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For a fixed number N of nodes, the number of links L in the line graph H (N,L) can only appear in consecutive
intervals, called a band of L. We prove that some consecutive integers can never represent the number of links L

in H (N,L), and they are called a bandgap of L. We give the exact expressions of bands and bandgaps of L. We
propose a model which can randomly generate simple graphs which are line graphs of other simple graphs. The
essence of our model is to merge step by step a pair of nodes in cliques, which we use to construct line graphs.
Obeying necessary rules to ensure that the resulting graphs are line graphs, two nodes to be merged are randomly
chosen at each step. If the cliques are all of the same size, the assortativity of the line graphs in each step are
close to 0, and the assortativity of the corresponding root graphs increases linearly from −1 to 0 with the steps
of the nodal merging process. If we dope the constructing elements of the line graphs—the cliques of the same
size—with a relatively smaller number of cliques of different size, the characteristics of the assortativity of the
line graphs is completely altered. We also generate line graphs with the cliques whose sizes follow a binomial
distribution. The corresponding root graphs, with binomial degree distributions, zero assortativity, and semicircle
eigenvalue distributions, are equivalent to Erdős-Rényi random graphs.
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I. INTRODUCTION

A simple graph [1] with N nodes and L links is denoted by
G(N,L). The line graph H of a simple graph G is a graph in
which every node corresponds to a link in G and two nodes
in H are adjacent if and only if their corresponding links in
G share a node. The graph G is called the root graph or the
original graph of H . The number NH of nodes in H equals the
number L of links in G. Whitney’s Theorem [2,3] states that, if
connected graphs G1 and G2 have isomorphic line graphs, G1

and G2 themselves must be isomorphic unless one is K3 and
the other is K1,3. Cvetković et al. [4] surveyed the literature
on line graphs.

Line graphs can model many real-world networks. For
instance, a network of tennis players is formed when we
connect two players who have played in the same game and
a network of tennis games is a graph where two games are
linked if the same competitors have played in both of them.
The network of tennis games is the line graph of the network
of tennis players [5]. In metabolisms, the chemical reaction
network in which the nodes are the reactions and two nodes
are linked if they have the same chemical compound, is the
line graph of the chemical compound network in which the
nodes are the compounds and two nodes are linked if they are
involved in the same chemical reaction [6,7]. Line graphs can
also model social networks as they are highly clustered and
assortative [5,6,8,9]. Moreover, line graphs have been used in
detecting and modeling the overlapping community structure
in social networks [10–12].

Despite the significance of line graphs in the field of graph
theory and complex networks, a model to generate random
line graphs is still lacking. In this paper, we propose a model
to randomly generate line graphs with a prescribed number of
nodes and number of links. Before introducing the model, we
discuss some preliminaries and various properties of random
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line graphs. Especially, we show that, given the fixed number
of nodes, the number L of links in line graphs possesses
forbidden gaps in the set N of integers. Without generating
the root graphs first, our model is capable of generating line
graphs with specific link density and assortativity. Our model
also enables us to generate a group of root graphs whose
assortativity coefficient strictly follows a linear law. Our model
constructs line graphs by merging step by step a pair of nodes
in a group of separate cliques. The nodal merging at each step
must be implemented following certain rules which ensure that
the constructed graphs are line graphs. Two nodes, which are
merged at each step, are randomly chosen. Given the cliques of
the same size, the assortativity [13,14] of the line graphs in each
step is close to 0, and the assortativity of the corresponding
root graphs has a linear relationship with the steps of the
merging process. If a relatively smaller number of cliques of
different size are added to the majority cliques of the same
size, the characteristics of the assortativity of the line graphs
become largely different. The line graphs are also constructed
with the cliques whose sizes follow a binomial distribution.
The corresponding root graphs appear equivalent to Erdős-
Rényi random graphs with binomial degree distributions, zero
assortativity, and semicircle eigenvalue distributions.

The remainder of the paper is organized as follows.
Theoretical preliminaries for constructions line graphs are
given in Sec. II. The random line graph model is presented
in Sec. III. Section IV provides insights of the topological
properties of the line graphs during the merging process. We
conclude in Sec. V.

II. THEORETICAL PRELIMINARIES

A. Formation of line graphs

All the line graphs are simple graphs, but not all simple
graphs are line graphs. Krausz’s Theorem gives the criterion
to determine whether a simple graph is a line graph. According
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FIG. 1. (Color online) (a) The example of constructing a line
graph by merging the half nodes of cliques, and (b) the example of
constructing a simple graph by the configuration model. The circles
and disks denote the half nodes and nodes respectively. The lines
with slash ending and the normal lines denote the half links and links,
respectively.

to Krausz’s Theorem [15–17], line graphs can be partitioned
into cliques which may have nodes in common.

Theorem 1 (Krausz). A graph is a line graph if and only if
its sets of links can be partitioned into nontrivial cliques such
that (i) two cliques have at most one node in common and
(ii) each belongs to at most two cliques.

Our method to construct line graphs consists of combining
separate cliques, obeying certain rules to ensure that the
resulting graphs satisfy Krausz’s Theorem. Before explaining
the details of our method, we introduce the concept of “half
node.”

