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When two viruses compete for healthy nodes in a simple network and both spreading rates are above the
epidemic threshold, only one virus will survive. However, if we prevent the viruses from dying out, rich dynamics
emerge. When both viruses are identical, one virus always dominates the other, but the dominating and dominated
virus alternate. We show in the complete graph that the domination time depends on the total number of infected
nodes at the beginning of the domination period and, moreover, that the distribution of the domination time
decays exponentially yet slowly. When the viruses differ moderately in strength and/or speed the weaker and/or
slower virus can still dominate the other but for a short time. Interestingly, depending on the number of infected
nodes at the start of a domination period, being quicker can be a disadvantage.
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I. INTRODUCTION

Spreading processes on networks are well studied phe-
nomena that can be used to model the spread of diseases,
rumors, opinions, and habits in populations or on online social
networks, as well as the effect of marketing and product
adoption [1–4]. One of the disease-spreading models that
captures, for example, flulike behavior is the susceptible-
infected-susceptible (SIS) model [5]. In the SIS model nodes
or individuals are either healthy but susceptible, or infected
and spreading the disease. The SIS model cannot be solved
exactly for large networks, but much work has been done to
create good approximations [6–9].

Viruses, however, do not necessarily live in isolation; a fact
that has attracted attention recently. Work on virus competition
either focuses on single layer networks, or on multilayer
networks. Prakash et al. [10] proved that when two viruses
compete on a single layer network, the stronger of the two
will completely suppress the other, provided that the viruses
are mutually immune. This is in line with the competitive
exclusion principle found in ecology [11,12]. When viruses
are not mutually immune, a region can exist where both
viruses survive in the network [13]. Even when nodes are
mutually immune, there is a region where stronger and/or
quicker viruses can coexist with weaker or slower competitors
in the SIR model [14]. The coexistence of SIR type epidemics
is greatly influenced by node mobility in spatially structured
populations [15].

In multilayer networks each virus propagates over a sepa-
rate link set. Wei et al. [16] developed a predictor for the winner
of the competition between viruses on multilayer networks
and offer mitigation strategies to slow one of the two viruses
down. Recently, Sahneh and Scolgio [17] improved on the
understanding of virus competition in a multilayer network and
showed that when the degrees in the two layers are negatively
correlated, coexistence of two viruses is in fact possible,
contrary to the findings in [16]. Marceau et al. [18] studied
the effect of asymmetric an partial immunity in SIR epidemics
where the spread of knowledge that a virus exists in the network
helps to combat the spreading of the virus. Meyers et al. [19]
developed a model that describes the interaction between
multiple viruses (or contagions) under the assumption that a
virus can also improve the spreading properties of another virus

and validated that model on messages propagating through the
Twitter network.

A common feature in the study of virus spread is that viruses
can become extinct. What happens, however, if one node
will stick to its opinion or preference or (intentionally) stays
infected? Such a model can be used to describe competing
marketing campaigns where each campaign has a (small) fixed
support base and explain ebbs and flows in the success of such
campaigns. It can also describe the arrival of a new product
or idea in a population and model its adoption starting from
a fixed fraction of infected nodes. We will see in this paper
that by disallowing a virus to die out, rich dynamics emerge.
In line with previous research, one of the two viruses will
be dominated by the other, but, contrary to what might be
expected, this dominance will not last forever. Instead, viruses
will alternate between being dominant and dominated, as
illustrated in Fig. 1 where the fraction of infected nodes in
a complete graph of 500 nodes is plotted as function of time
for two viruses.

We will first describe the process in detail in Sec. II.
In Sec. III we describe the modeling and simulation of the
process; in the Appendix we use the GEMF model to analyze
the competition process where viruses are allowed to die out. In
Sec. IV we will derive the domination time of two viruses that
have identical spreading properties, and finally in Sec. V we
derive the domination time of two viruses that have different
spreading properties.

II. MSIS PROCESS DESCRIPTION

We model the process of multiple competing viruses using
the SIS epidemic spreading model. In an SIS process, a node
is either healthy or infected. If a node is infected, it will
spread the infection to each of its neighbors. After some
time, the infected node becomes healthy again but will remain
susceptible to the infection. The curing process per node is a
Poisson process with rate δ and the infection process per link is
a Poisson process with rate β. All processes are independent.
The effective spreading rate τ is defined as the ratio between
the spreading and curing rate, i.e., τ = β

δ
.

The average number of infected nodes as a function of
the effective spreading rate τ in the SIS process features
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FIG. 1. (Color online) Competition between two viruses in a
complete graph of 500 nodes. Each virus is prevented from dying
out by reinfecting the last infected node of a virus at the moment it is
cured.

two different regimes, separated by the epidemic threshold
τc: below τc the virus dies out exponentially fast [20], and
above τc the virus reaches a metastable state. In the metastable
state, the average number of infected nodes hardly changes
over time. The true steady state of the network is, however, the
all healthy state, since the describing Markov process contains
an absorbing state.

