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A network consists of two interdependent parts: the network topology or graph,
consisting of the links between nodes and the network dynamics, specified by some
governing equations. A crucial challenge is the prediction of dynamics on networks,
such as forecasting the spread of an infectious disease on a human contact network.
Unfortunately, an accurate prediction of the dynamics seems hardly feasible, because
the network is often complicated and unknown. In this work, given past observations
of the dynamics on a fixed graph, we show the contrary: Even without knowing the
network topology, we can predict the dynamics. Specifically, for a general class of
deterministic governing equations, we propose a two-step prediction algorithm. First,
we obtain a surrogate network by fitting past observations of every nodal state to the
dynamical model. Second, we iterate the governing equations on the surrogate network
to predict the dynamics. Surprisingly, even though there is no similarity between the
surrogate topology and the true topology, the predictions are accurate, for a considerable
prediction time horizon, for a broad range of observation times, and in the presence
of a reasonable noise level. The true topology is not needed for predicting dynamics
on networks, since the dynamics evolve in a subspace of astonishingly low dimension
compared to the size and heterogeneity of the graph. Our results constitute a fresh
perspective on the broad field of nonlinear dynamics on complex networks.

dynamics on networks | predicting dynamics | network reconstruction

The interplay of dynamics and structure lies at the heart of myriad processes on net-
works, ranging from predator—prey interactions on ecological networks (1) and epidemic
outbreaks on physical contact networks (2) to brain activity on neural networks (3). To
relate the network structure, or graph, and the process dynamics, there are two approaches
of opposing directions. On the one hand, a large body of research (4-6) focuses on the
question, What is the impact of the network structure on the dynamics of a process? For
instance, what is the impact of the network of online social media friendships on the spread
of fake news. On the other hand, network reconstruction methods (7—11) consider the
inverse problem: Given some observations of the dynamics, to what extent can the network
structure be inferred? As an example, one may ask to determine the path of an infectious
virus from one individual to another, given observations of the epidemic outbreak.

The prediction of the dynamics on an unknown network seems to require the combina-
tion of both directions (see, e.g., the discussion in ref. 12): first, the reconstruction of the
network structure based on past observations of the dynamics and, second, the estimation
of the future dynamics based on the inferred network. Intuitively, one may expect that an
accurate prediction of the dynamics is possible only if the network topology is available. In
this work, paradoxically, we show the contrary: It is possible to accurately predict a general
class of dynamics without the network structure!

1. Modeling Dynamics on Networks

The network’s graph is represented by the N x N weighted adjacency matrix A whose
elements are denoted by a;;. If there is a directed link from node j to node %, then a;; > 0;
otherwise a;; = 0. Hence, we focus on nonnegative entries a;; > 0 in this work, which is
in agreement with the considered empirical networks detailed in S7 Appendix, section A.
However, our prediction approach can be adjusted to entries a;; € R in a straightforward
manner, as we argue in Section 3. Furthermore, we consider a fixed weighted adjacency
matrix A and that the underlying graph does not change with time.

We denote the nodal state of node 4 at time ¢ by z;(¢) and the nodal state vector
by z(t) = (z1(t),...,zn(t))T. We consider a general class of dynamical models on
networks (7, 12—14) that describe the evolution of the nodal state x;(t) of any node 7 as
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Table 1. Models of dynamics on networks

Model fi (xi(1)) g (xi(1), x(1))

Lv Xi(6) (e — 0x(1)) —x;(t)x;(t)

MP Xi(6) (e — 0x(1)) X(Ox (O +x7 (1)~
MM —xi(t) X6 +x (1)

SIS —oixi(t) (1 = x;(0)x(t)

KUR wj sin (x;(t) — x;(t))

WC —xi(t) (1+exp (—7((t) — w))) "

The function f; (z;(t)) describes the self-dynamics of node 4. The
sum in [1] represents the interactions of node ¢ with its neighbors.
The interaction between two nodes 4 and j depends on the adja-
cency matrix A and the interaction function g (z;(¢), z;(¢)). A
broad spectrum of models follows from [1] by specifying the self-
dynamics function f; and the interaction function g. For instance,
by specifying f; (1)) = 0 and g (12(¢), 3 (1)) = (1), the
model [1] reduces to the linear dynamics dz(t)/dt = —Axz(t).
In this work, we study six particular models of dynamics on
networks, which are summarized in Table 1.

1.1. Lotka-Volterra Population Dynamics. The Lotka—Volterra
model (LV) (15) describes the population dynamics of competing
species. The nodal state z;(t) denotes the population size of
species 4, the growth parameters of species 7 equal a; > 0 and
0; > 0, and the link weight a;; quantifies the competition rate, or
predation rate, of species j on species 1.

1.2. Mutualistic Population Dynamics. We adopt the model of
Harush and Barzel (16) to describe mutualistic population dy-
namics (MP). The nodal state z;(t) denotes the population size of
species 4, the growth parameters of species ¢ are denoted by a; > 0
and 6; > 0, and the link weight a;; > 0 quantifies the strength of
mutualism between species ¢ and species j.

1.3. Michaelis-Menten Regulatory Dynamics. The dynamics of
gene regulatory networks can be described by the Michaelis—
Menten equation (16-18), Michaelis—Menten regulatory dynam-
ics (MM). The nodal state z;(t) is the expression level of gene i,
the Hill coefficient is denoted by £, and the link weights a;; > 0
are the reaction rate constants.

1.4. Susceptible-Infected-Susceptible Epidemics. Spreading
phenomena, such as the epidemic of an infectious disease, can
be described by the susceptible—infected—susceptible model (SIS)
(2, 19-21). The nodal state z;(t) equals the infection probability
of node . The parameter §; > 0 denotes the curing rate, and the
link weight a;; is the infection rate from node j to node 4.

1.5. Kuramoto Oscillators. The Kuramoto model (KUR) (22)
has been applied to various synchronization phenomena of phase
oscillators (23), such as magnetoencephalography (MEG) activity
of brain regions (3). Here, the nodal state z;(t) corresponds to
the phase of oscillator %, the parameter w; denotes the natural
frequency of node %, and the coupling strength from node j to
node i is given by the link weight a;;.

1.6. Wilson-Cowan Neural Firing. The firing rates of neurons can
be described by the Wilson—Cowan model (WC) (14, 24). Here,
the nodal state z; () is the activity of neuron 7, and the parameters
7 and g are the slope and the threshold of the neural activation
function. The link weight a;; specifies the number and strength
of synapses from neuron j to neuron 3.

As stated in ref. 25, there are three possibilities for the quali-
tative long-term behavior of the dynamical system [1]. First, the
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nodal state () might approach a steady state o, = tlim z(1).
— 00

At the steady state 2o, the nodal state does not change any longer;
thus dz(t)/dt = 0. Second, the nodal state (¢) might converge
to a limit cycle, a curve on which the nodal state 2(t) circulates
forever. Third, the nodal state (¢) might never come to rest, nor
enter a repeating cycle. Then, the state z(t) perpetually continues
to move in an irregular pattern.

Additionally to the functions f; (z;(¢)) and g (z;(¢), z; (1)),
given by Table 1, the differential equations [1] require the speci-
fication of the adjacency matrix A. Each dynamical process above
evolves on a respective real-world network: LV, food web of Little
Rock Lake (26); MP, mutualistic insect interactions (27, 28);
MM, gene regulatory network of the yeast Saccharomyces cerevisiae
(29); SIS, face-to-face contacts between visitors of the “Infectious:
Stay Away” exhibition (30); KUR, structural connectivity between
brain regions (31, 32); and WC, Caenorhabditis e/egans neuronal
connectivity (33, 34). The real-world networks specify an adja-
cency matrix A, based on which we simulate the dynamics [1].
Some of the real-world networks are disconnected. Throughout
the work, we consider the whole network, which may consist
of multiple connected components, without confining to the
largest connected component. SI Appendix, section A states the
real-world networks and model parameters in detail.

The focus of this work is to predict the nodal state 2 (%) at times
t > tohs, wWhere f, denotes the observation time. Furthermore,
we focus on predicting transient dynamics of the nodal state
z(t). The input to the prediction is given by n + 1 nodal state
observations (0), z(At),...,z(nAt) in the transient regime
of the dynamics.” Here, At > 0 denotes the sampling time with
nAt = tys. We emphasize that we do not assume any knowledge
of the matrix A for our prediction algorithm.

In refs. 35-37, sophisticated methods were derived to compute
the steady state Zoo = tli>nolo z(t) from only a few observations of

the nodal state vector z(t) for consensus dynamics on graphs.
There are two substantial differences between the studies (35—
37) and our work. First, beyond predicting only the steady state
T, we predict the complete dynamics of the nodal state (%)
at all times ¢ > fops. We stress that the equilibrium z ; of the
consensus dynamics in refs. 35-37 is, by definition, the same for
all nodes 7. In contrast, for the dynamics [1], the nodal states
z;(t) of different nodes i are typically strongly heterogeneous.
Second, consensus dynamics are linear, but we study nonlinear
dynamics [1] on networks. In contrast to linear dynamics, there is
no general closed-form solution for any of the nonlinear dynamics
specified above. Thus, predicting nonlinear dynamics [1] requires
a fundamentally different approach than refs. 35-37, which build
upon closed-form expressions of linear dynamics. In summary,
the methods in refs. 35-37 do not address the central problem
of our work: Nonlinearity, rather than linearity, is the norm for
dynamical processes on networks (5, 25, 38), and the complete
future dynamics provide a considerably richer picture than the
long-term equilibria.

In our work, we assume that the self-dynamics function
fi (z:(t)) and the interaction function g¢(z;(t),z;(t)) are
known, for two reasons. First, when describing the nodal state
z(t) of a real-world process, the underlying kind of physical
process is usually known, which specifies the functions f; and ¢
at least approximately. Second, the focus of our work is on the

*We denote the number of observations by n 4 1 for simplicity: Given n 4 1 observations,
there are n nodal state transitions from x(kAt) to x((k 4+ 1)At) with the discrete time
k=0,...,n. The n nodal state transitions form the basis for our prediction algorithm in
Section 3.
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fundamental interdependence of the network topology and the
general dynamics [1]. While assuming the functions f; (x;(t))
and ¢ (z;(t), z;(¢)) as unknowns would make predictions more
challenging, our fundamental result would remain unaffected: An
accurate network reconstruction is neither possible nor necessary
to predict the trajectory of the nodal state z(%). We emphasize
that the observations and predictions of the nodal state are on
the same trajectory, which starts at some initial state z(0). Lastly,
we refer to the recent proposal of Gao and Yan (12) for a setting
reverse to our work, where the adjacency matrix A is known but
the functions f; and g are unknown.

2. Dynamics on Networks Are Low Dimensional

The number N of nodes or the size N of real-world networks can
be very large. What is the impact of the network size N on the
predictability of dynamics? Intuitively, it seems that more nodes
N lead to a more complicated dynamics. Is there a maximum
network size IV, above which an accurate prediction is impossible?
In this section, we report two observations. First, the dynamics
on networks are in a subspace X C RY of small dimension
m < N. The dimension m equals the degrees of freedom of the
network dynamics. The smaller the dimension m, the simpler
the dynamics that is to be predicted. Second, we infer the low-
dimensional subspace X’ from the dynamics in a short observation
time interval. Thus, predicting dynamics on a network with N
nodes simplifies to predicting m < N degrees of freedom.