Definition 2. A half node is the comprising part of a node
and two merged half nodes form a node. A half node is the
map of a half link (stub) in the configuration model [18,19].

In order to construct a graph of size N where node j has
degree dj with the configuration model [18,19], we need N

separate nodes where dj half links (also called stubs by some
authors) are incident to node j . Two combined half links form
a link. Every half link has to be combined with another half
link. Inspired by the configuration model for the root graphs,
we develop a method to construct the line graphs. We need
separate cliques consisting of fully connected half nodes, as
shown in Fig. 1(a). A half node is the map of a half link in the
configuration model. Two merged half nodes form a node in
the line graph. Like a node, a half node is an abstract concept
without any quantity. When two half nodes merge into a new
node, the links incident to either of the two half nodes are

attached to the new node, and the link (if any) between the two
half nodes is deleted, as shown in Fig. 1(a).

To construct a line graph, every half node has to be merged
with another half node. We randomly choose and merge a pair
of half nodes, under the constraints that (1) the two half nodes
belong to different cliques and (2) the cliques, to which the two
half nodes belong, have no nodes in common. Once merged,
two half nodes form a node of the line graph. The construction
continues until all half nodes are merged. The rules assure that
the graphs constructed by merging the half nodes of cliques
satisfy the criteria in Theorem 1 and thus are line graphs.

The “elements” for construction of line graphs, which are
the cliques of half nodes, can be regarded as the atoms, hence
the formation of line graphs is analogous to the formation
of a molecule. The merging of two half nodes is analogous to
the formation of the chemical bond. Interestingly, we never see
more than one chemical bond between two atoms in a molecule
or a chemical bond formed with a single atom, which conforms
to our rules of forming line graphs. Figure 1(a) depicts a line
graph constructed from a clique of K8, a clique of K6, a clique
of K5, two cliques of K4, two cliques of K3, four cliques of
K2, and three cliques of K1. The root graph of the line graph
(a) is shown in Fig. 1(b).

B. The bandgaps of the number of links L in line graph H(N,L)

In this section, we investigate which integers can occur as
the number of links L in the line graph H (N,L).

The number of links L in the line graph H (N,L) with N

nodes satisfies L � Lmax = (N2 ), and L = (N2 ) only if the line
graph H is a complete graph KN . The principal clique in a line
graph H (N,L) is defined by the largest clique in H .

Lemma 3. Suppose that the principal clique KN−k+1, where
2 � k � �N+1

2 �, in the line graph H (N,L) consists of nodes
nk,nk+1, . . . ,nN , as shown in Fig. 2(a). The minimum number

FIG. 2. (Color online) The configuration of H (N,L) for (a) Wk;
(b) Wk−1; (c) W2; (d) W1. The labels of the nodes locate by the side
of them.
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of links in H (N,L) is L = (N − k + 1
2 ), and the maximum

number of links in H (N,L) is L = (N − k + 1
2 ) + (k2) + k − 1.

Proof. The number of links in the principal clique KN−k+1

is (N − k + 1
2 ). When n1,n2, . . . ,nk−1 are isolated nodes, the

number of links in H is minimal and equals L = (N − k + 1
2 ).

According to Theorem 1, each node of n1,n2, . . . ,nk−1 belongs
to at most two cliques, each of which contains a node which
also belongs to the principal clique. For instance, node n1

in Fig. 2(a) belongs to a clique K2, containing node nk+1,
and a clique Kk , containing node nk . Hence, each node of
n1,n2, . . . ,nk−1 can have at most two links connecting itself
and two nodes of the principal clique, contributing at most
in total 2k − 2 links to the line graph. There are at most
(k − 1

2 ) links to fully connect the nodes n1,n2, . . . ,nk−1, thus,

the maximum number of links in H (N,L) is L = (N − k + 1
2 ) +

(k − 1
2 ) + 2k − 2 = (N − k + 1

2 ) + (k2) + k − 1.

Theorem 4. Let V1 = {(N2 )}. For 2 � k � �N+1
2 �, let

Vk = {(N − k + 1
2 ),(N − k + 1

2 ) + 1, . . . ,(N − k + 1
2 ) + (k2) + k −

1}. Then L is the number of links in the line graph H (N,L), if
and only if L is a integer and

L ∈
⎛
⎝� N+1

2 �⋃
k=1

Vk

⎞
⎠ ∪

{
0,1, . . . ,

(⌊
N+1

2

⌋
2

)
+

⌊
N + 1

2

⌋
− 1

}
.

Proof. See Appendix A. �
Corollary 5. If �−3+√

17+8N
2 � � k � �N+1

2 �, there is no gap
between Vk and Vk−1.