The extension from a single virus to multiple competing
viruses is as follows. A node can still be either infected or
healthy. The infectious state, however, is labeled with the virus
type. If a node is infected with virus A, for example, it will
spread the infection of type A to its healthy neighbors. The
healthy state, however, is not labeled so that, irrespective of
the type, nodes will only be infected with one virus at a time.

III. MODELING AND SIMULATION

We start by considering the case of two viruses in a complete
graph of N nodes, KN , and use Markov theory to completely
describe the process. Although the complete graph is an
extreme graph, simulations in Sec. III A show similar behavior
in very different graphs. The symmetry of the complete graph
allows us to use a Markov chain with a manageable number of
states to describe the process.

We define NA and NB as the number of nodes infected with
virus A and B, respectively, and NH as the number of healthy
nodes. Clearly, NA + NB � N and NH = N − NA − NB . A
state in the Markov chain corresponds to a combination of
NA and NB in the network. Every time the total number of
infected nodes in the network changes, a state transition in
the embedded Markov chain of the continuous-time Markov
process occurs. The total number (N+1)(N+2)

2 of states in the
Markov chain is visualized as the lower half of a rectangular
grid, as illustrated in Fig. 2. The lower left corner corresponds
to the all zero state; the other states in the Cartesian grid
have coordinates that encode the number of infected nodes
per virus type. The horizontal axis reflects the change in the
number of nodes infected with virus A, and the vertical axis
reflects a change in the number of nodes infected with virus B.
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FIG. 2. (Color online) Markov chain representation of the num-
ber of infected nodes. From each state there are four different
transitions possible: North, South, East, and West. The transition
probabilities of a direction can be zero at the edges of the
“triangle”.

State changes in the Markov chain can be thought of as being
either North (NB increases), South (NB decreases), East (NA

increases), or West (NA decreases).
North (N (NA,NB )). This state transition occurs when a

virus B spreading event happens before any other event.
Spreading events happen with an exponentially distributed
waiting time over all NBNH links between nodes infected
with virus B and healthy nodes. The first spreading event
happens after the minimum of the NBNH waiting times, which
is again an exponential random variable with rate βBNBNH .
The first event that is not a virus B spreading event happens
after the minimum of the virus A spreading events and the
virus A and B curing events, of which there are NANH ,
NA, and NB , respectively. The waiting time until the first
non-virus-B spreading event is also an exponential random
variable with rate βANANH + δANA + δBNB . The probability
that the first spreading event of virus B happens before the first
nonspreading event is given by βBNBNH

βBNBNH +βANANH +δANA+δBNB
.

South (S(NA,NB)). This state transition occurs when
a virus B curing event happens before any other event.
Analogous to the transition to North, this probability is given
by δBNB

βBNBNH +βANANH +δANA+δBNB
.

East (E(NA,NB)). This state transition occurs when a
virus A spreading event happens before any other event.
The probability is the same as North, but with NA and NB

interchanged: βANANH

βBNBNH +βANANH +δANA+δBNB
.

West (W(NA,NB)). This state transition occurs when a virus
A curing event happens before any other event. The probability
is the same as South, but with NA and NB interchanged:

δANA

βBNBNH +βANANH +δANA+δBNB
.
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FIG. 3. (Color online) Structure of matrices Y1, Y2, and T . Gray areas consists of only zeros.

From the transition probabilities for the four directions it
is clear that if NA (or NB) is zero, only transitions along
the North-South (East-West) axis are possible. As a result,
all states in Fig. 2 that are not along either the horizontal or
vertical axis are transient states if we ignore the fact that the
all zero state is an absorbing state. For an effective spreading
rate far enough above the epidemic threshold, the probability
of reaching the absorbing all zero state is very small, but the
probability of reaching either of the two axes of Fig. 2 is not.
This reaffirms earlier results that one virus will die out much
quicker than the other.

By numbering the states appropriately, we can write the
transition probability matrix P as follows [21]:

P =
⎡
⎣C1 0 0

0 C2 0
Y1 Y2 T

⎤
⎦,

where C1 is a matrix containing the transition probabilities
of the closed set of states with only virus A active, C2 is a
matrix containing the transition probabilities of the closed set
of states with only virus B active, Y1 and Y2 are the matrices
containing the transition probabilities from transient states to
either of the two closed sets, and finally T is a N(N−1)

2 × N(N−1)
2

substochastic matrix containing the transition probabilities
among transients states.

The structure of the submatrices of P is further detailed in
Fig. 3. Matrix Y1 is rectangular with only nonzero elements on
the diagonal, with the exception of the last diagonal element.
Matrix Y2 is also rectangular but the vertical spacing is N − 1
between the first nonzero elements and decreases for every
next element. Matrix T consists of successively shrinking
diagonal and off-diagonal blocks. The diagonal blocks of T

are indicated in green in Fig. 3 and have the following internal
structure:

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 E(1,B) 0
W(2,B) 0 E(2,B)

W(3,B) 0
. . .

