24, 2022.

PNAS 2022 Vol. 119 No. 44 e2205517119 https://doi.org/10.1073/pnas.2205517119 1 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
O

ct
ob

er
 2

4,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

15
4.

59
.1

24
.1

13
.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2205517119&domain=pdf&date_stamp=2022-10-22
http://orcid.org/0000-0002-7935-9109
http://orcid.org/0000-0002-3786-7922
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bastian.prasse@rwth-aachen.de
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://doi.org/10.1073/pnas.2205517119


Table 1. Models of dynamics on networks

Model fi (xi(t)) g
(
xi(t), xj(t)

)
LV xi(t)(αi − θixi(t)) −xi(t)xj(t)
MP xi(t)(αi − θixi(t)) xi(t)x2

j (t)(1 + x2
j (t))

−1

MM −xi(t) xh
j (t)(1 + xh

j (t))
−1

SIS −δixi(t) (1 − xi(t))xj(t)
KUR ωi sin

(
xi(t)− xj(t)

)
WC −xi(t)

(
1 + exp

(
−τ(xj(t)− μ)

))−1

The function fi (xi(t)) describes the self-dynamics of node i . The
sum in [1] represents the interactions of node i with its neighbors.
The interaction between two nodes i and j depends on the adja-
cency matrix A and the interaction function g (xi(t), xj (t)). A
broad spectrum of models follows from [1] by specifying the self-
dynamics function fi and the interaction function g . For instance,
by specifying fi (xi(t)) = 0 and g (xi(t), xj (t)) =−xj (t), the
model [1] reduces to the linear dynamics dx (t)/dt =−Ax (t).
In this work, we study six particular models of dynamics on
networks, which are summarized in Table 1.

1.1. Lotka–Volterra Population Dynamics. The Lotka–Volterra
model (LV) (15) describes the population dynamics of competing
species. The nodal state xi(t) denotes the population size of
species i , the growth parameters of species i equal αi > 0 and
θi > 0, and the link weight aij quantifies the competition rate, or
predation rate, of species j on species i .

1.2. Mutualistic Population Dynamics. We adopt the model of
Harush and Barzel (16) to describe mutualistic population dy-
namics (MP). The nodal state xi(t) denotes the population size of
species i , the growth parameters of species i are denoted byαi > 0
and θi > 0, and the link weight aij > 0 quantifies the strength of
mutualism between species i and species j .

1.3. Michaelis–Menten Regulatory Dynamics. The dynamics of
gene regulatory networks can be described by the Michaelis–
Menten equation (16–18), Michaelis–Menten regulatory dynam-
ics (MM). The nodal state xi(t) is the expression level of gene i ,
the Hill coefficient is denoted by h , and the link weights aij > 0
are the reaction rate constants.

1.4. Susceptible–Infected–Susceptible Epidemics. Spreading
phenomena, such as the epidemic of an infectious disease, can
be described by the susceptible–infected–susceptible model (SIS)
(2, 19–21). The nodal state xi(t) equals the infection probability
of node i . The parameter δi > 0 denotes the curing rate, and the
link weight aij is the infection rate from node j to node i .

1.5. Kuramoto Oscillators. The Kuramoto model (KUR) (22)
has been applied to various synchronization phenomena of phase
oscillators (23), such as magnetoencephalography (MEG) activity
of brain regions (3). Here, the nodal state xi(t) corresponds to
the phase of oscillator i , the parameter ωi denotes the natural
frequency of node i , and the coupling strength from node j to
node i is given by the link weight aij .

1.6. Wilson–Cowan Neural Firing. The firing rates of neurons can
be described by the Wilson–Cowan model (WC) (14, 24). Here,
the nodal state xi(t) is the activity of neuron i , and the parameters
τ and μ are the slope and the threshold of the neural activation
function. The link weight aij specifies the number and strength
of synapses from neuron j to neuron i .

As stated in ref. 25, there are three possibilities for the quali-
tative long-term behavior of the dynamical system [1]. First, the

nodal state x (t) might approach a steady state x∞ = lim
t→∞

x (t).
At the steady state x∞, the nodal state does not change any longer;
thus dx (t)/dt = 0. Second, the nodal state x (t) might converge
to a limit cycle, a curve on which the nodal state x (t) circulates
forever. Third, the nodal state x (t) might never come to rest, nor
enter a repeating cycle. Then, the state x (t) perpetually continues
to move in an irregular pattern.

Additionally to the functions fi (xi(t)) and g (xi(t), xj (t)),
given by Table 1, the differential equations [1] require the speci-
fication of the adjacency matrix A. Each dynamical process above
evolves on a respective real-world network: LV, food web of Little
Rock Lake (26); MP, mutualistic insect interactions (27, 28);
MM, gene regulatory network of the yeast Saccharomyces cerevisiae
(29); SIS, face-to-face contacts between visitors of the “Infectious:
Stay Away” exhibition (30); KUR, structural connectivity between
brain regions (31, 32); and WC, Caenorhabditis elegans neuronal
connectivity (33, 34). The real-world networks specify an adja-
cency matrix A, based on which we simulate the dynamics [1].
Some of the real-world networks are disconnected. Throughout
the work, we consider the whole network, which may consist
of multiple connected components, without confining to the
largest connected component. SI Appendix, section A states the
real-world networks and model parameters in detail.