Our analysis relies on the proper orthogonal decomposition
(POD) (39-43), which is a powerful tool for discovering low-
dimensional structures in dynamics. At any time ¢, the POD
approximates the N x 1 nodal state vector z(t) by

m

I(t)%Zcp(t)yp. (2]

p=1

Here, the agitation modes ¥, . . ., ¥y, are orthonormal vectors,
which do not change over time ¢. The scalar functions ¢, (%)
are obtained by projecting the nodal state vector z(¢) on the
respective agitation mode,

ep(t) =y, (t). 3]

The number of agitation modes m is a parameter which deter-
mines the accuracy of the POD [2]. The more agitation modes
m, the more degrees of freedom of the POD [2]. Hence, the
more modes m, the more accurate the approximation [2]. More
precisely, numerical results in S/ Appendix, section B.1 suggest
that the approximation error (with respect to the Euclidean norm
over a finite time interval) of the POD [2] decreases exponentially
quickly as the number of agitation modes m increases. If m = N,
then the approximation [2] is exact, because any N X 1 vector
z(t) can be written as the linear combination of N orthogonal
vectors. Intuitively speaking, if the POD [2] is accurate for
m < N modes or degrees of freedom, then the nodal state vector
z(t) is barely agitated.

If the POD [2] is accurate, then the nodal state x(t) is
practically an element of the m-dimensional subspace X =
span {y1,. .., Ym}, where the span of the vectors y1,..., ym
equals the set of all linear combinations’

fStrictIy speaking, unless the POD [2] is exact, the vector x(t) is not an element of the
subspace X. However, if the POD [2] is sufficiently accurate, then the difference x(t) —
proj x (x(t)) is negligible. Here, we denote the projection of the nodal state x(t) onto the
subspace X by proj »- (x(t)), which is element of the subspace X.
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m

s Ym} = Zapyp’ap €R

p=1

span {y1, ...

What makes the POD [2] so interesting for predicting dynam-
ics on networks? Suppose we know the agitation modes y1, . . ., Y
for which the POD [2] is accurate at future times ¢ > f.p,. Then,
we must predict only m functions ¢1 (), . . ., ¢ (?) to predict the
N X 1 nodal state vector x(t). Thus, not the network size N but
the number of agitation modes m is decisive for the difficulty of
predicting dynamics on networks.

However, at the observation time %y, we do not know the
agitation modes ¥1, . . ., Y, for which the POD [2] is accurate at
future times ¢ > f,p;. In the following, we show that the agitation
modes ¥, can be estimated from observing the dynamics from
time ¢ = O until £ = #,p,. More precisely, we estimate the agitation
modes ¥, from the nodal state observations z(0), ..., z(nAt)
in two steps; see refs. 41, 42, and 44. First, we define the N X
(n + 1) nodal state matrix as X = (z(0), z(At),...,z(nAt)).
Second, we obtain the agitation modes ¥, . .., Y, as the first m
left-singular vectors of the nodal state matrix X.

Fig. 1 demonstrates the accuracy of the POD [2], with m =
15 < N agitation modes. Here, the agitation modes y, follow
from the nodal state z(¢) until the observation time ., as
stated above, and the scalar functions ¢,(t) are computed by
[3]. Surprisingly, the POD [2] is accurate at times & > tobs,
even though the nodal state z(¢) at times ¢ > s was not used
for computing the agitation modes y,. Hence, during the time
interval [0, Z,), the nodal state 2(t) quickly locks into only a
few agitation modes y,,, which govern the dynamics also at future
times ¢ > t,ps. The POD approximation error € in Fig. 1 varies
for the different models (also after normalizing by the maximum
magnitude of the model-specific nodal states z;(t)), since the
number of agitation modes m depends on the specific model
(81 Appendix, section B.2), but Fig. 1 considers, for simplicity,
the same number of agitation modes m = 15 for all dynamic
models. Furthermore, in S/ Appendix, section B.2, we argue that
the number m of agitation modes is constant as the number of
nodes N grows, for fixed time intervals. Hence, the dynamics
remain at a given level of simplicity (a constant number m of
agitation modes) despite an increasingly complex network (due
to a larger number N of nodes and a more heterogeneous degree
distribution as N grows).

We stress that the POD [2] cannot be used (directly) to predict
the nodal state (¢). Whereas the agitation modes y, could be
inferred within a small observation time interval [0, to), we do
not know the functions ¢, (%) at future times ¢ > #,s. For Fig. 1,
we computed the functions as ¢, (t) =y, z(t), requiring the
nodal state () at times ¢ > t,p,. However, since the agitation
modes ¥, can be estimated from observing past dynamics, the
crucial implication of Fig. 1 is that predicting dynamics on
networks with N nodes reduces to predicting m < N scalar
functions ¢, (t). Hence, predicting future dynamics on unknown
networks seems possible, even for large networks. In the remaining
part of this work, we design and evaluate a concrete prediction
algorithm.

3. Prediction Algorithm Based on a Surrogate
Network

If we knew the adjacency matrix A, then we could predict the
evolution of the nodal state z(¢) by numerically solving the differ-
ential Eq. 1. However, the true adjacency matrix A is unknown.
Thus, we resort to predicting the dynamics by using a surrogate
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POD of dynamics on networks. The exact nodal state x(t) is shown in blue, and the approximation by the POD [2] is shown in red. The maximum

prediction time Tmay is different for each dynamic model, and the observation time equals tops = Tmax/5. The number of observations is n = 100. For readability,
only six nodal states x;(t) are depicted for each network. In this and the following figures, the six nodes i are chosen such that the six nodal states x;(Tmax) at

the maximum time Tmax are as evenly spaced as possible. The approximation equals the linear combination [2] of m = 15 agitation modes y;, . . .
are computed by observing the nodal state x(t) from time t = 0 to t = t,ps. The average of the POD approximation error ¢;(t) = |x;(t) — ZZ’:1 (1) (vp)

,¥m. which
, with

i

respect to all nodes i and future times t € (tops, Tmax, is denoted by & and equals (4) e =1.01 - 1072, (B) e=2.17,(C) e=1.10- 1073, (D) e = 7.70 - 10~°, (F)

€=6.26-10"2and (F)e=1.79 - 1073,

adjacency matrix A with elements a;.F More specifically, we
compute the nodal state prediction Z(¢) at times ¢ > t,ps with
the prediction model

N
=fi (2:(t) + Y g (2:(t), &5(1)) (4]

with the initial condition Z(tohs) = (tps). We obtain the sur-
rogate matrix A by fitting the prediction model [4] to the past
observations of the nodal state (%), as explained in more detail
below. .

Before presenting the details of how we extract the surrogate A
from observing the dynamics, we consider the fundamental ques-

tion: When does the surrogate A predict the dynamics accurately?
The predicted nodal state &(¢) is initialized at the observation time
tobs a8 Z(tobs) = & (fobs). Hence, the prediction Z(t) is exact if
di(t)/dt = dz(t)/dt at all future times ¢ > f,ps. By comparing
the true dynamics [1] and the surrogate model [4], we find that
the predictions are exact if

Z&ijg(xi(t)axj(t)) :Zaijg(xi(t)7$j(t)) (5]

for all nodes 4 at future times t > to,, where we replaced
g (Z:(t),z;(t)) by g (z:(t), z;(t)) on the left side of [5], because
z(t) = z(t). The coupling function ¢ is usually nonlinear. Thus,
Eq. 5 is generally not linear with respect to the nodal state z(t).
However, we emphasize the crucial observation that, for all nodes

*The sole purpose of the surrogate matrix 4 lies in the prediction of the nodal state x(t).
Particularly, as we argue in Section 4, the matrix A should not be interpreted as an estimate
of the adjacency matrix A.
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i and times ¢ > tobs, [5] represents a linear system with respect to
the surrogate matrix A. The linear system [5] determines which,
and how many, surrogate matrices A yield accurate predictions of
the nodal state z(#). The true adjacency matrix A = A is always
a solution of [5]. But a linear system may have more than one
solution if the set of linear equations is not of full rank. Hence,
there may be surrogate matrices A+ A that obey [5]. Then, the
nodal state () can be predicted accurately based on surrogates
A which are different than the true adjacency matrix A.

We argue that, due to the low-dimensional dynamics of
the nodal state z(¢), there are numerous surrogates A that
solve [5] and yield accurate predictions. For ease of exposition,
we focus on SIS dynamics in the following, and we refer to
SI Appendix, section C for other dynamics.

Example. For SIS dynamics, the coupling function equals

g (z:i(t),z;(t)) = (1 — z(t))z;(t), and the linear system [5]
ecomes

(1= z(t) (d2() = (1 =) (A1), 6]

for all nodes i. Hence, the surrogate A predicts perfectly if

Az(t) = Az(t) at all times ¢. As shown in Section 2, the nodal
state dynamics are low-dimensional. Suppose the POD [2] is
exact. (When the POD [2] does not hold exactly, we can argue
similarly; see S Appendix, section D.) Then, [6] becomes

(1 —m(t)) Ach(t)yp =(1— (1)) Ach(t)yp

p=1 i p=1 i

for all nodes 7, which is satisfied if

pnas.org
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Framework for predicting dynamics on unknown networks. This example shows a small network of N = 3 nodes. (A) The nodal state x;(t) is observed

for all nodes i until the observation time t,ps = 2. The evolution of the nodal state x;(t) obeys the differential Eqg. 1 with the known functions f; and g and the
unknown adjacency matrix A. (B) Based on the nodal state observations x(0), x(At), . .., x(nAt) until the observation time nAt = t,y,s, we obtain the surrogate
matrix A from the optimization problem [9]. (C) For any time t > t,,s, we predict the dynamics by the model [4], which follows from the dynamics [1] by replacing
the unknown matrix A with the surrogate matrix A. The nodal state prediction is initialized as X;(tops) = Xi(tobs) for all nodes i.

AZ cp(t)yp =4 Z cp (1) yp-

p=1

Thus, the surrogate A yields exact predictions of the nodal state

z(t) if

Ay, = Ayp (7]
for every agitation mode p =1, ..., m. The linear system [7] has
N? unknowns, namely, the entries a;; of the surrogate A. But
there are only mN equations, namely, the vectors Ayy, ..., Aym,
each with N entries. As shown in Section 2, the number of
agitation modes m is much smaller than the number of nodes
N. Thus, there is a dramatic difference between the number
of equations mN and the number N? of unknowns @;;. Since
mN < N2, there are countless surrogate matrices A # A that
solve [7] and, thus, perfectly predict the nodal state z ().}

Our prediction framework for dynamics on unknown net-
works is illustrated by Fig. 2. We rely on two steps to obtain
a unique surrogate matrix A from the nodal state observations
z(0), z(At),...,x(nAt). For simplicity, we introduce the no-
tation x;[k] = z; (kAt) for all observation times k =0, 1,. .., n.
First, we approximate the derivative d;(t)/dt in [4] by a differ-
ence quotient,

N
SN2l k) + Y g (kL 5
i=1

Second, we obtain the surrogate A that minimizes the differ-
ence of the left and right side of [8]. Specifically, we obtain the

surrogate Aby solving

. iy Z; k + 1| — Z; k
o $° (Ll

At — fi (m[k])

&7,1,...,0.,,1\] k=0
al X [9]
- Z az‘jg(fﬂi[k}» Zj kD) | +pi Z G5
j=1 Jj=1

s.t. CALUZO jZl,...,N

for every node ¢. In [9], the scalar p; > 0 denotes the regulariza-
tion parameter, which is set by hold-out cross-validation (46). The

8The rank of the linear system [7] equals mN. Hence, if mN < N2, then the linear system is
underdetermined (45), and there are infinitely many solutions for the surrogate A.