. . . 0 E(N − B − 1,B)
0 W(N − B,B) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where B indicates the block number (starting from 1 for the
top left corner in T in Fig. 3). The off diagonal matrices in T

are diagonal matrices:

RL = diag{S(1,B+1),S(2,B+1), . . . ,S(N−B − 1,B + 1)},
RR = diag{N (1,B),N (2,B), . . . ,N (N − B − 1,B)},
where RR is the right-hand side off-diagonal matrix; RL is the
left-hand side off-diagonal matrix.

The m-step transition probability from state i to j , that is,
the probability of being in state i after m steps when starting

in state j , is given by P m
i,j . Because of the block structure of

P , its powers can be expressed as

P m =
⎡
⎣Cm

1 0 0
0 Cm

2 0
X1 X2 T m

⎤
⎦,

where X1 and X2 are the m step transition probabilities from
transient states to either of the two closed sets. Since submatrix
T represents the transient states, T m decreases with increasing
m. When all elements in T m are zero, one of the two viruses
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has died out. Figure 4 shows that in a complete graph of
50 nodes the probability of both viruses being active decays
exponentially after an initial period. The same results were
obtained via simulations, as also indicated in Fig. 4. The
simulation results are averaged over 107 runs. In the initial
state, 20 nodes are infected with each virus. The simulation
results overlap exactly with the predicted curve.

A. Perpetual competition

When both viruses are prevented from dying out, the two
viruses will be in everlasting competition. In the Markov chain
this can be achieved by turning the South (East) transition for
all states with just one node infected with virus B (A) into the
probability to stay in the same state. In simulations we reinfect
a node if curing it would lead to one of the two viruses dying
out.

In the simulations of the continuous-time virus competition
process, the number of infected nodes with virus A and B is
logged every time the total number of infected nodes changes.
The moments of data gathering coincide precisely with the
state changes in the Markov chain approach. For each network
we simulate the competition process for 108 time units and log
the time the process is in each state.

Figure 6 shows a heatmap representation of the steady-state
distribution of the Markov chain of the virus competition in a
complete graph. The number of infected nodes with virus A

(B) increases along the horizontal (vertical) axis similarly as
in Fig. 2. The hot spots along the axis show that the network is
most likely in a state where one of the two viruses dominates
the other. Either virus is equally likely to dominate the other as
the symmetry along the NA = NB axis indicates. The diagonal
band connecting the two hot spots illustrates that the viruses
alternate between being dominant and being dominated. The
steady-state distribution confirms the behavior seen in Fig. 1.
Figure 5 shows the same information as the heatmap but in
such a way that multiple graph types and sizes are more easily
compared. It draws the probability that the epidemic process is
in a state with (NA − NB)/N nodes infected. The probabilities
(NA − NB) are sums over all lines parallel to NA = NB in
Fig. 6.

Figure 5(a) shows the probability that the network is in a
state with (NA − NB)/N nodes infected for different spreading
rates in a complete graph of 100 nodes. The different spreading
rates are chosen in such a way that a single virus in this network
will cause an average fraction of infected nodes between 5%
and 40%. For small fractions of infected nodes both viruses
will approach the absorbing state relatively frequently. The
states around NA = NB = 1 are therefore visited often in the
steady state and cause the high peak at x = 0. In the extreme
case of no spreading, all states except for NA = NB = 1 are
transient and the distribution features a single peak at x = 0.
For higher spreading rates the distribution shows two peaks
around the average fraction of infected nodes that characterizes
the alternating domination. These two peaks are around the
average fraction of infected nodes, indicating that one virus is
responsible for almost all infections. They correspond to the
hot spots in Fig. 6. The symmetry around zero indicates that
both viruses are equally likely to dominate.

Figure 5(b) shows the distributions for complete graphs of
different sizes ranging from 100 to 1600 nodes. The spreading
rates are chosen in such a way that the steady-state fraction of
infected nodes is 0.25. For larger networks the probability of
both viruses approaching the absorbing state becomes smaller
as can be seen from the lower probability of being in a state
where (NA − NB)/N = 0 for larger networks. Also, the peaks
in the distribution tend to be closer to the average fraction of
infected nodes, in this case 0.25, for larger networks. For N =
1600 the peaks are located very close to the average fraction
of infected nodes: around those peaks one virus is almost
nonexistent, while the other has almost the entire fraction of
infected nodes. The plateau between the two peaks indicates
that during the crossover from one domination to the other, on
average the same number of nodes are infected by either virus.

The competition behavior between two viruses is observed
in various different graph types. Figure 5(c) shows the
probability that the process is in a state where (NA − NB)/N
nodes are infected in five different graph types: the complete
graph, the star graph, a scale-free graph grown following the
preferential attachment paradigm, a connected Erdős-Rènyi
random graph with link probability log(N )/N , and a 32 × 32
square grid; all graphs, except for the grid, contain 1000 nodes.
Again the effective spreading rate of both viruses is the same
and on average 25% of the nodes is infected.