The focus of this work is to predict the nodal state x (t) at times
t > tobs, where tobs denotes the observation time. Furthermore,
we focus on predicting transient dynamics of the nodal state
x (t). The input to the prediction is given by n + 1 nodal state
observations x (0), x (Δt), . . . , x (nΔt) in the transient regime
of the dynamics.* Here, Δt > 0 denotes the sampling time with
nΔt = tobs. We emphasize that we do not assume any knowledge
of the matrix A for our prediction algorithm.

In refs. 35–37, sophisticated methods were derived to compute
the steady state x∞ = lim

t→∞
x (t) from only a few observations of

the nodal state vector x (t) for consensus dynamics on graphs.
There are two substantial differences between the studies (35–
37) and our work. First, beyond predicting only the steady state
x∞, we predict the complete dynamics of the nodal state x (t)
at all times t ≥ tobs. We stress that the equilibrium x∞,i of the
consensus dynamics in refs. 35–37 is, by definition, the same for
all nodes i . In contrast, for the dynamics [1], the nodal states
xi(t) of different nodes i are typically strongly heterogeneous.
Second, consensus dynamics are linear, but we study nonlinear
dynamics [1] on networks. In contrast to linear dynamics, there is
no general closed-form solution for any of the nonlinear dynamics
specified above. Thus, predicting nonlinear dynamics [1] requires
a fundamentally different approach than refs. 35–37, which build
upon closed-form expressions of linear dynamics. In summary,
the methods in refs. 35–37 do not address the central problem
of our work: Nonlinearity, rather than linearity, is the norm for
dynamical processes on networks (5, 25, 38), and the complete
future dynamics provide a considerably richer picture than the
long-term equilibria.

In our work, we assume that the self-dynamics function
fi (xi(t)) and the interaction function g (xi(t), xj (t)) are
known, for two reasons. First, when describing the nodal state
x (t) of a real-world process, the underlying kind of physical
process is usually known, which specifies the functions fi and g
at least approximately. Second, the focus of our work is on the

*We denote the number of observations by n + 1 for simplicity: Given n + 1 observations,
there are n nodal state transitions from x(kΔt) to x((k + 1)Δt) with the discrete time
k = 0, . . . , n. The n nodal state transitions form the basis for our prediction algorithm in
Section 3.
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fundamental interdependence of the network topology and the
general dynamics [1]. While assuming the functions fi (xi(t))
and g (xi(t), xj (t)) as unknowns would make predictions more
challenging, our fundamental result would remain unaffected: An
accurate network reconstruction is neither possible nor necessary
to predict the trajectory of the nodal state x (t). We emphasize
that the observations and predictions of the nodal state are on
the same trajectory, which starts at some initial state x (0). Lastly,
we refer to the recent proposal of Gao and Yan (12) for a setting
reverse to our work, where the adjacency matrix A is known but
the functions fi and g are unknown.

2. Dynamics on Networks Are Low Dimensional

The number N of nodes or the size N of real-world networks can
be very large. What is the impact of the network size N on the
predictability of dynamics? Intuitively, it seems that more nodes
N lead to a more complicated dynamics. Is there a maximum
network size N , above which an accurate prediction is impossible?
In this section, we report two observations. First, the dynamics
on networks are in a subspace X ⊂ R

N of small dimension
m �N . The dimension m equals the degrees of freedom of the
network dynamics. The smaller the dimension m , the simpler
the dynamics that is to be predicted. Second, we infer the low-
dimensional subspace X from the dynamics in a short observation
time interval. Thus, predicting dynamics on a network with N
nodes simplifies to predicting m �N degrees of freedom.

Our analysis relies on the proper orthogonal decomposition
(POD) (39–43), which is a powerful tool for discovering low-
dimensional structures in dynamics. At any time t , the POD
approximates the N × 1 nodal state vector x (t) by

x (t)≈
m∑

p=1

cp(t)yp . [2]

Here, the agitation modes y1, . . . , ym are orthonormal vectors,
which do not change over time t . The scalar functions cp(t)
are obtained by projecting the nodal state vector x (t) on the
respective agitation mode,

cp(t) = yT
p x (t). [3]

The number of agitation modes m is a parameter which deter-
mines the accuracy of the POD [2]. The more agitation modes
m , the more degrees of freedom of the POD [2]. Hence, the
more modes m , the more accurate the approximation [2]. More
precisely, numerical results in SI Appendix, section B.1 suggest
that the approximation error (with respect to the Euclidean norm
over a finite time interval) of the POD [2] decreases exponentially
quickly as the number of agitation modes m increases. If m = N ,
then the approximation [2] is exact, because any N × 1 vector
x (t) can be written as the linear combination of N orthogonal
vectors. Intuitively speaking, if the POD [2] is accurate for
m �N modes or degrees of freedom, then the nodal state vector
x (t) is barely agitated.