PNAS 2022 Vol. 119 No.44 2205517119

optimization problem [9] is known as the least absolute shrinkage
and selection operator (LASSO) (47-50), which is an established
and powerful approach to infer the network structure from its
dynamics (7, 8, 51-53). The first, sum-of-squares, term in [9]
fits the surrogate model [4] to the observations z[0], ..., z[n].
As illustrated by the Example, numerous surrogate matrices A
result in the same value of ZjN:1 aij 9(z;[k], z;[k]), due to the
low-dimensional dynamics of the nodal state (). Thus, there
are many surrogates A that minimize the first term in [9]. By

. . . N .
including the second, ¢;-regularization, term p; ijl aij, we

obtain a well-defined optimization problem. More precisely, the
second term results in a sparser solution A of the LASSO [4]; see
refs. 47 and 50. The larger the regularization parameter p; > 0,
the sparser the solution @1, ..., a;n to the LASSO [4]. Hence,

the surrogate in-degree d; of node 4, which equals the number of
entries ;1, . .., G;n that are positive, decreases as the regulariza-
tion parameter p; increases. The LASSO formulation [4] does not

constrain the surrogate network A to be connected. Indeed, as we
show in SI Appendix, section H, the resulting surrogate network

A may have multiple disconnected components, even if the true
matrix A is connected.

For all considered dynamics, the corresponding empirical
network A detailed in ST Appendix, section A has nonnegative

entries a;; > 0. Hence, the solution A to the LASSO optimization
problem [9] is more accurate when the nonnegativity constraint
ai >0 is included. Additionally, the optimization problem
[9] could be adjusted to estimate adjacency matrices A
with entries a;; € R by omitting the constraint a@;; > 0. In
SI Appendix, section E, we state the details of our method to

extract the surrogate matrix A.

Fig. 3 shows the performance of our prediction method. The
predictions are surprisingly accurate. In particular, we can accu-
rately predict the nodal state z(¢) until 5 times the observation
time interval, ¢ = B, except for the Kuramoto model. The
predictions for the Kuramoto are accurate until ¢ ~ 2%,,. The
Kuramoto oscillators are the only dynamics in Fig. 3 that do not
converge to a steady state Zo,. Hence, the Kuramoto dynamics are
significantly more complex, which explains the worse prediction
accuracy.

We chose the maximum time Ty, in Fig. 3 such that the
observed dynamics look sufficiently rich. We refer to S Appendix,
section G for an extensive sensitivity analysis of the prediction
method, with respect to the maximum time T}y, the observation
time £, the network size N, model errors, and heterogeneous
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Fig. 3. Accuracy of the prediction method. Based on n = 100 nodal state observations x(0), x(At), ..., x(nAt) until time typs = NAt, the nodal state x(t) is
predicted at times t > t,ps. The blue curves are the true nodal states x;(t). The red marks are the nodal state predictions %;(t) based on the surrogate matrix A,
initialized as X(t,ps) = X(tobs ). For clarity, only six nodal states x;(t) are depicted for each network. The average of the prediction error €;(t) = |x;(t) — X;(t)|, with
respect to all nodes i and future times t € [tops, Tmax], is denoted by € equals (4) e =1.83 - 1073, (B)e=3.87 - 107", (C) e=1.37- 1072, (D) e = 1.26 - 1073, ()

€=0.1,and (F)e=8.79 - 10~2

coupling functions g;. Simulation results in S Appendix, section |
suggest that the prediction algorithm has a quasi-polynomial
runtime.

In SI Appendix, section K, we propose a predictability param-
eter that assesses the fundamental limitations of predicting the
dynamics [1] from nodal state observations. The predictability
parameter is closely related to the Lyapunov exponent and con-
nects the prediction accuracy of our approach with potentially
chaotic dynamics, which are subject to fundamental prediction

limits (54).

4. The Surrogate Network Topology

As shown in Fig. 3, the surrogate matrix A yields accurate nodal
state predictions Z(¢). Does the high prediction accuracy imply
a similarity of surrogate network topology with the true network
topology? Here, we make a clear distinction between the network
topology and the interaction strengths (55). The network topol-
ogy, graph or network structure, is the set of all links: all node pairs
(4,7) for which a;; > 0. If there is a link from node j to node 1,
then the interaction strength is specified by the link weight a;;.
For instance, consider the two 3 X 3 adjacency matrices

0 01 0 . 0 9 0
A=125 0 0], A=107 0 O
0 3 1 0 05 3

For all nodes 1, j, it holds that a;; > 0 if and only if a;; > 0.

Hence, the two matrices A and A have the same network topology.
However, the interaction strengths, for instance, from node 2 to
node 1, is different, because a12 = 0.1 but 412 =9.

We quantify the similarity of the networks A and A by two
topological metrics. First, we consider the area under the receiver
operating characteristic (ROC) curve (AUC) (56), which we
compute with the Matlab command perfcurve. To compute the

6 of 9 https://doi.org/10.1073/pnas.2205517119

AUC, we consider a given rounding threshold € > 0. Then, the
true positive rate TPR(€) € [0, 1] equals the number of node pairs
i, 7 for which both a;; > € and a;; > 0, divided by the number of
entries a;; > 0. Similarly, the false positive rate FPR(¢) equals the
number of node pairs ¢, j for which a;; > € but a;; = 0, divided
by the number of entries a;; = 0. The ROC curve is obtained by
plotting the rate TPR(€) versus the rate FPR(¢) for € > 0, and
the AUC equals the area under the ROC curve. If the surrogate

A were obtained by tossing a coin for every possible link, then
the corresponding AUC would be 0.5. The closer the AUC is to
one, the greater the similarity of the surrogate topology to the true
topology.

Second, we consider the in-degree distribution of the matrices
A and A. The (unweighted) in-degree d; of node ¢ equals the
number of links that end at node . The surrogate network
algorithm detailed in S7 Appendix, section E does generate entries
a5 = 0 that are exactly equal to zero, and we define the estimated

degree d; of node i as the number of strictly positive surrogate
entries a;; > 0,7 =1,..., N. The in-degree distribution is given
by Pr[D > d], where D is the degree of a randomly chosen node
in the network. A

Fig. 4 compares the surrogate network A to the true network
A. We emphasize that Fig. 4 compares a single realization of the
true matrix A and an initial nodal state [0], namely, the same
matrix A and nodal state [0] that generated the nodal dynamics
shown in Fig. 3. The AUC value is almost 0.5 for all models.
Hence, the surrogate network topology is completely different
from the true network topology! Moreover, the degree distribution
Pr[D > d] of the surrogate network differs strongly from the
degree distribution of the true network, except for Fig. 4 C and
F. We remark that, even if two networks have the same degree
distribution Pr[D > d], the network topologies can be entirely
different. For instance, the AUC value equals only 0.53 in Fig. 4F.

In SI Appendix, section F, we show that a similar contrast
of prediction accuracy and topological similarity also holds for
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Fig. 4. The surrogate topology versus the true topology. Shown is a comparison of the topologies of the surrogate network A with the true network A with
respect to two topological metrics. The parameters are the same as in Fig. 3. First, the AUC value of the surrogate network A, which equals (4) AUC = 0.52, (B)
AUC = 0.51, (C) AUC = 0.57, (D) AUC = 0.52, (F) AUC = 0.54, and (F) AUC = 0.53. Second, the in-degree distributions Pr [D > d] for the surrogate matrix A are

shown in red and, for the true matrix A, in blue.

random graphs. For a discussion on potential rotational symme-

tries of the surrogate network A and the true network A and
a comparison with respect to the eigenvalue spectra of the two
matrices, we refer to S/ Appendix, section F.1.

5. Discussion

The prediction of general dynamics on unknown networks is
studied, based on past observations of the dynamics. We propose
a prediction framework which consists of two steps. First, we
obtain a surrogate network by fitting the dynamical model to the
past observations. Our fitting method is based on the LASSO.
Second, we predict the dynamics by computing the dynamical
model in [1] where the true adjacency matrix A is replaced

by the surrogate’s adjacency matrix A. Counterintuitively, even
though the surrogate network topology has no similarity with
the true topology, the predictions are accurate, for a considerable
prediction time horizon, for a broad range of observation times,
and in the presence of a reasonable noise level! The true network
topology is not needed for accurate predictions, because the
network dynamics are barely agitated.

The observation that dynamics on networks can be predicted
without the true topology has far-reaching consequences. The
majority of network topologies are complicated, and a sufficiently
accurate network reconstruction is a difficult, perhaps impossible,
task in practice. However, in this work, we reveal a stark contrast:
The network graph is complicated and large, but the nodal state
dynamics follow a simple linear combination of only a few agita-
tion modes y1, ..., Ym. Hence, our results suggest a promising
research direction for dynamics on networks: Rather than the
interplay between all the numerous nodes, dynamics on networks
can be understood as the interplay of a few agitation modes. On a
conceptual level, the nonlinear dynamics [1] behave surprisingly
similarly to a linear system dx(t)/dt = Az(t), for which the
agitation modes ¥, directly follow from the eigenvectors and
eigenvalues of the matrix A.

PNAS 2022 Vol. 119 No.44 2205517119

It is an open question whether it is possible to generalize our
prediction method to time-varying graphs, which seems chal-
lenging, since there are more processes active on a time-varying
network: 1) the dynamics on the graph, 2) the process that
changes the graph, and 3) possibly a coupling process between
processes 1 and 2. For example, when COVID-19 spreads in a
population, we distinguish between 1) the viral infection process,
2) the human mobility process that generates the underlying
time-variant contact graph, and 3) a coupling or interference
process due to awareness or observation of infections in a close
neighborhood that may inspire individuals to change contacts
or wear protection. If the network varies over time, it is un-
clear whether there are time-invariant agitation modes y,,. Time-
varying networks can be aggregated to obtain a static network,
or a sequence of static networks that correspond to different time
intervals. For different methods of constructing static networks
from time-varying networks and their limitations, in the context
of epidemics on networks, we refer to refs. 57-60. In ref. 61, a
method was proposed to embed time-varying networks into a low-
dimensional space. An interesting future research direction is to
explore a possible interplay of low-dimensional representations of
time-varying networks with the agitation of the nodal state ().

We emphasize that the agitation modes depend on the initial

state z(0). Consequently, also the surrogate network A depends

on the initial state 2(0). Thus, using the same surrogate matrix A
for predicting dynamics Z(t) with a different initial state Z(0) #
z(0) results in a lower prediction accuracy than for the trajectory
z(t) starting with the initial condition z(0). If the agitation
modes 7, and y, of the trajectories Z(t) and z(¢) are very

similar, then we can expect that the surrogate network A yields
an accurate prediction also for the trajectory Z(¢). Furthermore,
in SI Appendix, section I, we consider that multiple trajectories
are observed on the same network. We show that there is an
increasing benefit, as the number of observed trajectories grows,
for predicting the future of the dynamical system with another
initial nodal state. In summary, it is possible to accurately predicta
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trajectory Z () with different initial conditions Z(0) # z(0), even
if the trajectory Z(¢) has not been observed for long, provided that
1) the agitation modes §p, yp are similar or 2) sufficiently many
trajectories were observed. For some applications, neither of these
two conditions might be satisfied, for example, for local outbreaks
of infectious diseases where the initial condition varies strongly.
However, the prediction method could be applied, for instance,
to the spreading of information on online social media networks,
where the initial seeding of information frequently originates from
the same set of nodes (which may correspond to news stations or
influencers).

We confined to autonomous dynamics [1] without any control.
In some applications (52, 62-64), it might be possible to control
the nodal state z(¢) and there might be an additive control
4;(t) € R to the dynamics [1] of one, or multiple, nodes i. If
the control (uy(t),...,un(t))7 is high dimensional, then the
dynamics of the nodal state z(¢) might not be low dimensional.
For a sufficiently high-dimensional network dynamics, it is con-
ceptually possible to apply the sparse identification of nonlinear
dynamics (SINDy) algorithm by Brunton et al. (65), which may
reconstruct the complete governing Eq. 1, that is, the adjacency
matrix A and the functions f; and ¢.9 Additionally, we refer to
refs. 53 and 66 for model-free (i.e., without the knowledge of the
functions f; and g) network reconstruction methods, provided the
network dynamics are sufficiently high dimensional.