In the most extreme graph, the star graph, the peaks
indicating one virus dominating the other are much sharper
than in the complete graph. Almost no time is spent in
states where both viruses have a substantial number of nodes
infected. For the scale free the peaks are also markedly sharper
than for the complete graph. The hub structure in both graph
types probably enables a virus to dominate the other more
easily and longer, as will be discussed Sec. IV. The dominated
virus has to compete for the hub nodes in order to have a
chance to defeat the other.

In the case of an Erdős-Rènyi random graph the difference
with the complete graph is not as pronounced. The peaks are
only marginally higher and the value at zero is almost exactly
the same. On the contrary, the 32 × 32 rectangular grid shows
a much higher probability to be in a state where the number of
infected nodes with virus A and virus B are more or less equal.
The high hop count and regular structure of the grid allows the
two viruses to exist in more isolation from each other. It is
still more likely to find the network in a state where one virus
dominates the other, but to a much lesser extent than for the
star graph.

The differences in hop count, degree distribution, and
other structural properties of various graphs clearly have an
influence on the competition process between the two viruses,
but overall, one virus will alternately dominate the other.

IV. DOMINATION TIME OF MATCHED VIRUSES

Although the steady state of the Markov chain shows that
the process will most likely be in one of two regions in the state
space diagram corresponding to one virus dominating the other
(see Fig. 6), it does not provide any insight in the alternating
of dominating and dominated periods. In this section we
investigate the domination time T of two matched viruses,
i.e., βA = βB,δA = δB .
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FIG. 4. (Color online) Probability that both viruses are alive as
a function of the number of transitions. The solid line indicates the
numerical results obtained from the transition matrix and the markers
indicate the simulation results. The probability that both viruses are
alive is the same as the probability that the epidemic process is in a
transient state, i.e., the element wise sum of the entries of submatrix
T . The inset shows the same plot on a logarithmic vertical axis and
emphasizes the exponential decay of the transient state.

We say that virus A dominates virus B if there are more
nodes infected with virus A than with virus B. A domination
period of virus A starts when there are more nodes infected
with virus A than with virus B and ends when there are
more nodes infected with virus B than with virus A. The
domination time is measured in the number of state changes
between the start and end of a domination period. We first
derive the expected domination time in Sec. IV A and compute
the distribution of the domination time in Sec. IV B.

A. Expected domination time

Consider the example state space in Fig. 7 for a network of
seven nodes. The Cartesian coordinates (NA,NB) of the state
space encode the number of infected nodes with each virus.
The states in which virus A dominates are blue, the states in
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FIG. 6. (Color online) Heatmap representation of the steady-
state distribution of two equally strong viruses in a complete graph
of 100 nodes, and effective spreading rate τ = 0.025.

which virus B dominates are green, and the states where virus
A and B have the same number of infected nodes are colored
yellow.

The transition probabilities in this state space can be
computed using the expressions for North, South, East, and
West derived in Sec. III, with the exception of the states along
the axes. These states have a self-loop in the Markov transition
graph to avoid the virus from dying out. The probability
of staying in the same state along the axes is equal to the
probability of going one more step West or South.

Let TA be the time that virus A dominates virus B. A
domination period of virus A can start at any state just above
the diagonal (states 2, 8, or 12 in Fig. 7). Let’s assume for now
that the domination starts in state 8. The average domination
time, E[TA], is the average hitting time of any state below the
diagonal (the green states) given that we start in state 8. The

FIG. 5. (Color online) Probability density function of (NA − NB )/N for different sizes of the complete graph (a) and different graph types
of the same size (b).
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average hitting time from state 8 to any green state is the value
k8 for the minimal non-negative solution [22] to the following
system of linear equations:

ki = 0 for i /∈ {1, . . . ,12},
(1)

ki = 1 +
∑

j /∈{1,...,12}
pij kj for i ∈ {1, . . . ,12},

where pij is the probability of going from state i to state j . The
solution for ki will generally be different for different values
of i. In other words, the state in which a domination period
starts influences the average duration. Figure 8 shows E[TA]
in the complete graph K50 as a function of ys , the number of
infected nodes at the start of the domination period. Figure 8
also shows the measured average domination time of virus
A as a function of ys and the measured probability density
of ys . The measured values are averages over 106 domination
periods. The spreading rate for both viruses was chosen in such
a way that y, the expected number of infected nodes, is 33,
which is about 65% of the network. Moreover, with 33 nodes
infected it is possible for a domination period to start with
precisely the average number of nodes infected, i.e., ys = y.