Proof. When the largest element of Vk plus 1 is not smaller
than the smallest element of Vk−1, there is no gap between Vk

and Vk−1.(
N − k + 1

2

)
+

(
k

2

)
+ k − 1 + 1 �

(
N − (k − 1) + 1

2

)
,

which is equivalent to

k2 + 3k − (2N + 2) � 0,

from which Corollary 5 follows. �

The width �Vk of the kth band Vk of L for the line graph
H (N,L), defined by the number of integers in the band,
equals

�Vk =
(

N − k + 1

2

)
+

(
k

2

)
+ k − 1 −

(
N − k + 1

2

)
+ 1

=
(

k

2

)
+ k, (1)

where 2 � k � �N+1
2 �. The kth bandgap �k of L for the line

graph H (N,L) is

�k =
{
�,� + 1,� + 2, · · · ,

(
N − k + 1

2

)
− 1

}
,

where � = (N − k

2 ) + (k + 1
2 ) + k + 1 and 1 � k � �N+1

2 � − 1.
The width ��k of the kth bandgap of L is defined by the
number of integers in the bandgap,

��k =
(

N − k + 1

2

)
− 1 −

((
N − k

2

)
+

(
k + 1

2

)
+ k

)

= N − k2 + 5k

2
− 1. (2)

When ��k = N − k2+5k
2 − 1 < 1, or equivalently when

1 � k � �(
√

9 + 8N − 5)/2�, the kth bandgap of L vanishes.
Figure 3 shows that there are no bandgaps when N � 4. We
also observe that, for those N making (

√
9 + 8N − 5)/2 an

integer, the width of the bandgap ��(
√

9+8N−5)/2� is 1. As shown
in Fig. 3, when N = 5,9,14, we have (

√
9 + 8N − 5)/2 =

1,2,3, and the width of the last bandgap is 1. The line graphs,
whose number L of links falls into the band gaps, do not exist.
If we define the energy of a line graph by the number of links
in that line graph, the bands and the bandgaps of L can be
regarded as energy bands and energy bandgaps of the line
graph.

III. A RANDOM LINE GRAPH MODEL

Based on the theory introduced in Sec. II, we propose a
model which generates random line graphs. In the description
of the model, we do not distinguish half nodes and nodes. The
model starts with separate cliques and merges two randomly

20

15

10

5

1701601501401301201101009080706050403020100

FIG. 3. (Color online) The bandgaps of L for N = 4,5, . . . ,14. The solid dots denote the forbidden integers, while the hollow circles denote
the possible integers as the number of links L.
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Algorithm 1: H ← RandomLineGraph(s)

1. Construct a graph H consisting of the separate
cliques whose sizes are the integers in the vector
s = [s1 s2 · · · sC]T , and all the integers are
larger than 1.

2. Nm ← the set of nodes in H

3. Repeat
4. Randomly choose two nodes j1,j2 in Nm, which

satisfy lj1,j2 > 2
5. Merge j1 and j2

6. Nm ← Nm\ {j1,j2}
7. N ← N − 1
8. Until no nodes j1,j2 in Nm satisfying lj1,j2 > 2

selected nodes at each step. The merging of two nodes j1

and j2 in H (N,L) is defined by deleting node j2 and the link
connecting nodes j1 and j2, and attaching the links, which
are only incident to j2, to j1. The model is presented in
Algorithm 1. Theorem 6 guarantees that the graphs constructed
by Algorithm 1 are line graphs. In Theorem 6, lj1,j2 denotes
the length of the shortest path between node j1 and node j2.

Theorem 6. The line graph H consisting of separate cliques
remains a line graph after the merging of any pair of nodes j1

and j2 satisfying lj1,j2 > 2.
Proof. The randomly chosen nodes j1 and j2 do not belong

to the same clique, otherwise lj1,j2 = 1, contradicting with the
fact lj1,j2 > 2. The two cliques, to which j1 and j2 belong,
respectively, do not share a node, otherwise there would be a
hop j1 ∼ j0 ∼ j2, where j0 is the node shared by them, and
thus lj1,j2 = 2, which contradicts with lj1,j2 > 2. Therefore,
the nodes j1 and j2 are from two different cliques which
have no nodes in common. After merging of nodes j1 and
j2, the graph H satisfies Theorem 1, hence, it remains a line
graph. �

A sequence of integers s = [ s1 s2 · · · sC ]T are designated
as the sizes of the cliques (line 1). All the integers are larger
than one, sj � 2,j = 1,2, . . . ,C. These numbers are actually
the degrees of the nodes in the root graph, that correspond
to the cliques in the line graph. A graph H (N,L) consisting
of the separate cliques whose sizes are the given sequence of
numbers is constructed (line 1). The number of nodes N equals∑C

j=1 sj , and the number of links L equals
∑C

j=1(sj

2 ). Initially
each of the nodes in H belongs to only one clique, and hence,
are expansive nodes. The set of all expansive nodes in H is
denoted by Nm, which before the first merging is the set of
nodes in H (line 2). Two nodes j1 and j2 are uniformly [20]
chosen inNm, between which the shortest path length lj1,j2 > 2
(line 4). Nodes j1 and j2 are merged (line 5), and removed from
Nm (line 6), and the number of nodes N in the line graph H

decreases by 1 (line 7). Lines 4–7 are repeated until there
are no nodes j1,j2 in Nm satisfying lj1,j2 > 2 (lines 3 and 8).
Theorem 6 ensures that H remains a line graph after each
execution of lines 4–7.

Theorem 7. The maximal number η of mergings that are
performed in Algorithm 1 satisfies η � min(� 1

2

∑C
j=1 sj�,(C2)).