If the POD [2] is accurate, then the nodal state x (t) is
practically an element of the m-dimensional subspace X =
span {y1, . . . , ym}, where the span of the vectors y1, . . . , ym
equals the set of all linear combinations†

†Strictly speaking, unless the POD [2] is exact, the vector x(t) is not an element of the
subspace X . However, if the POD [2] is sufficiently accurate, then the difference x(t) −
projX (x(t)) is negligible. Here, we denote the projection of the nodal state x(t) onto the
subspace X by projX (x(t)), which is element of the subspace X .

span {y1, . . . , ym}=
{

m∑
p=1

αpyp
∣∣αp ∈ R

}
.

What makes the POD [2] so interesting for predicting dynam-
ics on networks? Suppose we know the agitation modes y1, . . ., ym
for which the POD [2] is accurate at future times t > tobs. Then,
we must predict only m functions c1(t), . . ., cm(t) to predict the
N × 1 nodal state vector x (t). Thus, not the network size N but
the number of agitation modes m is decisive for the difficulty of
predicting dynamics on networks.

However, at the observation time tobs, we do not know the
agitation modes y1, . . ., ym for which the POD [2] is accurate at
future times t > tobs. In the following, we show that the agitation
modes yp can be estimated from observing the dynamics from
time t = 0 until t = tobs. More precisely, we estimate the agitation
modes yp from the nodal state observations x (0), . . ., x (nΔt)
in two steps; see refs. 41, 42, and 44. First, we define the N ×
(n + 1) nodal state matrix as X = (x (0), x (Δt), . . . , x (nΔt)).
Second, we obtain the agitation modes y1, . . . , ym as the first m
left-singular vectors of the nodal state matrix X .

Fig. 1 demonstrates the accuracy of the POD [2], with m =
15�N agitation modes. Here, the agitation modes yp follow
from the nodal state x (t) until the observation time tobs as
stated above, and the scalar functions cp(t) are computed by
[3]. Surprisingly, the POD [2] is accurate at times t > tobs,
even though the nodal state x (t) at times t > tobs was not used
for computing the agitation modes yp . Hence, during the time
interval [0, tobs], the nodal state x (t) quickly locks into only a
few agitation modes yp , which govern the dynamics also at future
times t > tobs. The POD approximation error ε̄ in Fig. 1 varies
for the different models (also after normalizing by the maximum
magnitude of the model-specific nodal states xi(t)), since the
number of agitation modes m depends on the specific model
(SI Appendix, section B.2), but Fig. 1 considers, for simplicity,
the same number of agitation modes m = 15 for all dynamic
models. Furthermore, in SI Appendix, section B.2, we argue that
the number m of agitation modes is constant as the number of
nodes N grows, for fixed time intervals. Hence, the dynamics
remain at a given level of simplicity (a constant number m of
agitation modes) despite an increasingly complex network (due
to a larger number N of nodes and a more heterogeneous degree
distribution as N grows).

We stress that the POD [2] cannot be used (directly) to predict
the nodal state x (t). Whereas the agitation modes yp could be
inferred within a small observation time interval [0, tobs], we do
not know the functions cp(t) at future times t ≥ tobs. For Fig. 1,
we computed the functions as cp(t) = yT

p x (t), requiring the
nodal state x (t) at times t ≥ tobs. However, since the agitation
modes yp can be estimated from observing past dynamics, the
crucial implication of Fig. 1 is that predicting dynamics on
networks with N nodes reduces to predicting m �N scalar
functions cp(t). Hence, predicting future dynamics on unknown
networks seems possible, even for large networks. In the remaining
part of this work, we design and evaluate a concrete prediction
algorithm.

3. Prediction Algorithm Based on a Surrogate
Network

If we knew the adjacency matrix A, then we could predict the
evolution of the nodal state x (t) by numerically solving the differ-
ential Eq. 1. However, the true adjacency matrix A is unknown.
Thus, we resort to predicting the dynamics by using a surrogate

PNAS 2022 Vol. 119 No. 44 e2205517119 https://doi.org/10.1073/pnas.2205517119 3 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft
 o

n 
O

ct
ob

er
 2

4,
 2

02
2 

fr
om

 I
P 

ad
dr

es
s 

15
4.

59
.1

24
.1

13
.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2205517119/-/DCSupplemental
https://doi.org/10.1073/pnas.2205517119


LV (N = 183)

0 tobs
Tmax

0.4 0.6 0.8 1

1

2

Time t/Tmax

N
o
d
a
l
S
ta
te
x
i(
t)

MP (N = 679)

0 tobs
Tmax

0.4 0.6 0.8 1

0

200

400

600

800

Time t/Tmax

N
o
d
al
S
ta
te
x
i(
t)

MM (N = 620)

0 tobs
Tmax

0.4 0.6 0.8 1

0

1

2

Time t/Tmax

N
o
d
a
l
S
ta
te
x
i(
t)

SIS (N = 410)

0 tobs
Tmax

0.4 0.6 0.8 1

0

0.2

0.4

Time t/Tmax

N
o
d
a
l
S
ta
te
x
i(
t)

KUR (N = 78)

0 tobs
Tmax

0.4 0.6 0.8 1

−2

0

2

Time t/Tmax

N
o
d
al
S
ta
te
x
i(
t)

