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Nodal infection in Markovian susceptible-infected-susceptible and susceptible-infected-removed
epidemics on networks are non-negatively correlated
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By invoking the famous Fortuin, Kasteleyn, and Ginibre (FKG) inequality, we prove the conjecture that
the correlation of infection at the same time between any pair of nodes in a network cannot be negative for
(exact) Markovian susceptible-infected-susceptible (SIS) and susceptible-infected-removed (SIR) epidemics on
networks. The truth of the conjecture establishes that the N -intertwined mean-field approximation (NIMFA)
upper bounds the infection probability in any graph so that network design based on NIMFA always leads to safe
protections against malware spread. However, when the infection or/and curing are not Poisson processes, the
infection correlation between two nodes can be negative.
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I. INTRODUCTION

Epidemic processes on graphs are worth studying for
a couple of reasons. First of all, the possible applications
are numerous: for example, from biological disease spread-
ing in contact networks [1,2] to information propagation
in communications networks [3,4] and brain networks [5];
economic transactions in sector networks [6], security issues
and spreading of opinions or sentiments in social networks [7].
Second, epidemics are described by local rules that give rise
to nontrivial global behavior, of which a phase transition
or threshold behavior is perhaps the most fascinating [8].
The simple epidemic models, susceptible-infected-susceptible
(SIS) and susceptible-infected-removed (SIR), on any finite
network can be described exactly [9], when we assume that
the infection and curing processes are independent Poisson
processes so that Markov theory applies. Apart from random
walks on a graph, these stochastic Markovian SIS and SIR
models are about the simplest processes that allow us to under-
stand the influence of the topology on the dynamic epidemic
process. Understanding the interplay between processes on
and the topology of a network is a major goal of network
science, which can lead to improved and/or new design rules
for networks.

Here, we will mainly consider SIS epidemics on a general
finite graph G = (V,E). For each node i ∈ V and time t ,
we describe by Xi(t) the infectious state at node i, where
Xi(t) = 0 means not infected, and Xi(t) = 1 means infected.
Earlier [4], it was conjectured that Xi(t) and Xj (t) are non-
negatively correlated, when starting from a deterministic initial
state:

E[Xi(t)Xj (t)] � E[Xi(t)]E[Xj (t)], (1)

which is, by the Bernoulli nature of X, equivalent to

Pr[Xi(t) = 1,Xj (t) = 1] � Pr[Xi(t) = 1] Pr[Xj (t) = 1].

(2)
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In terms of conditional probabilities, (2) becomes

Pr[Xi(t) = 1|Xj (t) = 1] � Pr[Xi(t) = 1],

which means that an infection at some node j in G will not
decrease the probability of infection of node i.

Although the simple Markovian SIS and SIR model on
networks can be described exactly, their numerical solution is
prohibitive, which has naturally led to mean-field approaches.
For continuous-time Markovian SIS epidemics on networks,
the heterogeneous mean-field (HMF) approximation [10] and
the N -intertwined mean-field approximation (NIMFA) [4,11]
are the most important. In particular, NIMFA only makes one
approximation: absence of correlation between the infectious
states of two nodes in the network, i.e., assuming equality
in (2). A similar neglect of correlations is implicitly made in
HMF [12]. An important consequence of this independence
assumption and the inequalities (1, 2) is that NIMFA always
upper bounds the probability of infection of each node in
the network and hence lower bounds the epidemic threshold.
From a practical point of view, when designing [13] or
controlling [14,15] a network against the epidemics by using
NIMFA, the upper bound property ensures that the network is
safeguarded from long-term, massive infection.

Apart from second-order mean-field studies [16–18], in
which the joint probabilities Pr[Xi(t) = 1,Xj (t) = 1] appear,
we found that few results on the correlation E[XiXj ] have been
published (see, e.g., the recent review [8]). Barrat et al. [19]
found that the average number of passengers wij traveling
between any two airports i and j could be predicted by
wij ∼ √

didj , where di is the degree of node i. Since transport
can be associated with a diffusion process, the strength of
epidemic “traffic” E[XiXj ] between node i and j could be
similarly interpreted as the weights wij in the air transportation
network.