Figure 8 demonstrates that our simulation results are in
agreement with the numerical solution to the linear system
in (1). For values of ys that occur only rarely the simulated
results are further from the numerical results because of a lack
of statistics. The average domination time of a virus depends
on the viral state of the network at the start of domination.
When ys < y a domination period can be significantly longer
than when the domination period starts close to the expected
number of infected nodes. This means that in a situation
with only two nodes infected, the virus that spreads first is
likely to be stronger than the other for initially a rather long
period. After the process converges, the influence of the initial
advantage will disappear.

The effect that a domination period is longer if it starts when
the number of infected nodes is smaller than the expected
number of infected nodes (ys < y) is more pronounced for
larger spreading rates. The average TA for periods that start
with more nodes infected is only slightly larger for larger
spreading rates. This means that the initial domination period
for a process that starts with only two nodes infected can
be very long for high spreading rates but will decrease
when the other virus catches up, since it is very unlikely to
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FIG. 7. (Color online) Example state space for a network with
seven nodes. States where virus A dominates (the lower half) are
green, states where virus B dominates (the upper half) are blue, and
states where the viruses are balanced are yellow. In this state diagram
state 1 corresponds to NA = NB = 1.

find the network in a state with few nodes infected after the
start of the process.

The distributions of ys as shown in Fig. 8 are identical to
the distributions of the number of infected nodes for the three
different values of the spreading rate. The distributions for y

are not shown in Fig. 8 to avoid further cluttering. Because
the probability of a domination period to start with ys infected
nodes is the same as the probability of the network to have y

nodes infected, it is unlikely that the beginning of a domination
period is related to any variations in the total number of
infected nodes. If this would be the case, the number of infected
nodes at the beginning of a domination period would have been
higher or lower than the expected number of infected nodes.
However, because of the dependency of TA on the number of
infected nodes ys , if a domination period starts during a spell
of few infected nodes, it is likely to last longer.

B. Domination-time distribution

The knowledge of the domination period is not
complete without the distribution of the domination time, as the
average might be a poor descriptor. We consider again the state
space as illustrated in Fig. 7. To compute the distribution of
the domination time, we make all the states below the diagonal
(the green states) absorbing. The Markov chain that describes
such a process consists of a set of transient states in which
virus A dominates virus B and a set of absorbing states.

Let M be the submatrix of the transition matrix P that only
contains the transitions between the transient states. In the
example of Fig. 7, M is a 12 × 12 substochastic matrix. Let
sk be the state distribution after k steps. In our example case,
s0 = e8 (an all zero vector with only the 8th element one), since
we assume that the domination of virus A starts in state 8. The
L1 norm of sk is the probability that after k steps the process
is in one of the transient states. If the process is still in one of
the transient states after k steps, then the domination time has
to be larger than k. This means that ||sk||1 = Pr[TA > k], and
Pr[TA = k] = ||sk||1 − ||sk−1||1, for k > 0.
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FIG. 8. (Color online) Measured and calculated domination time
in a complete graph of 50 nodes as a function of the number of
infected nodes at the start of the domination period for three different
spreading rates β, and unit curing rate. The right-hand side vertical
axis shows the measured probability density function of the number
of infected nodes at the start of the domination period.
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Let M be the transition matrix containing the transitions
within the transient region. Assuming that all eigenvalues of
M are distinct, M can be decomposed as M = V �V −1, where
V is a matrix with the eigenvectors of M as its columns and
� is a diagonal matrix of the eigenvalues of M . The k step
transition probabilities, Mk , can be expressed as V �kV −1. The
probability of being in a transient state after k steps starting
from some initial state s0 are found [23] by summing the k

step probabilities in row s0 of Mk:

Pr[T � k] =
N∑

j=1

(Mk)s0,j .

Because � is a diagonal matrix, the entries of row s0 in V �k

can be written as vs0,j ξ
k
j , where ξj is the j th eigenvalue of M .

The sum over the entries of row s0 in Mk can be written as

N∑
j=1

(Mk)s0,j =
N∑

j=1

N∑
r=1

vs0,j ξ
k
j ṽr,j =

N∑
j=1

ξk
j cj ,

where cj = ∑N
r=1 vs0,j ṽr,j and ṽr,j are the elements of V −1.

Using Pr[T = k] = Pr[T � k] − Pr[T � k + 1] the probabil-
ity of being in a transient state after k steps, which is the same
as the domination time, can be written as

Pr[T = k] =
N∑

j=1

ξk
j cj (1 − ξj ),

which is a weighted sum of exponentials. Because M is a
substochastic matrix, all eigenvalues are smaller than 1, and
the probability of being in a transient state vanishes. After
sufficiently long time, only the largest eigenvalue has an
influence on the distribution of the domination time leading to
a purely exponential tail.

The hitting time T of the absorbing region in the embedded
Markov chain is expressed in the number of transitions. In
order to transform the number of state changes to time units in
the continuous-time Markov process, we create a uniformized
embedded Markov chain [23, p. 191]. In such a chain, self-
loops ensure that transitions in the embedded chain happen
at equal rates in the continuous-time process. As a result,
the steady-state distributions of the uniformized embedded
Markov chain and the continuous-time Markov chain are the
same. The number of state changes is transformed into time
by dividing by the maximum transition rate in the continuous
time process.