WC (N = 282)

0 tobs
Tmax

0.4 0.6 0.8 1
0

20

40

60

80

Time t/Tmax

N
o
d
a
l
S
ta
te
x
i(
t)

A B C

D E F

Fig. 1. POD of dynamics on networks. The exact nodal state x(t) is shown in blue, and the approximation by the POD [2] is shown in red. The maximum
prediction time Tmax is different for each dynamic model, and the observation time equals tobs = Tmax/5. The number of observations is n = 100. For readability,
only six nodal states xi(t) are depicted for each network. In this and the following figures, the six nodes i are chosen such that the six nodal states xi(Tmax) at
the maximum time Tmax are as evenly spaced as possible. The approximation equals the linear combination [2] of m = 15 agitation modes y1, . . . , ym, which
are computed by observing the nodal state x(t) from time t = 0 to t = tobs. The average of the POD approximation error εi(t) =

∣∣∣xi(t) −
∑m

p=1 cp(t)
(
yp

)
i

∣∣∣, with

respect to all nodes i and future times t ∈ (tobs, Tmax], is denoted by ε̄ and equals (A) ε̄ = 1.01 · 10−2, (B) ε̄ = 2.17, (C) ε̄ = 1.10 · 10−3, (D) ε̄ = 7.70 · 10−5, (E)
ε̄ = 6.26 · 10−2, and (F) ε̄ = 1.79 · 10−3.

adjacency matrix Â with elements âij .‡ More specifically, we
compute the nodal state prediction x̂ (t) at times t > tobs with
the prediction model

dx̂i(t)

dt
= fi (x̂i(t)) +

N∑
j=1

âij g (x̂i(t), x̂j (t)) [4]

with the initial condition x̂ (tobs) = x (tobs). We obtain the sur-
rogate matrix Â by fitting the prediction model [4] to the past
observations of the nodal state x (t), as explained in more detail
below.

Before presenting the details of how we extract the surrogate Â
from observing the dynamics, we consider the fundamental ques-
tion: When does the surrogate Â predict the dynamics accurately?
The predicted nodal state x̂ (t) is initialized at the observation time
tobs as x̂ (tobs) = x (tobs). Hence, the prediction x̂ (t) is exact if
dx̂ (t)/dt = dx (t)/dt at all future times t ≥ tobs. By comparing
the true dynamics [1] and the surrogate model [4], we find that
the predictions are exact if

N∑
j=1

âij g (xi(t), xj (t)) =
N∑
j=1

aij g (xi(t), xj (t)) [5]

for all nodes i at future times t ≥ tobs, where we replaced
g (x̂i(t), x̂j (t)) by g (xi(t), xj (t)) on the left side of [5], because
x̂ (t) = x (t). The coupling function g is usually nonlinear. Thus,
Eq. 5 is generally not linear with respect to the nodal state x (t).
However, we emphasize the crucial observation that, for all nodes

‡The sole purpose of the surrogate matrix Â lies in the prediction of the nodal state x(t).
Particularly, as we argue in Section 4, the matrix Â should not be interpreted as an estimate
of the adjacency matrix A.

i and times t ≥ tobs, [5] represents a linear system with respect to
the surrogate matrix Â. The linear system [5] determines which,
and how many, surrogate matrices Â yield accurate predictions of
the nodal state x (t). The true adjacency matrix Â= A is always
a solution of [5]. But a linear system may have more than one
solution if the set of linear equations is not of full rank. Hence,
there may be surrogate matrices Â �= A that obey [5]. Then, the
nodal state x (t) can be predicted accurately based on surrogates
Â which are different than the true adjacency matrix A.

We argue that, due to the low-dimensional dynamics of
the nodal state x (t), there are numerous surrogates Â that
solve [5] and yield accurate predictions. For ease of exposition,
we focus on SIS dynamics in the following, and we refer to
SI Appendix, section C for other dynamics.

Example. For SIS dynamics, the coupling function equals
g (xi(t), xj (t)) = (1− xi(t))xj (t), and the linear system [5]
becomes

(1− xi(t))
(
Âx (t)

)
i
= (1− xi(t)) (Ax (t))i [6]

for all nodes i . Hence, the surrogate Â predicts perfectly if
Âx (t) = Ax (t) at all times t . As shown in Section 2, the nodal
state dynamics are low-dimensional. Suppose the POD [2] is
exact. (When the POD [2] does not hold exactly, we can argue
similarly; see SI Appendix, section D.) Then, [6] becomes

(1− xi(t))

(
Â

m∑
p=1

cp(t)yp

)
i

=(1− xi(t))

(
A

m∑
p=1

cp(t)yp

)
i

for all nodes i , which is satisfied if
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Fig. 2. Framework for predicting dynamics on unknown networks. This example shows a small network of N = 3 nodes. (A) The nodal state xi(t) is observed
for all nodes i until the observation time tobs = 2. The evolution of the nodal state xi(t) obeys the differential Eq. 1 with the known functions fi and g and the
unknown adjacency matrix A. (B) Based on the nodal state observations x(0), x(Δt), . . . , x(nΔt) until the observation time nΔt = tobs, we obtain the surrogate
matrix Â from the optimization problem [9]. (C) For any time t ≥ tobs, we predict the dynamics by the model [4], which follows from the dynamics [1] by replacing
the unknown matrix A with the surrogate matrix Â. The nodal state prediction is initialized as x̂i(tobs) = xi(tobs) for all nodes i.