Although the conjecture (1, 2) seems natural and intuitive,
since more infected nodes lead to more infections, recently
concerns have been raised that this positive correlation might
not be true for certain graphs. In this paper, we will rigorously
prove that Xi(t) and Xj (t) are non-negatively correlated for
all finite graphs and that the inequalities (1) and (2) are correct
at any time t and for any node pair (i,j ) in the graph. The
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proof will rely on the so called FKG inequality (Fortuin,
Kasteleyn, and Ginibre [20]). In Sec. III, we introduce the
necessary notation for the FKG inequalities and prove (1), but
we will start by introducing a different way to view the SIS
process in Sec. II A. Then we approximate the process through
a time discretization in Sec. II B. Section IV A exemplifies a
simple graph with non-Markovian epidemics [21,22], in the
sense that the infection and curing processes are not Poisson
processes anymore, but general renewal processes, for which
there can be a negative correlation. Thus, non-Markovian
epidemic processes on graphs can violate the inequalities (1)
and (2). However, the example in Sec. IV A illustrates that a
negative correlation requires a very special construction and
we are tempted to believe that, in general, infection correlations
between node pairs in a graph will be non-negative.

II. DIFFERENT APPROACH TO THE SIS AND SIR MODEL

To apply the FKG inequalities, stated in Sec. III, it is
essential that we do not consider the SIS epidemics as a process
in time.

A. Another description of the epidemic process

Our description is inspired by the graphical construction
introduced in [23] by Harris, which is used many times in the
interacting particle processes literature. The idea is that we
consider one probability measure on a large space that keeps
track of all the events in our process, at all times. These events
will be the infecting attempts made by diseased vertices and the
healing events of diseased vertices. To code all these events,
we also need to realize that an infecting event takes place
along an edge of our graph, but it also has a direction: from
the diseased vertex to the healthy one. We therefore define the
set of directed edges

F = {(i,j ) ∈ V × V | {i,j} ∈ E},
and we define

W = (V,F ),

which signifies the collection of all vertices and all directed
edges in our graph.

At each time s there can be infecting or healing events
on different elements of (V,F ): healing events on vertices in
V , and infecting events on directed edges in F . The trick is
to determine beforehand whether these events at all possible
times will take place or not, and then check afterwards whether
a healing event on the vertex i actually heals this vertex (this
happens if i is infected at the considered time s), or whether an
infecting event on a directed edge e = (i,j ) actually infects a
new site (this happens if at the considered time s the vertex i is
infected and the vertex j is healthy). Let us introduce the “time
line” {i} × [0,t] for each vertex i and the time line {e} × [0,t]
for each directed edge e = (i,j ). On these time lines, Poisson
processes are active that generate events: healing events on
each {i} × [0,1] with intensity δi , possibly depending on the
vertex i, and infection events from vertex i to vertex j with
intensity βe, possibly depending on the directed edge e. We
denote the space of all finite subsets of [0,t] by

M = {A | A ⊂ [0,t],A is finite}.

Each A represents a finite set of events on [0,t]. Now, we
define a function

Z : W → M,

which has the following meaning: if s ∈ Z(e) for an edge
e = (i,j ) ∈ F , then at time s the vertex i will attempt to infect
the vertex j . Of course, this will only happen if i is infected
at time s. If s �∈ Z(e), then the vertex i will certainly not try to
infect the vertex j at time s. Similarly, if s ∈ Z(i) for a vertex
i ∈ V , then the vertex i will heal at time s.

Once we have chosen this function Z, we can use it to trace
the evolution of the state of the vertices in our SIS model:
suppose at time 0 the state of all vertices is given by a vector
X(0) = (X1(0), . . . ,XN (0)) ∈ {0,1}N . Now we wish to know
what is the state of all vertices at time s, given the state just
before time s. We consider the collection of all times of all
events:

T = (∪i∈V Z(i))
⋃

(∪e∈F Z(e)).

This is a finite collection of times, and we can order them:
there exists some K ∈ N (possibly 0) with

T = {t1,t2, . . . ,tK} with t1 < t2 < · · · < tK.

Define t0 = 0 and tK+1 = t (these two time points are not
elements of T , with probability 1). If our time s satisfies tk �
s < tk+1 for 0 � k � K , or if s = tk for k = K , then we simply
put X(s) = X(tk). Now suppose s ∈ T . Then either there exists
a vertex i such that s ∈ Z(i), or there exists an edge e = (i,j )
such that s ∈ Z(e). If s ∈ Z(i), then X(s) = X(tk−1), except
that Xi(s) = 0 (vertex i heals at time s). If s ∈ Z(e), then
X(s) = X(tk−1), except that Xj (s) = max (Xi(tk−1),Xj (tk−1))
(vertex j is either already infected, or it gets infected if vertex
i is infected).