Proof. In a line graph, each node belongs to at most
two cliques, therefore, the maximal number η � 1

2

∑C
j=1 sj

if
∑C

j=1 sj is an even number, and the maximal number

η � 1
2

∑C
j=1 sj − 1

2 if
∑C

j=1 sj is an odd number. Hence,

η � � 1
2

∑C
j=1 sj�. In a line graph, each pair of cliques can have

at most one node in common, therefore, the maximal number of
mergings is also bounded by (C2). Hence, the maximal number

of mergings η � min(� 1
2

∑C
j=1 sj�,(C2)). �

IV. THE ASSORTATIVITY OF LINE GRAPH H AND
CORRESPONDING ROOT GRAPH DURING

THE MERGING PROCESS

In the susceptible-infectious-susceptible (SIS) model
[21,22] for network epidemics, the network is infected in
the steady state if the effective infection rate τ is larger than
the epidemic threshold τc, and the network is virus free in
the steady state when τ < τc. By the N-intertwined mean-
field approximation (NIMFA) [21], the exact SIS epidemic
threshold τc is lower bounded,

τc � τ (1)
c = 1

λ1 (A)
,

where λ1(A) is the largest eigenvalue of the adjacency
matrix A of a network and is often called the spectral
radius of the network. When the lower bound τ (1)

c for the
epidemic threshold is increased in a network, we are always
sure that the real epidemic threshold (which is in most cases
difficult to compute) is on the safe side. The largest eigenvalue
λ1(A) also plays an important role in the phase-transition
threshold of a network of coupled oscillators [22,23].

The largest eigenvalue λ1(A) is closely related to the
assortativity coefficient ρD: λ1(A) increases with ρD . The
minimum and maximum assortativity of a graph is computed
in [24]. Several lower bounds for λ1(A) are given in [25].
The assortativity coefficient ρD can be increased or decreased
by the degree-preserving rewiring [25]. However, ρD(t) as
a function of the step t of rewiring is unknown. Apart
from altering the epidemic threshold by changing the graph’s
assortativity, link and node removals are another way to modify
the largest eigenvalue of networks [22]. In this section, we
show that the assortativity coefficient ρD(G,t) of the root
graph G of the line graph at the step t is a linear function
of t in the nodal merging process of the random line graph
model described in Algorithm 1.

A. Random line graphs with cliques of the same size s j = S for
j = 1,2, . . . ,C

We construct line graphs with the random line graph model
in Algorithm 1. We take 50 cliques of the same size S, and
randomly choose and merge two nodes with shortest path
larger than 2 until there are no such pair of nodes. After
each step t of merging two nodes, the assortativity coefficient
ρD of the line graph H and the corresponding root graph G

are computed. The plots of ρD(H,t) and ρD(G,t) with S =
2,3,4,5,6,7 are shown, respectively, in Fig. 4. The numerical
results show that the assortativity of the line graph, ρD(H,t),
is close to 0 for S = 3,4,5,6,7, and the assortativity of the line

012816-4



RANDOM LINE GRAPHS AND A LINEAR LAW FOR . . . PHYSICAL REVIEW E 87, 012816 (2013)

-1.0

-0.5

0.0

0.5

1.0

ρ

100806040200
-1.0

-0.5

0.0

0.5

1.0

ρ

120100806040200

-1.0

-0.5

0.0

0.5

1.0

ρ

150100500

-1.0

-0.5

0.0

0.5

1.0

ρ

12080400

-1.0

-0.5

0.0

0.5

1.0

ρ

6040200
-1.0

-0.5

0.0

0.5

1.0

ρ

50403020100

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

FIG. 4. (Color online) Using the line graph model, we construct line graphs with 50 cliques of the same size S. The assortativity coefficient
of the line graphs and the corresponding root graphs are drawn as functions of the steps t of the nodal merging process. The root graphs of the
line graphs are computed by ILIGRA, the inverse line graph construction algorithm [26]. One can also use other algorithms [27–29] to compute
the root graphs.

graph, ρD(G,t), increases linear with t for S = 2,4,5,6,7. We
give the analytical analysis below.

1. Assortativity of line graphs

In the random line graph model, there are initially C

separate cliques of size S. Hence, H (N,L) has N = CS nodes
with degree dj = S − 1 for j = 1,2, . . . ,N . The number of

links L = C(S2) is constant in the process of consecutive
merging of two nodes. The assortativity coefficient ρD of a

graph is expressed [see Eq. (7) in [25]] as

ρD = 1 −
∑

i∼j (di − dj )2∑N
i=1 d3

i − 1
2L

( ∑N
i=1 d2

i

)2 , (3)

where
∑

i∼j denotes the sum over all adjacent pairs of nodes.
For simplicity, we denote the numerator by A = ∑

i∼j (di −
dj )2 and the denominator by B = ∑N

i=1 d3
i − 1

2L
(
∑N

i=1 d2
i )2,

hence ρD = 1 − A
B

.
When t = 1, we have 1 node with degree 2(S − 1) and

CS − 2 nodes with degree S − 1. Furthermore, when t = 2,
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we have 2 nodes with degree 2(S − 1) and CS − 4 with degree
S − 1. After t steps of merging, there are t nodes with degree
2(S − 1) and CS − 2t nodes with degree S − 1, and N =
CS − t . The denominator B in (3) for ρD(H,t) is