We emphasize that we considered deterministic governing
equations. Developing similar prediction methods that make use
of a surrogate network for stochastic processes is an open research
question. If there are mean-field equations for stochastic process
that resemble [1], such as for the stochastic SIS process (21, 67),
then the results of our work are at least applicable to stochastic
processes in the parameter regimes where the mean-field equations
are accurate. Furthermore, we assumed that the nodal state z; (¢)
is observed for every node 7. While assuming that only some nodal
states z;(t) can be observed is clearly an interesting generalization
of our prediction method, our result that an accurate prediction
is possible without requiring the underlying graph is unaffected.

The agitation modes y,, were extracted in a data-driven man-
ner from past observations of the dynamics. Obtaining a more
thorough, analytic, understanding of the connection between
topology, network dynamics, and agitation modes ¥, stands on
the agenda of future research. Here, we would like to mention
four points. First, provided that the network has an equitable
partition, the POD [2] is exact, and the agitation modes y,, follow
from the cells of the partition for a plethora of dynamical models

ﬂThis is the case provided that the functions f; and g are in the SINDy library of candidate
functions, which must be preconstructed by the user of the SINDy algorithm.
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SI Appendix to “Predicting network dynamics without requiring the
knowledge of the interaction graph” by Bastian Prasse and Piet Van

Mieghem

A Details on the empirical networks and model parameters

Here, we provide details on the empirical networks and the parameters for the respective network
dynamics in Section 2. For every network topology, we obtain the link weights a;; as follows. If there
is a link from node j to node 7, then we set the element a;; to a uniformly distributed random number

in [0.5,1.5]. If there is no link from node j to node i, then we set the respective element to a;; = 0.

A.1 Lotka-Volterra population dynamics

For the competitive population dynamics described by the Lotka-Volterra equations, we consider the
Little Rock Lake network [1], which we accessed via the Konect network collection [2]. The asymmetric
and connected network consists of N = 183 nodes, which correspond to different species. There are
L = 2494 directed links which specify the predation of one species upon another.

For every species i, we set the growth parameters «; and 6; to uniformly distributed random
numbers in [0.5, 1.5]. Furthermore, we set the the initial nodal state x;(0) to a uniformly distributed

random number in [0, 1] for every species i. We set the maximum prediction time to Tiax = 5.

A.2 Mutualistic population dynamics

Kato et al. [3] studied the relationship between 679 insect species and 91 plants in a beech forest
in Kyoto by specifying which insects pollinate or disperse which plant. We accessed the insect-plant
network via the supplementary data in [4]. The insect-plant network determines a mutualistic insect-
insect network [5]: If two insect species i and j pollinate or disperse the same plant, then both insect
species 7 and j contribute to, and benefit from, the abundance of the plant. Thus, if two insect
species ¢ and j are linked to the same plant, then we set a;; to a uniformly distributed random number
in [0.5, 1.5], and a;; = 0 otherwise. As a result, we obtain a symmetric and disconnected network with
N =679 nodes and L = 30,905 links.

For every species i, we set the growth parameters a; and 6; to a uniformly distributed random
number in [0.5,1.5]. Furthermore, we set the the initial nodal state z;(0) to a uniformly distributed

random number in [0, 20] for every species i. We set the maximum prediction time to Tax = 0.025.

A.3 Michaelis-Menten regulatory dynamics

We consider the transcription interactions between regulatory genes in the yeast S. Cerevisiae [6].
The asymmetric and disconnected network has N = 620 and L = 869 links. The influence from gene j
to gene ¢ is in either an activation or inhibition regulation. Since the activator interactions account
for more than 80% of the links between genes, we only consider activation interactions, see also [7].

In line with Harush and Barzel [5], we consider degree avert regulatory dynamics by setting the Hill



coefficient to h = 2. We set the the initial nodal state x;(0) to a uniformly distributed random number

in [0, 2] for every node i. We set the maximum prediction time to Tipax = 3.

A.4 Susceptible-Infected-Susceptible (SIS) epidemics

The SIS contagion dynamics are evaluated on the contact network of the Infectious: Stay Away
exhibition [8] between N = 410 individuals, accessed via [2]. The connected and symmetric network
has L = 5530 links. A link between two nodes 4,j indicates that the respective two individuals had a
face-to-face contact that lasted for at least 20 seconds.

A crucial quantity for the SIS dynamics is the basic reproduction number Ry, which is defined
as [9]

Ry=p <diag (61, .. 0n) " B) . (10)

Here, the spectral radius of an N x N matrix M is denoted by p(M), and diag (01, ..., 0n) denotes the
N x N diagonal matrix with the curing rates d1, ..., 5 on its diagonal. If the basic reproduction number
Ry is less than or equal to 1, then the epidemic dies out [10], i.e., z(t) — 0 as t — co. We would like

to study the spread of a virus that does not die out, and we aim to set the basic reproduction number
(0)

;  to a uniformly distributed random number

(0)

i

to Ry = 1.5: First, we set the “initial curing rate” §
in [0.5,1.5] for every node i. Then, we set the curing rates to d; = ¢d, ’, where the multiplicity c is
chosen such that the basic reproduction number in (10) equals Ry = 1.5. We set the the initial nodal
state x;(0) to a uniformly distributed random number in [0, 0.1] for every node i. Furthermore, we set

the maximum prediction time to Tax = 0.5.

A.5 Kuramoto oscillators

We consider Kuramoto oscillator dynamics on the structural human brain network [11] of size N = 78.
Every node corresponds to a brain region of the automated anatomical labelling (AAL) atlas [12].
The structural brain network specifies the anatomical connectivity between regions, i.e., the physical
connections between regions based on white matter tracts. White matter tracts were estimated using
fibre tracking from diffusion MRI data from the Human Connectome Project [13] as outlined in [14].
The network is symmetric and has L = 696 links.

For every node i, we set the natural frequency w; to a normally distributed random number with
zero mean and standard deviation 0.17w. Furthermore, we set the the initial nodal state x;(0) to a
uniformly distributed random number in [ /4, 7w /4] for every node i. We set the maximum prediction

time to Tinax = 1.

A.6 Wilson-Cowan neural firing

We consider the modified Wilson-Cowan neural firing model of Laurence et al. [15] on the neuronal
connectivity of the adult Caenorhabditis elegans hermaphrodite worm. Originally, White et al. [16]

compiled the neuronal connectivity of C. elegans. In [17, 18], the neural wiring was updated, which

8

we accessed online via the Wormatlas online database®. The somatic nervous system has N = 282

8Under the link: http://www.wormatlas.org/neuronalwiring.html



neurons and L = 2994 synapses. A link from node j to node ¢ indicates the presence of at least one
synapse from neuron j to neuron 3.

The slope and the threshold of the neural activation functions are set to 7 = 1 and u = 1,
respectively. The initial state z;(0) of every node i is set to a uniformly distributed random number

in [0,10]. We set the maximum prediction time to Ty ax = 4.

B Details on the accuracy of the proper orthogonal decomposition

In the following, we provide more details on the accuracy on the POD (2).

B.1 Accuracy versus the number of agitation modes

Here, we evaluate the trade-off between accuracy and the number m of agitation modes y1, ..., Ym.
The number of agitation modes m is equal to the dimension of the POD. We consider the nodal state
x(t) over the time period 0 < ¢t < Tiax. We consider n = 1000 equidistant observations, and we obtain
the agitation modes y, from the nodal state matrix X = (2(0),z(At),...,z((n — 1)At)) as described
in Section 3. In contrast to Section 3, we set the last observation time point to (n — 1)At = Tiax,
since we aim to evaluate the POD, and hence the dimensionality of the nodal state x(t), over a given
time interval 0 < t < Thax.

We define the contribution of agitation mode y, as the Euclidean norm ||c,(t)y,||2 relative to the

Euclidean norm of the nodal state ||z(t)]|2, integrated over the time t € [0, Tiyax], as

-1

B, = / T ey Ouplly di ( / o ||m<t>||2dt) - (11)

Since ¢,(t) = ylx(t) and [jy, 2 = 1, it follows that

Tonox Tinax -1
%,—/0 Hy,?w(wHth(/o Hw(t)!bdt) :

Figure S1 shows that the contribution @, decreases exponentially fast as the agitation mode index
p increases. At some value of the index p, the contribution ®., plateaus at a very low value. More
precisely, @, < 101 as the index p is sufficiently large. Hence, Figure S1 demonstrates that the
contributions @, of the first few agitation modes 7, dominate the POD (2).

Furthermore, we are interested in the accuracy of the POD (2) versus the number of agitation
modes m. Analogously to the contribution ®., of a single agitation mode ¢, in (11), we define
the approximation error of the POD with respect to the Euclidean norm over a finite time interval
t € [0, Tmax] as

-1

PpoD.m = /0 e - S et at ( /0 o Hx<t>||2dt)

p=1 9

Hence, the approximation error ®pop,,, measures the deviation of the nodal state x(t) to the linear
combination of m agitation modes y1, ..., Ym, Whereas the contribution ®., above focussed only on a

single agitation mode y,,.
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Figure S1: The contribution of different agitation modes in the proper orthogonal decom-
position. The contribution ®., of the agitation mode y, in the POD versus the agitation mode index
p =1, ..., N on a semi-logarithmic plot. The network size is N = 100, and the results are averaged

over 100 Barabasi-Albert random graphs.

Figure S2 shows that the approximation error ®pop ., decreases exponentially as the number of

agitation modes m increases. At some number of agitation modes m, the ®pop , plateaus at a very

low value.

B.2 The number of agitation modes for large networks

We focus here on the accuracy of the POD (2) not with respect to the number of agitation modes m,
as in Appendix B.1, but with respect to the number of nodes N in the underlying graph. For every
network size N, we determine the number m of agitation modes, such that the POD (2) is virtually
exact — up to machine precision. We determine the number of agitation modes m to represent the
At, as the numerical rank of the N X n matrix

nodal state observations x[1], ..., z[n], where n
(z[1],...,z[n]), which we compute with the Matlab command rank.

We set the parameters as described in the beginning of Appendix G, with exception of the maximum
time Thax. Since we are interested in the number of agitation modes m for the nodal state z(t) in a
large time interval, we set the time T}, to ten times the value given in Appendix G. To keep the
sampling time At at the same small value as in Appendix G, we replace (29) by At = Tinax/2000.
We range the number of nodes from N = 100 to N = 1000 and consider six different value of the
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agitation modes. The approximation error ®pop ,, of the POD with agitation modes y1, ..., ym
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observation time t,ps = 100At, 200At, 400At, 600At, 800At, 1000A¢t. (Hence, the smallest and largest
observation times equal tohs = Thax/10 and tops = Tmax, respectively.)

Figure S3 suggests that, for any time interval ¢ € [0,t,,s] with fixed time Tiax, the number of
agitation modes m is constant as N — oco. Hence, the dynamics remains at a given level of simplicity
(a constant number of agitation modes m) despite a more and more complex network (due to a larger
number of nodes N and a more heterogeneous degree distribution as N grows). The contrast between
the simplicity of the dynamics and the network complexity enables accurate predictions of dynamics

without precise knowledge of the network topology.

C Low-dimensional dynamics imply multiple possible surrogate ma-

trices

From Example 1 for SIS dynamics, we found that if the low-dimensional POD (2) is exact for few
agitation modes y,, then many surrogates A # A predict the dynamics on the true matrix A. Here,
we extend the claim to general dynamics (1): if the POD (2) is accurate, then there many surrogates

A + A that yield accurate predictions.
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A surrogate matrix A predicts the dynamics on the true matrix A if (5) holds with a high accuracy.
Thus, we aim to show that if the POD (2) is accurate for m < N, then the set of linear equations (5)

has many solutions for the surrogate A. First, we rewrite (5) as

(Ari(a(t))). = (Ari(z(®));. (12)

)

where we define the N x 1 vector r;(z(t)), for every node i, as
ri(e(t)) = (g (@i(t), 21(8)) sy g (@i(0), 2n (1)) (13)

Second, we aim to show that the vector r;(x(t)) satisfies the POD
ri@(t)) ~ ) G (14)
p=1

with /m < N agitation modes g, ;. In particular, we argue that if the POD (2) of the nodal state x(¢)
is accurate for m < N, then the POD (14) of the vector 7;(z(t)) is accurate for m < N.