For the SIR model, we could use the same function Z: the
only difference is that if an infected vertex heals at time s,
its state is changed to the R state: resistant or recovered or
removed, in which the node stays for the rest of the time: it
neither gets infected nor infects nor heals after time s. The
description also provides a natural way of coupling the SIS
and SIR models, exhibiting the nice property that, if initially
the infected nodes in the SIR epidemics are a subset of the
infected nodes in the SIS epidemics, then they remain a subset
for all times. We will concentrate on SIS in this paper, but this
remark shows that our conclusion is also valid for SIR.

So far, we have described the entire evolution of the disease
through all times in [0,t]. In the sequel, we need to prescribe
the distribution of the random function Z,

Z ∈ X := MW,

which requires us to define a probability measure on the
space X . Our choice is somehow obvious: all infecting and
healing events are independent of each other, and we have the
following marginal distributions:

∀ i ∈ V : Z(i) is a Poisson process on [0,t] with intensity δi

and

∀ e = (i,j ) ∈ F : Z(e) is a Poisson process on [0,t]

with intensity βe.
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This defines a probability measure μ on X , which captures all
the randomness of the evolution of the SIS process.

B. Discretization of the SIS process

To avoid technicalities (we would need to extend the FKG
inequalities to nonfinite partially ordered spaces, for example),
and to use a specific kind of ordering, we want to work on
finite spaces. Therefore, it is necessary that we discretize time,
so we choose n equally spaced time points t1, . . . ,tn in the
interval [0,t] and the kth time point is tk = kt/n. We will
define a discrete SIS process that will tend to the true process
for n → ∞.

In the continuous-time description in Sec. II A, we defined a
function Z that assigned a Poisson process on [0,t] of healing
events to each vertex i and a Poisson process of infecting
events to each directed edge e. A natural way to discretize
is the following: we define a function Zn such that for each
vertex i and time tk we have

Zn(i,tk) =
{

1 if Z(i) ∩ (tk−1,tk] = ∅,

0 if Z(i) ∩ (tk−1,tk] �= ∅.

Furthermore, for each directed edge e we define

Zn(e,tk) =
{

0 if Z(e) ∩ (tk−1,tk] = ∅,

1 if Z(i) ∩ (tk−1,tk] �= ∅.

Note that the coding for a healing event [Z(i,tk) = 0 if there
is an healing event at time tk at vertex i] is different from
the coding for an infection event [Z(i,tk) = 1 if there is an
infecting event at time tk at vertex i]. The reason is that
infecting leads to more infected nodes, whereas healing leads
to less infected nodes; we will return to this difference soon.

For each time tk , the function

Zn : W × {t1, . . . ,tn} �→ {0,1}
determines for each directed edge e whether there is an
infection event or not at time tk , and for each vertex i whether
there is an healing event at time tk or not. If there are two
or more events for the continuous-time process in a small
interval (tk−1,tk], then we replace these multiple events in the
discrete version by one event. There are two justifications
why this replacement is a sensible approximation. First, as
n → ∞, the probability that there exist more than one event in
a small interval decreases as 1/n. Furthermore, two infection
events on the same edge in a small time interval lead to the
same configuration as only one infecting event (with high
probability), and the same is true for healing events.

We describe the state at time tk by a vector X(n)(tk) ∈
{0,1}N . The function Zn tells us which vertices heal at time tk
and which vertices are trying to infect a particular set of other
vertices at time tk . The only problem is that we have to decide
what happen first, the healing or the infecting. This problem
does not occur in the continuous version, since with probability
1 all events happen at distinct times. We choose to start with the
healing: define the intermediate state vector Y (n)(tk) ∈ {0,1}N
as equal to X(n)(tk−1), except for all vertices i with Z(i,tk) = 0,
where we have that Y

(n)
i (tk) = 0. The governing equation is

∀ 1 � i � N : Y
(n)
i (tk) = X

(n)
i (tk−1)Zn(i,tk). (3)

Then we deal with the infecting events: we define X(tk) equal
to Y (tk), except for vertices which are infected at time tk:

∀ 1 � i � N : X
(n)
i (tk) = Y

(n)
i (tk)

+ [
1 − Y

(n)
i (tk)

]
max

j :(j,i)∈F
Y

(n)
j (tk)Zn((i,j ),tk). (4)

Equation (4) guarantees that i is infected at time tk if
either i was still infected after the healing events at time
tk [Y (n)

i (tk) = 1], or one of the neighbors j of i was still infected
after the healing events at time tk and Z((j,i),tk) = 1, which
means that there is an infection attempt at time tk from j to
i. We assume that a vertex which becomes infected at time tk
cannot infect another site at the same time.