Figure 9 shows the distribution of the domination time
T (starting from ys = y = N/4) in a complete graph for
N = {50,100,200}. Small domination times are most likely,
however, much longer domination times are also likely as
a result of the exponential tail with small exponent. The
exponential tail of all three distributions can be clearly seen
on the log-lin scale. For increasing network sizes the slope of
the tails becomes increasingly flat, indicating that for larger
networks a virus can more easily dominate for a longer time.

The domination times for the five different graph types
discussed in Sec. III A are shown in Fig. 10. The tails of
all these distributions are exponential, but the differences lie
in where the tail starts. For the star graph the exponential
tail starts earliest. Not only are the domination periods more
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FIG. 9. (Color online) Probability distribution of the domination
time T in the complete graph for three different network sizes. For
each network size ys = y = N/4.

pronounced for the star graph, the probability of having long
domination periods is much higher than for the other graphs
although the exponent is larger. For the grid the exponential
tail starts the latest, indicating that small domination times are
most likely. The parts of the distributions for smaller values
for the domination time are very similar for all graphs except
for the star graph.

V. DOMINATION TIME OF NONMATCHED VIRUSES

When the two viruses are not matched, the domination
periods will no longer be the same for the two viruses. We
investigate two different ways in which the two viruses can be
nonmatched: in speed and in effective spreading rate. A further
line of research is to investigate two viruses that have different
spreading and curing rate distributions, but the same average
number of spreading events during an infection period. The
average number of spreading events during an infection period
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FIG. 10. (Color online) Measured probability density function of
domination time T for a domination period that starts with ys = y in
five different graph types of 1000 nodes. The spreading rate is chosen
so that the y = N/4.
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FIG. 11. (Color online) Average duration of a domination period
for two viruses with different effective spreading rates as a function of
ys . The green curves indicate the stronger of the two viruses, whereas
the blue curves indicate the weaker of the two.

is a more natural way to express the spreading effectiveness in
SIS processes [20,24].

A. Domination time for a stronger virus

In order to investigate the effect that one virus is stronger
than the other, we vary the strength of one virus with respect
to the other and compute the expected domination time. The
curing and spreading rates for the two viruses are given as

β =
{
γβ0 for virus A,

β0 for virus B,
δ =

{
δ0 for virus A,

δ0 for virus B,

where β0 and δ0 are scaled for different values of γ to ensure
that the average number of infected nodes stays 33.

Figure 11 shows the expected duration of a domination
period for both the stronger and weaker viruses for six different
strength ratios. The case in which the two viruses are matched
is also shown for reference. As intuitively expected, the
stronger viruses dominate the weaker virus for longer, but
for values of γ not too far removed from 1, the weaker virus
can still dominate the stronger one.

The effect of the difference in effective spreading rate is
almost independent of ys for small values of γ , as illustrated
in Fig. 12, where the ratio E[TB]/E[TA] is plotted for various
values of γ as a function of ys . The ratio between the expected
domination time for the weaker virus and the stronger virus
increases with ys . The maximum ratio between the weaker
and stronger virus occurs when ys is smaller than the expected
number of infected nodes, but not too much smaller.

Figure 13 shows the probability of the network being in a
state with (NA − NB)/N nodes infected for different values
of τB where τB > τA. When virus B is only a few percent
stronger than virus A there is still a fairly high probability of
finding the network in a state where virus A dominates, but
that probability drops quickly with an increasing difference in
strength. Viruses need to be matched in strength within a few
percent to show any real competition.

80
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40

20

T[E
A

T[E\]
B]

45403530252015105
ys

 equally strong  10% difference  20% difference
 5% difference  15% difference  25% difference

FIG. 12. (Color online) Ratio between the average duration of
a domination period for the stronger virus and the duration of a
domination period for the weaker virus for various differences in
strength.

B. Domination of the quicker virus

Two viruses that have the same effective spreading rate can
still differ in behavior. In this section we compare the average
domination periods of viruses that differ in speed, keeping the
effective spreading rate τ = β

δ
constant. The spreading and

curing rates are given by

β =
{
αβ0 for virus A,

β0 for virus B,
δ =

{
αδ0 for virus A,

δ0 for virus B,

where β0 and δ0 are the starting values for the virus process
such that the average number of infected nodes is 33. Contrary
to the case of the varying mutual strength, the difference in
speed does not lead to a difference in the total number of
infected nodes.