For the SIS dynamics in Example 1, the vector r;(¢) simplifies to r;(x(t)) = x;(t)z(t). Hence, for
SIS dynamics, the POD (2) of the nodal state z(t) yields a POD (14) of the vector r;(x(t)) with the
same agitation modes @, ; = y, by identifying the scalar functions as ¢é,;(t) = x;(t)c,(t). In contrast,
for the general dynamics (1), the relationship between the POD of the nodal state x(t) and the vector
r;(x(t)) is more complicated.

To shorten the notation, we drop the time index ¢ in the following: we formally replace the nodal
state z(t) by  and the functions g (x;(t), z;(t)) and r;(z(t)) by g (z;,x;) and r;(x), respectively.

To analyse the nonlinear dependency of the vector r;(x) on the nodal state =, we resort to a Taylor
expansion. The function r; : RV — R is specified by the nonlinear interaction function g of the

dynamical model (1). The Taylor expansion of the function g(z;,z;) around the point z; = z; = 0

reads
AACID))
g (zi,z;) = ¢(0,0) +Z Z g f ] (15)
k=1 a+8=k B 895?8% 2i=2,=0
We denote the Taylor coefficient by
1 0Fg(x, ;)

a, ) = 16
100 = B " oeran? 1o

ri=x;=0
The indices 7 and j refer to the first and second argument of the function g(x;,x;). Thus, the coefficient
1 (a, B) does not depend on the value of the indices i, j. With (16), we rewrite (15) as

g (zi,zj) = ¢(0,0) —I—ZZnak’—a ?fa (17)

k=1a=0
With (17), we obtain the Taylor series of the function r;(z) in (13) as

oo k
0) —i—ZZn(a,k:—a) ke (18)

k=1 a=0

where we denote the element-wise power of the vector x as
T
k—a __ k—a k—a
x = (:vl s Ty ) .

We define the truncation of the series (18) until the ¢-th power as

rqi (z) = 7;(0 +ZZnak’—a agh—e (19)

k=1 a=0
For a sufficiently large power ¢, it holds that r;(z(t)) ~ rq; (z(t)) at every time t € [0, Thax). In
fact, if the interaction function g(z;,x;) is a polynomial of degree ¢, then the truncation rq; (x) is
exact, i.e., rj(z) = r4; (z). For instance, the SIS epidemic process, whose interaction function equals

g(xi,x5) = (1 — x;)z;, is characterised by 7i(x) = 1o, ().

Proposition 2. Suppose that the N x 1 nodal state vector x(t) equals the linear combination of m

vectors y, at every time t,

t) = Z p(t)yp (20)
p=1



for some scalars cy(t) € R. Then, the function rq; (x(t)) in (19) satisfies

rqi (@ Z t)Up,i (21)

where the number m of vectors g, ; € RN equals

502

Proof. 1t follows from (20) that xz(¢) € span{yi,...,ym} at every time ¢t. We rewrite the function
rqi (z) in (19) as

q k

ra (@) =1i(0) + > > n(k—B,8)xf Paf

k=1 8=0

Both terms n (k — 3, 8) and :Ef_ﬁ are scalars. Thus, we obtain that
rqi () =1i(0) + Z pa(x (22)

for some scalars po(x), p11(), ..., g(z) € R. We consider the addends x” in (22) separately. Due to
(20), for any vector = € span {y1, ..., Ym }, the j-th component of z” equals

g

m
xf = Z cp (Yp) j
p=1
for some scalars ¢y, ..., ¢;,. The multinomial theorem yields that

= > le<c’yl)

p1+p2+...+pm=0
Thus, by stacking the components :B/f s ey SB’?V, we can express the vector z° as

(Cl (yl)l)pl

p1!p2!-

8 _
T Z pl'pz pm' H

p1+p2+...+pm=0 (¢; (yl)N)pl
= Z Cﬁ (pla'”vpm) Vg (p17"'7pm)7 (23)
p1+p2+..+pm=0

where we define the coefficients

81

) S

and the N x 1 vectors

(et () )"

m
pl) 7pm H :
=1
(cr () )"

oo



Relation (23) shows that the vector z” is a linear combination of all vectors vg (p1, ..., pm) with

B4+m—1
()

The vector 7, (¥) in (22) is a linear combination of the vectors z” for 8 = 0, ..., ¢. Thus, for any

p1+ p2 + ... + pm = B, of which there are

x(t) € span{y, ..., Ym }, we can write the vector r,; (z(t)) as a linear combination of
q
- B+m—1
m= .
> ( 1
=0
vectors vg (p1, ..., pm) With p1 + p2 + ... + py, = 3, where § =0, ..., ¢. Lastly, we obtain the vectors
Upi, where p = 1,...,m, as an orthonormal basis vectors of the subspace spanned by the m vectors

vg (p1, ..., pm). Furthermore, the scalar functions in (21) follow as &, ;(t) = gjgl-rw (x), which completes
the proof. O

Proposition 2 shows that, if the nodal state z(t) is agitated® with only m < N agitation modes
Yp, then also the vector ry; (x(t)) is agitated with only /m < N agitation modes g, ;. Suppose that
the power ¢ is sufficiently great, such that r;j(x(t)) ~ rq; (z(t)). Then, (12) yields that the surrogate

A predicts accurately if, for all nodes ¢,

m m
AN e i®pi | = | AD i)y
p=1 i p=1 ;
Equivalently, we obtain that
m m
A Z Cp,i (t)?jp,i A Z Ep,l(t)gp,u
p=1 p=1
which is satisfied if
Agp,i = A?jp,i (24)

for every agitation mode f,;. The linear system (24) has N? unknowns a;; but only mN < N 2
equations. Hence, there are many surrogate matrices A that solve (24) and provide accurate predictions
of the nodal state z(t).

D Approximate low-dimensional dynamics and multiple possible

surrogate matrices

In Example 1 and in Proposition 2 we considered that the POD (20) is exact. However, the POD might
only hold approximately for the dynamics (1), with a high approximation accuracy as demonstrated
by Figure 1. In this section, we show that there are many surrogate matrices A # A that result in

accurate predictions, also if the POD is only approximate.

“By (20) we considered that the POD is exact. In Appendix D, we show that there are many surrogate matrices A
that predict accurately, also if the POD only holds approximately.



First, we rewrite the set of linear equations (5), which is central to obtaining the surrogate matrix

A. For every node i, we define the n x N matrix F; with the vector 7 (z(t)) in (13) as

7

rf (=[0])

T (afn — 1))

Then, the set of linear equations (5) of the observation times ¢ = 0, At, ..., (n — 1)At becomes

;1 a;1
El 1 |=F]:|. (25)
a;N a;N
Thus, we obtained a linear system (25) for every row ai;, ..., ajn of the surrogate A. The rank

of the matrix Fj is essential: If the matrix F; is of full rank, i.e., rank(F;) = N, then there is exactly
one solution to (25), namely the entries a1, ...,a1n of the true adjacency matrix A. Otherwise, if
rank(F;) < N, then there are infinitely many solutions A # A to (25). If there is more than one
solution to (25), then the LASSO estimation (9) results in the sparsest solution A (with respect to
the ¢1-norm).

Every computer works with finite precision arithmetic. Thus, not the exact rank but the numerical
rank of the matrix F; is decisive to solve the system (25) in practice. The numerical rank equals the
number of singular values of the matrix F; that are greater than a small threshold, which is set in
accordance to the machine precision. We compute the numerical rank for Barabasi-Albert random
graphs versus the network size N. Here, we consider the best case for inferring the network topology:
The derivative dx;(t)/dt is observed exactly, without any approximation error as in (8).

Figure S4 shows that the numerical rank of the matrix F; stagnates as the network size N grows.
The linear system (25) is severely ill-conditioned for large networks. For example, for the SIS process
on a network with N = 1000 nodes, we observe a 1000 x 1001 nodal state sequence z[0], ..., 2[1000],
but the numerical rank does not exceed 32. Thus, there are countless (infinitely many) surrogates

A # A that result in accurate predictions of the dynamics.

E Details of the surrogate network inference algorithm

Here, we give details to the prediction method, which is a development of the algorithm we proposed
in [19] for discrete-time epidemic models. The solution a;1(p;), ..., ain(pi) to the LASSO (9) depends
on the regularisation parameter p;. We aim to choose the parameter p; that results in the solution
ai1(pi), - ain (p;) with the greatest prediction accuracy. To assess the prediction accuracy, we apply
hold-out cross-validation [20]: We divide the nodal state observations into a training set z[0], ...,
Z[Nirain] and a validation set z[ngain + 1], ..., 2[n]. The training set is used to obtain the solution
ai1(pi), - ain(p;) in dependency of p;, whose prediction accuracy is evaluated on the validation set.
We choose the regularisation parameter p; with the greatest prediction accuracy on the validation set.

More precisely, we define the training set as the first 80% of the nodal state observations z[0], ...,

Z[Nrain], Where Nipain = [0.8n]. By a;1(pi), ..., a;n(pi), we denote the solution to the LASSO on the

10
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Figure S4: Ill-condition of inferring the network topology. The numerical rank of the matrix F;
of the linear system (25) versus the number of nodes N for Barabasi-Albert random graphs. The

observation time is set to tohs = Tmax, and the number of observations equals n = 1000.

training set x[0], ..., Z[Ntrain], 1.€., the solution to

2
Ntrain N N
7 1] - ) ~ N
argmin E z [k+A]t zilk] — fi (zi[k E aijg(x;k), zik]) | +pi E Qi

Gi1ye 0N

(26)
s.t. (Alz‘j >0 ] = 1, 7]\f

If an entry a;;(p;) of the LASSO solution is smaller than the threshold 0.01, then we round off and set

a;j(pi) = 0. For every value of the regularisation parameter p;, we define the prediction error MSE(p;)

on the validation set x[ngain + 1], ..., x[n] as
1 N 2
— zilk + 1] — R
VR DI E s L - Dasstelal | @
k=Ntrain+1 J=1

We iterate over a set ©;, specified below, of predefined candidate values for p;. Every candidate
value p; € ©; results in a different prediction error MSE(p;). We determine the final regularisation
parameter popt; as the candidate value popt; € ©; with the minimal prediction error MSE(popt,i)-
We obtain the final estimate a1, ...,a;n as the solution to the LASSO (9) with the regularisation
parameter popt; on the whole data set z[0], ..., Z[Nirain)-

We define the set ©; as 20 logarlthmlcally equidistant candidate values as ©; = {pmin,i; -+, Pmax,i }-
If pi > ptn,i, where py,; = 2||F1'Vi||oo, then, as demonstrated by Kim et al. [21], the solution to the
LASSO (9) equals a;; = 0 for all nodes j. Here, the entries of the (n¢rain +1) x 1 vector V; are given by
(Vi) = (zilk + 1] — m;[k]) /At — fi (z4[k]). Thus, we set the candidate values in the set ©; proportional
to pen,i- We define

l‘l[l] — iL‘Z[O]

A7 — fi (i[0])
Pmaxi = 2- 1072 || EF : (28)
iln) —A:n;[n—l] — fi(@iln —1]) .

11



and pmin; = 10_4pmaxﬂ-. The surrogate inference method is given by Algorithm 1.