In this way we have described the entire evolution of the
disease through all times t1, . . . ,tn. Just as in the continuous-
time case above, we need to describe the distribution of the
random function Zn. We define

Wn = W × {t1, . . . ,tn},
so

Z ∈ Xn = {0,1}Wn.

Therefore, we need to define a probability measure on the
space Xn. Our choice is fixed by the Poisson processes of the
continuous-time model: all infecting and healing events are
independent of each other, and we have the following marginal
probabilities:

∀ i ∈ V,k ∈ {1, . . . ,n} : P(Z(i,tk) = 0) = 1 − e−δi t/n

and

∀ e= (i,j )∈F,k ∈ {1, . . . ,n} : P(Z(e,tk) = 1) = 1 − e−βet/n.

This defines a probability measure μn on Xn. When n → ∞,
the healing events on a given vertex i become a Poisson process
in time with intensity δi , and the infection events on the directed
edge e become a Poisson process in time with intensity βe, just
as in the continuous-time SIS model.

After this rather lengthy preparation, we are ready to point
out the importance of the above discrete-time description of
the SIS model. The space Xn, on which we have defined
our probability measure μn, has a natural partial ordering:
if Z1,Z2 ∈ Xn, so Z1 and Z2 are both functions from Wn to
{0,1}, then we say that Z1 � Z2 if

∀ i ∈ V,k ∈ {1, . . . ,n} : Z1(i,tk) � Z2(i,tk)

and

∀ e ∈ F,k ∈ {1, . . . ,n} : Z1(e,tk) � Z2(e,tk).

This is just the pointwise ordering of two functions, which
has the following special property. Suppose we fix an initial
condition X(n)(0). Then the two functions Z1 � Z2 both lead
to different evolutions of the SIS process, in other words,
to different values of the state at time tn = t . To make
the dependence on Z explicit, we introduce the slightly
cumbersome notation X(n),Z1 (tk) and X(n),Z2 (tk). Due to our
choice of coding, we can now conclude that for any i ∈ V , we
have

X
(n),Z1
i (t) � X

(n),Z2
i (t).
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Indeed, suppose Z1 � Z2 and X(n),Z1 (tk−1) � X(n),Z2 (tk−1)
(note that this is true for k = 1, defining t0 = 0). For each
vertex i, we then know that X

(n),Z1
i (tk−1) � X

(n),Z2
i (tk−1) and

Z1(i,tk) � Z2(i,tk). By using (3), we see that

Y
(n),Z1
i (tk) = X

(n),Z1
i (tk−1)Z1(i,tk) � X

(n),Z2
i (tk−1)Z2(i,tk)

= Y
(n),Z2
i (tk).

For each directed edge e = (i,j ) we also know that Z1(e,tk) �
Z2(e,tk). From (4), it follows that

X
(n),Z1
i (tk) = Y

(n),Z1
i (tk) + [

1 − Y
(n),Z1
i (tk)

]
× max

j :(j,i)∈F
Y

(n),Z1
j (tk)Z1((i,j ),tk).

If Y
(n),Z1
i (tk) = 1, then we have seen that also Y

(n),Z2
i (tk) =

1, so X
(n),Z1
i (tk) = X

(n),Z2
i (tk) = 1. Now suppose that

Y
(n),Z1
i (tk) = 0. If Y

(n),Z2
i (tk) = 1, then X

(n),Z2
i (tk) = 1 �

X
(n),Z1
i (tk). If also Y

(n),Z2
i (tk) = 0, then

X
(n),Z1
i (tk) = max

j :(j,i)∈F
Y

(n),Z1
j (tk)Z1((i,j ),tk)

� max
j :(j,i)∈F

Y
(n),Z2
j (tk)Z2((i,j ),tk) = X

(n),Z2
i (tk).

This proves that X(n),Z1 (tk) � X(n),Z2 (tk), for all 1 � k � n. In
short, X

(n),Z
i (t) and X

(n),Z
j (t), regarded as functions of Z, are

increasing functions on the partially ordered set Xn.