B =
N∑

i=1

d3
i − 1

2L

(
N∑

i=1

d2
i

)2

= 8t(S − 1)3 + (CS − 2t)(S − 1)3

− 1

CS(S − 1)
(4t(S − 1)2 + (CS − 2t)(S − 1)2)2

= (S − 1)3 2t

CS
(CS − 2t) . (4)

For the numerator A in (3), we consider the following cases:
(1) When t � C

2 , each of the t nodes with degree 2(S − 1),
is adjacent with on average 2(S − 1) nodes with degree S −
1. There is no degree difference among t nodes with degree
2(S − 1), and no degree difference among 2(S − 1) nodes with
degree S − 1. Hence,

A =
∑
i∼j

(di − dj )2 ≈ 2t (S − 1)3 . (5)

Substituting (4) and (5) into (3) yields

ρD (H,t) ≈ 1 − 2t (S − 1)3

(S−1)32t

CS
(CS − 2t)

=
2t
CS

2t
CS

− 1
.

Since t � C
2 , the inequality 2t

CS
� 1

S
holds. When S is large,

ρD(H,t) tends to 0.
(2) When t ≈ C, each of the t nodes with degree 2(S − 1), is

adjacent with on average 2(S − 2) nodes with degree (S − 1).
We have

A =
∑
i∼j

(di − dj )2 ≈ 2t (S − 2) (S − 1)2 .

Hence,

ρD (H,t) ≈ 1 − (S − 2)

(S − 1)
(
1 − 2t

CS

) .

The condition t ≈ C leads to 2t
CS

≈ 2
S

. The assortativity
ρD(H,t) is close to 0 for large S.

(3) When t ≈ N
2 = CS

2 , most of nodes in H have degree
2(S − 1), therefore,

∑
i∼j (di − dj )2 is close to 0. Since t ≈

CS
2 , the denominator is also close to 0, hence ρD(H,t) is close

to 0.
Results obtained in cases 1, 2, and 3 correspond to the

simulation results for ρD(H,t) in Fig. 4. A node with degree
2(S − 1) is adjacent with on average 2(S − 1) nodes of degree
S − 1 when t � C

2 , and with on average 2(S − 2) nodes of
degree S − 1 when t ≈ C. Hence, we deduce that a node with
degree 2(S − 1) is adjacent with on average 2(S − 2C

t
) nodes

of degree S − 1 after t steps of mergings. This provides another
method to estimate the numerator in (3):

A =
∑
i∼j

(di − dj )2 ≈ t · 2

(
S − 2t

C

)
(2(S − 1) − (S − 1))2

= 2t

C
(CS − 2t)(S − 1)3. (6)

Hence, the assortativity of the line graph H is approxi-
mated by

ρD (H,t) ≈ 1 −
2t
C

(CS − 2t) (S − 1)2

(S−1)32t

CS
(CS − 2t)

= 1

S
.

This approximate result also agrees well with the simulations
in Fig. 4: When S increases, ρD becomes closer to 0.

If the selection procedure in line 4 of Algorithm 1 is not
uniformly at random, the expression (4) of denominator B
will be still valid, since the cliques are all of the same size S.
However, the numerator A could be very different depending
on how two nodes are selected at each step. The assortativity
of the line graphs may not be close to 0. In case 1, t � C

2 ,
and case 2, t ≈ C, the line graphs could be very assortative
or disassortative. In case 3, t ≈ N

2 = CS
2 , it is still true that

most of the nodes in H have been merged, and most nodes
have degree 2(S − 1). Hence, we have the numerator A =∑

i∼j (di − dj )2 ≈ 0 and the assortativity coefficient ρD ≈ 0.

2. Assortativity of root graphs

When t = 0, H consists of C separate cliques with S nodes,
and the corresponding root graph G(NG,LG) consists of C

separate complete bipartite graph K1,S , which are star graphs.
Hence, ρD(G,t) = −1 [see Eq.(9) in [25]]. Each star graph
K1,S has 1 node with degree S, and S nodes with degrees 1.
Hence, NG = C(S + 1) and LG = CS, and there are in total
C nodes with degrees S, and CS nodes with degree 1. The
root graph in the step t consists of interconnected star graphs
(Fig. 5), whose structure models the power law or scale-free
structure of general complex networks well.

Theorem 8. In the merging step t in the Algorithm 1, the
assortativity coefficient of the root graph G is a linear function

FIG. 5. (Color online) (a) The merging of two randomly selected
nodes of the cliques in the line graph. (b) The corresponding root
graphs before and after the nodal merging.
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of t ,

ρD (G,t) = 2

CS
t − 1, (7)

where C are the number of cliques each with S nodes.
Proof. The merging of two nodes in the line graph H ,

corresponds to the following operations in the root graph G

(as shown in the Fig. 5): (1) choose two links l1 and l2 from
two different complete bipartite graphs which do not share
a link; (2) delete link l1, and delete the node with degree 1
which is incident to l1; (3) delete the node with degree 1 which
is incident to l2; (4) let l2 be incident to the node with degree
S which was incident to l1. After these operations, the two
nodes with degree S from two different complete bipartite
graphs, are connected with a link. The degree of the remaining
C(S + 1) − 2 nodes keep unchanged.