Â
m∑

p=1

cp(t)yp = A
m∑

p=1

cp(t)yp .

Thus, the surrogate Â yields exact predictions of the nodal state
x (t) if

Âyp = Ayp [7]

for every agitation mode p = 1, . . . ,m . The linear system [7] has
N 2 unknowns, namely, the entries âij of the surrogate Â. But
there are only mN equations, namely, the vectors Ay1, . . . ,Aym ,
each with N entries. As shown in Section 2, the number of
agitation modes m is much smaller than the number of nodes
N . Thus, there is a dramatic difference between the number
of equations mN and the number N 2 of unknowns âij . Since
mN �N 2, there are countless surrogate matrices Â �= A that
solve [7] and, thus, perfectly predict the nodal state x (t).§

Our prediction framework for dynamics on unknown net-
works is illustrated by Fig. 2. We rely on two steps to obtain
a unique surrogate matrix Â from the nodal state observations
x (0), x (Δt), . . . , x (nΔt). For simplicity, we introduce the no-
tation xi [k ] = xi (kΔt) for all observation times k = 0, 1, . . . ,n .
First, we approximate the derivative dx̂i(t)/dt in [4] by a differ-
ence quotient,

xi [k + 1]− xi [k ]

Δt
≈ fi (xi [k ]) +

N∑
j=1

âij g (xi [k ], xj [k ]) . [8]

Second, we obtain the surrogate Â that minimizes the differ-
ence of the left and right side of [8]. Specifically, we obtain the
surrogate Â by solving

argmin
âi1,...,âiN

n−1∑
k=0

(
xi [k + 1]− xi [k ]

Δt
− fi (xi [k ])

−
N∑
j=1

âij g(xi [k ], xj [k ])

)2

+ ρi

N∑
j=1

âij

s.t. âij ≥ 0 j = 1, . . . ,N

[9]

for every node i . In [9], the scalar ρi > 0 denotes the regulariza-
tion parameter, which is set by hold-out cross-validation (46). The

§The rank of the linear system [7] equals mN. Hence, if mN < N2, then the linear system is
underdetermined (45), and there are infinitely many solutions for the surrogate Â.

optimization problem [9] is known as the least absolute shrinkage
and selection operator (LASSO) (47–50), which is an established
and powerful approach to infer the network structure from its
dynamics (7, 8, 51–53). The first, sum-of-squares, term in [9]
fits the surrogate model [4] to the observations x [0], . . . , x [n].
As illustrated by the Example, numerous surrogate matrices Â

result in the same value of
∑N

j=1 âij g(xi [k ], xj [k ]), due to the
low-dimensional dynamics of the nodal state x (t). Thus, there
are many surrogates Â that minimize the first term in [9]. By
including the second, 	1-regularization, term ρi

∑N
j=1 âij , we

obtain a well-defined optimization problem. More precisely, the
second term results in a sparser solution Â of the LASSO [4]; see
refs. 47 and 50. The larger the regularization parameter ρi > 0,
the sparser the solution âi1, . . . , âiN to the LASSO [4]. Hence,
the surrogate in-degree d̂ i of node i , which equals the number of
entries âi1, . . . , âiN that are positive, decreases as the regulariza-
tion parameter ρi increases. The LASSO formulation [4] does not
constrain the surrogate network Â to be connected. Indeed, as we
show in SI Appendix, section H, the resulting surrogate network
Â may have multiple disconnected components, even if the true
matrix A is connected.

For all considered dynamics, the corresponding empirical
network A detailed in SI Appendix, section A has nonnegative
entries aij ≥ 0. Hence, the solution Â to the LASSO optimization
problem [9] is more accurate when the nonnegativity constraint
âij ≥ 0 is included. Additionally, the optimization problem
[9] could be adjusted to estimate adjacency matrices A
with entries aij ∈ R by omitting the constraint âij ≥ 0. In
SI Appendix, section E, we state the details of our method to
extract the surrogate matrix Â.

Fig. 3 shows the performance of our prediction method. The
predictions are surprisingly accurate. In particular, we can accu-
rately predict the nodal state x (t) until 5 times the observation
time interval, t = 5tobs, except for the Kuramoto model. The
predictions for the Kuramoto are accurate until t ≈ 2tobs. The
Kuramoto oscillators are the only dynamics in Fig. 3 that do not
converge to a steady state x∞. Hence, the Kuramoto dynamics are
significantly more complex, which explains the worse prediction
accuracy.