III. THE FKG INEQUALITY

To introduce the FKG inequality, we will need some
concepts from order theory. A partially ordered space X is
called a lattice if each pair x,y ∈ X has a supremum (x ∨ y)
and an infimum (x ∧ y). The supremum x ∨ y is defined by the
property that if x � z and y � z, then we must have x ∨ y � z;
the infimum has an analogous definition. Our partially ordered
spaceXn, introduced in Sec. II B, satisfies the lattice condition.
Indeed, if Z1,Z2 ∈ Xn, then both are functions of Wn to {0,1}.
Now take the pointwise maximum and minimum of these two
functions on Wn to find Z1 ∨ Z2 and Z1 ∧ Z2. Now consider
a lattice X and a positive function μ on X such that

∀ x,y ∈ X : μ(x ∨ y)μ(x ∧ y) � μ(x)μ(y). (5)

We will show that our probability measure μn on Xn satisfies
this condition. The FKG inequality then states that for any two
increasing functions f and g on X , we have[∑

x∈X
f (x)g(x)μ(x)

] [∑
x∈X

μ(x)

]

�
[∑

x∈X
f (x)μ(x)

] [∑
x∈X

g(x)μ(x)

]
. (6)

If μ is actually a probability measure on X , then inequality (6)
can be rewritten as

Eμ[f (X)g(X)] � Eμ[f (X)]Eμ[g(X)]. (7)

In other words, the two increasing functions f and g must be
non-negatively correlated. Applying (7) to the two increasing
functions X

(n),Z
i (t) and X

(n),Z
j (t) then shows that these are

non-negatively correlated. Taking the limit n → ∞ finishes
the proof of (1) that for any finite graph and any fixed initial
condition, we have that Xi(t) and Xj (t) are non-negatively
correlated at time t .

All that remains is to check condition (5) for our measure
μn. We can use the independence to see that

μn(Z) =
∏
i∈V

n∏
k=1

μH
n,i(Z(i,tk))

∏
e∈F

n∏
k=1

μI
n,e(Z(e,tk)).

Here, the measure μH
n,i corresponds to the healing probability

of vertex i, so

μH
n,i(0) = 1 − e−δi t/n and μH

n (1) = e−δi t/n,

whereas the measure μI
n,e corresponds to the infecting proba-

bility of the directed edge e, so

μI
n,e(1) = 1 − e−βet/n and μI

n(0) = e−βet/n.

Now consider two functions Z1 and Z2. For any node i ∈ V

and k ∈ {1, . . . ,n}, we have

(Z1 ∨ Z2)(i,tk) = max (Z1(i,tk),Z2(i,tk))

and

(Z1 ∧ Z2)(i,tk) = min (Z1(i,tk),Z2(i,tk)),

and

∏
i∈V

n∏
k=1

μH
n,i((Z1 ∨ Z2)(i,tk))

∏
i∈V

n∏
k=1

μH
n,i((Z1 ∧ Z2)(i,tk))

=
∏
i∈V

n∏
k=1

μH
n,i(Z1(i,tk))

∏
i∈V

n∏
k=1

μH
n,i(Z2(i,tk)),

simply because the same factors appear in both products. By
a similar argument, we have

∏
e∈F

n∏
k=1

μI
n,e((Z1 ∨ Z2)(e,tk))

∏
e∈F

n∏
k=1

μI
n,e((Z1 ∧ Z2)(e,tk))

=
∏
e∈F

n∏
k=1

μI
n,e(Z1(e,tk))

∏
e∈F

n,e∏
k=1

μI
n,e(Z2(e,tk)),

from which we can indeed conclude that

μn(Z1 ∨ Z2)μn(Z1 ∧ Z2) = μn(Z1)μn(Z2),

proving that μn satisfies (5).

IV. COUNTEREXAMPLES OF INEQUALITY (1)

A. When events are not generated by a Poisson process

The SIS model can be extended to the case where the
healing events on each vertex and the infecting events on
each directed edge are arbitrary processes on [0,t], instead
of Poisson processes. We will construct an example, due to
Henk Don, where these processes are renewal processes, but
the correlation between X1(t) and X2(t) is in fact negative, for
two vertices 1 and 2.