Algorithm 1 Obtaining the surrogate matrix

1: Input: nodal state time series x[0], z[1], ..., z[n]
2: Output: surrogate matrix A with elements aij
3: fori=1,...,N do

4: Set Pmax,i to (28)

5 Pmin,i <~ 10_4pmax,i

6 ©; < 20 logarithmically equidistant values from pmin,; t0 pmax,i

7 for p, € ©; do

8 ai1(pi), - ain(p;) + solution to LASSO (26) on the training set
9: a;j(pi) < 0 for all a;1(pi), ..., Gin(p;) smaller than 0.01

10: Compute MSE(p;) by (27) on the validation set

11: end for

12: Popt,i < argmin MSE (p;)
Pi€O;
13: (Gi1, ..., a;n) < the solution to LASSO (9) for p; = popt,i on the whole data set

14: a;j < 0 for all a1, ..., a;n smaller than 0.01
15: end for

We would like to mention two things on the way we incorporated rounding into obtaining the
surrogate network. First, the exact solution to £1-norm minimisation problems, such as the constrained
LASSO (26), often contains a;; = 0 for some entries a;; of the optimisation variable [22, 23, 24]. We
solve the LASSO (26) numerically, by the Matlab command quadprog, which may give a;; ~ 0 as
output even though the exact solution would be a;; = 0. Second, we emphasise that the hold-out
cross-validation in Algorithm 1 does take into account that we set G;; = 0 for all entries a;; that are
below the threshold a@;; < 0.01. The mean square error in line 10 of Algorithm 1 is computed after
the rounding in line 9. Thus, we expect that the final output of Algorithm 1, computed in line 13,
corresponds to the minimum of the mean square error that can be obtained by first solving the LASSO

(26) numerically and then rounding the output, which results in either a;; > 0.01 or a;; = 0.

F Prediction accuracy and topological similarity for random graphs

In Sections 4 and 5, we evaluated the prediction accuracy and reconstruction accuracy for real-world
networks. Here, we provide an additional evaluation for the Barabasi-Albert and Erdés-Rényi random
graphs with NV = 300 nodes.

Figure S5 shows that the predictions are accurate for Barabasi-Albert random graphs. However,
just as for the real-world networks in Section 5, the topology of the surrogate network bears little
similarity with the true network topology, since the AUC for the networks in Figure S5 equals: (a)
AUC=0.52, (b) AUC=0.51, (c) AUC=0.53, (d) AUC=0.51, (e) AUC=0.55, (f) AUC=0.54.

For Erd6s-Rényi, we obtain similar results, the prediction accuracy is demonstrated by Figure S6.
All of the networks corresponding to Figure S6 are connected. The topological similarity of the

surrogate network and the true network topology is small, with AUC values given by: (a) AUC=0.51,
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Figure S5: Accuracy of the prediction method for Barabasi-Albert random graphs. Based
on n = 100 nodal state observations z(0), x(At), ..., z(nAt) until time t,,s = nAt, the nodal state x(¢)
is predicted at times t > t,,s. The true adjacency matrices A with N = 300 nodes are generated by the
Barabasi-Albert random graph model. The blue curves are the true nodal states z;(t). The red marks
are the nodal state predictions Z;(t) based on the surrogate matrix A, initialised as Z(tobs) = T(tobs)-
For clarity, only six nodal states z;(t) are depicted for each network. The average of the prediction
error €;(t) = |x;(t) — Z;(t)|, with respect to all nodes ¢ and future times ¢ € [tobs, Tmax], 1S denoted by
€ and equals: (a) € = 1.41-1072, (b) € = 6.79- 1073, (c) € = 5.77- 1072, (d) € = 4.28 - 1074, (e)
E=1.37-10"%, (f) e=3.42-1072

(b) AUC=0.51, (c) AUC=0.51, (d) AUC=0.5, (e) AUC=0.51, (f) AUC=0.52.

F.1 The spectrum of the surrogate and true networks

In Section 5, we used the in-degree distribution and the AUC value as metrics to compare the surrogate
and the true network topology. Here, we consider the eigenvalue spectra [25] of the surrogate matrix A
and the true matrix A, to provide an additional comparison between the two topologies. The spectrum
of the matrices A is given by the set {1, Aa..., Ax'} of (not necessarily distinct) eigenvalues A; of A,
where the eigenvalues are sorted as 0 < [A| < ... < [Ay| and 0 < [A] < ... < |Ay]|. Similarly, we
denote the eigenvalues of the surrogate matrix A by 5\1, . AN

For Barabési-Albert random graphs, Figure S7 demonstrates two points. First, the spectrum of
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Figure S6: Accuracy of the prediction method for Erd6s-Rényi random graphs. Based on
n = 100 nodal state observations x(0), z(At), ..., z(nAt) until time t,ns = nAt, the nodal state x(t)
is predicted at times ¢ > tops. The true adjacency matrices A with N = 300 nodes are generated by
the Erdés-Rényi random graph model with link probability pgr = 0.05. The blue curves are the true
nodal states z;(t). The red marks are the nodal state predictions ;(t) based on the surrogate matrix
A, initialised as 2(tobs) = 2(fops). For clarity, only six nodal states z;(t) are depicted for each network.
The average of the prediction error €;(t) = |z;(t) — ;(t)|, with respect to all nodes i and future times
t € [tobss Tmax), is denoted by € and equals: (a) € = 1.44-1072, (b) €=3.39-1071, (¢) €= 7.23-1072,
(d) €=4.07-1073, (e) e=1.91-1071, (f) €=9.35-102,

the spectra of the surrogate matrix A is very different to the spectrum of the true matrix A. Second,
almost all eigenvalues \; of the surrogate matrix A are (close to) zero. Hence, it holds that Av =~ 0 for
all vectors v € V in a subspace ¥ C RY. Here, the subspace V equals the span of the eigenvectors of
A which correspond to eigenvalues that are (close to) zero. (If the eigenvalues are exactly 0, then the
subspace V equals the kernel of the matrix A.) Figure S7 illustrates the large dimension dim{V} > 1
of the subspace V. The large dimension of the subspace V relates to the small dimension of the
subspace X of the nodal state x(t) in Section 3.

Figure S8 demonstrates the same two observations for Erdés-Rényi graphs as for Barabasi-Albert

graphs Figure S7.
Lastly, one could argue that the comparison of the surrogate network A and the true network A
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Figure S7: The spectra of the surrogate and the true network for Barabasi-Albert random
graphs. A comparison of the spectrum of the surrogate matrix A in red and the spectrum of the true
matrix A in blue. The networks are the same used for generating the dynamics in Figure S5, i.e., the

true matrix A was generated by the Barabdsi-Albert random graph model.

should consider rotational symmetries. For instance, consider N = 2 nodes and that the true matrix
is given by aj2 = ag1 = 0, a;1 = ag2 = 1 and the surrogate matrix is given by a11 = a2 = 0,
a12 = G291 = 1. Then, the matrices A and A would be the same, up to a rotation of 7/4, but we would
have an AUC=0.5. However, we emphasise that a rotation of the matrix A does have an impact on
the dynamics (1). A potential rotational symmetry of the matrices A and A does not imply that
the coupling terms Zjvzl aijg(x;(t),x;(t)) and Zjvzl a;j9(x;(t),xz;(t)) in (1) are the same, due to the
non-linearity of the coupling function g and an nodal state vector z(t) with generally unequal entries
zi(t) # z;(t). However, while comparing the eigenvalues of the surrogate matrix A and the true
matrix A in Figures S7 and S8, we found, in line with the in-degree and AUC topological comparison
in Figure 4, that the eigenvalue spectra of the matrices A and A are very different. If the surrogate

matrix A and the true matrix A were rotationally symmetric, then their spectra would be the same.
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Figure S8: The spectra of the surrogate and the true network for Erdés-Rényi random
graphs. A comparison of the spectrum of the surrogate matrix A in red and the spectrum of the true
matrix A in blue. The networks are the same used for generating the dynamics in Figure S6, i.e., the

true matrix A was generated by the Erds-Rényi random graph model.

G Sensitivity analysis of the prediction method

In this section, we perform an extensive sensitivity analysis of the prediction method. We evaluate
the performance on randomly generated networks and the dynamics described in Section 2. Unless
explicitly stated otherwise, we use the same set of parameters from Subsections G.1 to G.4, which we
detail in the following.

We consider Barabasi-Albert random graphs with N = 100 nodes to generate an unweighted
network. From the unweighted network, we generate a weighted network as follows: If there is a link
between node ¢ and j, then we set the link weight a;; to a uniform random number in [0.5, 1.5].

We set the initial nodal state x;(0) to a uniform random number in [0, 1], except for the SIS and
Kuramoto models for which the interval is set to [0, 0.1] and [—7/4, w/4], respectively. For the different
models, the maximum prediction time is set to: (LV) Tiax = 8, (MP) Thax = 2, (MM) Thax = 4,
(SIS) Tinax = 2, (KUR) Tiax = 2, and (WC) Tinax = 4. We choose the model-specific prediction time
Timax such that the dynamics are sufficiently rich, as illustrated by Figure S9. (If the prediction time

Tnax 18 too small, then there can be too little change of the nodal state x(t) over the time interval
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Figure S9: The nodal state dynamics. The blue curves show the nodal state x;(t) of the respective
dynamic model on a Barabdsi-Albert random graph with N = 100 nodes. For readability, only five
of the 100 nodal states z;(t) are depicted. The maximum prediction time Tiax is different for each
dynamic model: (&) Thax = 8, (b) Thmax = 2, (€) Tmax = 4, (d) Thmax = 2, (€) Tmax = 2, (f) Tnax = 4.

t € [0, Thmax]- If the prediction time Tihax is too large, then the approximation (8) of the derivative

dz(t)/dt can be too inaccurate.) The sampling time is set to

At = Tpnax/200. (29)

The model parameters (e.g., the curing rates d; for the SIS model) are set in the same way as described

in Appendix A.

G.1 Prediction time horizon

We evaluate the prediction accuracy with respect to the observation time t,,s and prediction time
horizon t =t — tos. We define the prediction error e(f) at the prediction time horizon t = t — typs as

the average
N

t) =+ > Ja(l) — (D) -

1=1

(30)

The time step At is set as in (29), and we vary the observation time from tops = 0.05Tax t0 tops =

3Tmax. The number of nodal state observations follows as n = t,},s/At, which we round up if the result

is not a natural number.
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Figure S10: The prediction accuracy versus the prediction time horizon. The prediction error
€(t) versus prediction time horizon t = ¢ —t,s. normalised by the time step At, on a loglog-scale. Each
of the ten curves corresponds to another value of the observation time ¢, in an equally-spaced range
from tops = 0.05Tmax t0 tops = 3Tmax- The results are averaged over 100 Barabési-Albert random
graphs with NV = 100 nodes.

Figure S10 shows that, for a broad range observation times ¢y, the prediction error €(#) increases
gradually as the prediction time horizon ¢ increases. More specifically, the straight lines in the log-log-
scale of Figure S10 suggest that the increase of prediction error ¢(f) seems polynomial with respect
to the prediction time horizon ¢, provided that the prediction time ¢ is sufficiently small. Except for
the Kuramoto model, the error ¢(f) plateaus at a large value as the prediction time horizon ¢ becomes
large. Except for the Kuramoto model, the nodal state x;(t) takes only values in a limited range

(compare to Figure S9), which explains that there is a plateau for the prediction error €(t).

G.2 The dependency of the prediction error on the network size

We are interested in the impact of the network size N on the prediction error €(f). We consider
n = 100 nodal state observations with the time step At given in (29). (Hence, the observation time
satisfies tobs = Tmax/2.) We range the network size from N = 25 to N = 500. We obtain the network
in two steps. First, for each number of nodes N, we generate a Barabasi-Albert random as described
in Appendix G to obtain a weighted adjacency matrix A.