We chose the maximum time Tmax in Fig. 3 such that the
observed dynamics look sufficiently rich. We refer to SI Appendix,
section G for an extensive sensitivity analysis of the prediction
method, with respect to the maximum time Tmax, the observation
time tobs, the network size N , model errors, and heterogeneous
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Fig. 3. Accuracy of the prediction method. Based on n = 100 nodal state observations x(0), x(Δt), . . . , x(nΔt) until time tobs = nΔt, the nodal state x(t) is
predicted at times t > tobs. The blue curves are the true nodal states xi(t). The red marks are the nodal state predictions x̂i(t) based on the surrogate matrix Â,
initialized as x̂(tobs) = x(tobs). For clarity, only six nodal states xi(t) are depicted for each network. The average of the prediction error εi(t) = |xi(t) − x̂i(t)|, with
respect to all nodes i and future times t ∈ [tobs, Tmax], is denoted by ε̄ equals (A) ε̄ = 1.83 · 10−3, (B) ε̄ = 3.87 · 10−1, (C) ε̄ = 1.37 · 10−2, (D) ε̄ = 1.26 · 10−3, (E)
ε̄ = 0.1, and (F) ε̄ = 8.79 · 10−2.

coupling functions gi . Simulation results in SI Appendix, section J
suggest that the prediction algorithm has a quasi-polynomial
runtime.

In SI Appendix, section K, we propose a predictability param-
eter that assesses the fundamental limitations of predicting the
dynamics [1] from nodal state observations. The predictability
parameter is closely related to the Lyapunov exponent and con-
nects the prediction accuracy of our approach with potentially
chaotic dynamics, which are subject to fundamental prediction
limits (54).

4. The Surrogate Network Topology

As shown in Fig. 3, the surrogate matrix Â yields accurate nodal
state predictions x̂ (t). Does the high prediction accuracy imply
a similarity of surrogate network topology with the true network
topology? Here, we make a clear distinction between the network
topology and the interaction strengths (55). The network topol-
ogy, graph or network structure, is the set of all links: all node pairs
(i , j ) for which aij > 0. If there is a link from node j to node i ,
then the interaction strength is specified by the link weight aij .
For instance, consider the two 3× 3 adjacency matrices

A=

(
0 0.1 0
2.5 0 0
0 3 1

)
, Â=

(
0 9 0
0.7 0 0
0 0.5 3

)
.

For all nodes i , j , it holds that aij > 0 if and only if âij > 0.
Hence, the two matricesA and Â have the same network topology.
However, the interaction strengths, for instance, from node 2 to
node 1, is different, because a12 = 0.1 but â12 = 9.

We quantify the similarity of the networks A and Â by two
topological metrics. First, we consider the area under the receiver
operating characteristic (ROC) curve (AUC) (56), which we
compute with the Matlab command perfcurve. To compute the

AUC, we consider a given rounding threshold ε≥ 0. Then, the
true positive rate TPR(ε) ∈ [0, 1] equals the number of node pairs
i , j for which both âij ≥ ε and aij > 0, divided by the number of
entries aij > 0. Similarly, the false positive rate FPR(ε) equals the
number of node pairs i , j for which âij ≥ ε but aij = 0, divided
by the number of entries aij = 0. The ROC curve is obtained by
plotting the rate TPR(ε) versus the rate FPR(ε) for ε≥ 0, and
the AUC equals the area under the ROC curve. If the surrogate
Â were obtained by tossing a coin for every possible link, then
the corresponding AUC would be 0.5. The closer the AUC is to
one, the greater the similarity of the surrogate topology to the true
topology.

Second, we consider the in-degree distribution of the matrices
A and Â. The (unweighted) in-degree di of node i equals the
number of links that end at node i . The surrogate network
algorithm detailed in SI Appendix, section E does generate entries
âij = 0 that are exactly equal to zero, and we define the estimated
degree d̂ i of node i as the number of strictly positive surrogate
entries âij > 0, j = 1, . . . ,N . The in-degree distribution is given
by Pr [D ≥ d ], where D is the degree of a randomly chosen node
in the network.

Fig. 4 compares the surrogate network Â to the true network
A. We emphasize that Fig. 4 compares a single realization of the
true matrix A and an initial nodal state x [0], namely, the same
matrix A and nodal state x [0] that generated the nodal dynamics
shown in Fig. 3. The AUC value is almost 0.5 for all models.
Hence, the surrogate network topology is completely different
from the true network topology! Moreover, the degree distribution
Pr [D ≥ d ] of the surrogate network differs strongly from the
degree distribution of the true network, except for Fig. 4 C and
F. We remark that, even if two networks have the same degree
distribution Pr [D ≥ d ], the network topologies can be entirely
different. For instance, the AUC value equals only 0.53 in Fig. 4F.

In SI Appendix, section F, we show that a similar contrast
of prediction accuracy and topological similarity also holds for
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Fig. 4. The surrogate topology versus the true topology. Shown is a comparison of the topologies of the surrogate network Â with the true network A with
respect to two topological metrics. The parameters are the same as in Fig. 3. First, the AUC value of the surrogate network Â, which equals (A) AUC = 0.52, (B)
AUC = 0.51, (C) AUC = 0.57, (D) AUC = 0.52, (E) AUC = 0.54, and (F) AUC = 0.53. Second, the in-degree distributions Pr [D ≥ d] for the surrogate matrix Â are
shown in red and, for the true matrix A, in blue.

random graphs. For a discussion on potential rotational symme-
tries of the surrogate network Â and the true network A and
a comparison with respect to the eigenvalue spectra of the two
matrices, we refer to SI Appendix, section F.1.