After t steps of merging in the line graph, we have that the
number of nodes in the root graph NG = C(S + 1) − 2t , and
the number of links LG = CS − t . There are C nodes with
degree S and CS − 2t nodes with degree 1 in the root graph
G. The denominator B in (3) equals

B = CS3 + (CS − 2t) − 1

2(CS − t)
(CS2 + CS − 2t)2

= CS(S − 1)2(CS − 2t)

2(CS − t)
. (8)

There is no degree difference among the C nodes with degree
S. Each of the (CS − 2t) nodes with degree 1, is adjacent with
a node with degree S, therefore,

A =
∑
i∼j

(di − dj )2 = (CS − 2t) (S − 1)2 . (9)

Substituting (8) and (9) into (3) proves Theorem 8. �
This analytic result explains the linear increase of ρD(G,t)

with t , as shown in Fig. 4, where the root graphs of
the line graphs are computed by ILIGRA, the inverse line
graph construction algorithm [26], although other algorithms
[27–29] can also be used. Before the first merging, t = 0,
ρD(G,t) = −1. When t = CS

2 , the root graph G is a regular
graph with degree S, and ρD(G,t) = 0.

The only exception from the linear law occurs when S =
3, of which the assortativity coefficients of the line graphs
and corresponding root graphs in the nodal merging process
are shown in Fig. 4(b). The line graphs are generated by the
Algorithm 1. The corresponding root graphs of the line graphs
are computed by ILIGRA. The root graph of K3 can be K1,3 or
K3 itself. The nonlinearity in Fig. 4(b) is originated from the
fact that ILIGRA picks randomly from K1,3 and K3 as the root
graph of line graph K3. If we modify ILIGRA and let it always
choose K1,3 as the root graph of line graph K3, the linear law
(7) would be fulfilled in Fig. 4(b), just like the cases when S 
=
3. Before the line graph becomes connected in the merging
process, there are always some separate cliques K3 in the line
graph. These separate cliques K3 are translated into K1,3 or
K3 randomly by ILIGRA, when the corresponding root graph is
computed. Hence, the root graphs do not satisfy the linear law,
as shown in Fig. 4(b). However, after the line graph becomes
connected in the nodal merging process, there are no separate
cliques K3 in the line graph, hence, ρD(G,t) increases exactly
linearly with t = 58,59, . . . ,75, as depicted in Fig. 4(b).

The linear law offers a possibility to construct graphs
with a prescribed negative assortativity ρD by tuning different
parameters. For an arbitrary small ε > 0, it is always possible
to construct graphs with the assortativity in the interval
(−ε + ρD,ε + ρD]. Indeed, for an arbitrary small enough
ε, it is possible to take large enough C or S (one could
be fixed), such that εCS > 1. For such ε,C and S, taking
t = � ε

2CS + (1 + ρD)CS
2 � boils down to

−ε

2
CS + (1 + ρD)

CS

2
< t � ε

2
CS + (1 + ρD)

CS

2
, (10)

as the difference of the right-hand and the left-hand sides in
(10) is εCS. Relation (10) is equivalent to −ε + ρD < −1 +
2t
CS

� ε + ρD , hence we have a graph with the assortativity in
the interval (−ε + ρD,ε + ρD]. Moreover, it is possible to find
many graphs with a prescribed assortativity ρD: (i) by fixing
the size of the clique C in one case; (ii) by fixing the number of
clique S in another; or (iii) by tuning both C and S. In general,
by tuning the slope 2

CS
, the desired negative assortativity ρD

can be obtained.

B. Heterogeneous random line graphs with cliques
of different sizes

The characteristics of assortativity of the line graphs in
Sec. IV A1 and the linear law of the assortativity presented in
Theorem 8 are, however, sensitive to rather small topological
changes as we exemplify in this section.

1. Random line graphs with cliques of two different sizes

We construct line graphs with cliques of two different sizes.
The electrical properties of semiconductor materials can be
manipulated by the addition of impurities, known as doping
[30]. Inspired by doping in the semiconductor industry, we
investigate the assortativity change of the line graphs after the
introducing of cliques of different size. Among all the cliques
we use to construct line graphs, the majority of them are of size
Sm, and the rest are of size Sd , called doping cliques. As shown
in Fig. 6(a), for the line graph H constructed with 40 cliques
of size 4 and 10 cliques of size 6, ρD(H,t) is very high when
t is small, and ρD(H,t) ends at value close to 0.5 when the
merging process finishes. During the whole merging process,
ρD(H,t) is positive, and never close to zero. In Fig. 6(b), the
line graph H is constructed with 60 cliques of size 4 and 20
cliques of size 5. The assortativity coefficient of the line graph
ρD(H,t) first decreases rapidly from almost 1 to almost 0,
and after remains close to 0 for a long range of t , ρD(H,t)
starts to increase quickly and ends at value close to 0.5. The
assortativity of the line graph has been raised by adding a
relatively smaller number of doping cliques to the line graph.