Figure 14 plots the average domination time as a function
of ys for various values of α. As expected, the quicker virus
has an advantage for almost all values of ys , but surprisingly,
when ys > y, being quicker becomes disadvantageous. This

70x10
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FIG. 13. (Color online) Probability density function of (NA −
NB )/N for a complete graph of 50 nodes where τB = γ τA, with
1 � γ � 1.17.
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FIG. 14. (Color online) Average duration of a domination period
for two viruses with different spreading speed as a function of the
number of infected nodes at the start of the domination period. The
green curves indicate the quicker of the two viruses, whereas the blue
curves indicate the slower of the two.

can be explained by the fact that when a domination period
starts during a period when the number of infected nodes
is above the average there is a driving force that will push
the number of infected nodes back to the mean. Since the
quicker virus dominates, there are more nodes infected with
the quicker virus. All these nodes have a smaller curing time
and it is therefore likely that the number of nodes infected with
the quicker virus will decrease before the nodes infected with
the slower virus will decrease thereby shortening the expected
domination time of the stronger virus.

Because of the disadvantage of being a quicker virus for
values of ys that are above the expected number of infected
nodes, the effect of α on the ratio between the expected
domination time of a slower virus and a quicker virus is
not constant over ys as for viruses that differ moderately in
strength. Figure 15 shows the ratio E[TB]/E[TA] for different
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FIG. 15. (Color online) Ratio between the average duration of
a domination period for the slower virus and the duration of a
domination period for the quicker virus for various differences in
speed: βB = αβA for 1 � α � 15.

values of α as a function of ys . The shapes of these curves
are markedly different from those of the strength difference in
Fig. 12. This means that although it is possible to balance a
stronger virus with a quicker virus for a single value of ys , it
is not possible for the entire range of ys . Also, the curves are
symmetric around ys = y, resulting in a balance in the total
time the quicker virus dominates the slower and vice versa.

VI. CONCLUSION

When two viruses compete for healthy nodes in a network,
we have shown that one of the two viruses dies out exponen-
tially fast even when both viruses have an effective spreading
rate above the epidemic threshold. However, when we prevent
two equally strong viruses from dying out, a rich dynamic
process emerges where one of the two viruses dominates the
other but loses that dominance after some time. We have shown
that the average domination time of a virus depends on the
number of infected nodes at the beginning of the domination
period and that it can be computed by solving a linear system.
The distribution of the domination time can also be computed
numerically.

When the two viruses are not balanced but differ in
either strength or speed, the domination times will also be
unbalanced. If the differences are not too big, the weaker and/or
slower viruses will still periodically dominate their quicker
and/or stronger rivals, but only for a short time. Because the
effect of speed and strength as a function of the number of
infected nodes at the start of the domination time differs, it
is impossible to balance a stronger virus with a quicker rival
for all values of ys , but it is possible to balance them for a
single value of ys . Contrary to being stronger than a rival,
being quicker is not always a benefit but depends on both how
much quicker the virus is and how many nodes are infected at
the beginning of a domination period. Interesting future work
includes the effect of non-Markovian spreading properties of
both viruses. In this case the strength of two viruses can be
matched, while they differ in distributions for the interarrival
rate of spreading and curing events.
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APPENDIX: GENERALIZED EPIDEMIC
MEAN-FIELD MODEL

Recently, the generalized epidemic mean-field model
(GEMF) has been introduced by Darabi Sahneh et al. [25]
as a generalization of NIMFA, the N -intertwined mean-field
approximation [25,26]. GEMF uses a node level description
of the spreading process to arrive, through a mean-field
approximation, at a set of nonlinear ordinary differential
equations that describe the network state as a whole. Nodes
can be in one of several states (or compartments) and interact
through a multilayer network depending on their state. The
node level description of the process is given by a set of
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FIG. 16. Transition rate graph of the MSIS process. (a) Nodal
transition rate graph: the three states are susceptible (S), infected
with virus A (IA), and infected with virus B (IB ). A node moves
from state IA to S with curing rate δA and from IB to S with curing
rate δB . (b) Edge-based transition graph for type A: a node moves
from state S to state IA with spreading rate βA for each incident link
from a node in IA. (c) Edge-based transition graph for type B: a
node moves from state S to state IB with spreading rate βB for each
incident link from a node in IB . The contact networks for IA and IB are
identical.

transition rate graphs; each transition rate graph can either be
a node-based rate graph, if the rate is independent of the state
of a node’s neighbors, or an edge-based transition graph if the
transition does depend on the state of a node’s neighbors. In
the case of the MSIS process, curing is a node-based transition,
whereas spreading is an edge-based transition. The edge-based
transitions are dependent on an influencer state. The influencer
state is a label that indicates that node i’s transition from one
state to another depends on the number of neighbors of node
i in the indicated state. The MSIS process with two viruses
has three states in the GEMF model; the susceptible state (S),
the infected with virus A state (IA), and the infected with
virus B state (IB). Figure 16 shows the transition rate graphs
for this MSIS process as follows. (a) The nodal rate graph
representing the curing of infected nodes, which happens with
curing rate δA for virus A and curing rate δB for virus B. (b) The
transition from state S to IA, which happens with rate βA per
link and has influencer state IA. (c) The transition from state S

to IB , which happens with rate βB per link and has influencer
state IB . The interaction networks for states IA and IB are
identical.