5. Discussion

The prediction of general dynamics on unknown networks is
studied, based on past observations of the dynamics. We propose
a prediction framework which consists of two steps. First, we
obtain a surrogate network by fitting the dynamical model to the
past observations. Our fitting method is based on the LASSO.
Second, we predict the dynamics by computing the dynamical
model in [1] where the true adjacency matrix A is replaced
by the surrogate’s adjacency matrix Â. Counterintuitively, even
though the surrogate network topology has no similarity with
the true topology, the predictions are accurate, for a considerable
prediction time horizon, for a broad range of observation times,
and in the presence of a reasonable noise level! The true network
topology is not needed for accurate predictions, because the
network dynamics are barely agitated.

The observation that dynamics on networks can be predicted
without the true topology has far-reaching consequences. The
majority of network topologies are complicated, and a sufficiently
accurate network reconstruction is a difficult, perhaps impossible,
task in practice. However, in this work, we reveal a stark contrast:
The network graph is complicated and large, but the nodal state
dynamics follow a simple linear combination of only a few agita-
tion modes y1, . . . , ym . Hence, our results suggest a promising
research direction for dynamics on networks: Rather than the
interplay between all the numerous nodes, dynamics on networks
can be understood as the interplay of a few agitation modes. On a
conceptual level, the nonlinear dynamics [1] behave surprisingly
similarly to a linear system dx (t)/dt = Ax (t), for which the
agitation modes yp directly follow from the eigenvectors and
eigenvalues of the matrix A.

It is an open question whether it is possible to generalize our
prediction method to time-varying graphs, which seems chal-
lenging, since there are more processes active on a time-varying
network: 1) the dynamics on the graph, 2) the process that
changes the graph, and 3) possibly a coupling process between
processes 1 and 2. For example, when COVID-19 spreads in a
population, we distinguish between 1) the viral infection process,
2) the human mobility process that generates the underlying
time-variant contact graph, and 3) a coupling or interference
process due to awareness or observation of infections in a close
neighborhood that may inspire individuals to change contacts
or wear protection. If the network varies over time, it is un-
clear whether there are time-invariant agitation modes yp . Time-
varying networks can be aggregated to obtain a static network,
or a sequence of static networks that correspond to different time
intervals. For different methods of constructing static networks
from time-varying networks and their limitations, in the context
of epidemics on networks, we refer to refs. 57–60. In ref. 61, a
method was proposed to embed time-varying networks into a low-
dimensional space. An interesting future research direction is to
explore a possible interplay of low-dimensional representations of
time-varying networks with the agitation of the nodal state x (t).

We emphasize that the agitation modes depend on the initial
state x (0). Consequently, also the surrogate network Â depends
on the initial state x (0). Thus, using the same surrogate matrix Â
for predicting dynamics x̃ (t) with a different initial state x̃ (0) �=
x (0) results in a lower prediction accuracy than for the trajectory
x (t) starting with the initial condition x (0). If the agitation
modes ỹp and yp of the trajectories x̃ (t) and x (t) are very
similar, then we can expect that the surrogate network Â yields
an accurate prediction also for the trajectory x̃ (t). Furthermore,
in SI Appendix, section I, we consider that multiple trajectories
are observed on the same network. We show that there is an
increasing benefit, as the number of observed trajectories grows,
for predicting the future of the dynamical system with another
initial nodal state. In summary, it is possible to accurately predict a
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trajectory x̃ (t)with different initial conditions x̃ (0) �= x (0), even
if the trajectory x̃ (t) has not been observed for long, provided that
1) the agitation modes ỹp , yp are similar or 2) sufficiently many
trajectories were observed. For some applications, neither of these
two conditions might be satisfied, for example, for local outbreaks
of infectious diseases where the initial condition varies strongly.
However, the prediction method could be applied, for instance,
to the spreading of information on online social media networks,
where the initial seeding of information frequently originates from
the same set of nodes (which may correspond to news stations or
influencers).

We confined to autonomous dynamics [1] without any control.
In some applications (52, 62–64), it might be possible to control
the nodal state x (t) and there might be an additive control
ui(t) ∈ R to the dynamics [1] of one, or multiple, nodes i . If
the control (u1(t), . . . , uN (t))T is high dimensional, then the
dynamics of the nodal state x (t) might not be low dimensional.
For a sufficiently high-dimensional network dynamics, it is con-
ceptually possible to apply the sparse identification of nonlinear
dynamics (SINDy) algorithm by Brunton et al. (65), which may
reconstruct the complete governing Eq. 1, that is, the adjacency
matrix A and the functions fi and g .¶ Additionally, we refer to
refs. 53 and 66 for model-free (i.e., without the knowledge of the
functions fi and g) network reconstruction methods, provided the
network dynamics are sufficiently high dimensional.