Second, we rescale the adjacency matrix A such that 2-norm of the matrix A remains comparable

for different network sizes N. Without rescaling of the adjacency matrix A, the largest eigenvalue Ay
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grows for large network sizes N. Thus, the time scales of the dynamics would not be comparable,
which would not be in agreement with our focus on a fixed time interval [0, Tnax], which is independent
of the number of nodes V.

To rescale the matrix A, we obtain the average largest eigenvalue Agarget Of the networks with
N = 100. We do not rescale networks with N = 100 nodes. For networks with N # 100 nodes, we
rescale the adjacency matrix A with largest eigenvalue A; as A < Aarget/A15A. Here, we choose to

include a small scalar perturbation s, which is generated as a uniform random number in [0.9,1.1].
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Figure S11: The prediction error versus the network size. The prediction error €(#) versus the
network size N. Each of the four curves corresponds to another value of the prediction time horizon
t =t — tops. The results are averaged over 100 and 20 Barabasi-Albert random graphs for N < 400
and N > 400 nodes, respectively.

Figure S11 shows that the prediction error €(#) increases for larger network sizes N for the MP,
the MM and the WC dynamics. Interestingly, for the other models (LV, SIS and KUR), there does
not seem to be a substantial increase of the prediction error €(#) for larger networks. As expected, the
smaller the prediction horizon #, the smaller the prediction error €(f) for all models. Furthermore, the

smaller the prediction horizon ¢, the smaller the effect of the network size N on the prediction error

e(t).
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G.3 The impact of errors on the prediction accuracy

For many applications, the nodal state z[k] is not observed exactly but is subject to noise. We
consider that the input of the surrogate network Algorithm 1 is subject to erroneous observations
xlk] + @;[k]Z; max, Where 2; max = maxg—g, ., x;lk] denotes the maximum nodal state of node ¢ until
time k = n. Here, the error w;[k] is drawn from a Gaussian distribution with zero mean and variance
o2, independently and identically distributed for all nodes i and times k. The approximation (8) for
the difference (x[k+ 1] — z[k])/At, which is at the core of obtaining the surrogate matrix A, is affected
by the error w;[k].

We consider n = 100 nodal state observations with the time step At given in (29). We explore
the impact of different error levels by varying the standard deviation from o = 107* to o = 1072. We

consider the prediction error € which is the average of the time-depending prediction error €(t) over

all prediction times ¢ € [tobs, Tmax), and we set the observation time to tops = Tiax/2-
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Figure S12: The prediction error versus the random error level. The prediction error €
versus the standard deviation o of the errors w;[k] on a semilogarithmic scale. The leftmost boxplot
corresponds to no noise (o = 0). The boxplots capture the variation with respect to 100 Barabési-
Albert random graphs with N = 100 nodes.

Figure S12 illustrates that the prediction method is robust in the presence of errors w;[k] with
a sufficiently small standard deviation o. The sensitivity of the prediction method depends on the
dynamic model and is particularly strong for the MM and WC models. Curiously, for the MM and
WC models, and to a lesser extent for the SIS model, the prediction is more accurate in the presence

of errors w;[k] with a small standard deviation o. Since the beneficial effect of small errors does not
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hold for all models, we believe that the effect is due to the specific nonlinear dynamics rather than

the prediction method.

G.4 Heterogeneous interaction functions

We study the prediction accuracy of our approach for interaction functions g;(z;(t),z;(t)) that, in
contrast to the original formulation (1), depend on the node i. We consider the self-interaction

function

filzi(t)) = —4(2),

such that, if there were no interactions (a;; = 0 for all nodes 4,5), then the dynamics (1) would be
stable. We describe the interaction function g;(z;(t),z;(t)) as a third-degree polynomial
1
gi(xi(t), {L'j (t)) :N (911 + Hgiwi(t) -+ 93Z‘{L'j(t) + 9423022(15) -+ Hgixi(t)xj(t) + 962373 (t)
+0723 () + Osi27 (t)w;(t) + 991‘3%(15)33?(15) + 9101'33?(15)) ; (31)

which is specified by the coefficients 6g;, s = 1,...,10. With (31), we can quantify the heterogeneity
of the coupling functions g; in terms of the coefficients 6,;. We denote the mean of the coefficients 0s;
with respect to all nodes i as ;. For all s = 1,...,10, the mean f, is drawn from a standard normal

distribution. Based on the mean 6, we generate the coefficients 0,; as
952‘ = és + gsia

where the term 552- is drawn from a normal distribution with zero mean and variance 03. We emphasise
that, as throughout this work, we consider the coupling functions g; in (31) to be fully known to the
surrogate network Algorithm 1. The maximum prediction time is set to Tinax = 2. We consider n = 50
observations of the nodal state x(¢) until the observation time tops = 0.5, and we set the z;(0) to a
uniform random number in [0, 1] for every node i.

Figure S13 shows that the standard deviation o, that determines the coefficients ; has no clear
impact on the prediction accuracy. Hence, the results suggest that the prediction accuracy is unaffected

by the degree of heterogeneity of the coupling functions g;.

H Connected components of the surrogate networks

In Algorithm 1, we obtain the surrogate network A without imposing a connectivity constraint. Hence,
the surrogate network A may be disconnected. Here, we are interested in the connectivity of the sur-
rogate matrix A, more specifically the number of connected components. We use the same parameter
setting as in Appendix G.1.

Figure S14 shows that the distribution of the connected components in the surrogate network A
substantially varies across different dynamics models, ranging from almost a point-distribution for
the Kuramoto model to a widely-spread distribution for the LV model. On average, across all six
models, a fraction of 35.82% of the networks are disconnected (i.e., have more than one connected
component). Remarkably, despite the high prediction accuracy demonstrated for the same parameters
in Figure S10, Figure S14 suggests that also disconnected surrogate networks A can yield accurate

predictions.
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Figure S13: The prediction accuracy versus the heterogeneity of the coupling functions.
The average € of the prediction error €;(t) = |z;(t) — ;(¢)|, with respect to all nodes i and future times
t € [tobs, Tmax], versus the standard deviation o, which determines the heterogeneity of the coupling
functions g;. The boxplots capture the variation with respect to 100 Barabdsi-Albert random graphs
with N = 100 nodes. The leftmost boxplot (¢, = 0) shows the error € for homogeneous coupling
functions g; = g;, and the five boxplots to the right correspond to a standard deviation ranging from

og = 1073 to o4 = 0.5, logarithmically equally spaced.

I Observing multiple trajectories on the same network

In the previous sections, we considered that only one trajectory of the nodal state x(t) is observed,
from some initial state x(0) to the nodal state x(t,hs) at the observation time t,ps. In the following,
we consider observing multiple nodal state trajectories on the same network, with the same and fixed
adjacency matrix A, starting from different initial conditions x(0). Intuitively, we expect that the
more trajectories are observed, the more accurate our prediction approach is.

Suppose we observe S nodal state trajectories x(s)(t), where s = 1,...,.5, on the same adjacency
matrix A. For every trajectory (%) (t), we consider n = 50 nodal state observations with the time step
At given in (29). (Hence, the observation time satisfies tops = Tmax/4.) Then, the LASSO (9) can be

adjusted in a straightforward manner as

S n—1

2
(s) (s) N N
: z; [k+1] — ;" [K] s . s s .
argmin  » ) AL — fi (wﬁ )[/f]) = agP k2K |+ ay
j=1 j=1

@1y 8N g1 1

s.t. dij >0 j = 1,...,N.
(32)

Algorithm 1 is adjusted to multiple trajectories in an analogous manner.
We evaluate the impact of S =1, ..., 20 trajectories on the prediction accuracy and the similarity
of the resulting surrogate network A with the true network A. We generate weighted Barabési-Albert

random graphs with N = 100 in the same way as described in the beginning of Appendix G. For
(s)

every trajectory z(%) (t) and every node i, we set the initial nodal state =, (0) randomly, as detailed

in the beginning of Appendix G.
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Figure S14: The distribution of the number of connected components in the surrogate
network. The frequency of the number of connected components of the surrogate matrix A. The
results capture the distribution of the number of connected components with respect to a range of ten
observation times ton,s and 100 Barabési-Albert random graphs with N = 100 nodes. The fraction of
connected surrogate networks A (i.e., with exactly one connected component) equals: (a) 34.6%, (b)
67.8%, (c) 71.3%, (d) 35.6%, (e) 92.9%, (f) 82.9%.

Figure S15 shows that the prediction accuracy for the trajectory z(%) (t), where s = S, generally
decreases as the number S of observed trajectories increases. There are variations across the different
dynamic models. The prediction error of the mutualistic population and Kuramoto model starts at
the largest value for S = 1 observed trajectories and decreases more rapidly than for the other models.
The prediction error for the SIS model shows a clear plateau for more trajectories, even with a slight
increase from S = 10 to S = 20, which might be due to numerical inaccuracies when solving the
adjusted LASSO (32) with many terms.

Figure S16 shows that the topology of the surrogate network A does converge to the true topology,
provided sufficiently many independent trajectories S. By comparing Figures S15 and S16, we ob-
serve that if more trajectories S are observed, then both the prediction accuracy and the topological
similarity of the true network A and the surrogate A increases.

In the sequel, we investigate the relation of the prediction error on the topological similarity more
closely, across any number of observed trajectories S = 1,...,20. Figure S17 shows the relation of the
prediction error € and the topological similarity of the networks A and A. (Figure S17 is based on the
same data points as Figures S15 and S16.) As expected, a larger similarity between the networks A and
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Figure S15: The prediction accuracy from observing multiple trajectories on the same
network. The average é®) of the prediction error 62(5) (t) = |a:§5) (t) — :i'z(s) (t)], with respect to all nodes
i and future times ¢ € [tobs, Tmax|, for trajectory s provided that S = s trajectories x(s)(t) have been
observed on the same network. The boxplots capture the variation with respect to 100 Barabéasi-Albert

random graphs with NV = 100 nodes.

A does result in a lower prediction error €, across all models. We stress that, while the area under the
curve AUC and the prediction error € are correlated, the crucial confounding variable is the number of
observed trajectories. The prediction error € in Figure S17 decreases rather gradually over the broad
AUC-range of the area under the curve, from no topological similarity at all (AUC = 0.5) to identical
networks (AUC = 1) and demonstrates, for most dynamical models, the remarkable insensitivity of
the underlying graph on the prediction. Intuitively, we had anticipated a stronger negative correlation
between the prediction error and the topological accuracy AUC of the underlying graph as in e.g. (b)
MP in Figure S17, but most dynamic models only show such negative correlation in an AUC-range

near to 1.

J Computational complexity of the prediction method

We aim to assess the runtime of Algorithm 1 on the network size N. We use the same parameter
setting as in Appendix G.2.

Figure S18 shows that the impact of the network size N on the runtime of the prediction method
is consistent across all models. Furthermore, the runtime of Algorithm 1 closely follows a fitted
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Figure S16: The similarity of the surrogate network and the true network from observing
multiple trajectories on the same network. The area under the curve AUC versus the number S
of observed trajectories z(%) (t) on the same network. The boxplots capture the variation with respect
to 100 Barabdsi-Albert random graphs with N = 100 nodes.

second-degree polynomial fiuntime(V) on a log-log scale

log (fruntime(IV)) = so + s11log(N) + so logZ(N)

with coeflicients sg, s1,s2. The fitted values for the leading coefficient are (LV) so = 2.23, (MP)
sg = 2.43, (MM) so = 2.4, (SIS) s2 = 2.15, (KUR) so = 3.01, (WC) so = 2.44. Thus, Figure S18
suggests that the computational complexity of Algorithm 1 is quasi-polynomial with respect to the
network size N. We emphasise that Algorithm 1 is very amenable for heavy parallellisation, because

the commands from lines 4-14 in Algorithm 1 can be run in parallel for each node 1.

K Analysing the predictability of low-dimensional dynamics on net-

works

We aim to analyse the predictability of the network dynamics (2), building upon the central observation
that the nodal state x(t) is low-dimensional. Our approach follows a variation of the Lyapunov
Exponent [26].