The state xi(t) of node i at time t is represented by the
standard unit vector corresponding to the state i. The expected
value of xi(t) is defined as [25, Eq. (2)]

E[xi(t)] = [Pr[xi(t) = ei], . . . , Pr[xi(t) = eM ]]T � vi(t),

where ei is the ith standard unit vector and M the number of
states. The governing equations of the GEMF model follow
from the transition graphs [25, Eq. (27)]:

dvi

dt
= −QT

δ vi −
L∑

l=1

⎛
⎝ N∑

j=1

ai,j |lvj,ql

⎞
⎠QT

βl
vi,i = {1, . . . ,N},

(A1)
where Qδ is the Laplacian matrix of the nodal transition rate
graph, Qβl

are the edge transition graphs for the various layers,
and ai,j |l are the adjacency matrix elements of the network
describing the interactions on layer l, ql is the influencer state
at layer l, L is the number of network layers, and N is the
number of nodes in the network.

For the two-virus process described by the transition graphs
in Fig. 16, we have the following Laplacian matrices:

Qδ =
⎡
⎣ 0 0 0

−δA δA 0
−δB 0 δB

⎤
⎦, QβA

=
⎡
⎣βA −βA 0

0 0 0
0 0 0

⎤
⎦,

QβB
=

⎡
⎣βB 0 −βB

0 0 0
0 0 0

⎤
⎦. (A2)

The interaction networks for the two infectious states, IA and
IB , are identical for the 2-MSIS process, so we can drop the
index l from ai,j |l . As indicated above, the influencer states for
IA and IB are the states themselves. Equation (A1) in the case
of 2-MSIS reduces to

v̇i = −QT
δ vi −

N∑
j=1

aij vj,IA
QT

βA
vi −

N∑
j=1

aij vj,IB
QT

βB
vi,

(A3)
which we can expand to

˙⎡
⎣ Si

IAi

IBi

⎤
⎦ = −

⎡
⎣0 −δA −δB

0 δA 0
0 0 δB

⎤
⎦

⎡
⎣ Si

IAi

IBi

⎤
⎦

−
N∑

j=1

aij IAj

⎡
⎣ βA 0 0

−βA 0 0
0 0 0

⎤
⎦

⎡
⎣ Si

IAi

IBi

⎤
⎦

−
N∑

j=1

aij IBj

⎡
⎣ βB 0 0

0 0 0
−βB 0 0

⎤
⎦

⎡
⎣ Si

IAi

IBi

⎤
⎦. (A4)

If βA = βB and δA = δB , the total number of infected nodes
equals the number of infected nodes of a single SIS process.
We take the first row in Eq. (A4):

dSi

dt
= δAIAi

+ δBIBi
−

N∑
j=1

aij IAj
βASi −

N∑
j=1

aij IBj
βBSi

= δ(IAi
+ IBi

) − Siβ

N∑
j=1

aij

(
IAj

+ IBj

)
. (A5)

After using I = IA + IB and S + I = 1, Eq. (A5) reduces
to

dSi

dt
= δ(1 − Si) − Siβ

N∑
j=1

aij Ij , (A6)

which is the governing equation of the N -intertwined mean-
field approximation of the normal SIS processes; see, for
example, [26, Eq. (1)].

1. Evaluation of the GEMF model

To verify the correctness of the GEMF model description
of the MSIS process, we compare the numerical solution of
Eq. (A3) to simulations in a complete graph of 500 nodes. The
average number of infected nodes per virus type as a function
of time can be computed from Eq. (A3) as the average number
of nodes in one of the infectious states. For the simulations, we
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FIG. 17. (Color online) Comparison between the average num-
ber of infected nodes in the GEMF model simulations in a complete
graph of 500 nodes. The simulation results are averaged over 100 000
runs.

have averaged the number of infected nodes at regular sample
intervals over 100 000 runs using the event based simulator

first described in [27]. At the start of each simulation 20% of
the nodes are infected with virus A and another 20% of the
nodes are infected with virus B.

In Fig. 17 the average fraction of infected as computed
from Eq. (A3) and simulations are plotted as a function of
time. The GEMF model and the simulations both coincide and
show that the average fraction of infected nodes is the same for
viruses A and B. Yet, Fig. 17 should be interpreted with care.
Just as mean-field models for normal SIS, the GEMF model
for MSIS cannot describe the process of a virus dying out. In
reality, one of the two viruses rapidly dies out as a result of the
competition.

The effects of the competition can be highlighted by
preventing the viruses from dying out. This is done by
reinfecting the last node of a virus type at the moment it is
cured. Figure 1 shows the fraction of infected nodes per virus
type as a function of time, again in a complete graph of 500
nodes. In contrast to Fig. 17, the fraction of infected nodes is
doubled for the dominant virus, while it is very small for the
dominated virus. Interestingly, the two viruses alternate from
being dominant to being dominated. This behavior is further
discussed in Sec. III A.
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