We emphasize that we considered deterministic governing
equations. Developing similar prediction methods that make use
of a surrogate network for stochastic processes is an open research
question. If there are mean-field equations for stochastic process
that resemble [1], such as for the stochastic SIS process (21, 67),
then the results of our work are at least applicable to stochastic
processes in the parameter regimes where the mean-field equations
are accurate. Furthermore, we assumed that the nodal state xi(t)
is observed for every node i . While assuming that only some nodal
states xi(t) can be observed is clearly an interesting generalization
of our prediction method, our result that an accurate prediction
is possible without requiring the underlying graph is unaffected.

The agitation modes yp were extracted in a data-driven man-
ner from past observations of the dynamics. Obtaining a more
thorough, analytic, understanding of the connection between
topology, network dynamics, and agitation modes yp stands on
the agenda of future research. Here, we would like to mention
four points. First, provided that the network has an equitable
partition, the POD [2] is exact, and the agitation modes yp follow
from the cells of the partition for a plethora of dynamical models

¶This is the case provided that the functions fi and g are in the SINDy library of candidate
functions, which must be preconstructed by the user of the SINDy algorithm.

(70–75).# Second, under some assumptions (76), if the network
has a negligible degree correlation (18), then the dynamics can be
approximated by the POD with one agitation mode y1. Third,
if the basic reproduction number R0 is close to one, then the
SIS dynamics on any network reduce to m = 1 agitation mode
y1, which enables the derivation of a closed-form solution (77).
Fourth, on a complete graph, the SIS dynamics reduce to m = 2
agitation modes y1 and y2, which, again, enables the derivation of
a closed-form solution (75). We believe that the results (75, 77),
which relate agitation modes and network structure for the SIS
process, can be extended to obtain a deeper understanding of the
general dynamics [1].

Our discovery, showing that only a few agitation modes are
relevant for predicting general dynamics on static networks, might
provide insight into why deep learning methods are working so
wonderfully well irrespective of the network topology (78).|| We
show that only one trajectory of the process (e.g., one epidemic
outbreak) suffices to learn the essence of future dynamics, but not
the graph structure that couples individual dynamical processes.
As shown in SI Appendix, section I, increasing the number of
realizations (i.e., “learning more”) further increases the predic-
tion accuracy, while gradually revealing the underlying graph.
Although deep learning dynamics is not directly described by [1],
the process appears similar: A neural network architecture remains
fixed, and only the neural network weights are changed recursively
during learning (79).

5.1. Data, Materials, and Software Availability. Code and data (with
the exception of human brain network data) have been deposited in GitHub
(https://github.com/bprasse/Predicting-network-dynamics-without-the-graph)
(80). Some study data are available (human brain network detailed in
SI Appendix, section A.5 was shared with us by Prejaas Tewarie; researchers
can access this data by contacting Prejaas Tewarie, Department of Clinical
Neurophysiology and MEG Center, Amsterdam UMC, VU University Amsterdam.
p.tewarie@amsterdamumc.nl).
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#Consider a partition P of the node set N = {1, . . . , N} into m disjoint subsets, P =

{N1, . . . , Nm}. Then, the partition P is called equitable (68–70) if, for any two subsets
Np , Nl , it holds that

∑
k∈Nl

aik =
∑

k∈Nl
ajk for all nodes i, j ∈ Np .

||Deep learning is applicable in a wide range of problems beyond network science (e.g.,
image classification), and we admit the widely accepted perspective that its success is
due to 1) accumulated big amount of data, 2) people’s tolerance in accepting theoretically
inaccurate predictions as long as they are computed within a decent latency, and 3)
advancement in computational power.

1. R. May, Stability and Complexity in Model Ecosystems (Princeton Landmarks in Biology, Princeton
University Press, 2001), vol. 6.

2. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex
networks. Rev. Mod. Phys. 87, 925–979 (2015).

3. J. Cabral, M. L. Kringelbach, G. Deco, Exploring the network dynamics underlying brain activity during
rest. Prog. Neurobiol. 114, 102–131 (2014).

4. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and
dynamics. Phys. Rep. 424, 175–308 (2006).

5. A. Barrat, M. Barthelemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge
University Press, 2008).

6. M. A. Porter, J. P. Gleeson, Dynamical Systems on Networks (Frontiers in Applied Dynamical Systems:
Reviews and Tutorials, Springer, 2016) vol. 4.

7. M. Timme, J. Casadiego, Revealing networks from dynamics: An introduction. J. Phys. A Math. Theor.
47, 343001 (2014).

8. W.-X. Wang, Y.-C. Lai, C. Grebogi, Data based identification and prediction of nonlinear and complex
dynamical systems. Phys. Rep. 644, 1–76 (2016).

9. M. Newman, Network structure from rich but noisy data. Nat. Phys. 14, 542–545 (2018).
10. T. P. Peixoto, Network reconstruction and community detection from dynamics. Phys. Rev. Lett. 123,

128301 (2019).

11. A. Das, I. R. Fiete, Systematic errors in connectivity inferred from activity in strongly recurrent networks.
Nat. Neurosci. 23, 1286–1296 (2020).

12. T.-T. Gao, G. Yan, Autonomous inference of complex network dynamics from incomplete and noisy
data. Nat. Comput. Sci. 2.3, 160–168 (2022).

13. B. Barzel, A.-L. Barabási, Universality in network dynamics. Nat. Phys. 9, 673–681 (2013).
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