2. Random line graphs with cliques of binomial distributed size

In this section, we construct line graphs with the cliques
of binomial size S. If the size of clique S follows a
binomial distribution S ∼ b(N,p), the probability Pr[S =
k] = ∑N

k=0(Nk )pk(1 − p)N−k . In Fig. 7(a), the line graph H

is constructed with 30 cliques where S ∼ b(20,0.3) and∑C
j=1 sj = 176. After 88 steps of merging, H becomes a line

graph of 88 nodes and 490 links, with the corresponding root
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FIG. 6. (Color online) (a) The line graph H with 40 cliques of size 4 and 10 cliques of size 6, and (b) the line graph H with 60 cliques of
size 4 and 20 cliques of size 5 have been constructed with Algorithm 1. The assortativity coefficient ρD of the line graphs and the corresponding
root graphs in each merging step t is shown in this figure.

graph with 30 nodes and 88 links. In Fig. 7(b), the line graph
H constructed with 50 cliques whose size follows a binomial
distribution S ∼ b(20,0.4) and

∑C
j=1 sj = 327. The line graph

H has 189 nodes and 1381 links, after 188 steps of merging,
and the corresponding root graph G has 51 nodes and 189
links. For the 50 cliques with size S ∼ b(20,0.4), the merging

process has been repeated for 1000 times, and 1000 line graphs
and their root graphs were obtained. The adjacency eigenvalues
of the root graphs appeared to follow a semicircle distribution,
as shown in Fig. 7(c).

Both Figs. 7(a) and 7(b) illustrate that the assortativity of the
line graph ρD(H,t) at first drops from almost 1 to a certain level
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FIG. 7. (Color online) Using Algorithm 1, we construct (a) the line graph H with 30 cliques, the size of which follows a binomial distribution
S Bino(20,0.3), and (b) the line graph H with 50 cliques, the size of which follows a binomial distribution S Bino(20,0.4). The assortativity
coefficient ρD of the line graphs and the corresponding root graphs in each merging step t has been computed. (c) For the 50 cliques in (b), we
repeat the merging process for 1000 times, and computed the probability density function of adjacency eigenvalues of the root graphs.
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above 0, then it starts to increase and ends at value close to 0.5.
In both numerical experiments, the assortativity coefficient of
the root graph ρD(G,t) increases steadily to a value close to
0. The adjacency eigenvalues of Erdős-Rényi random graphs
follow semicircle distributions [15]. The spectrum of a graph
is the unique fingerprint of that graph [31]. The root graphs
of the line graphs after the merging process have binomial
degree distributions, and their adjacency eigenvalues follow
semicircle distributions. Hence, the root graphs are believed
to be equivalent to the Erdős-Rényi random graphs.

V. CONCLUSION

Inspired by the configuration model [18,19] and Krausz’s
Theorem [16,17], we propose a model which can randomly
generate simple graphs which are line graphs of other simple
graphs. We show that consecutive integers can occur as the
number of links L in the line graph H (N,L). We also prove
that there are multiple bands of consecutive integers, which can
never appear as the number of links L in H (N,L). The exact
expressions of bands and bandgaps of L have been derived.

Our model constructs line graphs by merging step by step
a pair of nodes of the cliques, which we use to construct line
graphs. Obeying necessary rules to ensure that the resulting
graphs are line graphs, two nodes to be merged are randomly
chosen at each step. If the cliques are all of the same size,
the assortativity of the line graphs of each step are close
to 0, and the assortativity of the corresponding root graphs
increases linearly from −1 to 0 with the steps of merging
nodes. With the linear function ρD of the step t in Theorem 8,
a graph with a prescribed negative assortativity coefficient can
be constructed. The largest eigenvalue λ1(A) of the adjacency
matrix A of a network is the only factor of the lower bound
τ (1)
c of the network’s epidemic threshold τc, τ (1)

c = 1
λ1(A) � τc.

The largest eigenvalue λ1(A) can be adjusted by tuning the
assortativity coefficient ρD . The linear law for the assortativity
provides a new method to tune the assortativity besides
the method of degree-preserving rewiring. If we “dope” the
constructing elements of the line graphs—the cliques of the
same size—with a relatively smaller number of cliques of
different size, the characteristics of the assortativity of the line
graphs is completely altered. We also generate line graphs with
the cliques whose sizes follow a binomial distribution. The
corresponding root graphs, with binomial degree distributions,
zero assortativity and semicircle eigenvalue distributions, are
equivalent to Erdős-Rényi random graphs.
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APPENDIX A: PROOF OF THEOREM 4

The only element (N2 ) in V1 is the number of links in the
line graph H (N,L) when the line graph H is a complete graph
KN . Next, we prove that L is the number of links in H (N,L)

if L is an integer and L ∈ ⋃� N+1
2 �

k=2 Vk . When H (N,L) contains

the principal clique KN−k+1 and the clique Kk , sharing node
k, as shown in Fig. 2(a), the number of links L can take
the consecutive numbers in {(N − k + 1