We assume that the nodal state z(t) is observed from the initial time ¢t = 0 until the observation

time t = t,ps. During the observation time interval ¢ € [0, ¢ops], we assume that the POD (2) is exact
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Figure S17: The prediction accuracy versus the topological similarity. The average prediction
error € versus the area under the curve AUC of the surrogate network A. The boxplots capture the
variation with respect to 100 Barabasi-Albert random graphs with N = 100 nodes and across observing

S =1,...,20 trajectories.

for some number m < N of agitation modes.

While we consider that the nodal state z(t) is an element of the subspace X = {y1, ..., ym } until
the observation time t.,s, the POD (2) might not be exact any more at times ¢ > tops. At t > tops,
additional agitation modes can emerge that were not present for ¢ < .

To analyse the predictability of the nodal state z(t), we focus on a perturbed nodal state!? #(¢). The
perturbed nodal state Z(t) is intended as a best-case prediction of the nodal state z(t). The prediction
Z(t) is obtained by fitting to the nodal state x(t) on the observation time interval ¢ € [0,%os]. We
consider that the fit is exact. Hence, not only the nodal state x(t) is an element of the subspace X,

but also the prediction Z(t) satisfies
Et) = &ty (33)
p=1

at all times t € [0, tohs], where the scalar functions ¢,(t) = ¢,(t) for all agitation modes p at times
t e [0, tobs]-

9With the notation #(t) for the perturbed nodal state, we stress that the perturbed nodal state Z(t) does not exactly
equal the nodal state predictions Z(t) based on Algorithm 1.
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Figure S18: The computational complexity versus the network size. The runtime of Algo-
rithm 1 (in seconds) versus the network size N on a loglog-scale. The blue curve is the measured
runtime and the red circles correspond to a fitted second-degree polynomial fryntime(N) in the log-log
domain. The results are averaged over 100 and 20 Barabasi-Albert random graphs for N < 400 and
N > 400 nodes, respectively.

We make two assumptions on the prediction Z(t). First, we assume that the POD (33) also holds
at future times ¢t > to,s. We do not assume ¢,(t) = ¢,(t) at future times ¢ > t,,s. The first assumption
is motivated as follows: If we observe the dynamics of the nodal state z(¢) only on the subspace X,
then it is hardly possible to make accurate predictions of the nodal state projections y”z(t) for any
vector y in the orthogonal complement X' of the subspace X.

Second, we assume that the derivatives dc,(t)/dt and dé,(t)/dt are the same for all p = 1,...,m,
provided that x(t) = Z(t). To be more precise, consider the definition of the functions ¢,(t) in (3),
which yields that

dcp(t) T dx(t)

e T (34)
= ygfdyn(‘/n(t))v

where the N x 1 function fayn(2(t)) = (fayn1(z(t)), ..., fayn.n(z(t)))T is given by the right-hand side
of the dynamical model (1), i.e.,

N
Fayni(@(®) = fi (:(8)) + Y aijg (wi(t), (1)) -
j=1
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Then, the second assumption translates to

dey(t)
dt

= Yy fayn(Z(t)) (35)

for all p = 1,...,m at every time ¢ > 0. We emphasise that the second assumption (35) is a best-
case scenario: The projection of the vector fayn(Z(t)) on the subspace X is exact for any prediction
Z(t) € X. Hence, if z(t) belongs to the subspace X’ at all future times ¢ > t,ps, then the prediction
Z(t) would be exact, Z(t) = x(t).

Finally, after introducing the two assumptions above, we assess the predictability of the dynamics

(1) by studying the deviation
o(t) = z(t) — z(t). (36)

The sensitivity of the deviation o(t) at future times ¢t > ¢,ps, with respect to small initial perturbations
o(tops) # 0, is quantified by the ratio

E()’(t) _ Ha(t)HQ

= Totton)ll2 37)

for some small initial condition o (tohs) With [[o(tobs)|l2 =~ 0.

Suppose that o(teps) ~ 0 and €,(t) > 1. Then, the small initial deviation o (t.s) is amplified from
the observation time ¢qps to time ¢, which indicates that the prediction Z(t) diverges from the nodal
state x(t). On the other hand, a ratio satisfying €,(¢) < 1 would indicate that the prediction Z(t)
converges to the nodal state x(t). Hence, the ratio €,(t) serves as a quantification of the predictability
of the dynamics (1).

Lemma 3 gives the evolution of the deviation o(t), provided that the deviation deviation o(t) is
small. Lemma 3 follows from describing the evolution of the prediction Z(¢) by linearising the dynamics

(1) around the trajectory of the nodal state z(t).

Lemma 3. Provided that the deviation o(t) is small, the evolution of the deviation o(t) obeys
do(t)
dt

where the N x N matriz J(z(t)) denotes the Jacobian of the function fom around the point x(t), the
N x N projection matriz Py onto the subspace X 1is

~PxJ(x(t))o(t) — Py fayn(z(t)). (38)

m
Px =y, (39)
p=1
and the N x N projection matriz Py1 onto the orthogonal complement X+ = span{ym+1, ..., yn} 15
N
Py = Z ypyg. (40)
p=m+1

Proof. From the definition (36), it follows that the deviation o(t) evolves as

do(t)  di(t) du(t)
.~ dt  dt -

(41)
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First, we express the evolution of the nodal state x(t), i.e., its derivative dx(t)/dt, in terms of the
agitation modes y,. The POD (2) is exact if the number of agitation modes satisfies m = N. Hence,

without loss of generality, the nodal state x(t) can be written as

N
t) = Zcp(t)ypa
p=1

and the derivative of the nodal state z(t) equals

N
p=1
With (34), we obtain from (42) that the derivative of the nodal state x(t) equals
Z fdyn ) yp'
p=1
Analogously, with (35), it follows that the prediction Z(¢) evolves as
di(t) & .
") S o fasnlE0)
p=1
Thus, (41) becomes
m N
) S W Faen B0) ~ U S 0) 15— D (5 Fasnla1)
dt - yp dyn yp dyn yp yp dyn yp
p=1 p—m+l
= upty (fayn(@(1) = fayn(@ Z YpYp Jayn (@ (t))- (43)
p=1 p=m+1

We consider that Z(t) ~ x(t) or, equivalently, that o(¢) ~ 0. Then, at any time ¢, linearising the
dynamics (1) around the point x(t) yields that

Jayn (Z(1)) & fayn (2(t) + J(x(t)) (2(t) — 2(2)) ,

where we denote the N x N Jacobian matrix at x(t) by J(z(t)), whose entries follow from (1) as

(ol = 2D 130, DO i,

Hence, the derivative of the deviation o(t) in (43) becomes

do(t) =0 a0+ 70) G0 = 2(0) ~ fanl Z ypy T Fagn(2(2))
p=1 p=m+1
—Zypyf J(x Z Yoy Jayn (2(1)),
p=m—+1

where the second equality follows from the definition of the deviation o(¢) in (36). The definition of
the matrices Py and Py in (39) and (40) completes the proof. O
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The first term in (38) captures the network dynamics (1) on the POD subspace X, linearised
around the trajectory of the nodal state z(t). The second term corresponds to the exact (i.e., not
linearised) changes of the nodal state z(t) that are orthogonal to the POD subspace X.

We study the predictability of the dynamics (1) by the ratio €,(¢) in (37), based on solving (38)
numerically. To obtain the initial condition o (t.s), we randomly generate the initial prediction state
Z(tops) from a small a perturbation of the nodal state x(tos). For every node i, the POD Z;(tops) is
set to Z;i(tobs) = &xi(tobs), where &; is drawn from a normal distribution with mean E{¢;} = 1 and
variance Var{¢;} = 107%. Thus, the mean and variance of the initial deviation o;(t.s) are given by
E{o;(tobs)} = 0 and Var{o;(tops)} = 1076, independently of the node i. The evolution of the deviation
o(t) is computed by (37). We choose the number of agitation modes m, to define the matrices Py and
Py, by the Matlab command rank of the nodal state matrix (z[1],...,z[n]). Hence, the nodal states
x(t) and Z(t) are virtually equal on the observation time interval ¢ € [0, topg)-

We randomly generate 100 initial states &;(tops), which results in 100 ratio €,(t). We denote the

average of the 100 ratios as €,(t) and define the logarithm as predictability parameter

A(t) = log (&(1)) -

The sign of the predictability parameter A(¢) indicates either one of two cases. If A(t) < 0, then
we consider the dynamics (1) to be predictable until time!! ¢, since small deviations o (ts) decrease
from the observation time s until the time ¢. Otherwise, if A(t) > 0, then we call the dynamics (1)
not predictable until time ¢.

The predictability parameter A(t) is closely related to the (maximum) Lyapunov exponent [26],
which is the inspiration for our approach. More specifically, suppose that the subspace X of the

dynamics z(t) equals RY. Then, the maximum Lyapunov exponent equals the maximum of

lim 1log <M)

too b lo(0)]]2

with respect to the initial deviation o(0). In contrast to the maximum Lyapunov exponent, the
predictability parameter A(¢) is not normalised by the time ¢ and is evaluated for a finite time ¢,
subject to dynamics in the subspace X.

We are interested if the predictability parameter A(¢) is meaningful in understanding the accuracy
of our prediction method based on Algorithm 1. In particular, we are curious about the dependence of
the prediction error €(t), defined in (30), on the predictability parameter A(t). For obtaining the error
€(t) of our prediction method, we consider the same parameter setting as detailed in the beginning
of Appendix G to generate nodal states z(¢) and predictions Z(¢) based on the surrogate network A
of Algorithm 1. However, we make one change in the parameters: To capture the variations of the
predictability with respect to the observation time t,p,s, we generate the time .5 as a uniform random
number in [0.05T yax, 0.5 T max] for each simulation run. Hence, the observation time ¢, is variable for

every run, but the maximum prediction time Ty,,x is constant.

"The predictability parameter A(t) depends not only on the dynamics (1) but also on the initial nodal state z(0), the
observation time tobs and the number agitation modes m. Hence, a more accurate, but cumbersome, formulation would
be “predictable until time ¢ given the initial nodal state z(0), the observation time tobs and the number agitation modes

m”.
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Figure S19: The prediction error versus the sign of the predictability parameter. The
prediction error €(Tinax) at the end of the prediction interval Ty,.x versus the maximum A,y of
the prediction parameter A(t) on the prediction interval ¢ € [tops, Tmax].- The boxplots capture the
variation with respect to 100 Barabasi-Albert random graphs with N = 100 nodes. For the LV and
the KUR models, we obtained A, > 0 for every run.

Figure S19 shows that the prediction accuracy can indeed be assessed the sign of the predictability
parameter A(t). We emphasise the predictions Z(¢) are the output of the specific Algorithm 1, whereas
the predictability parameter A(t) is agnostic to the specifics of the prediction algorithm. The parameter
A(t) only depends on the dynamics (1) and the prediction parameters tobs, Tmax-

Figure S20 shows that, conditioned on the realisations with Apax > 0, there is a high correlation
between the prediction error log(e(t)) and the parameter A(t) across time t. The realisations that
resulted in Apax < 0 were excluded, since the parameter A(t) rapidly converges to zero if Apax < 0,
which is in contrast to the increasing prediction error €(t), see Figure S10. Thus, given that Ay.x < 0,
we expect that the prediction error €(t) cannot be assessed by a parameter A(t) that is agnostic to

the specifics of Algorithm 1.
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Figure S20: The correlation of the prediction error and the predictability parameter. The

correlation of the logarithm of the prediction error log(e(t)) and the prediction parameter A(t) on the

time interval t € [tobs, Tmax]- Only realisations with Apyax > 0 are included. The boxplots capture the

variation with respect to 100 Barabési-Albert random graphs with N = 100 nodes.
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