Consider the graph with two vertices 1 and 2, and one
edge between them. On both vertices, we define the following
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renewal process: for each vertex i ∈ {1,2}, consider an i.i.d.
sequence T

(i)
1 ,T

(i)
2 , . . . , where

Pr
[
T

(i)
1 = 0.6

] = 0.5 and Pr
[
T

(i)
1 = 0.8

] = 0.5,

which means that the healing of node i occurs either at time
0.6 or at time 0.8, but definitely at one of these times. For each
vertex i, the healing events occur at times T

(i)
1 ,T

(i)
1 + T

(i)
2 , . . . .

Thus, there will always be exactly one healing event on [0,1],
for both vertices.

Now, we define the process of infecting events on the
directed edges e1 = (1,2) and e2 = (2,1). For each directed
edge e, we consider the i.i.d. sequences S

(e)
1 ,S

(e)
2 , . . . , where

S
(e)
1 ∼ U ([0.65,0.75]),

and where U ([a,b]) denotes the uniform distribution on [a,b].
The infecting events for each directed edge occur at times
S

(e)
1 ,S

(e)
1 + S

(e)
2 , . . . . Our construction guarantees that there

will be exactly one infection event on a directed edge e1

(and similarly e2) in the interval [0,1], provided node 1 (and
similarly node 2) is infected before time 0.65. More precisely,
this infection event will be in the time interval (0.65,0.75),
hence, always in between the two possible healing events,
either at time 0.6 or at time 0.8.

As initial situation, we choose X1(0) = X2(0) = 1, so that
both vertices are infected at time 0. Let us evaluate whether
both nodes can be still infected at time 1, in other words,
whether the event X1(1) = X2(1) = 1 is possible. This would
be only possible if both vertices are not healed at time 0.8.
However, not-healing at time 0.8 implies that both are healed at
time 0.6 and that the infection is eradicated from the network,
so at time 1 both vertices are still healthy. Hence, we arrive at
Pr[X1(1) = X2(1) = 1] = 0, which is equivalent to

E[X1(1)X2(1)] = 0.

We can conclude that

E[X1(1)X2(1)] − E[X1(1)]E[X2(1)] < 0,

if we can show that E[X1(1)] = Pr[X1(1) = 1] > 0 (since by
symmetry this would imply that also E[X2(1)] = Pr[X2(1) =
1] > 0). Being infected at time 1 is only possible if there
is no healing at time 0.8, which implies that there must be
a healing at time 0.6, followed by an infection during the
time interval (0.65,0.85) from the other infected node. Now,
if T

(1)
1 = 0.6 and T

(2)
1 = 0.8, then vertex 1 will first be healed

at time 0.6, but then will be infected by vertex 2 in the time
interval (0.65,0.85), and therefore will still be infected at time

t = 1, thus

Pr[X1(1) = 1] = Pr
[
T

(1)
1 = 0.6

]
Pr

[
T

(2)
1 = 0.8

] = 1
4 > 0.

The example shows that even for this simple graph, negative
correlations cannot be excluded for non-Poisson processes.
However, the example requires a very specific construction; in
general, we do expect positive correlations.

B. Infection and curing rates are not constant

Another type of example, where the inequality (1) may be
false, occurs in epidemic processes in which the infection rate
and curing rate are themselves random. When the infection rate
is node dependent and negatively correlated with neighboring
infection rates, then negative correlations of site infections
are possible as shown in [24], even with Poisson infection
events. This negative correlation occurs when we do not
know the realized infection rates: seeing an infected site can
imply a larger infection rate, which in turn implies a lower
infection rate at a neighboring site (due to the built-in negative
correlation), which in turn can imply a healthy neighboring
site. In our SIR and SIS setting, all rates (i.e., the infection rate
βe of link e and the curing rate δi of node i) are supposed to
be fixed beforehand, and not random.

V. CONCLUSION

Although the inequalities (1) and (2) are natural and intu-
itive, their correctness for Markovian SIS (and SIR) epidemics
in any graph and at any time is rigorously demonstrated. We
consider the truth of those inequalities important, because
a deeper understanding of the validity and accuracy of
widely adopted mean-field approximations for epidemics on
networks, that assume equality in (1) and (2), necessitates the
involvement of correlations. Recent second-order mean-field
approximations [16–18], that improve first-order mean-field
approximations by incorporating the epidemic pair correlation
E[XiXj ] after assuming a choice of closure, may be improved
applying the non-negative correlation property (1). For non-
Markovian epidemics, where infection and/or healing are
still independent, but not Poisson processes anymore, the
inequalities (1) and (2) can be violated, emphasizing the
special role of Poissonian infection and healing processes in
epidemics.
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