2 ) + (k2), . . . ,(
N − k + 1

2 ) +
(k2) + (k − 1)}, since each of the other k − 1 nodes in Kk can
be connected by a link to a node in KN−k+1. Similarly, when
H (N,L) is constructed by two cliques KN−k+1 and Kk−1 and
an isolated node, the number of links L can take the consecutive
numbers in {(N − k + 1

2 ) + (k − 1
2 ), . . . ,(N − k + 1

2 ) + (k − 1
2 ) + (k −

2)}, as shown in Fig. 2(b). In general, if H (N,L) is constructed
by two cliques KN−k+1 and Kj (2 � j � k), which have node
k in common, and k − j isolated nodes, all the integers in the
set Wj = {(N − k + 1

2 ) + (j2), . . . ,(N − k + 1
2 ) + (j2) + (j − 1)} can

occur as the number of links L in the line graph H (N,L). The
case j = 2 is shown in Fig. 2(c), while in Fig. 2(d), there is
only a clique of KN−k+1 and k − 1 isolated nodes in H (N,L),
the number of links can be only L = (N − k + 1

2 ). We define

W1 = {(N − k + 1
2 )}. For 3 � j � k, the smallest element of Wj ,

(N − k + 1
2 ) + (j2), equals the largest element of Wj−1 plus 1,

(N − k + 1
2 ) + (j − 1

2 ) + (j − 2) + 1,(
N − k + 1

2

)
+

(
j − 1

2

)
+ (j − 2) + 1

=
(

N − k + 1

2

)
+

(
j

2

)
.

The smallest element of W2 equals the element of W1 plus 1,
(N − k + 1

2 ) + 1,(
N − k + 1

2

)
+ 1 =

(
N − k + 1

2

)
+

(
2

2

)
.

Hence,

Vk =
{(

N − k + 1

2

)
, · · · ,

(
N − k + 1

2

)
+

(
k

2

)
+ (k − 1)

}

=
k⋃

j=1

Wj,

where 2 � k � �N+1
2 �. Thus, all the integers in the sets⋃� N+1

2 �
k=2 Vk can occur as the number of links L.
Lemma 3 states that, for each k between 2 and �N+1

2 � (the
size of the principal clique is N − k + 1), the set Vk covers the
minimum and maximum number of links in H (N,L). Hence,
all the integers in the intervals �k = {(N − k

2 ) + (k + 1
2 ) + k +

1, . . . ,(N − k + 1
2 ) − 1}, which are the gaps between Vk+1 and

Vk , 1 � k � �N+1
2 � − 1, cannot occur as the number of links

L in H (N,L).
In the following, we prove that all the integers in the set

{0,1, . . . ,(�
N+1

2 �
2 ) + �N+1

2 � − 1} can occur as the number of

links L. Taking k = �N+1
2 �, we employ the same method

which is used to prove the integers in Vk can occur as L,
except deleting all the links in the principal clique KN−k+1.
For 2 � j � �N+1

2 �, suppose that H (N,L) is constructed by
a clique Kj consisting of nodes nk,nk−1, . . . ,nk−j+1, isolated
nodes n1,n2, . . . ,nk−j , and the set of nodes nk+1,nk+2, . . . ,nN ,
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among which any pair of nodes are not adjacent. The number
of links L can take any integer in {(j2), . . . ,(j2) + (j − 1)}, since
each of nodes nk,nk−1, . . . ,nk−j+1 can be connected by a link

to a node in {nk+1,nk+2, . . . ,nN }, where (ab) = 0 if a,b ∈ N and

a < b. We further have {0,1,2,3, . . . ,(�
N+1

2 �
2 ) + �N+1

2 � − 1} =⋃� N+1
2 �

j=1 {(j2), . . . ,(j2) + (j − 1)}. Hence, all the integers in the

set {0,1,2, . . . ,(�
N+1

2 �
2 ) + �N+1

2 � − 1} can occur as the number
of links L.

If N is odd, (�
N+1

2 �
2 ) + �N+1

2 � − 1 = (
N+1

2
2 ) + N+1

2 − 1 and

the smallest element of V� N+1
2 �, (N − � N+1

2 � + 1
2 ) = (

N+1
2 + 1

2 ) =
(

N+1
2
2 ) + N+1

2 . If N is even, (�
N+1

2 �
2 ) + �N+1

2 � − 1 = (
N
2
2 ) +

N
2 − 1, and the smallest element of V� N+1

2 �, (N − � N+1
2 � + 1
2 ) =

(
N
2 + 1

2 ) = (
N
2
2 ) + N 2. Hence, there is no gap between the set

{0,1,2, . . . ,(�
N+1

2 �
2 ) + �N+1

2 � − 1} and V� N+1
2 �.

We have proven that (i) all the integers in
⋃� N+1

2 �
k=1 Vk can

occur as L, and (ii) all the integers in {0,1,2, . . . ,(�
N+1

2 �
2 ) +

�N+1
2 � − 1} can occur as L, and (iii) all the natural numbers

in the gaps between V� N+1
2 �,V� N+1

2 �+1, . . . ,V1, cannot occur

as L, and (iv) there is no gap between {0,1,2, . . . ,(�
N+1

2 �
2 ) +

�N+1
2 � − 1} and V� N+1

2 �. All these conclusions together prove
Theorem 4.
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